
Dihomotopy as a tool in state spae analysis�Eri Goubault1 and Martin Raussen21 LIST (CEA Salay), DTSI-SLA-LSL, 91191 Gif-sur-Yvette, Frane,Eri.Goubault�ea.fr2 Institute of Mathematial Sienes, Aalborg University, 9220 Aalborg �st,Denmark, raussen�math.au.dkAbstrat. Reent geometri methods have been used in onurrenytheory for quikly �nding deadloks and unreahable states, see [14℄ forinstane. The reason why these methods are fast is that they ontainin germ ingredients for takling the state-spae explosion problem. Inthis paper we show how this an be made formal. We also give somehints about the underlying algorithmis. Finally, we ompare with otherwell-known methods for oping with the state-spae explosion problem.1 IntrodutionIn model-heking tehniques, temporal formulas, expressing important proper-ties on traes of a onurrent system one has to verify, are heked by travers-ing the interleaving semantis of the program. This runs unfortunately into the\state-spae explosion problem": the number of paths to be traversed might beexponential in the number of proesses involved. It has been very tempting fora number of authors to try to use the information about the independene ofations to derease this number by a possibly exponential ratio. For instane, ifall ations onsidered are ompletely independent, meaning that any interleav-ing of ations taken in this set of ations omputes the same thing, as a funtionfrom (parallel or distributed) store to store, then there is no need to onsider allthe interleavings to hek any kind of \interesting" properties, suh as safety ordeadlok properties.But this is not always as simple as we show with the transition system ofFigure 1. Here we suppose that a and b are independent or \ommuting" ations.The problem in Figure 1 is that we might hoose to traverse only path a:b sine itis equivalent to b:a and we will have missed the branhing after b, whih wouldhave lead us into transition system C, whih might ontain any deadlok wewant for instane. In fat, there are orret ways to infer state-spae redutionmethods from the independene relation. A lassial one explained in Setion7.1 has been originally introdued by Valmari [46℄ under the name of \stubbornsets", based on a notion of independene on Petri nets. These have been amelio-rated later under the name of \persistent sets" by Godefroid [21℄, based on thenotion of independene of asynhronous transition systems. We develop in thispaper new methods for �nding better state-spae redution tehniques, basedon global semantial information. This is done using geometri ideas, whih have



reently regained impetus after the seminal work [12℄ and [36℄. We formalize thismethodology, the \dionneted omponents" of the geometri semantis usinga ategory of frations of the fundamental ategory of the semantis, giving allinformation about all possible shedules of exeution.
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Fig. 2. Example of a progress graphHistory: Towards Higher Dimensional Automata. The �rst \algebrai topologi-al" model in the litterature is alled progress graph and has appeared in operat-ing systems theory, in partiular for desribing the problem of \deadly embrae"in \multiprogramming systems". Progress graphs are introdued in [10℄, but at-tributed to E. W. Dijkstra. The basi idea is to give a desription of what anhappen when several proesses are modifying shared ressoures. Given a sharedresoure a, we see it as its assoiated semaphore that rules its behaviour withrespet to proesses. For instane, if a is an ordinary shared variable, it is us-tomary to use its semaphore to ensure that only one proess at a time an writeon it (this is mutual exlusion). Then, given n deterministi sequential proessesQ1; : : : ; Qn, abstrated as a sequene of loks and unloks on shared objets,Qi = R1a1i :R2a2i � � �Rnianii (Rk being P or V 1), there is a natural way to un-derstand the possible behaviours of their onurrent exeution, by assoiatingto eah proess a oordinate line in Rn. The state of the system orresponds toa point in Rn, whose ith oordinate desribes the state (or \loal time") of theith proessor.Consider a system with �nitely many proesses running altogether. We as-sume that eah proess starts at (loal time) 0 and �nishes at (loal time) 1; theP and V ations orrespond to sequenes of real numbers between 0 and 1, whihreet the order of the P 's and V 's. The initial state is (0; : : : ; 0) and the �nalstate is (1; : : : ; 1). An example onsisting of the two proesses T1 = Pa:Pb:V b:V a1 Using E. W. Dijkstra's notation P and V [12℄ for respetively aquiring and releasinga lok on a semaphore.



and T2 = Pb:Pa:V a:V b gives rise to the two dimensional progress graph of Fig. 2.The shaded area represents states whih are not allowed in any exeution path,sine they orrespond to mutual exlusion. Suh states onstitute the forbid-den region. An exeution path is a path from the initial state (0; : : : ; 0) to the�nal state (1; : : : ; 1) avoiding the forbidden region and inreasing in eah oordi-nate - time annot run bakwards. We all these paths direted paths or dipaths.This entails that paths reahing the states in the dashed square underneath theforbidden region, marked \unsafe" are deemed to deadlok, i.e. they annot pos-sibly reah the allowed terminal state (1; 1). Similarly, by reversing the diretionof time, the states in the square above the forbidden region, marked \unreah-able", annot be reahed from the initial state (0; 0). Notie that all terminatingpaths above the forbidden region are \equivalent" in some sense: they are allharaterized by the fat that T2 gets a and b before T1 (as far as resouresare onerned, we all this a shedule). Similarly, all paths below the forbiddenregion are haraterized by the fat that T1 gets a and b before T2 does.In this piture, one an already reognize many ingredients that are at theenter of algebrai topology, namely the lassi�ation of shapes modulo \elastideformation". As a matter of fat, the atual oordinates that are hosen torepresent the times at whih P s and V s our are unimportant, and these anbe \strethed" in any manner, so the properties (deadloks, shedules et.) areinvariant under some notion of deformation, or homotopy. This has to be apartiular kind of homotopy though ausing many diÆulties in later work. Weall it (in subsequent setions) a direted homotopy or dihomotopy in the sensethat it should preserve the diretion of time.The semantis ommunity ame bak to these geometri onsiderations withthe development of \truly-onurrent" semantis, as opposed to \interleaving"semantis. The base of the argument was that interleaving semantis, i.e. therepresentation of parallelism by non-determinism ignores real asynhronous be-haviours: a j b where a and b are atomi is represented by the same transitionsystem as the non-deterministi hoie a then b or b then a. This fat reatesproblems in stati analysis of (asynhronous) onurrent systems: Interleavingbuilds a lot of uninteresting states in the modelisation, hene indues a highost in veri�ation. This is alled the state-spae explosion problem. Quite a fewmodels for true-onurreny have appeared (see in partiular the aount of [50℄)but it is only in 1991 that geometry is proposed to solve the problem, in [36℄.The diagnosis is that interleaving is only the boundary of the real piture. a j b isreally the �lled-in square whose boundary is the non-deterministi hoie a thenb or b then a (the hollow square). The natural ombinatorial notion, extension oftransition systems, is that of a ubial set, whih is a olletion of points (states),edges (transitions), squares, ubes and hyperubes (higher-dimensional transi-tions representing the truly-onurrent exeution of some number of ations).This is introdued in [36℄ as well as possible formalizations using n-ategories,and a notion of homotopy. This is atually a ombinatorial view of some kind ofprogress graph. Look bak to Figure 2. Consider all interleavings of ations Pa,Pb, V a and V b: they form a subgrid of the progress graph. Take as 2-transitions



