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two conditions: each output value must be some pro-cessor's input value, and the set of output values cho-sen must contain at most k distinct values. The �rstcondition rules out trivial solutions in which a singlevalue is hard-wired into the protocol and chosen byall processors in all executions, and the second con-dition requires that the processors coordinate theirchoices to some degree. This problem is interestingbecause it de�nes a family of coordination problems ofincreasing di�culty. At one extreme, if n is the num-ber of processors in the system, then n-set agreementis trivial: each processor may simply choose its owninput value. At the other extreme, 1-set agreementrequires that all processors choose the same outputvalue, a problem equivalent to the consensus problem[LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Con-sensus is well-known to be the \hardest" problem,in the sense that all other decision problems can bereduced to it.1 Between these extremes, as we varythe value of k from n to 1, we gradually increase thedegree of processor coordination required.We consider this family of problems in a syn-chronous, message-passing model with crash failures.In this model, n processors communicate by send-ing messages over a completely connected network.Computation in this model proceeds in a sequence ofrounds. In each round, processors send messages toother processors, then receive messages sent to themin the same round, and then perform some local com-putation and change state. This means that all pro-cessors take steps at the same rate, and that all mes-sages take the same amount of time to be delivered.Communication is reliable, but up to f processors canfail by stopping in the middle of the protocol.In this model, we prove that any protocol solv-ing k-set agreement and tolerating f failures requiresbf=kc+1 rounds of communication in the worst case,1Consensus arises in applications as diverse as on-board air-craft control [W+78], database transaction commit [BHG87],and concurrent object design [Her91]. Page 1



assuming n � f + k + 1. This lower bound is tight,matching a protocol given by Chaudhuri [Cha91].Since consensus is just 1-set agreement, our lowerbound implies the well-known lower bound of f + 1rounds for consensus when n � f + 2 [FL82]. Moreimportant, the running time r = bf=kc + 1 demon-strates that there is a smooth but inescapable tradeo�among the number f of faults tolerated, the degree kof coordination achieved, and the time r the proto-col must run. In addition, the lower bound proofitself is interesting because of the geometric prooftechnique we use, combining ideas due to Chaud-huri [Cha91, Cha93], Fischer and Lynch [FL82], Her-lihy and Shavit [HS93], and Dwork, Moses, and Tut-tle [DM90, MT88].The synchronous model is a special case of almostevery other realistic model, so any lower bound in thismodel holds in these models as well. Moreover, ourtechniques may be helpful in understanding how toprove (possibly) stricter lower bounds in these morecomplex models.2 OverviewWe start with an informal overview of the ideas usedin the lower bound proof. For the remainder of thispaper, suppose P is a protocol that solves k-set agree-ment and tolerates the failure of f out of n processors,and suppose P halts in r < bf=kc + 1 rounds. Thismeans that all nonfaulty processors have chosen anoutput value at time r in every execution of P . Inaddition, suppose n � f + k + 1, which means thatat least k + 1 processors never fail. Our goal is toconsider the global states that occur at time r in exe-cutions of P , and to show that in one of these statesthere are k+1 processors that have chosen k+1 dis-tinct values, violating k-set agreement. Our strategyis to consider the local states of processors that oc-cur at time r in executions of P , and to investigatethe combinations of these local states that occur inglobal states. This investigation depends on the con-struction of a geometric object. In this section, weuse a simpli�ed version of this object to illustrate thegeneral ideas in our proof.Since consensus is a special case of k-set agree-ment, it is helpful to review the standard proof of thef + 1 round lower bound for consensus [FL82, DS83,Mer85, DM90] to see why new ideas are needed fork-set agreement. Suppose that the protocol P is aconsensus protocol, which means that in all execu-tions of P all nonfaulty processors have chosen thesame output value at time r. Two global states g1and g2 at time r are said to be similar if some non-

