Dihomotopy as a tool in state space analysis
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Abstract. Recent geometric methods have been used in concurrency
theory for quickly finding deadlocks and unreachable states, see [14] for
instance. The reason why these methods are fast is that they contain
in germ ingredients for tackling the state-space explosion problem. In
this paper we show how this can be made formal. We also give some
hints about the underlying algorithmics. Finally, we compare with other
well-known methods for coping with the state-space explosion problem.

1 Introduction

In model-checking techniques, temporal formulas, expressing important proper-
ties on traces of a concurrent system one has to verify, are checked by travers-
ing the interleaving semantics of the program. This runs unfortunately into the
“state-space explosion problem”: the number of paths to be traversed might be
exponential in the number of processes involved. It has been very tempting for
a number of authors to try to use the information about the independence of
actions to decrease this number by a possibly exponential ratio. For instance, if
all actions considered are completely independent, meaning that any interleav-
ing of actions taken in this set of actions computes the same thing, as a function
from (parallel or distributed) store to store, then there is no need to consider all
the interleavings to check any kind of “interesting” properties, such as safety or
deadlock properties.

But this is not always as simple as we show with the transition system of
Figure 1. Here we suppose that a and b are independent or “commuting” actions.
The problem in Figure 1 is that we might choose to traverse only path a.b since it
is equivalent to b.a and we will have missed the branching after b, which would
have lead us into transition system C, which might contain any deadlock we
want for instance. In fact, there are correct ways to infer state-space reduction
methods from the independence relation. A classical one explained in Section
7.1 has been originally introduced by Valmari [46] under the name of “stubborn
sets”, based on a notion of independence on Petri nets. These have been amelio-
rated later under the name of “persistent sets” by Godefroid [21], based on the
notion of independence of asynchronous transition systems. We develop in this
paper new methods for finding better state-space reduction techniques, based
on global semantical information. This is done using geometric ideas, which have



recently regained impetus after the seminal work [12] and [36]. We formalize this
methodology, the “diconnected components” of the geometric semantics using
a category of fractions of the fundamental category of the semantics, giving all
information about all possible schedules of execution.
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Fig. 2. Example of a progress graph

History: Towards Higher Dimensional Automata. The first “algebraic topologi-
cal” model in the litterature is called progress graph and has appeared in operat-
ing systems theory, in particular for describing the problem of “deadly embrace”
in “multiprogramming systems”. Progress graphs are introduced in [10], but at-
tributed to E. W. Dijkstra. The basic idea is to give a description of what can
happen when several processes are modifying shared ressources. Given a shared
resource a, we see it as its associated semaphore that rules its behaviour with
respect to processes. For instance, if ¢ is an ordinary shared variable, it is cus-
tomary to use its semaphore to ensure that only one process at a time can write
on it (this is mutual exclusion). Then, given n deterministic sequential processes
Q1,...,Qn, abstracted as a sequence of locks and unlocks on shared objects,
Q; = R'al.R%a?---R™a} (R* being P or V'), there is a natural way to un-
derstand the possible behaviours of their concurrent execution, by associating
to each process a coordinate line in R™. The state of the system corresponds to
a point in R™, whose ith coordinate describes the state (or “local time”) of the
ith processor.

Consider a system with finitely many processes running altogether. We as-
sume that each process starts at (local time) 0 and finishes at (local time) 1; the
P and V actions correspond to sequences of real numbers between 0 and 1, which
reflect the order of the P’s and V’s. The initial state is (0,...,0) and the final
state is (1,...,1). An example consisting of the two processes Ty = Pa.Pb.Vb.Va

! Using E. W. Dijkstra’s notation P and V' [12] for respectively acquiring and releasing
a lock on a semaphore.



and Ty = Pb.Pa.Va.Vb gives rise to the two dimensional progress graph of Fig. 2.
The shaded area represents states which are not allowed in any execution path,
since they correspond to mutual exclusion. Such states constitute the forbid-
den region. An ezxecution path is a path from the initial state (0,...,0) to the
final state (1,...,1) avoiding the forbidden region and increasing in each coordi-
nate - time cannot run backwards. We call these paths directed paths or dipaths.
This entails that paths reaching the states in the dashed square underneath the
forbidden region, marked “unsafe” are deemed to deadlock, i.e. they cannot pos-
sibly reach the allowed terminal state (1,1). Similarly, by reversing the direction
of time, the states in the square above the forbidden region, marked “unreach-
able”, cannot be reached from the initial state (0,0). Notice that all terminating
paths above the forbidden region are “equivalent” in some sense: they are all
characterized by the fact that T gets a and b before T (as far as resources
are concerned, we call this a schedule). Similarly, all paths below the forbidden
region are characterized by the fact that 77 gets a and b before Ty does.

In this picture, one can already recognize many ingredients that are at the
center of algebraic topology, namely the classification of shapes modulo “elastic
deformation”. As a matter of fact, the actual coordinates that are chosen to
represent the times at which Ps and Vs occur are unimportant, and these can
be “stretched” in any manner, so the properties (deadlocks, schedules etc.) are
invariant under some notion of deformation, or homotopy. This has to be a
particular kind of homotopy though causing many difficulties in later work. We
call it (in subsequent sections) a directed homotopy or dihomotopy in the sense
that it should preserve the direction of time.