(i.e. squares in the ubial set we are building) the �lled-in squares. Only theforbidden region is really interleaved. Cubial sets generalize progress graphs, inthat they allow any amount of non-deterministi hoies as well as dynami re-ation of proesses. These ubial sets are alled Higher-Dimensional Automata(HDA) following [36℄ beause it really makes sense to onsider a hyperube assome form of transition. Atually at about the same time, a bisimulation seman-tis was given in [47℄. Notie that 2-transitions or squares are nothing but a loalommutation relation as in Mazurkiewiz trae theory [34℄, independene relationas in asynhronous transition systems, see [2℄, as in trae automata, as in tran-sition systems with independene [40℄, or (indiretly) as with the \onuene"relation of onurrent transition systems [45℄. There are two more ingredientswith HDA: the elegane and the power of the tools of geometri formalisations,and the natural generalisation to higher dimensions (i.e. \higher-order indepen-dene relation" or n-ary independene relations).Example: Semaphores and progress graphs. In the rest of the paper, we will stikto one partiular model whih is suÆiently simple to explain, and gives suÆ-iently many nasty example: the shared memory model, in whih asynhronousproesses read and write atomially onto variables whih are all in a ommon(shared) memory. To protet writing onto shared variables, we use mutual ex-lusion loks, whih we put expliitely before writing a variable x, by Px, andthat we release expliitely after, by V x. It is then easy to see that writing ontwo distint variables are two independant ations, as well as reading two vari-ables (even the same one) by two proesses. This model an also easily inlude[16℄ ounting semaphores whih are weakly synhronising objets that an beshared by n but not n + 1 proesses at the same time (for some n > 1). Notiethat asynhronous message-passing with bounded bu�ers an be translated intothat framework. It is therefore not only a useful example, but a quite generalappliation indeed.The key idea is to regard a progress graph as a topologial spae in whihpoints are ordered globally through time, i.e., equipped with a (losed) par-tial order �. Traes of exeutions are ontinuous and inreasing maps from thetotally ordered unit segment to (X;�). These are alled dipaths for \diretedpaths". A dihomotopy between two dipaths f and g on X is a deformation viadipaths interpolating ontinuously between f and g and �xing the endpoints.The tehnial de�nitions will be given in Set. 3. Now we an give semantisto a very simple language in whih a �nite number of proesses an only do adeterministi sequene of lokings Px and unlokings V x of shared resouresx. So proesses are just strings of P 's and V 's. Suppose that eah semaphorex (binary or ounting) is equipped with a number s(x), the maximal numberof proesses that an share it at any time. Supposing that the length of thestrings Xi (1 � i � n) are integers li, the semantis of Prog is inluded in[0; l1℄� � � � � [0; ln℄. A desription of the progress graph [[Prog℄℄ assoiated withProg an be given by desribing indutively what should be digged into thishyperretangle. The semantis of our language an be desribed by the simplerule, [k1; r1℄� � � � � [kn; rn℄ 2 [[X1 j � � � j Xn℄℄2 if there is a partition of f1; � � � ; ng



into U [ V with ard(U) = s(a) + 1 for some objet a with, Xi(ki) = Pa,Xi(ri) = V a for i 2 U and kj = 0, rj = lj for j 2 V . This language is somehowdisappointing. To be able to onsider looping and branhing onstruts, we arelead to the notion of loal po-spaes in Set. 3.1.Goals of the present paper. After having explained the geometri semantis, theidea of deformation of paths of exeutions, and introdued the dionneted om-ponents approah to the state-spae explosion problem, we ompare (favorably)our tehnique with lassial tehniques suh as persistent sets. We also reviewin Set. 7.3 some orthogonal tehniques whih ould still be used on top of ourgeometri tehnique.2 The fundamental group of a topologial spaeIn this setion, we give a brief review of the fundamental group of a topologialspae, a very important onept from algebrai topology. See e.g. [1, 5, 27, 35℄for details. Hereafter, we develop a variation of this notion and apply it to statespae analysis.Topologial spaes are abstrations of metri spaes. For a metri spae X ,nearness is expressed by a metri d measuring the distane between pairs ofpoints. For a topologial spae Y , nearness is expressed with the aid of a olle-tion of open subsets of Y . The usual de�nition for a ontinuous map betweentwo metri spaes has the following generalisation for topologial spaes: A mapf : Y ! Y 0 between topologial spaes is ontinuous if and only if f�1(U) � Yis open for every open subset U � Y 0.In this paper, we will mainly be onerned with (di�erent types of) paths,i.e., ontinuous maps f : I ! X from an interval I into a topologial spae X .For the moment, we let I = [0; 1℄ denote the unit interval with standard metriand topology. In general, one annot ompose paths in X . But if the endpointf1(1) of f1 oinides with the start point f2(0) of f2, their onatenationf2 � f1 : I ! X is de�ned by (f2 � f1)(s) = �f1(2s); t � 12f2(2s� 1); t � 12 :Both paths are thus pursued with \double speed". Conatenation de�nes a (non-ommutative, non-assoiative) operation on the spae P(X) of all paths on X .Two points x; y 2 X are alled path-onneted, if there exists a path f withf(0) = x and f(1) = y. The equivalene lasses of this equivalene relation arealled the path omponents of X . The image f(X0) � Y of a path omponentX0 � X under a ontinuous map f : X ! Y is path-onneted. As a onse-quene, path omponents are ompletely independent of eah other, and onean investigate them \one at a time". A loop in a topologial spae X is a pathf : I ! X suh that f(0) = f(1). Loops with the same start/end-point an beonatenated. A homotopy of paths (loops) is a ontinuous map H : I � I ! Xwith H(t; 0) = H(0; 0) and H(t; 1) = H(0; 1) for all t 2 I . It should be regardedas a one-parameter family of paths Ht : I ! X; Ht(s) = H(t; s) (with �xed end