faulty processor p has the same local state in bothglobal states. The crucial property of similarity isthat the decision value of any processor in one globalstate completely determines the decision value for anyprocessor in all similar global states. For example, ifall processors decide v in g1, then certainly p decidesv in g1. Since p has the same local state in g1 and g2,and since p's decision value is a function of its localstate, processor p also decides v in g2. Since all pro-cessors agree with p in g2, all processors decide v ing2, and it follows that the decision value in g1 deter-mines the decision value in g2. A similarity chain isa sequence of global states, g1; : : : ; g`, such that gi issimilar to gi+1. A simple inductive argument showsthat the decision value in g1 determines the decisionvalue in g`. The lower bound proof consists of show-ing that all time r global states of P lie on a singlesimilarity chain. It follows that all processors choosethe same value in all executions of P , independent ofthe input values, violating the de�nition of consensus.The problem with k-set agreement is that the de-cision values in one global state do not determine thedecision values in similar global states. If p has thesame local state in g1 and g2, then p must choosethe same value in both states, but the values chosenby the other processors are not determined. Even ifn � 1 processors have the same local state in g1 andg2, the decision value of the last processor is still notdetermined. The fundamental insight in this paperis that k-set agreement requires considering all \de-grees" of similarity at once. We capture these degreesof similarity with a compact geometric generalizationof similarity chains.We start with a k-dimensional simplex in k-dimensional Euclidean space [Cha93, HS93]. A sim-plex is just the natural generalization of a triangle tok dimensions: for example, a 0-dimensional simplexis a vertex, a 1-dimensional simplex is an edge linkingtwo vertices, a 2-dimensional simplex is a solid trian-gle, and a 3-dimensional simplex is a solid tetrahe-dron. The simplex contains a number of grid points,which are the points in Euclidean space with inte-ger coordinates. We triangulate this simplex withrespect to these grid points via a collection of smallerk-dimensional simplexes. We call this triangulatedsimplex the Bermuda Triangle B, since all fast pro-tocols vanish somewhere in its interior. We then labeleach grid point with an ordered pair (p; s) consistingof a processor identi�er p and a local state s in sucha way that for each simplex T in the triangulationthere is a global state g consistent with the labelingof the simplex: for each ordered pair (p; s) labelinga corner of T , processor p has local state s in globalstate g. Page 2
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Figure 1: The Bermuda Triangle for 5 processors and a 1-round protocol for 2-set agreement.A simpli�ed Bermuda Triangle B is illustrated inFigure 1. In this �gure, P is a protocol for 5 proces-sors solving 2-set agreement in 1 round. We have la-beled grid points with local states, but we have omit-ted processor ids and many intermediate nodes forclarity. The local states in the �gure are representedby expressions such as bb?aa. Given 3 distinct in-put values a; b; c, we write bb?aa to denote the localstate of a processor p at the end of a round in whichthe �rst two processors have input value b and sendmessages to p, the middle processor fails to send amessage to p, and the last two processors have inputvalue a and send messages to p. In Figure 1, followingany horizontal line from left to right across B, the in-put values are changed from a to b. The input valueof each processor is changed|one after another|by�rst silencing the processor, and then reviving theprocessor with the input value b. Similarly, movingalong any vertical line from bottom to top, proces-sors' input values change from b to c.The complete labeling of the Bermuda TriangleB|which would include processor ids|has the fol-lowing property. Let (p; s) be the label of a grid pointx. If x is a corner of B, then s speci�es that eachprocessor starts with the same input value, so p mustchoose this value if it �nishes protocol P in local states. If x is on an edge of B, then s speci�es that eachprocessor starts with one of the two input values la-beling the ends of the edge, so p must choose one ofthese values if it halts in state s. Similarly, if x is inthe interior of B, then s speci�es that each processorstarts with one of the three values labeling the cor-