The semantics community came back to these geometric considerations with
the development of “truly-concurrent” semantics, as opposed to “interleaving”
semantics. The base of the argument was that interleaving semantics, i.e. the
representation of parallelism by non-determinism ignores real asynchronous be-
haviours: a | b where a and b are atomic is represented by the same transition
system as the non-deterministic choice a then b or b then a. This fact creates
problems in static analysis of (asynchronous) concurrent systems: Interleaving
builds a lot of uninteresting states in the modelisation, hence induces a high
cost in verification. This is called the state-space explosion problem. Quite a few
models for true-concurrency have appeared (see in particular the account of [50])
but it is only in 1991 that geometry is proposed to solve the problem, in [36].
The diagnosis is that interleaving is only the boundary of the real picture. a | b is
really the filled-in square whose boundary is the non-deterministic choice a then
b or b then a (the hollow square). The natural combinatorial notion, extension of
transition systems, is that of a cubical set, which is a collection of points (states),
edges (transitions), squares, cubes and hypercubes (higher-dimensional transi-
tions representing the truly-concurrent execution of some number of actions).
This is introduced in [36] as well as possible formalizations using n-categories,
and a notion of homotopy. This is actually a combinatorial view of some kind of
progress graph. Look back to Figure 2. Consider all interleavings of actions Pa,
Pb, Va and Vb: they form a subgrid of the progress graph. Take as 2-transitions



(i.e. squares in the cubical set we are building) the filled-in squares. Only the
forbidden region is really interleaved. Cubical sets generalize progress graphs, in
that they allow any amount of non-deterministic choices as well as dynamic cre-
ation of processes. These cubical sets are called Higher-Dimensional Automata
(HDA) following [36] because it really makes sense to consider a hypercube as
some form of transition. Actually at about the same time, a bisimulation seman-
tics was given in [47]. Notice that 2-transitions or squares are nothing but a local
commutation relation as in Mazurkiewicz trace theory [34], independence relation
as in asynchronous transition systems, see [2], as in trace automata, as in tran-
sition systems with independence [40], or (indirectly) as with the “confluence”
relation of concurrent transition systems [45]. There are two more ingredients
with HDA: the elegance and the power of the tools of geometric formalisations,
and the natural generalisation to higher dimensions (i.e. “higher-order indepen-
dence relation” or n-ary independence relations).

Ezample: Semaphores and progress graphs. In the rest of the paper, we will stick
to one particular model which is sufficiently simple to explain, and gives suffi-
ciently many nasty example: the shared memory model, in which asynchronous
processes read and write atomically onto variables which are all in a common
(shared) memory. To protect writing onto shared variables, we use mutual ex-
clusion locks, which we put explicitely before writing a variable z, by Pz, and
that we release explicitely after, by Vz. It is then easy to see that writing on
two distinct variables are two independant actions, as well as reading two vari-
ables (even the same one) by two processes. This model can also easily include
[16] counting semaphores which are weakly synchronising objects that can be
shared by n but not n + 1 processes at the same time (for some n > 1). Notice
that asynchronous message-passing with bounded buffers can be translated into
that framework. It is therefore not only a useful example, but a quite general
application indeed.

The key idea is to regard a progress graph as a topological space in which
points are ordered globally through time, i.e., equipped with a (closed) par-
tial order <. Traces of executions are continuous and increasing maps from the
totally ordered unit segment to (X, <). These are called dipaths for “directed
paths”. A dihomotopy between two dipaths f and g on X is a deformation via
dipaths interpolating continuously between f and g and fixing the endpoints.
The technical definitions will be given in Sect. 3. Now we can give semantics
to a very simple language in which a finite number of processes can only do a
deterministic sequence of lockings Pz and unlockings Vz of shared resources
x. So processes are just strings of P’s and V’s. Suppose that each semaphore
x (binary or counting) is equipped with a number s(z), the maximal number
of processes that can share it at any time. Supposing that the length of the
strings X; (1 < ¢ < n) are integers [;, the semantics of Prog is included in
[0,0;] X --- x [0,1,]. A description of the progress graph [Prog] associated with
Prog can be given by describing inductively what should be digged into this
hyperrectangle. The semantics of our language can be described by the simple
rule, [k1,71] X -+ X [kn,rn] € [X1 | -+ | Xy]2 if there is a partition of {1,---,n}



into U UV with card(U) = s(a) + 1 for some object a with, X;(k;) = Pa,
Xi(r;) =VaforieUand k; =0, r; =1; for j € V. This language is somehow
disappointing. To be able to consider looping and branching constructs, we are
lead to the notion of local po-spaces in Sect. 3.1.

Goals of the present paper. After having explained the geometric semantics, the
idea of deformation of paths of executions, and introduced the diconnected com-
ponents approach to the state-space explosion problem, we compare (favorably)
our technique with classical techniques such as persistent sets. We also review
in Sect. 7.3 some orthogonal techniques which could still be used on top of our
geometric technique.

2 The fundamental group of a topological space

In this section, we give a brief review of the fundamental group of a topological
space, a very important concept from algebraic topology. See e.g. [1,5,27,35]
for details. Hereafter, we develop a variation of this notion and apply it to state
space analysis.

Topological spaces are abstractions of metric spaces. For a metric space X,
nearness is expressed by a metric d measuring the distance between pairs of
points. For a topological space Y, nearness is expressed with the aid of a collec-
tion of open subsets of Y. The usual definition for a continuous map between
two metric spaces has the following generalisation for topological spaces: A map
f:Y = Y’ between topological spaces is continuous if and only if f~1(U) C YV
is open for every open subset U C Y.

In this paper, we will mainly be concerned with (different types of) paths,
i.e., continuous maps f : I — X from an interval I into a topological space X.
For the moment, we let I = [0, 1] denote the unit interval with standard metric
and topology. In general, one cannot compose paths in X. But if the endpoint
fi(1) of f; coincides with the start point f2(0) of fa, their concatenation

1

Fox fi 1 T — X is defined by (fo * f1)(s) = {ggj)_ N ! § i
Both paths are thus pursued with “double speed”. Concatenation defines a (non-
commutative, non-associative) operation on the space P(X) of all paths on X.