points) onneting H0 and H1. Two paths f0; f1 : I ! X with the same end-points are alled homotopi if there is a �xed end point homotopy H : I�I ! Xwith H0 = f0 and H1 = f1. Homotopy is an equivalene relation.A ontinuous and stritly inreasing map ' : I ! I with '(0) = 0 and '(1) =1 an be used to reparametrise a path, i.e., to pass from a path f in X to the(reparameterised) path f Æ' with the same image. Remark that ' is homotopito the identity map on I ; a homotopy is given by H(t; s) = (1� t)'(s) + ts. As aonsequene, the paths f and its reparametrisation f Æ ' are homotopi via thehomotopy �H(t; s) = f(H(t; s)).A basi invariant of a topologial spae X is its fundamental group: Fix abase point x0 2 X . The elements of the fundamental group �1(X ;x0) are thehomotopy lasses of loops f : I ! X whih start and end at f(0) = f(1) = x0.Conatenation of loops at x0 fatorizes over homotopy to yield a 2-adi operationon �1(X ;x0). The homotopy lass of the onstant map  : I ! X; (s) = x0; s 2I; serves as the neutral element { sine f; f �  and  � f are homotopi to eahother. The inverse to the lass of the loop f is given by the the lass of the loopf� : I ! X; f�(t) = f(1� t): f� � f and f � f� are both homotopi to .The size of the fundamental group has an interesting interpretation: A loop fan be regarded as a map from the unit irle �f : S1 ! X; �f(exp(2�is)) = f(s).The loop f represents the trivial element in �1(X ;x0) if it is homotopi to theonstant loop . A homotopy H with H0 =  and H1 = f an be transformedinto an extension �H : D2 ! X of �f , viz. �H(t exp(2�is)) = H(t; s). Conversely,an extension of �f to a ontinuous map �H : D2 ! X gives rise to a homotopybetween f and . A homotopially trivial loop an thus be \�lled in". Hene, thethe fundamental group of a spae \ounts the numbers of holes" in it.The fundamental group of a spae does only depend on the path omponentof the base point: Let g denote an arbitrary path with g(0) = x0 and g(1) = x1.Then the map \onjugation with g": �1(X ;x0) ! �1(X ;x1); [f ℄ 7! [g� � f � g℄is a group isomorphism .Examples: Proofs of the following statements an be found in almost any text-book on algebrai topology:- The fundamental group of Eulidean spae Rn is trivial for all n.- The fundamental group of the unit irle S1 is isomorphi to the integers.An expliit isomorphism �1(S1) ! Z assoiates to a loop its \winding number",i.e., it ounts (with a sign) the number of times a partiular value is attained.The fundamental group of an n-sphere Sn = fx 2 Rnj jjxjj = 1g is trivial forevery n > 1.- The fundamental group of \the �gure 8" (two irles with only a single basepoint in ommon) is the free group on two letters representing the two diretedloops.- For every group G, there is a path-onneted topologial spae BG with�1(BG) ' G.



3 The fundamental ategory of an lpo-spae3.1 Lpo-spaes and dipathsThere are many models for state spaes for onurrent proesses and the exeu-tions on them, f. Set. 7. In this paper, we follow the basi idea from [16℄: Apo-spae onsists of a topologial spae X with a partial order �� X �X . Thepartial order is assumed to be losed (as a subset of X�X) to ensure oherenebetween topology and order: this makes it possible to take limits \under the �sign". For an example of suh a po-spae (in fat, a progress graph) see Fig. 3;the left �gure represents the state spae for two proesses that aquire and re-linquish a lok to a single shared resoure; the right �gure pitures the situationwhere loks to two shared resoures have to be aquired in reverse order by thetwo proesses. The blak areas are the \forbidden regions" of the progress graphwhih are not part of the state spae.
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RFig. 3. Square with a hole and omplement of a "Swiss ag"If one or several of the proesses ontain loops, the resulting abstration willno longer have a global partial order. Instead one requires for a loal po-spae(lpo-spae) a relation � on X that restrits to a partial order on suÆientlysmall subsets of X that form a basis for the topology. Two suh relations areequivalent (and de�ne the same loal partial order) if they agree on suÆientlysmall open sets forming a basis for the topology. For an example, onsider therelation on the unit irle S1 � R2 given by x � y , the angle from x to y isless than �. This relation is ertainly not transitive, but it de�nes a loal partialorder if and only if � � �; for � � � these are all equivalent.2Traes of a onurrent system (exeutions) are modelled by so-alled dipaths{di is an abbreviation for direted. A short, resp. long dipath in an lpo-spae Xis de�ned as an order preserving ontinuous map from the interval ~I = [0; 1℄,resp. from the non-negative reals R�0 = fx 2 Rj x � 0g (with the naturalorder) into X . A short dipath models a onurrent proess from a start point to2 This version of the de�nition is due to Ulrih Fahrenberg; it is in fat equivalent tothe one given in [16, 17℄.