ners of B, so p must choose one of these three valuesif it halts in state s.Now let us \color" each grid point with output val-ues. Given a grid point x labeled with (p; s), let uscolor x with the value v that p chooses in local state sat the end of P . This coloring of B has the propertythat the color of each of the corners is determineduniquely, the color of each point on an edge betweentwo corners is forced to be the color of one of thecorners, and the color of each interior point can bethe color of any corner. Colorings with this propertyare called Sperner colorings, and have been studiedextensively in the �eld of algebraic topology. At thispoint, we exploit a remarkable combinatorial result�rst proved in 1928: Sperner's Lemma [Spa66, p.151]states that any Sperner coloring of any triangulatedk-dimensional simplex must include at least one sim-plex whose corners are colored with all k + 1 colors.In our case, however, this simplex corresponds to aglobal state in which k+1 processors choose k+1 dis-tinct values, which contradicts the de�nition of k-setagreement. Thus, in the case illustrated above, thereis no protocol for 2-set agreement halting in 1 round.We note that the idea of applying Sperner's Lemmato a geometric structure like the Bermuda Trianglehas been used in previous work by Chaudhuri [Cha91,Cha93]. She also proves a lower bound of bf=kc + 1rounds for k-set agreement, but for a very restrictedclass of protocols. In her work, a protocol's deci-sion function can depend only on vectors giving par-tial information about which processors started withwhich inputs, but cannot make any use of any otherPage 3



information recorded in a processor's local state. Thetechnical challenge in this paper is to construct a la-beling of vertices with processor ids and local statesthat will allow us to prove a lower bound for arbi-trary protocols, including protocols that have proces-sors make arbitrary use of the information in theirlocal states.3 The ModelWe use a synchronous, message-passing model withcrash failures. The system consists of n processors,p1; : : : ; pn. Processors share a global clock that startsat 0 and advances in increments of 1. Computationproceeds in a sequence of rounds, with round r lastingfrom time r � 1 to time r. Computation in a roundconsists of three phases: �rst each processor p sendsmessages to some of the processors in the system, pos-sibly including itself, then it receives the messagessent to it during the round, and �nally it performssome local computation and changes state. We as-sume that the communication network is totally con-nected: every processor is able to send distinct mes-sages to every other processor in every round. We alsoassume that communication is reliable (although pro-cessors can fail): if p sends a message to q in round r,then the message is delivered to q in round r.Processors follow a deterministic protocol that de-termines what messages a processor should send andwhat output a processor should generate as a functionof its local state. Processors can be faulty, however,and any processor p can simply stop in any roundr. In this case, processor p follows its protocol andsends all messages the protocol requires in rounds 1through r�1, sends some subset of the messages it isrequired to send in round r, and sends no messages inrounds after r. We say that p is silent from round r ifp sends no messages in round r or later. We say that pis active through round r if p sends all messages inround r and earlier.A full-information protocol is one in which everyprocessor broadcasts its entire local state to everyprocessor, including itself, in every round [PSL80,FL82, Had83]. One nice property of full-informationprotocols is that every execution of a full-informationprotocol P has a compact representation called acommunication graph [MT88]. The communicationgraph G for an r-round execution of P is a two-coloredgraph. The vertices form an n� r grid, with proces-sor names 1 through n labeling the vertical axis andtimes 0 through r labeling the horizontal axis. Thenode representing processor p at time i is labeled withthe pair hp; ii. Given any pair of processors p and q
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JJJJJZZZJJJJJZZZJJJJJFigure 2: A three-round communication graph.and any round i, there is an edge between hp; i� 1iand hq; ii whose color determines whether p success-fully sends a message to q in round i: the edge isgreen if p succeeds, and red otherwise. In addition,each node hp; 0i is labeled with p's input value. Fig-ure 2 illustrates a three round communication graph;in this �gure, only green edges are indicated explic-itly. We refer to the edge between hp; i� 1i and hq; iias the round i edge from p to q, and we refer to thenode hp; i� 1i as the round i node for p since it repre-sents to point at which p sends its round i messages.We de�ne what it means for a processor to be silentor active in terms of communication graphs in theobvious way. In the stopping failure model, all com-munication graphs have the property that if a roundi edge from p is red, then all round j � i + 1 edgesfrom p are red (meaning p is silent