Two points xz,y € X are called path-connected, if there exists a path f with
f(0) = z and f(1) = y. The equivalence classes of this equivalence relation are
called the path components of X. The image f(Xo) C Y of a path component
Xo C X under a continuous map f : X — Y is path-connected. As a conse-
quence, path components are completely independent of each other, and one
can investigate them “one at a time”. A loop in a topological space X is a path
f: I — X such that f(0) = f(1). Loops with the same start/end-point can be
concatenated. A homotopy of paths (loops) is a continuous map H : [ x I — X
with H(t,0) = H(0,0) and H(t,1) = H(0,1) for all ¢ € I. It should be regarded
as a one-parameter family of paths H; : I — X, Hy(s) = H(t,s) (with fixed end



points) connecting Hg and Hy. Two paths fo, fi : I — X with the same end-
points are called homotopic if there is a fixed end point homotopy H : I x I — X
with Hy = fo and H; = f;. Homotopy is an equivalence relation.

A continuous and strictly increasing map ¢ : I — I with ¢(0) = 0 and (1) =
1 can be used to reparametrise a path, i.e., to pass from a path f in X to the
(reparameterised) path f o with the same image. Remark that ¢ is homotopic
to the identity map on I; a homotopy is given by H(t,s) = (1 —1t)¢(s) +ts. As a
consequence, the paths f and its reparametrisation f o ¢ are homotopic via the
homotopy H (t,s) = f(H(t,s)).

A basic invariant of a topological space X is its fundamental group: Fix a
base point g € X. The elements of the fundamental group m (X;z¢) are the
homotopy classes of loops f : I — X which start and end at f(0) = f(1) = zo.
Concatenation of loops at x( factorizes over homotopy to yield a 2-adic operation
on 71 (X; o). The homotopy class of the constant map ¢: I — X, ¢(s) = xo, s €
I, serves as the neutral element — since f, f x c and ¢ x f are homotopic to each
other. The inverse to the class of the loop f is given by the the class of the loop
fT:I=>X,f~(t)=f(1—1t): f~*f and f* f~ are both homotopic to c.

The size of the fundamental group has an interesting interpretation: A loop f
can be regarded as a map from the unit circle f : S' — X, f(exp(27is)) = f(s).
The loop f represents the trivial element in 7 (X; o) if it is homotopic to the
constant loop ¢. A homotopy H with Hy = ¢ and H; = f can be transformed
into an extension H : D* — X of f, viz. H(texp(2mis)) = H(t,s). Conversely,
an extension of f to a continuous map H : D?> — X gives rise to a homotopy
between f and c. A homotopically trivial loop can thus be “filled in”. Hence, the
the fundamental group of a space “counts the numbers of holes” in it.

The fundamental group of a space does only depend on the path component
of the base point: Let g denote an arbitrary path with ¢g(0) = zo and g(1) = ;.
Then the map “conjugation with ¢”: w1 (X;z0) = m (X;21); [f] = [97 * f * g]
is a group isomorphism .

Examples: Proofs of the following statements can be found in almost any text-
book on algebraic topology:

- The fundamental group of Euclidean space R™ is trivial for all n.

- The fundamental group of the unit circle S is isomorphic to the integers.
An explicit isomorphism m; (S') — Z associates to a loop its “winding number”,
i.e., it counts (with a sign) the number of times a particular value is attained.
The fundamental group of an n-sphere S™ = {z € R"| ||z|| = 1} is trivial for
every n > 1.

- The fundamental group of “the figure 8” (two circles with only a single base

point in common) is the free group on two letters representing the two directed
loops.

- For every group G, there is a path-connected topological space BG with
m(BG) ~ G.



3 The fundamental category of an lpo-space

3.1 Lpo-spaces and dipaths

There are many models for state spaces for concurrent processes and the execu-
tions on them, cf. Sect. 7. In this paper, we follow the basic idea from [16]: A
po-space consists of a topological space X with a partial order <C X x X. The
partial order is assumed to be closed (as a subset of X x X) to ensure coherence
between topology and order: this makes it possible to take limits “under the <
sign”. For an example of such a po-space (in fact, a progress graph) see Fig. 3;
the left figure represents the state space for two processes that acquire and re-
linquish a lock to a single shared resource; the right figure pictures the situation
where locks to two shared resources have to be acquired in reverse order by the
two processes. The black areas are the “forbidden regions” of the progress graph
which are not part of the state space.

Fig. 3. Square with a hole and complement of a ”Swiss flag”

If one or several of the processes contain loops, the resulting abstraction will
no longer have a global partial order. Instead one requires for a local po-space
(Ipo-space) a relation < on X that restricts to a partial order on sufficiently
small subsets of X that form a basis for the topology. Two such relations are
equivalent (and define the same local partial order) if they agree on sufficiently
small open sets forming a basis for the topology. For an example, consider the
relation on the unit circle S' C R? given by < y < the angle from z to y is
less than «. This relation is certainly not transitive, but it defines a local partial
order if and only if & < 7; for & < 7 these are all equivalent.?

Traces of a concurrent system (executions) are modelled by so-called dipaths—
di is an abbreviation for directed. A short, resp. long dipath in an Ipo-space X
is defined as an order preserving continuous map from the interval I = [0, 1],
resp. from the non-negative reals R>¢g = {z € R| z > 0} (with the natural
order) into X. A short dipath models a concurrent process from a start point to

2 This version of the definition is due to Ulrich Fahrenberg; it is in fact equivalent to
the one given in [16,17].



an end point, while a long dipath runs indefinitely (e.g., in loops) but avoiding
zeno executions. Technically, one requires that a long dipath does not admit a
limit for t — oo.