an end point, while a long dipath runs inde�nitely (e.g., in loops) but avoidingzeno exeutions. Tehnially, one requires that a long dipath does not admit alimit for t!1.3.2 DihomotopyWhen an you be sure that two exeution traes in a onurrent program providethe same result? This is the ase if the orresponding dipaths f; g : I ! Xare dihomotopi. This means, that there exists a ontinuous order-preservingdihomotopy H : I�~I ! X with H0 = f and H1 = g. Remark that the parameterinterval is equipped with the trivial order, i.e., (t; s) � (t0; s0) , t = t0 ^ s � s0.In partiular, every \intermediate" path Ht has to be a dipath. Moreover, werequire a �xed start point (H(t; 0) = H(0; 0)) and, for short dipaths, a �xed endpoint (H(t; 1) = H(0; 1)); for long dipaths all the paths Ht have to be non-zeno.3.3 The fundamental ategoryFor an lpo-spae, one should no longer wath out for a fundamental group. Thereverse of a dipath is no longer a dipath. On a global po-spae, there are no(non-trivial) direted loops at all. Instead, one has to work with the fundamentalategory of a loal po-spae X , or rather with two versions of it, depending onwhether short or long dipaths are onsidered:The objets of the fundamental ategory ~�1(X) are the points of X . Themorphisms between elements x and y are given as the dihomotopy lasses in~�1(X ;x; y). Composition of morphisms~�1(X ;x; y)� ~�1(X ; y; z) ! ~�1(X ;x; z)is given by onatenation of dipaths { up to dihomotopy.The ategory ~�11 (X) ontains ~�1(X). It has an additional maximal element1 with Mor(x;1) onsisting of the dihomotopy lasses of long dipaths startingat x and Mor(1; y) = ; for y 2 X [ f1g. Conatenation of a (short) dipathfrom x to y with a (long) dipath from y yields a (long) dipath { up to dihomotopyvia long dipaths.Compared to the fundamental group, a fundamental ategory is an enormousgadget and it has a muh less nie algebrai struture. On the other hand, in easyexamples one has the impression, that the ardinality of the set of morphismsbetween two points is quite robust when these points are perturbed a little.Example 1. For the square with one hole (Fig. 3), there is no morphism betweenthe regions marked L, resp. R, and no morphism from T to any other region,neither a morphism from any other region to B. There are two morphisms fromany point of B to any point of T . Moreover, from any point of B, ertain pointsof B;L;R an be reahed by (exatly one) morphism. Likewise, any point of Tan be reahed from (ertain of the points in) L;R and T in one way.For the omplement of a \Swiss ag" (Fig. 3), the situation is a bit moreompliated: There is no dipath leaving the unsafe retangle Us and there is nodipath entering the unreahable retangle Ur from the outside. It is possible to



reah Us by a dipath from B [Bl [Br; from Ur, one an reah Tl [ Tr [ T. Theonly possibility for two lasses of dipaths between points ours when the �rst isin B and the seond in T . Moreover, these lasses an be represented by dipathsalong the boundary, representing the two sequential exeutions.The lesson to learn is that the omplete \dynamis" of these state spae anbe desribed from the deomposition into the bloks studied above. It is the aimof this paper to de�ne and desribe these \diomponents" in the general ase andthus, in a realistially large model, to provide a \ollapse" of the exponentiallylarge state spae into piees that show the same behaviour with respet to exe-ution paths between eah other. It is then enough to study the \ow" betweenthese \omponents" in order to apture the dynamis of the whole system.4 Categories of frations and omponents4.1 Categories of frationsNext, we have to invest in a onstrution from ategory theory: We invert in asystemati way all those partial dipaths that never ontribute to a deision alongany dipath. The resulting ategory will then have many \zig-zag" isomorphismsgiving rise to the omponents. Here is a general method [18, 4℄:Let C denote a ategory. To keep things simple, assume C small, i.e., objetsand morphisms are sets. Let � � Mor(C) denote a system of morphisms, i.e.,� inludes all unit morphisms and is losed under omposition. For any suhsystem, one may onstrut the ategory of frations C[��1℄ and the loalizationfuntor q� : C ! C[��1℄ [18, 4℄ having the following universal property:- For every s 2 �, the morphism q�(s) is an isomorphism. - For any funtorF : C ! D suh that F (s) is an isomorphism for every s 2 �, there is a uniquefuntor � : C[��1℄ ! D with � Æ q� = F .The objets of C[��1℄ are just the objets of C. To de�ne the morphisms ofC[��1℄, one introdues a (formal) inverse s�1 to every morphism s 2 �(x; y).These inverses are olleted in ��1(y; x); x; y 2 Ob(C) and then in ��1. Considerthe losure of Mor(C) [ ��1 under omposition and the smallest equivalenerelation ontaining s�1Æs = 1x and sÆs�1 = 1y for s 2 �(x; y) that is ompatiblewith omposition. The equivalene lasses orrespond then to the morphisms ofC[��1℄. In partiular, if t Æ � = � Æ s for s; t 2 �, then � Æ s�1 = t�1 Æ �. Amorphism in C[��1℄ an always be represented in the forms�1k Æ fk Æ � � � Æ s�11 Æ f1; sj 2 �; fj 2Mor; k 2 N:Let Iso(C) denote the isomorphisms of the ategory C, and let � � Iso(C) denotethe system of morphisms generated by � and by Iso(C). The isomorphisms inC[��1℄ are the zig-zag morphisms, i.e.,Iso(C[��1℄) = fs�11 Æ s2 Æ � � � Æ s�12k�1 Æ s2k; sj 2 � � Iso(C); k 2 Ng:The subategory of C[��1℄ with all objets, the morphisms of whih are givenby the zig-zag morphisms in Iso(C[��1℄), forms in fat a groupoid [30℄.



4.2 ComponentsA \ompression" of the ategory C[��1℄ is ahieved by dividing out all isomor-phisms: Two objets x; y 2 Ob(C) are �-isomorphi or �-onneted { x '� y{ if there exists a zig-zag-morphism from x to y. This de�nition orresponds tousual path onnetedness with respet to paths representing isomorphisms only {but regardless orientation. �-onnetivity is an equivalene relation; the equiva-lene lasses are alled the �-onneted omponents { the path omponents withrespet to �-zig-zag paths, viz. the omponents of the groupoid above.Next, onsider the equivalene relation on the morphisms of C[��1℄ gener-ated (under omposition) by � ' � Æ s; � ' t Æ � with � 2 Mor(x; y); s 2Inv(C[��1℄)(x0; x); t 2 Inv(C[��1℄)(y; y0): Remark that equivalent morphismsno longer need to have the same soure or target. Remark moreover, that anytwo zig-zag morphisms from x to y are equivalent to eah other; in partiular,they are equivalent to the unit-morphisms in both x and y.Example 2. If i0; i1; j0; j1 2 Inv(C[��1℄), then f0; f1; f2 2Mor(C) in the follow-ing diagram are equivalent to eah other in C[�℄�1:a0 f0 //j0   @
@@

@@
@@

@ b0a1 f1 // b1 i0 ??������� i1
��?