from round i+1).Since a communication graph G describes an exe-cution of P , it also determines the global state at theend of P , so we sometimes refer to G as a global com-munication graph. In addition, for each processor pand time t, there is a subgraph of G that correspondsto the local state of p at the end round t, and we re-fer to this subgraph as a local communication graph.The local communication graph for p at time t is thesubgraph G(p; t) of G induced by the node hp; ti andall earlier nodes reachable from hp; ti by a sequence(directed backwards in time) of green edges followedby at most one red edge. In the remainder of this pa-per, we use graphs to represent states. Wherever weused \state" in the informal overview of Section 2, wenow substitute the word \graph." Furthermore, weassume that all executions of a full-information pro-tocol run for exactly r rounds and produce output atexactly time r, and we assume that processors sendlocal communication graphs instead of local states.The crucial property of a full-information proto-col is that every r-round protocol for k-set agreementcan be simulated by an r-round full-information pro-tocol, and hence that we can restrict attention to full-information protocols when proving the lower boundin this paper (see [PSL80, FL82, Had83, MT88]).Page 4



4 k-set AgreementThe k-set agreement problem [Cha91] is de�ned asfollows. We assume that each processor pi has twoprivate registers in its local state, a read-only inputregister and a write-only output register. Initially,pi's input register contains an arbitrary input valuefrom a set V containing at least k+1 values v0; : : : ; vk,and its output register is empty. A protocol solves theproblem if it causes each nonfaulty processor to haltafter writing an output value to its output registerin such a way that every processor's output value issome processor's input value, and the set of outputvalues chosen has size at most k.5 Bermuda TriangleIn this section, we de�ne the basic geometric con-structs used in our proof that every protocol P solv-ing k-set agreement and tolerating f failures requiresat least bf=kc+1 rounds of communication, assumingn � f + k + 1:We start with some preliminary de�nitions. A sim-plex S is the convex hull of k+1 a�nely-independent2points x0; : : : ; xk in Euclidean space. This simplexis a k-dimensional volume, the k-dimensional ana-logue of a solid triangle or tetrahedron. The pointsx0; : : : ; xk are called the vertices of S, and k is thedimension of S. We sometimes call S a k-simplexwhen we wish to emphasize its dimension. A simplexF is a face of S if the vertices of F form a subsetof the vertices of S (which means that the dimensionof F is less than or equal to the dimension of S). Aset of k-simplexes S1; : : : ; S` is a triangulation of S ifS = S1 [ � � � [ S` and the intersection of Si and Sj isa face of each3 for all pairs i and j. The vertices of atriangulation are the vertices of the Si. Any triangu-lation of S induces triangulations of its faces in theobvious way.Let B be the k-simplex in k-dimensional Eu-clidean space with vertices (0; : : : ; 0), (N; 0; : : : ; 0),(N;N; 0; : : : ; 0), : : : , (N; : : : ; N ), where N is a hugeinteger de�ned later in Section 6.3. The BermudaTriangle B is a triangulation of B de�ned as follows.The vertices of B are the grid points contained inB: these are the points of the form x = (x1; : : : ; xk),where the xi are integers between 0 and N satisfy-ing x1 � x2 � � � � � xk. Informally, the simplexesof the triangulation are de�ned as follows: pick any2Points x0; : : : ; xk are a�nely independent if x1 �x0; : : : ; xk � x0 are linearly independent.3Notice that the intersection of two arbitrary k-dimensionalsimplexes Si and Sj will be a volume of some dimension, butit need not be a face of either simplex.

grid point and walk one step in the positive directionalong each dimension. The k + 1 points visited bythis walk de�ne the vertices of a simplex, and the tri-angulation B consists of all simplexes determined bysuch walks. For example, the 2-dimensional BermudaTriangle is illustrated in Figure 1. This triangulation,known as Kuhn's triangulation, is de�ned formally asfollows [Cha93]. Let e1; : : : ; ek be the unit vectors;that is, ei is the vector (0; : : : ; 1; : : : ; 0) with a single1 in the ith coordinate. A simplex is determined bya point y0 and an arbitrary permutation f1; : : : ; fk ofthe unit vectors e1; : : : ; ek: the vertices of the simplexare the points yi = yi�1 + fi for all i > 0. When welist the vertices of a simplex, we always write them inthe order y0; : : : ; yk in which they are visited by thewalk.For brevity, we refer to the vertices of B as thecorners of B. The triangulation B induces triangu-lations of the