3.2 Dihomotopy

When can you be sure that two execution traces in a concurrent program provide
the same result? This is the case if the corresponding dipaths f,g : I — X
are dihomotopic. This means, that there exists a continuous order-preserving
dihomotopy H : IxT — X with Hy = f and H; = g. Remark that the parameter
interval is equipped with the trivial order, i.e., (¢,s) < (t',s') &t =t'As < .
In particular, every “intermediate” path H; has to be a dipath. Moreover, we
require a fixed start point (H (¢,0) = H(0,0)) and, for short dipaths, a fixed end
point (H(t,1) = H(0,1)); for long dipaths all the paths H; have to be non-zeno.

3.3 The fundamental category

For an Ipo-space, one should no longer watch out for a fundamental group. The
reverse of a dipath is no longer a dipath. On a global po-space, there are no
(non-trivial) directed loops at all. Instead, one has to work with the fundamental
category of a local po-space X, or rather with two versions of it, depending on
whether short or long dipaths are considered:

The objects of the fundamental category 7;(X) are the points of X. The
morphisms between elements z and y are given as the dihomotopy classes in
71 (X; z,y). Composition of morphisms

ﬁl(Xaxay) X ﬁl(X)yaz) — 7_1"1(X,{L‘,2)
is given by concatenation of dipaths — up to dihomotopy.

The category 75°(X) contains 71 (X). It has an additional maximal element
oo with Mor(x,c0) consisting of the dihomotopy classes of long dipaths starting
at z and Mor(co,y) = 0 for y € X U {oo}. Concatenation of a (short) dipath
from z to y with a (long) dipath from y yields a (long) dipath — up to dihomotopy
via long dipaths.

Compared to the fundamental group, a fundamental category is an enormous
gadget and it has a much less nice algebraic structure. On the other hand, in easy
examples one has the impression, that the cardinality of the set of morphisms
between two points is quite robust when these points are perturbed a little.

Ezample 1. For the square with one hole (Fig. 3), there is no morphism between
the regions marked L, resp. R, and no morphism from T to any other region,
neither a morphism from any other region to B. There are two morphisms from
any point of B to any point of T". Moreover, from any point of B, certain points
of B, L, R can be reached by (exactly one) morphism. Likewise, any point of T'
can be reached from (certain of the points in) L, R and T in one way.

For the complement of a “Swiss flag” (Fig. 3), the situation is a bit more
complicated: There is no dipath leaving the unsafe rectangle Us and there is no
dipath entering the unreachable rectangle Ur from the outside. It is possible to



reach Us by a dipath from B U Bl U Br; from Ur, one can reach TTUTr UT. The
only possibility for two classes of dipaths between points occurs when the first is
in B and the second in T'. Moreover, these classes can be represented by dipaths
along the boundary, representing the two sequential executions.

The lesson to learn is that the complete “dynamics” of these state space can
be described from the decomposition into the blocks studied above. It is the aim
of this paper to define and describe these “dicomponents” in the general case and
thus, in a realistically large model, to provide a “collapse” of the exponentially
large state space into pieces that show the same behaviour with respect to exe-
cution paths between each other. It is then enough to study the “flow” between
these “components” in order to capture the dynamics of the whole system.

4 Categories of fractions and components

4.1 Categories of fractions

Next, we have to invest in a construction from category theory: We invert in a
systematic way all those partial dipaths that never contribute to a decision along
any dipath. The resulting category will then have many “zig-zag” isomorphisms
giving rise to the components. Here is a general method [18,4]:

Let C denote a category. To keep things simple, assume C small, i.e., objects
and morphisms are sets. Let X' C Mor(C) denote a system of morphisms, i.e.,
X includes all unit morphisms and is closed under composition. For any such
system, one may construct the category of fractions C[¥'~!] and the localization
functor gx : C — C[¥~'] [18,4] having the following universal property:

- For every s € ¥, the morphism ¢x(s) is an isomorphism. - For any functor
F : C — D such that F(s) is an isomorphism for every s € X, there is a unique
functor 6 : C[Y~'] - D with fogs, = F.

The objects of C[¥ 1] are just the objects of C. To define the morphisms of
C[X~1], one introduces a (formal) inverse s~! to every morphism s € X(z,y).
These inverses are collected in X~ (y, z), z,y € Ob(C) and then in X~!. Consider
the closure of Mor(C) U ¥~ under composition and the smallest equivalence
relation containing s~ 'os = 1, and sos™! = 1, for s € ¥(z,y) that is compatible
with composition. The equivalence classes correspond then to the morphisms of
C[X~']. In particular, if toa = Bos for s, € ¥, then aos™! =t71op. A
morphism in C[¥~!] can always be represented in the form

sy ofro--ros tofi, s; €5, fj € MorkeN.

Let Iso(C) denote the isomorphisms of the category C, and let X'« I'so(C) denote
the system of morphisms generated by X and by Iso(C). The isomorphisms in
C[X 1] are the zig-zag morphisms, i.e.,

Iso(C[XY)) ={s7"' 0sp0---085 | 0sap,8; € ¥xIs0(C), k€ N}.

The subcategory of C[X 1] with all objects, the morphisms of which are given
by the zig-zag morphisms in I'so(C[X~~!]), forms in fact a groupoid [30].