??
??

??a1 j1 >>~~~~~~~~ f2 // b2The objets of the omponent ategory �0(C;�) are by de�nition the �-onnetedomponents of C; the morphisms from [x℄ to [y℄; x; y 2 Ob(C), are the equiva-lene lasses of morphisms in Sx0'�x;y0'�yMorC[��1℄(x0; y0). The ompositionof [�℄Æ [�℄ for � 2MorC[��1℄(x; y) and � 2MorC[��1℄(y0; z) is given by [� ÆsÆ�℄with s any zig-zag morphism from y to y0. The equivalene lass of that ompo-sition is independent of the hoies taken.Remark 1. These onstrutions deompose the study of the morphisms of C intotwo piees: Firstly, the study of the groupoid Inv(C[��1℄) whih an be per-formed separately on eah of the �-onneted omponents. For the fundamentalategory, all these morphisms represent exeutions that an be performed and/orbaktraked without global e�ets. Seondly, ertainly more important for ap-pliations, the study of the omponent ategory, whih enompasses the globale�ets of irreversibility. In the ase of the omponent ategory of the fundamen-tal ategory, representatives of all non-unit dipath lasses may have (di�erent)global e�ets { baktraking along suh a dipath lass may therefore hange theresult of a omputation.



5 Appliations to state spae analysisIn this setion, we apply the preeeding onstrutions to our models of the statespae and the spae of exeutions (from a given initial state) of a onurrentprogram. The key task is to single out the relevant system of morphism � that isto be inverted. It should onsist of morphisms that, from a global point of view, donot ontribute with any deision to the outome of the onurrent program. Here,we give the key de�nitions (in a general ategorial framework), their motivation,and a few elementary examples. For algorithms in low dimensions, f. Set. 6.5.1 Extensions of morphismsFor a small ategory, let X0; X1 � Ob(C). Let Mor0;1 = Sx02X0;x12X1 Mor(x0; x1)denote the set of all morphisms between X0 and X1. We assoiate to a morphismf 2Mor(x; y) with x; y 2 Ob(C), the set of all its extensionsE(f) = fg Æ f Æ hj h 2Mor(X0; x); g 2Mor(x;X1)g �Mor01from X0 to X1. This set onsists of all morphisms from X0 to X1 that fatorthrough f . It is empty if Mor(X0; x) = ; or if Mor(y;X1) = ;. In the partiularase f = 1x, the unit at x 2 Ob(C), the set E(x) = E(1x) onsists of all morphismsfrom X0 to X1 fatoring through x.For onatenable morphisms f1; f2 it is obvious that E(f2Æf1) � E(f1)\E(f2).The geometri example Ex. 2.1 in [38℄ shows that the left hand side may be aproper subset of the right hand side.5.2 Components on the spae of exeutionsThe spae of partial exeutions of a onurrent program is modelled as the set ofmorphisms from the initial point x0 in the fundamental ategory ~�1(X). Moregenerally, one may assoiate to any ategory C and any objet x0 2 Ob(C) theomma ategory (x0 # C) of objets under x0 [33℄: Its objets are the morphismsin Mor(x0; x); x 2 Ob(C), and its morphisms are the ommutative trianglesx0f
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Cx1 h // x2with x0 in the top and h 2Mor(x1; x2).If C is the fundamental ategory ~�1(X) and x0 an initial element, the ommaategories (x0 # ~�1(X)) and (x0 # ~�11 (X)) have as objets the dihomotopylasses of dipaths starting at x0 : a partial dipath h 2 ~�1(x1; x2) with x1 2 Xand x2 2 X [ f1g indues a map ~�1(x0; x1) ! ~�1(x0; x2) by onatenation.Assume given a (minimal) objet x0 suh that X0 = fx0g and a set X1of maximal objets in a ategory C. For the fundamental ategory ~�1(X), thisset X1 should be hosen as a disrete set of �nal aepting states3, for thefundamental ategory ~�11 (X), the maximal objet should be hosen as 1.3 whih ould inlude deadloking points



De�nition 1. A morphism s from f 2 Mor(x0; x) to g 2 Mor(x0; y) belongsto �1 if and only if E(f) = E(g) �Mor01.It is lear that either every or no morphism from f to g is ontained in �1.Obviously,�1 ontains the units and is losed under omposition. For C = ~�1(X),a dipath s extending f to g is ontained in �1 if no \deision" has been madein between { all \areers" in ~�1(X ;x0; X1) open to f are still open to g. No(globally detetable) branhing ours between f and g.A detetion of the omponent ategory wrt. �1 entails the following bene�t:Proposition 1. Two dipaths f and g from x0 to x1 that proeed through thesame �1-omponents are dihomotopi.We illustrate the resulting omponent ategories by two elementary examples:Example 3. Let x0, resp. x1 denote the minimal, resp. the maximal element inthe po-spae X , the square with one hole from Fig. 3. Then Mor01 has twoelemens represented by dipaths fL; fR touhing R, resp. L. Any dipath withinB and any dipath within L [ R [ T is in �1. No dipath starting within B andending in L or R is in �1.The ategory (x0 # ~�1(X)) onsists of three �1-onneted omponents: thedipaths ending in B; those touhing L and those touhing R. Observe: There isno zig-zag path t�1 Æ s from a dipath to R via T to a dipath to L sine there areno dipaths f from x0 to R and g from x0 to L with t � g dihomotopi to s � f .The omponent ategory �0(x0 # ~�1(X)); �1) an { apart from the units {be represented by (end points in)L [ T R [ TBbbFFFFFFFF