one-dimensional faces of B, and theseinduced triangulations are called the edges of B. Thesimplexes of B are called primitive simplexes.Each vertex of B is labeled with an ordered pair(p;L) consisting of a processor id p and a local com-munication graph L. As illustrated in the overview inSection 2, the crucial property of this labeling is thatif S is a primitive simplex with vertices y0; : : : ; yk,and if each vertex yi is labeled with a pair (qi;Li),then there is a global communication graph G suchthat each qi is nonfaulty in G and has local commu-nication graph Li in G. Constructing this labelingis the subject of the next three sections. We �rstassign global communication graphs G to vertices inSection 6, then we assign processors p to vertices inSection 7, and then we assign ordered pairs (p;L) tovertices in Section 8, where L is the local communi-cation graph of p in G.6 Graph AssignmentIn this section, we label each vertex of B with a globalcommunication graph. Actually, for expository rea-sons, we augment the de�nition of a communicationgraph and label vertices of B with these augmentedcommunication graphs instead. Constructing this la-beling involves several steps.6.1 Augmented GraphsIn this section, we extend the de�nition of a com-munication graph to make the processor assignmentin Section 7 easier to describe. We augment com-munication graphs with tokens, and place tokens onthe graph so that if processor p fails in round i, thenthere is a token on the node hp; j � 1i for processorPage 5



p in some earlier round j � i. In this sense, ev-ery processor failure is \covered" by a token, and thenumber of processors failing in the graph is boundedfrom above by the number of tokens. In the next fewsections, when we construct long sequences of thesegraphs, tokens will be moved between adjacent pro-cessors within a round, and used to guarantee thatprocessor failures in adjacent graphs change in a or-derly fashion. For every value of `, we de�ne graphswith exactly ` tokens placed on nodes in each round,but we will be most interested in the two cases with` equal to 1 and k.For each value ` > 0, we de�ne an `-graph G tobe a communication graph with tokens placed on thenodes of the graph that satis�es the following condi-tions for each round i, 1 � i � r:1. The total number of tokens on round i nodes isexactly `.2. If a round i edge from p is red, then there is atoken on a round j � i node for p.3. If a round i edge from p is red, then p is silentfrom round i+ 1.We say that p is covered by a round i token if thereis a token on the round i node for p, we say that pis covered in round i if p is covered by a round j � itoken, and we say that p is covered in a graph if p iscovered in any round. Similarly, we say that a roundi edge from p is covered if p is covered in round i.The second condition says every red edge is coveredby a token, and this together with the �rst conditionimplies that at most `r processors fail in an `-graph.We often refer to an `-graph as a graph when thevalue of ` is clear from context or unimportant. Weemphasize that the tokens are simply an accountingtrick, and have no meaning as part of the global orlocal state in the underlying communication graph.We de�ne a failure-free `-graph to be an `-graph inwhich all edges are green, and all round i tokens areon processor p1 in all rounds i.6.2 Graph operationsWe now de�ne four operations on augmented graphsthat make only minor changes to a graph. In particu-lar, the only change an operation makes is to changethe color of a single edge, to change the value of asingle processor's input, or to move a single tokenbetween adjacent processors within the same round.The operations are de�ned as follows:1. delete(i; p; q): This operation changes the colorof the round i edge from p to q to red, and has

no e�ect if the edge is already red. This makesthe delivery of the round i message from p to qunsuccessful. It can only be applied to a graphif p and q are silent from round i + 1, and p iscovered in round i.2. add (i; p; q): This operation changes the color ofthe round i edge from p to q to green, and hasno e�ect if the edge is already green. This makesthe delivery of the round i message from p to qsuccessful. It can only be applied to a graph if pand q are silent from round i + 1, processor p isactive through round i � 1, and p is covered inround i.3. change(p; v): This operation changes the inputvalue for processor p to v, and has no e�ect ifthe value is already v. It can only be appliedto a graph if p is silent from round 1, and p iscovered in round 1.4. move(i; p; q): This operation moves a round i to-ken from hp; i� 1i to hq; i� 1i, and is de�nedonly for adjacent processors p and q (that is,fp; qg = fpj; pj+1g for some j). It can only beapplied