4.2 Components

A “compression” of the category C[X 1] is achieved by dividing out all isomor-
phisms: Two objects z,y € Ob(C) are X-isomorphic or ¥X-connected — =z ~yx y
— if there exists a zig-zag-morphism from z to y. This definition corresponds to
usual path connectedness with respect to paths representing isomorphisms only —
but regardless orientation. X -connectivity is an equivalence relation; the equiva-
lence classes are called the X-connected components — the path components with
respect to X-zig-zag paths, viz. the components of the groupoid above.

Next, consider the equivalence relation on the morphisms of C[¥ '] gener-
ated (under composition) by a ~ aos, «a ~ toa with a € Mor(z,y),s €
Inv(C[X7Y))(a',x),t € Inv(C[¥])(y,y"). Remark that equivalent morphisms
no longer need to have the same source or target. Remark moreover, that any
two zig-zag morphisms from z to y are equivalent to each other; in particular,
they are equivalent to the unit-morphisms in both z and y.

Ezample 2. 1f ig, i1, jo,j1 € Inv(C[X 1)), then fo, f1, fo € Mor(C) in the follow-
ing diagram are equivalent to each other in C[X]~':

ao fo o
f1

ay ——— b
5 N
al f2 bg

The objects of the component category my(C; ') are by definition the X'-connected
components of C; the morphisms from [z] to [y], =,y € Ob(C), are the equiva-
lence classes of morphisms in /v, . i~y Moreis—1(z',y'). The composition
of [B]o[a] for & € Morcis-11(z,y) and 3 € Moreis-1)(y', 2) is given by [fosoq]
with s any zig-zag morphism from y to y’. The equivalence class of that compo-
sition is independent of the choices taken.

Remark 1. These constructions decompose the study of the morphisms of C into
two pieces: Firstly, the study of the groupoid Inv(C[X¥~!]) which can be per-
formed separately on each of the X'-connected components. For the fundamental
category, all these morphisms represent executions that can be performed and/or
backtracked without global effects. Secondly, certainly more important for ap-
plications, the study of the component category, which encompasses the global
effects of irreversibility. In the case of the component category of the fundamen-
tal category, representatives of all non-unit dipath classes may have (different)
global effects — backtracking along such a dipath class may therefore change the
result of a computation.



5 Applications to state space analysis

In this section, we apply the preceeding constructions to our models of the state
space and the space of executions (from a given initial state) of a concurrent
program. The key task is to single out the relevant system of morphism X that is
to be inverted. It should consist of morphisms that, from a global point of view, do
not contribute with any decision to the outcome of the concurrent program. Here,
we give the key definitions (in a general categorial framework), their motivation,
and a few elementary examples. For algorithms in low dimensions, cf. Sect. 6.

5.1 Extensions of morphisms

For a small category, let Xo, X1 C Ob(C). Let Morg; = UxoeXO,xle)Q Mor(zo, 1)
denote the set of all morphisms between Xy and X;. We associate to a morphism
f € Mor(z,y) with z,y € Ob(C), the set of all its extensions
E(f)y={gofoh|he Mor(Xy,z),9 € Mor(x,X1)} C Morg,

from Xy to X;. This set consists of all morphisms from X, to X; that factor
through f. Tt is empty if Mor(Xg,z) = 0 or if Mor(y, X;) = (. In the particular
case f = 1,, the unit at z € Ob(C), the set £(z) = £(1,) consists of all morphisms
from X to X; factoring through .

For concatenable morphisms fi, f it is obvious that E(faof1) C E(f1)NE(f2).
The geometric example Ex. 2.1 in [38] shows that the left hand side may be a
proper subset of the right hand side.

5.2 Components on the space of executions

The space of partial executions of a concurrent program is modelled as the set of
morphisms from the initial point zy in the fundamental category 7 (X). More
generally, one may associate to any category C and any object zo € Ob(C) the
comma category (o | C) of objects under xq [33]: Its objects are the morphisms
in Mor(zo,z), x € Ob(C), and its morphisms are the commutative triangles

To
VN
I 4h> )
with zg in the top and h € Mor(xy,x2).

If C is the fundamental category 71 (X) and 2o an initial element, the comma
categories (zg | 71 (X)) and (zo | #°(X)) have as objects the dihomotopy
classes of dipaths starting at xp : a partial dipath h € T (21, 22) with z; € X
and 22 € X U {00} induces a map 1 (xq, x1) = 71 (2o, z2) by concatenation.

Assume given a (minimal) object zo such that Xy = {zo} and a set X;
of maximal objects in a category C. For the fundamental category 71 (X), this
set X; should be chosen as a discrete set of final accepting states®, for the
fundamental category 7°(X), the maximal object should be chosen as co.

% which could include deadlocking points



Definition 1. A morphism s from f € Mor(zg,z) to g € Mor(zg,y) belongs
to X1 if and only if E(f) = E(g) € Morg; .

It is clear that either every or no morphism from f to ¢ is contained in X.
Obviously, ¥, contains the units and is closed under composition. For C = 7 (X),
a dipath s extending f to g is contained in X if no “decision” has been made
in between — all “careers” in 7 (X;xo, X1) open to f are still open to g. No
(globally detectable) branching occurs between f and g.

A detection of the component category wrt. X entails the following benefit:

Proposition 1. Two dipaths f and g from xo to x, that proceed through the
same X1 -components are dihomotopic.

We illustrate the resulting component categories by two elementary examples:

Ezample 3. Let zg, resp. x1 denote the minimal, resp. the maximal element in
the po-space X, the square with one hole from Fig. 3. Then Morg; has two
elemens represented by dipaths fr, fgr touching R, resp. L. Any dipath within
B and any dipath within LU RUT is in Y. No dipath starting within B and
ending in L or R is in Y.