<<xxxxxxxxxExample 4. Let Y denote the \Swiss ag" po-spae from Fig. 3. Let x0 and x1denote the minimal, resp. the maximal elements, and let y denote the deadlokpoint (maximal within the unsafe region Us). The set of aepting states is X1 =fx1; yg, and Mor01 onsists of three elements { there is also a dihomotopy lasswith end point in y. The omponent ategory �0(x0 # ~�1(Y )); �1) is representedby the diagram (with obvious morphisms between the given regions/omponents)L [ T l [ T Us R [ Tr [ TBlgleeJJJJJJJJJJ
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Remark 2. In [43℄, S. Soko lowski introdued a somehow similar approah result-ing in the fundamental poset 
1(X) of a po-spae X . Using our terminology, apreorder on (x0 # ~�1(X)) is de�ned by:f 2 ~�1(X ;x0; x) v g 2 ~�1(X ;x0; y) , 8h 2 ~�1(X ; y; z)9 a; j1 2 ~�1(X ;x; a); j2 2 ~�1(X ; z; a) with j1 � f = j2 � h � g 2 ~�1(X ;x0; a):The equivalene lasses given by \v and w" are the elements of the poset 
1(X),equipped with the partial order indued by v.If one onsiders morphisms Mor01 orresponding to a set X1 of maximalelements, it is easy to see that f v g , E(f) � E(g); and hene the �1-onneted omponents agree with the elements of 
1(X). The partial orderbetween equivalene lasses in 
1(X) orresponds to the existene of morphismsin C[��1℄ between elements of these lasses. The omponent ategory ontainsmore information. It allows to ompare fatorisations of two given morphismsand to disuss in whih parts of the po-spae they agree and in whih they di�er.P. Gauher [19℄ has a quite di�erent ategorial approah to branhing andmerging, not only for dipaths, but also for their higher-dimensional analoga.5.3 Components of the state spaeNext, we shift attention to the entire state spae of a onurrent program, mod-elled by an lpo-spae X with a minimal element x0, the only element of X0,and a (disrete) subset X1 of maximal elements. For an element x 2 X , weask: Whih essentially di�erent exeution paths pass through x? How does thisinformation develop throughout the state spae?De�nition 2. The system �2 �Mor(C) onsists of all morphisms s 2Mor(x; y)with x; y 2 Ob(C) satisfyingE(f) = E(s Æ f); E(g) = E(g Æ s) for all f 2Mor(�; x) and g 2Mor(y;�): (1)Obviously, �2 ontains the units, and it is losed under omposition. It is easyto see that it suÆes to require (1) for all f 2Mor(x0; x) and g 2Mor(x;X1).Along a morphism s 2 �2(x; y), no deisions with global e�ets are taken: on-atenation with s does not alter any of the extension sets of morphisms withsoure in y or target in x. States in the same �2-omponent (or diomponent)annot be distinguished by the results of exeutions passing through them.Example 5. Let again X denote the square with one hole and Y the \Swissag" from Fig. 3 with minimal and maximal elements x0 (and y), resp. x1. The



omponent ategories �0(~�1(X);�2) and �0(~�1(Y );�2) are then of the formT TL ??������� R__@@@@@@@ L [ T l 55llllllllllllllll Us R [ TriiSSSSSSSSSSSSSSSSB__>>>>>>>>
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=={{{{{{{{5.4 Relation to history equivaleneThe �2-omponents re�ne the notion of a diomponent of an lpo-spae de�nedearlier in [16, 37℄. Those were only de�ned as sets and laked the dynamialperspetive given by the omponent ategory:De�nition 3. The history hf of a morphism f 2Mor(X0; X1) is de�ned ashf = fx 2 Ob(C)j 9f0 2Mor(X0; x); f1 2Mor(x;X1) with f = f1 Æ f0g:Two objets x; y 2 Ob(C) are history equivalent if and only if x 2 hf , y 2 hffor all f 2Mor(X0; X1).A history equivalene lass C � Ob(C) is thus a primitive element of the Booleanalgebra generated by the histories, i.e., an intersetion of histories and theiromplements suh that for all f 2Mor(X0; X1) either C � hf or C \ hf = ;.The following argument shows that a morphism s 2 �2(x; y) has historyequivalent soure and target:x 2 hf , f 2 E(x) = E(ix) = E(s) = E(iy) = E(y) , y 2 hf:Hene, a �2-omponent is ontained in a path-omponent of a history equiva-lene lass.6 Algorithms for 2-dimensional mutual exlusion modelsIn this setion, we on�ne ourselves to the progress graphs desribed in theintrodution. Classifying dipaths up to dihomotopy in these mutual exlusionmodels orresponds to �nding out whih (and how many) shedules for a givenonurrent program an potentially yield di�erent results. An algorithm arrivingat suh a lassi�ation in dimension two, i.e, for semaphore programs with justtwo interating transations, was desribed in [37℄; the results in this setion relyon the methods desribed there.In this ase, the state spae has X = I2 n int(F ) as a model, i.e., a unitsquare from whih a forbidden region F (e.g., the region in blak in Fig. 3) is