to a graph if p is covered by a roundi token, and all red edges are covered by othertokens.It is obvious from the de�nition of these operationsthat they preserve the property of being an `-graph:if G is an `-graph and � is a graph operation, then� (G) is an `-graph. We de�ne delete, add, and changeoperations on communication graphs in exactly thesame way, except that the condition \p is covered inround i" is omitted.6.3 Graph sequencesWe now de�ne a sequence �[v] of graph operationsthat can be applied to any failure-free graph G totransform it into the failure-free graph G[v] in whichall processors have input v. We want to emphasizethat the sequences �[v] di�er only in the value v.For this reason, we de�ne a parameterized sequence�[x1; : : : ;x`] to be a sequence of graph operationswith free variables x1; : : : ;x` appearing as parame-ters to the graph operations in the sequence.Given a graph G, let Gi[v] be the graph identi-cal to G, except that processor pi has input v. Inthe case of ordinary communication graphs, a resultby Moses and Tuttle [MT88] implies that if G andGi[v] are failure-free graphs, then there is a \similar-ity chain" of graphs between G and Gi[v]. In theirproof|a re�nement of similar proofs by Dwork andMoses [DM90] and others|the sequence of graphsPage 6



they construct has the property that each graph inthe chain can be obtained from the preceding graphby applying a sequence of the add, delete, and changegraph operations de�ned above. The same proofworks for augmented communication graphs, pro-vided we insert move operations between the add,delete, and change operations to move tokens betweennodes appropriately. With this simple modi�cation,we can prove the following.Lemma 1: For each i, there is a parameterized se-quence �i[v] with the property that for all values vand failure-free graphs G, the sequence �i[v] trans-forms G to Gi[v].By concatenating such operation sequences, we cantransform G into G[v] by changing processors' inputvalues one at a time:Lemma 2: Let �[v] = �1[v] � � ��n[v]. For everyvalue v and every failure-free graph G, the sequence�[v] transforms G to G[v].Now we can de�ne the parameter N used in de�ningthe shape of B: N is the length of the sequence �[v],which is exponential in r.6.4 Graph mergeSpeaking informally, we will use each sequence �[vi]of graph operations to generate a sequence of graphs,and we will use this sequence of graphs to label ver-tices along the edge of B in the ith dimension. Thenwe will label vertices in the interior of B by perform-ing a \merge" of the graphs on the edges in the dif-ferent dimensions.The merge of a sequence H1; : : : ;Hk of graphs is agraph de�ned as follows:1. an edge e is colored red if it is red in any of thegraphs H1; : : : ;Hk, and green otherwise, and2. an initial node hp; 0i is labeled with the value viwhere i is the maximum index such that hp; 0i islabeled with vi in Hi, or v0 if no such i exists,and3. the number of tokens on a node hp; ii is the sumof the number of tokens on the node in the graphsH1; : : : ;Hk.The �rst condition says that a message is missingin the resulting graph if and only if it is missing inany of the merged graphs. To understand the secondcondition, notice that for each processor pj there isa integer sj with the property that pj 's input valuein changed to vi by the sjth operation appearing in

�[vi]. Now choose a vertex x = (x1; : : : ; xk) of B, andimagine walking from the origin to x by walking alongthe �rst dimension to (x1; 0; : : : ; 0), then along thesecond dimension to (x1; x2; 0; : : : ; 0), and so forth.In each dimension i, processor pj 's input is changedfrom vi�1 to vi after sj steps in this dimension. Sincex1 � x2 � � � � � xk, there is a �nal dimension i inwhich pj's input is changed to vi, and never changedagain. The second condition above is just a compactway of identifying this �nal value vi.Lemma 3: Let H be the merge of the graphsH1; : : : ;Hk. If H1; : : : ;Hk are 1-graphs, then H isa k-graph.6.5 Graph assignmentsNow we can de�ne the assignment of graphs to ver-tices of B. For each value vi, let Fi be the failure-free1-graph in which all processors have input vi. Letx = (x1; : : : ; xk) be an arbitrary vertex of B. Foreach coordinate xj, let �j be the pre�x of �[vj] con-sisting of the �rst xj operations, and let Hj be the1-graph resulting from the application of �j to Fj�1.This means that in Hj, some set p1; : : : ; pi of adjacentprocessors have had their inputs changed from vj�1to vj . The graph G labeling x is de�ned to be themerge of H1; : : : ;Hk. We know that G is a k-graphby Lemma 3, and hence that at most rk � f proces-sors fail in G.Remember that we always write the vertices of aprimitive simplex in a canonical order y0; : : : ; yk. Inthe same way, we