The category (zo | 71(X)) consists of three X;-connected components: the
dipaths ending in B; those touching L and those touching R. Observe: There is
no zig-zag path t ! o s from a dipath to R via T to a dipath to L since there are
no dipaths f from zy to R and g from xo to L with ¢ x g dihomotopic to s * f.

The component category mo(zo 71 (X)), Y1) can — apart from the units —
be represented by (end points in)

LuT RUT

~N

B

Ezample 4. Let Y denote the “Swiss flag” po-space from Fig. 3. Let zg and z;
denote the minimal, resp. the maximal elements, and let y denote the deadlock
point (maximal within the unsafe region Us). The set, of accepting states is X; =
{z1,y}, and Morg; consists of three elements — there is also a dihomotopy class
with end point in y. The component category mo(xo | 71(Y)), X1) is represented
by the diagram (with obvious morphisms between the given regions/components)

BN /

with h; o f; = h, o f,.



Remark 2. In [43], S. Sokotowski introduced a somehow similar approach result-
ing in the fundamental poset 21(X) of a po-space X. Using our terminology, a
preorder on (zq | 71 (X)) is defined by:

fem(X;mo,2) E g €7 (X;20,y) & Vh € T (X;y,2)

da,j1 € M (X;2,0a),j2 € T1(X;2,a) with j; x f = jo x hx g € T1(X; 29, 0).

The equivalence classes given by “C and J” are the elements of the poset 21 (X),
equipped with the partial order induced by L.

If one considers morphisms Mory; corresponding to a set X; of maximal
elements, it is easy to see that f C g < &£(f) D &£(g), and hence the Y-
connected components agree with the elements of 2;(X). The partial order
between equivalence classes in 21 (X) corresponds to the ezistence of morphisms
in C[¥~'] between elements of these classes. The component category contains
more information. It allows to compare factorisations of two given morphisms
and to discuss in which parts of the po-space they agree and in which they differ.

P. Gaucher [19] has a quite different categorical approach to branching and
merging, not only for dipaths, but also for their higher-dimensional analoga.

5.3 Components of the state space

Next, we shift attention to the entire state space of a concurrent program, mod-
elled by an Ipo-space X with a minimal element g, the only element of X,
and a (discrete) subset X; of maximal elements. For an element z € X, we
ask: Which essentially different execution paths pass through 2?7 How does this
information develop throughout the state space?

Definition 2. The system X> C Mor(C) consists of all morphisms s € Mor(z,y)
with z,y € Ob(C) satisfying

E(f)=E(sof),E(g) =E(gos) forall fe Mor(—,z) and g € Mor(y,—). (1)

Obviously, X5 contains the units, and it is closed under composition. It is easy
to see that it suffices to require (1) for all f € Mor(zo,z) and g € Mor(z, X1).
Along a morphism s € X5(z,y), no decisions with global effects are taken: con-
catenation with s does not alter any of the extension sets of morphisms with
source in y or target in z. States in the same Y>-component (or dicomponent)
cannot be distinguished by the results of executions passing through them.

Example 5. Let again X denote the square with one hole and Y the “Swiss
flag” from Fig. 3 with minimal and maximal elements o (and y), resp. z;. The



component categories mo (71 (X); X2) and 7o (71 (Y); X2) are then of the form
T

L R
B

5.4 Relation to history equivalence

The Xy-components refine the notion of a dicomponent of an lpo-space defined
earlier in [16,37]. Those were only defined as sets and lacked the dynamical
perspective given by the component category:

Definition 3. The history hf of a morphism f € Mor(Xo, X1) is defined as

hf ={xz € Ob(C)| 3fo € Mor(Xo,z), f1 € Mor(z,X,) with f = fi o fo}.

Two objects z,y € Ob(C) are history equivalent if and only if v € hf &y € hf
for all f € Mor(Xo, X1).

A history equivalence class C' C Ob(C) is thus a primitive element of the Boolean
algebra generated by the histories, i.e., an intersection of histories and their
complements such that for all f € Mor(Xy, X;) either C C hf or CNhf = 0.

The following argument shows that a morphism s € Xs(z,y) has history
equivalent source and target:

zehfe fellx)==E() =E(s) =E(iy) =E(y) © y € hf.

Hence, a Y>-component is contained in a path-component of a history equiva-
lence class.

6 Algorithms for 2-dimensional mutual exclusion models

In this section, we confine ourselves to the progress graphs described in the
introduction. Classifying dipaths up to dihomotopy in these mutual exclusion
models corresponds to finding out which (and how many) schedules for a given
concurrent program can potentially yield different results. An algorithm arriving
at such a classification in dimension two, i.e, for semaphore programs with just
two interacting transactions, was described in [37]; the results in this section rely
on the methods described there.

In this case, the state space has X = I?\ int(F) as a model, i.e., a unit
square from which a forbidden region F (e.g., the region in black in Fig. 3) is



deleted. This region is a union of rectangles that are parallel to the axes. Since
we are interested in dipaths connecting the minimal point to the maximal point,
we may assume that X does not contain neither unsafe nor unreachable points;
this can always be achieved by a completion process, cf. [37]. As a consequence
([37], Lemma 4.1), every path-component F; C F has a global minimum z; =
(z;,y;) and a global maximum z* = (z¢,y’). We define line segment subspaces
Sz,8Y,Si, S; C X emerging horizontally and vertically from these minima and
maxima as follows:

§¢={z=(v,y) € X|z <any=y} S!={z=(0,y)€X|v=m,y<y}

Sy ={z=(z,y) e X|z>2"y=y'} S, ={z=(z,y) e X|z=2"y>y'}.