deleted. This region is a union of retangles that are parallel to the axes. Sinewe are interested in dipaths onneting the minimal point to the maximal point,we may assume that X does not ontain neither unsafe nor unreahable points;this an always be ahieved by a ompletion proess, f. [37℄. As a onsequene([37℄, Lemma 4.1), every path-omponent Fi � F has a global minimum zi =(xi; yi) and a global maximum zi = (xi; yi). We de�ne line segment subspaesSxi ; Syi ; Six; Siy � X emerging horizontally and vertially from these minima andmaxima as follows:Sxi = fz = (x; y) 2 X j x � xi; y = yig Syi = fz = (x; y) 2 X j x = xi; y � yigSix = fz = (x; y) 2 X j x � xi; y = yig Siy = fz = (x; y) 2 X j x = xi; y � yig:All these subspaes onsist of one or several line segments, that may be brokenup into piees by other omponents of the forbidden region. Let T xi � Sxi ; T yi �Syi ; T ix � Six and T iy � Siy denote the segment touhing Fi, f. Fig. 4. Theunions of these separating line segments will be alled T = Si(T xi [ T yi ); T =Si(T ix [ T iy) and T = T [ T . A dipath f : I ! X from x to y is said to rossT if there exists an i suh that ; 6= f�1(T ) is ontained in the interior of I ,i.e., if its image ontains points on both sides of one of the segments. Similarly,one de�nes rossing wrt. T and to T . We an now detet whih of the dipathlasses in X are inverted in the two ategories of frations of Set. 5:Proposition 2. Let s : I ! X denote a (partial) dipath with f(0) = x andf(1) = y. Its dihomotopy lass [s℄ 2 ~�1(X ;x; y) is ontained in �1 if and only iff does not ross T ; in �2 if and only if f does not ross T .Example 6. In the example of Fig. 4 with a forbidden region onsisting of fouromponents Fi, there are six dihomotopy lasses of dipaths between x0 and x1,f. [37℄, Fig. 14. The upper �gures ontain the line segments T �� that, togetherwith boundary segments of the forbidden region, ut out the omponents in thetwo ases disussed in Set. 5. For instane, the omponent marked C in therightmost �gure is haraterised by two ingoing non-unit morphisms that, eahhave two extensions. The lower �gures show the assoiated omponent ategorieswith morphisms going upward. In this example, there are no non-trivial relations.A similar analysis in dimensions higher than two is ertainly more demanding.Not only the omponents of F , but also their �ner topologial properties willertainly play a role, f. the disussion in [37℄, Set. 5.7 Classial state-spae redution tehniques7.1 Persistent setsLet (S; i; E; T ran; I) be an asynhronous transition system [2℄. This means that(S; i; E; T ran) is a transition system and that I � E � E is a relation betweenlabels E, the \independene relation" between two ations. We will not givea preise axiomatis for I here, and will keep on simple grounds. Basially, Ishould satisfy the following onditions (taken from [22℄):
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Fig. 4. Components and their ategories in a 2-dimensional mutual exlusion model- if t1 (respetively t2) is enabled in s and s !t1 s0 (respetively s !t2 s0)then t2 (respetively t1) is enabled in s if and only if t2 (t1) is enabled in s0(independent transitions an neither disable nor enable eah other); and,- if t1 and t2 are enabled in s, then there is a unique state s0 suh that boths !t1 s1 !t2 s0 and s !t2 s2 !t1 s0 (ommutativity of enabled independenttransitions).In our tehnique, I is just a set of squares, or 2-transitions, or in the topo-logial sense, they are elementary surfaes, enabling us to ontinuously deformdipaths. We extend in an intuitive manner I to sets of ations by putting AIBif for all a 2 A, for all b 2 B, aIb. We identify a with the singleton fag.Let T be a set of ations, T � E, and p 2 S be a state. We say that T ispersistent in state p if, T ontains only ations whih are enabled at p, and, forall traes t beginning at p ontaining only ations q out of T , qIT . Suppose wehave a set of persistent ations Tp for all states p in an asynhronous transitionsystem. Then let us look at the following set of traes PT (identi�ed with aseries of states) in (S; i; E; T ran; I) de�ned indutively as follows: (i) 2 PT , andif (p1; : : : ; pn) 2 PT , then (p1; : : : ; pn; q) 2 PT where pn !t0 q 2 Tran and t0 62Tpn . Deadlok detetion an be performed on this subset PT of traes insteadof the full set of traes of (S; i; E; T ran; I). At least when (S; i; E; T ran; I) isayli, PT is enough for heking LTL temporal formulas (and you an modifythe method so that it works generally). We exemplify the method on the proessPb:Pa:V b:V a j Pa:Pb:V a:V b. A standard interleaving semantis would be asskethed in Figure 5, showing the presene of deadloking state 13. One setof persistent sets is T1 = fPag, T2 = fPbg, T5 = fPa; Pbg, T6 = fPb; V ag,T8 = fPa; V ag, T13 = ;, T9 = fV bg, T12 = fV ag, T17 = fPbg, T18 = fV ag,T22 = fV bg, T23 = ;, T7 = fPb; V bg, T14 = fV bg, T15 = fPbg, T16 = fPag,T20 = fV bg, T21 = fV ag, and we show the orresponding traes PT in Figure



6. We have not indiated the persistent sets orresponding to 3, 4 et. sine in apersistent set searh, they will not be reahed anyway, so their atual hoie isuninteresting. In Figure 5 there are 16 paths from 1 to be traversed if no seletivesearh was used. Six of them lead to the deadlok 13, and 10 (5 above the hole,5 below the hole) are going to the �nal point 23. In Figure 6, one an hek thatthere are only 8 paths to be traversed if one uses the persistent sets seletivesearh (3 to state 13, 1 to state 23 below the hole and 4 to state 23 above thehole).
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12Fig. 6.How did we �nd this set of persistent sets? In the PV ase this an bedone quite easily as follows. First the independene relation an be found outright away. Px and Py stand respetively for the query for a lok on x and y(nothing is ommitted yet) so they are independent ations, whatever x and yare. We should rather delare Px and V y dependent in general: if x = y this islear, and for x 6= y this an ome from the fat loks on x and y are ausallyrelated (preisely as in the ase of Figure 5 with x = a and x = b). This is slightlydi�erent from the more usual ase of atomi reads and writes languages in whihthe independane relation an be safely determined as: ations are independent ifand only if they at on distint variables. The most elaborated tehnique knownin this framework is that of \stubborn sets" see [46℄, and its adaptation to theurrent presentation, see [22℄ for a preise de�nition. The example of persistentset we gave in Figure 6 is in fat a stubborn set. As one an see as well, thepersistent set approah here redues the 5 paths below the hole into 1, whihis a representant modulo dihomotopy of these 5 dipaths. In the dionnetedomponents approah, one �nds the set of 7 dionneted omponents and theorresponding graph of regions pitured in Figure 7.7.2 Comparison with geometri tehniquesThere are 4 dipaths to be traversed in the graph of dionneted regions to de-termine the behaviour of this onurrent system (two of them leading to state
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Pa Fig. 7.13 being dihomotopi). In fat, there are two explanations why the method ofdionneted omponents is superior to the persistent set approah. In the latter,the independene relation does not in general depend on the urrent state (evenif this might be hanged by hanging the set of labels), Our notion of indepen-dene is given by a 2-transition, whih depends on the urrent state (see forinstane [25℄ where the link is made formal). The seond and more importantreason is that the dionneted graph algorithm determines regions using globalproperties, whereas the persistent sets approah uses only (in general syntati)loal riteria for reduing the state-spae. Conversely, it is relatively easy to seethe following: For every state p in our asynhronous transition system (or by[25℄, in a 2-dimensional ubial set), all traes t omposed of ations outsideTp is suh that all its ations are independent with Tp. So any trae from pmade up of any ation (those of Tp as well as those outside Tp) an be deformed(by dihomotopy, or \is equivalent to") into a trae �ring �rst ations from Tpand then ations outside Tp. Therefore the seletive searh approah using onlyations from Tp (for all p) is only traversing some representatives of the diho-motopy lasses of paths. The persistent searh approah is a partiular ase ofdihomotopi deformation (not optimal in general).7.3 Misellaneous tehniquesSleep sets. The sleep sets tehnique an be seen as a mere amelioration of thetraversal we saw, and therefore an be ombined with the method of persistentsets (as well as ours). The problem we had in Setion 7.1 is that quite a few ofthe paths we are traversing go through the same states at some point, and havea ommon suÆx (like paths (1,2,6,8,14,16,20,21,23) and (1,2,5,8,14,16,20,21,23)in Figure 6). It is obviously not neessary to traverse again ommon suÆxes ifwe want to hek future tense logial formulas. The sleep sets Sp (p a state in ourasynhronous transition system) use the information about the urrent traversalsmade, and not any information of any semanti kind to ope with this problem:see [21℄ for the preise de�nition. This redues the number of transitions but notthe number of states as shown in Figure 8. We now produe only 5 paths. The