always write the graphs labeling thevertices of a primitive simplex in the canonical orderG0; : : : ;Gk, where Gi is the graph labeling yi.6.6 Graphs on a simplexThe graphs labeling the vertices of a primitive sim-plex have some convenient properties. For this sec-tion, �x a primitive simplex S, and let y0; : : : ; yk bethe vertices of S and let G0; : : : ;Gk be the graphs la-beling the corresponding vertices of S. Our �rst resultsays that any processor that is uncovered at a vertexof S is nonfaulty at all vertices of S.Lemma 4: If processor q is not covered in the graphlabeling a vertex of S, then q is nonfaulty in the graphlabeling every vertex of S.Our next result shows that we can use the boundon the number of tokens to bound the number of pro-cessors failing at any vertex of S.Lemma 5: If Fi is the set of processors failing in Giand F = [iFi, then jF j � rk � f . Page 7



We have assigned graphs to S, and now we mustassign processors to S. A local processor labeling ofS is an assignment of distinct processors q0; : : : ; qk tothe vertices y0; : : : ; yk of S so that qi is uncovered inGi for each yi. A global processor labeling of B is anassignment of processors to vertices of B that inducesa local processor labeling at each primitive simplex.The �nal important property of the graphs labelingS is that if we use a processor labeling to label S withprocessors, then S is consistent with a single globalcommunication graph. The proof of this requires afew preliminary results.Lemma 6: If Gi�1 and Gi di�er in p's input value,then p is silent from round 1 in G0; : : : ;Gk. If Gi�1and Gi di�er in the color of an edge from p to q inround t, then p and q are silent from round t + 1 inG0; : : : ;Gk.Lemma 7: If Gi�1 and Gi di�er in the local commu-nication graph of p at time t, then p is silent fromround t+ 1 in G0; : : : ;Gk.Lemma 8: If p sends a message in round r in anyof the graphs G0; : : : ;Gk, then p has the same localcommunication graph at time r�1 in all of the graphsG0; : : : ;Gk.Finally, we can prove the crucial property of prim-itive simplexes in the Bermuda Triangle:Lemma 9: Given a local processor labeling of S, letq0; : : : ; qk be the processors labeling the vertices of S,and let Li be the local communication graph of qi inGi. There is a global communication graph G withthe property that each qi is nonfaulty in G and hasthe local communication graph Li in G.7 Processor AssignmentWhat Lemma 9 at the end of the preceding sectiontells us is that all we have left to do is to constructa global processor labeling. In this section, we showhow to do this. We �rst associate a set of \live"processors with each communication graph labeling avertex of B, and then we choose one processor fromeach set to label vertices of B.7.1 Live processorsGiven a graph G, we construct a set of c = n � rk �k + 1 uncovered (and hence nonfaulty) processors.We refer to these processors as the live processorsin G, and we denote this set by live(G). These livesets have one crucial property: if G and G0 are two

S  f1; : : : ; ngfor each i = 1; : : : ; ncount  0for each j = i; i� 1; : : : ; 1; i+ 1; : : : ; nif count = mi then breakif j 2 S thenS  S � fjgcount  count + 1live(G) SFigure 3: The construction of live(G).graphs labeling adjacent vertices, and if p is in bothlive(G) and live(G0), then p has the same rank in bothsets. As usual, we de�ne the rank of pi in a set R ofprocessors to be the number of processors pj 2 Rwith j � i.Given a graph G, we now show how to constructlive(G). This construction has one goal: if G and G0are graphs labeling adjacent vertices, then the con-struction should minimize the number of processorswhose rank di�ers in the sets live(G) and live(G0).The construction of live(G) begins with the set of allprocessors, and removes a set of rk processors, onefor each token. This set of removed processors in-cludes the covered processors, but may include otherprocessors as well. For example, suppose pi and pi+1are covered with one token each in G, but suppose piis uncovered and pi+1 is covered by two tokens in G0.For simplicity, let's assume these are the only tokenson the graphs. When constructing the set live(G), weremove both pi and pi+1 since they are both covered.When constructing the set live(G0), we remove pi+1,but we must also remove a second processor corre-sponding to the second token covering pi+1. Whichprocessor should we remove? Notice that if we chooseto remove pi again, then no processors change rank.In general, the construction of live(G) considers eachprocessor p in turn. If p is covered by mp tokens inG, then the construction removes mp processors bystarting with p, working down the list of remainingprocessors smaller than p, and then working up thelist of processors larger than p if necessary.Speci�cally, given a graph G, the multiplicity of pis the number mp of tokens appearing on nodesfor p in G, and the multiplicity of G is the vec-tor m = hmp1 ; : : : ;mpn i. Given the multiplicity of Gas input, the algorithm in Figure 3 computes live(G).In this algorithm, processor pi is denoted by its in-dex i. This construction has two obvious proper-ties: If i 2 live(G) then mi = 0 (i is uncovered),Page 8