All these subspaces consist of one or several line segments, that may be broken
up into pieces by other components of the forbidden region. Let T C S¥, T} C
SY,Ti C Si and T; C SZ/ denote the segment touching F;, cf. Fig. 4. The
unions of these separating line segments will be called T_ = |J,(T/ UT/),T- =
Ui(TiUT)) and T = T-UT.. A dipath f: I — X from z to y is said to cross
T_ if there exists an 4 such that () # f~!(7_) is contained in the interior of I,
i.e., if its image contains points on both sides of one of the segments. Similarly,
one defines crossing wrt. 7- and to 7. We can now detect which of the dipath
classes in X are inverted in the two categories of fractions of Sect. 5:

Proposition 2. Let s : I — X denote a (partial) dipath with f(0) = z and
fQ1) =y. Its dihomotopy class [s] € T1(X;z,y) is contained in Xy if and only if
f does not cross T ; in X5 if and only if f does not cross T.

Example 6. In the example of Fig. 4 with a forbidden region consisting of four
components Fj;, there are six dihomotopy classes of dipaths between xq and x1,
cf. [37], Fig. 14. The upper figures contain the line segments T} that, together
with boundary segments of the forbidden region, cut out the components in the
two cases discussed in Sect. 5. For instance, the component marked C' in the
rightmost figure is characterised by two ingoing non-unit morphisms that, each
have two extensions. The lower figures show the associated component categories
with morphisms going upward. In this example, there are no non-trivial relations.

A similar analysis in dimensions higher than two is certainly more demanding,.
Not only the components of F', but also their finer topological properties will
certainly play a role, cf. the discussion in [37], Sect. 5.

7 Classical state-space reduction techniques

7.1 Persistent sets

Let (S,i, E,Tran,I) be an asynchronous transition system [2]. This means that
(S,i,E,Tran) is a transition system and that I C E x E is a relation between
labels E, the “independence relation” between two actions. We will not give
a precise axiomatics for I here, and will keep on simple grounds. Basically, I
should satisfy the following conditions (taken from [22]):
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Fig. 4. Components and their categories in a 2-dimensional mutual exclusion model

- if #; (respectively t5) is enabled in s and s =% s’ (respectively s —%2 s)
then t5 (respectively #1) is enabled in s if and only if 2 (¢1) is enabled in s
(independent transitions can neither disable nor enable each other); and,

- if t; and #5 are enabled in s, then there is a unique state s’ such that both
s =t g1 =t ¢ and s =% 55 —? s’ (commutativity of enabled independent
transitions).

In our technique, I is just a set of squares, or 2-transitions, or in the topo-
logical sense, they are elementary surfaces, enabling us to continuously deform
dipaths. We extend in an intuitive manner I to sets of actions by putting AIB
if for all a € A, for all b € B, alb. We identify a with the singleton {a}.

Let T be a set of actions, ' C E, and p € S be a state. We say that T is
persistent in state p if, T' contains only actions which are enabled at p, and, for
all traces ¢t beginning at p containing only actions ¢ out of T, ¢IT. Suppose we
have a set of persistent actions T}, for all states p in an asynchronous transition
system. Then let us look at the following set of traces PT (identified with a
series of states) in (5,1, E, Tran, I) defined inductively as follows: (i) € PT, and
if (p1,...,pn) € PT, then (p1,...,pn,q) € PT where p, >t g€ Tran and t' ¢
Ty, . Deadlock detection can be performed on this subset PT' of traces instead
of the full set of traces of (S,i, E,Tran,I). At least when (S,i, E,Tran,I) is
acyclic, PT is enough for checking LTL temporal formulas (and you can modify
the method so that it works generally). We exemplify the method on the process
Pb.Pa.Vb.Va | Pa.Pb.Va.Vbh. A standard interleaving semantics would be as
sketched in Figure 5, showing the presence of deadlocking state 13. One set
of persistent sets is Ty = {Pa}, To = {Pb}, T5s = {Pa, Pb}, Ts = {Pb,Va},
Tg = {Pa,Va}, T13 = @, Tg = {Vb}, T12 = {Va}, T17 = {Pb}, Tlg = {Va},
T22 - {Vb}, T23 - 0, T7 - {Pb,Vb}, T14 - {Vb}, T15 - {Pb}, T16 - {Pa},
Too = {Vb}, To1 = {Va}, and we show the corresponding traces PT in Figure



6. We have not indicated the persistent sets corresponding to 3, 4 etc. since in a
persistent set search, they will not be reached anyway, so their actual choice is
uninteresting. In Figure 5 there are 16 paths from 1 to be traversed if no selective
search was used. Six of them lead to the deadlock 13, and 10 (5 above the hole,
5 below the hole) are going to the final point 23. In Figure 6, one can check that
there are only 8 paths to be traversed if one uses the persistent sets selective
search (3 to state 13, 1 to state 23 below the hole and 4 to state 23 above the
hole).

" 6 20 21 23
_ 6 20 21 -
Vb 13
Vb
7 14 22
19 7 14 2
Va
) i |
6 3 18 5 3 18
Pb
Pb
45 9 5 Tl 12 T
17 2 9 17
12 P Pa Vb Va
Pa Pa
1 1
Pb 3 pa 4vp WOy 1
Fig. 6.

Fig. 5.