same method is applied on Figure 7 to give the optimal result of Figure 9 (3paths).
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Fig. 9.This does not entirely solve the suÆx problem. A lassial means to ompletethis method is to use \state spae hashing" [20℄. In this method (again orthogonalto \dihomotopy redution"), one tries to maintain the set of states (and the setof transitions sometimes) already traversed avoiding to visit again the samesequenes of states and transitions. As this database might be very big, oneuses standard hashing tehniques whih quikly deide if two states are equal,but whih might \identify" unequal states. This was used for instane in one ofour simple implemented analyzers desribed in [14℄. Again, for yli transitionsystems, this transformation does not hange the deadlok(s) or LTL (futuretense temporal logis) formulae that are true.Covering steps or Virtual Coarsening. Another idea, alled \overing step" in[49℄ or sometimes alled in other situations \virtual oarsening", is to grouptogether interleavings of independent ations by \multiset" transitions or \ov-ering steps". For instane, when possible (basially, you should hek that youare not in the situation of Figure 1), one replaes an interleaving square of twoations by the transition s0 !fa;bg s3. This is obviously subsumed by our notionof n-transition (formally, this an be done in the style of [39℄).Algorithmis of the representation of the state-spae. A number of lever algo-rithmi methods have been used to redue the representation of the state-spae inmemory without disarding any transition nor state, rather by ompressing therepresentation. A very muh used tehnique in model-heking is the represen-tation of the transition relation with binary deision diagrams (BDDs) or QDDsas in [3℄ assoiated with symboli representations of states [28℄. Some amount ofwork has been devoted to \on the y" tehniques, also in model heking, see forinstane [31℄: Only a part of the state-spae is represented during the analysis,



beause there is no need in general to onstrut �rst the whole state-spae andthen traverse it. Last but not least some tehniques involving reduing the state-spae using symmetry arguments have been proposed and suessfully used, see[9℄. All these tehniques ould be equally applied to our dionneted omponentsapproah, and should be exempli�ed in future papers. For instane, symmetrytehniques are quite well studied in geometry and should apply straightforwardlyto our geometri approah.8 Conluding remarksTwo further arguments in favor of our geometri tehniques should be devel-opped: We should be able to gain muh more when the dimension of the prob-lem (i.e. the number of proesses involved) inreases. The persistent sets types ofmethods basially use loal transpositions, or in our geometri phrasing, faes ofdimension 2, to equate some of the equivalent dipaths. Geometrially speaking,we an use sometime shorter deformation paths, like any hyperube, i.e. anyyli permutation. The other argument is that geometri methods do ooper-ate well with abstration mehanisms (in the sense of abstrat interpretation[11℄). It is in partiular shown in [15℄ that the upper-approximation (or lower-approximation) of the forbidden regions an be arried out simply for a varietyof languages, using lassial abstrat interpretation domains. These give lower(respetively upper) approximations of the \interesting" shedules or paths tobe traversed.Referenes1. M.A. Armstrong, Basi Topology, Springer-Verlag, 1990.2. M. A. Bednarzyk. Categories of asynhronous systems. PhD thesis, University ofSussex, 1988.3. Bernard Boigelot and Patrie Godefroid. Symboli veri�ation of ommuniationprotools with in�nite state spaes using QDDs. Formal Methods in System Design:An International Journal, 14(3):237{255, May 1999.4. T. Boreux, Handbook of Categorial Algebra I: Basi ategory theory, Enylopediaof Mathematis and its Appliations, Cambridge University Press, 1994.5. Glen E. Bredon, Topology and Geometry, GTM, vol. 139, Springer-Verlag, 1993.6. R. Brown and P.J. Higgins, Colimit theorems for relative homotopy groups, J. PureAppl. Algebra 22 (1981), 11{41.7. , On the algebra of ubes, J. Pure Appl. Algebra 21 (1981), 233{260.8. S.D. Carson and P.F. Reynolds, The geometry of semaphore programs, ACMTOPLAS 9 (1987), no. 1, 25{53.9. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry redutions inmodel heking. In Pro. 10th International Computer Aided Veri�ation Confer-ene, pages 145{458, 1998.10. E. G. Co�man, M. J. Elphik, and A. Shoshani. System deadloks. ComputingSurveys, 3(2):67{78, June 1971.
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