and Pi�1j=1mj � i� 1.The assignment of graphs to the corners of a sim-plex has the property that once p becomes covered onone corner of S, it remains covered on the followingcorners of S:Lemma 10: If p is uncovered in the graphs Gi andGj , where i < j, then p is uncovered in each graphGi;Gi+1; : : : ;Gj.Finally, because token placements in adjacentgraphs on a simplex di�er in at most the movementof one token from one processor to an adjacent pro-cessor, we can use the preceding lemma to prove thefollowing:Lemma 11: If p 2 live(Gi) and p 2 live(Gj), then phas the same rank in live(Gi) and live(Gj).7.2 Processor labelingWe now choose one processor from each set live(G)to label the vertex with graph G. Given a ver-tex x = (x1; : : : ; xk), we de�ne plane(x) = Pki=1 xi(mod k + 1).Lemma 12: If x and y are distinct vertices of thesame simplex, then plane(x) 6= plane(y).We de�ne a global processor labeling � as follows:given a vertex x labeled with a graph G, we de�ne� to map x to the processor having rank plane(x) inlive(G).Lemma 13: The mapping � is a global processor la-beling.We label the vertices of B with processors accordingto the processor labeling �.8 Ordered Pair AssignmentFinally, we assign ordered pairs (p;L) of processorids and local communication graphs to vertices of B.Given a vertex x labeled with processor p and graphG, we label x with the ordered pair (p;L) where L isthe local communication graph of p in G. The follow-ing result is a direct consequence of Lemmas 9 and 13.It says that the local communication graphs of pro-cessors labeling the corners of a vertex are consistentwith a single global communication graph.Lemma 14: Let q0; : : : ; qk and L0; : : : ;Lk be theprocessors and local communication graphs labelingthe vertices of a simplex. There is a global communi-cation graph G with the property that each qi is non-faulty in G and has the local communication graphLi in G.

9 Sperner's LemmaWe now state Sperner's Lemma, and use it to provea lower bound on the number of rounds required tosolve k-set agreement.Informally, a Sperner coloring of B assigns a colorto each vertex so that each corner vertex ci is givena distinct color wi, each vertex on the edge betweenci and cj is given either wi or wj , and so on. Moreformally, let S be a simplex and let F be a face of S.Any triangulation of S induces a triangulation of Fin the obvious way. Let T be a triangulation of S. ASperner coloring of T assigns a color to each vertexof T so that each corner of T has a distinct color, andso that the vertices contained in a face F are coloredwith the colors on the corners of F , for each face F ofT . Sperner colorings have a remarkable property: atleast one simplex in the triangulation must be givenall possible colors.Lemma 15 (Sperner's Lemma): If B is a trian-gulation of a k-simplex, then for any Sperner coloringof B, there exists at least one k-simplex in B whosevertices are all given distinct colors.Let P be the protocol whose existence we assumedin the previous section. De�ne a coloring �P of Bas follows. Given a vertex x labeled with processor pand local communication graph L, color x with thevalue v that P requires processor p to choose whenits local communication graph is L. This coloring isclearly well-de�ned, since P is a protocol in which allprocessors chose an output value at the end of roundr. Formalizing the argument sketched in the intro-duction, we can show that �P is a Sperner coloring.Lemma 16: If P is a protocol for k-set agreementtolerating f faults and halting in r � bf=kc rounds,then �P is a Sperner coloring of B.Consequently, we can use Sperner's Lemma toprove that there exists a global state in which k + 1processors choose k + 1 distinct values.Theorem 17: If n � f + k + 1, then no protocolfor k-set agreement can halt in fewer than bf=kc + 1rounds.Technical Report: A full version of this work willsoon be available for electronic distribution. Send theone-word message \help" to techreports@crl.dec.comfor information.Acknowledgements: This work was performedwhile the �rst author was visiting MIT. The �rst andthird authors were supported in part by NSF grantCCR-89-15206, in part by DARPA contracts N00014-89-J-1988, N00014-92-J-4033, and N00014-92-J-1799,and in part by ONR contract N00014-91-J-1046.Page 9
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