How did we find this set of persistent sets? In the PV case this can be
done quite easily as follows. First the independence relation can be found out
right away. Pz and Py stand respectively for the query for a lock on x and y
(nothing is committed yet) so they are independent actions, whatever z and y
are. We should rather declare Pz and Vy dependent in general: if = y this is
clear, and for x # y this can come from the fact locks on x and y are causally
related (precisely as in the case of Figure 5 with = @ and z = b). This is slightly
different from the more usual case of atomic reads and writes languages in which
the independance relation can be safely determined as: actions are independent if
and only if they act on distinct variables. The most elaborated technique known
in this framework is that of “stubborn sets” see [46], and its adaptation to the
current presentation, see [22] for a precise definition. The example of persistent
set we gave in Figure 6 is in fact a stubborn set. As one can see as well, the
persistent set approach here reduces the 5 paths below the hole into 1, which
is a representant modulo dihomotopy of these 5 dipaths. In the diconnected
components approach, one finds the set of 7 diconnected components and the
corresponding graph of regions pictured in Figure 7.

7.2 Comparison with geometric techniques

There are 4 dipaths to be traversed in the graph of diconnected regions to de-
termine the behaviour of this concurrent system (two of them leading to state
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13 being dihomotopic). In fact, there are two explanations why the method of
diconnected components is superior to the persistent set approach. In the latter,
the independence relation does not in general depend on the current state (even
if this might be changed by changing the set of labels), Our notion of indepen-
dence is given by a 2-transition, which depends on the current state (see for
instance [25] where the link is made formal). The second and more important
reason is that the diconnected graph algorithm determines regions using global
properties, whereas the persistent sets approach uses only (in general syntactic)
local criteria for reducing the state-space. Conversely, it is relatively easy to see
the following: For every state p in our asynchronous transition system (or by
[25], in a 2-dimensional cubical set), all traces ¢ composed of actions outside
T, is such that all its actions are independent with 7},. So any trace from p
made up of any action (those of T}, as well as those outside T}) can be deformed
(by dihomotopy, or “is equivalent to”) into a trace firing first actions from 7},
and then actions outside T},. Therefore the selective search approach using only
actions from T, (for all p) is only traversing some representatives of the diho-
motopy classes of paths. The persistent search approach is a particular case of
dihomotopic deformation (not optimal in general).

7.3 Miscellaneous techniques

Sleep sets. The sleep sets technique can be seen as a mere amelioration of the
traversal we saw, and therefore can be combined with the method of persistent
sets (as well as ours). The problem we had in Section 7.1 is that quite a few of
the paths we are traversing go through the same states at some point, and have
a common suffix (like paths (1,2,6,8,14,16,20,21,23) and (1,2,5,8,14,16,20,21,23)
in Figure 6). It is obviously not necessary to traverse again common suffixes if
we want to check future tense logical formulas. The sleep sets S, (p a state in our
asynchronous transition system) use the information about the current traversals
made, and not any information of any semantic kind to cope with this problem:
see [21] for the precise definition. This reduces the number of transitions but not
the number of states as shown in Figure 8. We now produce only 5 paths. The



same method is applied on Figure 7 to give the optimal result of Figure 9 (3
paths).

F G
1 2 21
15 6 20 23
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7 14 22
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8
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b T b
5 12
4 9 17
Pb Pa Vb Va
Pa
! A B c
Fig. 8.
Fig. 9.

This does not entirely solve the suffix problem. A classical means to complete
this method is to use “state space hashing” [20]. In this method (again orthogonal
to “dihomotopy reduction”), one tries to maintain the set of states (and the set
of transitions sometimes) already traversed avoiding to visit again the same
sequences of states and transitions. As this database might be very big, one
uses standard hashing techniques which quickly decide if two states are equal,
but which might “identify” unequal states. This was used for instance in one of
our simple implemented analyzers described in [14]. Again, for cyclic transition
systems, this transformation does not change the deadlock(s) or LTL (future
tense temporal logics) formulae that are true.

Covering steps or Virtual Coarsening. Another idea, called “covering step” in
[49] or sometimes called in other situations “virtual coarsening”, is to group
together interleavings of independent actions by “multiset” transitions or “cov-
ering steps”. For instance, when possible (basically, you should check that you
are not in the situation of Figure 1), one replaces an interleaving square of two
actions by the transition sy —1%?} s5. This is obviously subsumed by our notion
of n-transition (formally, this can be done in the style of [39]).

Algorithmics of the representation of the state-space. A number of clever algo-
rithmic methods have been used to reduce the representation of the state-space in
memory without discarding any transition nor state, rather by compressing the
representation. A very much used technique in model-checking is the represen-
tation of the transition relation with binary decision diagrams (BDDs) or QDDs
as in [3] associated with symbolic representations of states [28]. Some amount of
work has been devoted to “on the fly” techniques, also in model checking, see for
instance [31]: Only a part of the state-space is represented during the analysis,



because there is no need in general to construct first the whole state-space and
then traverse it. Last but not least some techniques involving reducing the state-
space using symmetry arguments have been proposed and successfully used, see
[9]. All these techniques could be equally applied to our diconnected components
approach, and should be exemplified in future papers. For instance, symmetry
techniques are quite well studied in geometry and should apply straightforwardly
to our geometric approach.

8 Concluding remarks

Two further arguments in favor of our geometric techniques should be devel-
opped: We should be able to gain much more when the dimension of the prob-
lem (i.e. the number of processes involved) increases. The persistent sets types of
methods basically use local transpositions, or in our geometric phrasing, faces of
dimension 2, to equate some of the equivalent dipaths. Geometrically speaking,
we can use sometime shorter deformation paths, like any hypercube, i.e. any
cyclic permutation. The other argument is that geometric methods do cooper-
ate well with abstraction mechanisms (in the sense of abstract interpretation
[11]). It is in particular shown in [15] that the upper-approximation (or lower-
approximation) of the forbidden regions can be carried out simply for a variety
of languages, using classical abstract interpretation domains. These give lower
(respectively upper) approximations of the “interesting” schedules or paths to
be traversed.
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