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.dkAbstra
t. Re
ent geometri
 methods have been used in 
on
urren
ytheory for qui
kly �nding deadlo
ks and unrea
hable states, see [14℄ forinstan
e. The reason why these methods are fast is that they 
ontainin germ ingredients for ta
kling the state-spa
e explosion problem. Inthis paper we show how this 
an be made formal. We also give somehints about the underlying algorithmi
s. Finally, we 
ompare with otherwell-known methods for 
oping with the state-spa
e explosion problem.1 Introdu
tionIn model-
he
king te
hniques, temporal formulas, expressing important proper-ties on tra
es of a 
on
urrent system one has to verify, are 
he
ked by travers-ing the interleaving semanti
s of the program. This runs unfortunately into the\state-spa
e explosion problem": the number of paths to be traversed might beexponential in the number of pro
esses involved. It has been very tempting fora number of authors to try to use the information about the independen
e ofa
tions to de
rease this number by a possibly exponential ratio. For instan
e, ifall a
tions 
onsidered are 
ompletely independent, meaning that any interleav-ing of a
tions taken in this set of a
tions 
omputes the same thing, as a fun
tionfrom (parallel or distributed) store to store, then there is no need to 
onsider allthe interleavings to 
he
k any kind of \interesting" properties, su
h as safety ordeadlo
k properties.But this is not always as simple as we show with the transition system ofFigure 1. Here we suppose that a and b are independent or \
ommuting" a
tions.The problem in Figure 1 is that we might 
hoose to traverse only path a:b sin
e itis equivalent to b:a and we will have missed the bran
hing after b, whi
h wouldhave lead us into transition system C, whi
h might 
ontain any deadlo
k wewant for instan
e. In fa
t, there are 
orre
t ways to infer state-spa
e redu
tionmethods from the independen
e relation. A 
lassi
al one explained in Se
tion7.1 has been originally introdu
ed by Valmari [46℄ under the name of \stubbornsets", based on a notion of independen
e on Petri nets. These have been amelio-rated later under the name of \persistent sets" by Godefroid [21℄, based on thenotion of independen
e of asyn
hronous transition systems. We develop in thispaper new methods for �nding better state-spa
e redu
tion te
hniques, basedon global semanti
al information. This is done using geometri
 ideas, whi
h have



re
ently regained impetus after the seminal work [12℄ and [36℄. We formalize thismethodology, the \di
onne
ted 
omponents" of the geometri
 semanti
s usinga 
ategory of fra
tions of the fundamental 
ategory of the semanti
s, giving allinformation about all possible s
hedules of exe
ution.
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Fig. 2. Example of a progress graphHistory: Towards Higher Dimensional Automata. The �rst \algebrai
 topologi-
al" model in the litterature is 
alled progress graph and has appeared in operat-ing systems theory, in parti
ular for des
ribing the problem of \deadly embra
e"in \multiprogramming systems". Progress graphs are introdu
ed in [10℄, but at-tributed to E. W. Dijkstra. The basi
 idea is to give a des
ription of what 
anhappen when several pro
esses are modifying shared ressour
es. Given a sharedresour
e a, we see it as its asso
iated semaphore that rules its behaviour withrespe
t to pro
esses. For instan
e, if a is an ordinary shared variable, it is 
us-tomary to use its semaphore to ensure that only one pro
ess at a time 
an writeon it (this is mutual ex
lusion). Then, given n deterministi
 sequential pro
essesQ1; : : : ; Qn, abstra
ted as a sequen
e of lo
ks and unlo
ks on shared obje
ts,Qi = R1a1i :R2a2i � � �Rnianii (Rk being P or V 1), there is a natural way to un-derstand the possible behaviours of their 
on
urrent exe
ution, by asso
iatingto ea
h pro
ess a 
oordinate line in Rn. The state of the system 
orresponds toa point in Rn, whose ith 
oordinate des
ribes the state (or \lo
al time") of theith pro
essor.Consider a system with �nitely many pro
esses running altogether. We as-sume that ea
h pro
ess starts at (lo
al time) 0 and �nishes at (lo
al time) 1; theP and V a
tions 
orrespond to sequen
es of real numbers between 0 and 1, whi
hre
e
t the order of the P 's and V 's. The initial state is (0; : : : ; 0) and the �nalstate is (1; : : : ; 1). An example 
onsisting of the two pro
esses T1 = Pa:Pb:V b:V a1 Using E. W. Dijkstra's notation P and V [12℄ for respe
tively a
quiring and releasinga lo
k on a semaphore.



and T2 = Pb:Pa:V a:V b gives rise to the two dimensional progress graph of Fig. 2.The shaded area represents states whi
h are not allowed in any exe
ution path,sin
e they 
orrespond to mutual ex
lusion. Su
h states 
onstitute the forbid-den region. An exe
ution path is a path from the initial state (0; : : : ; 0) to the�nal state (1; : : : ; 1) avoiding the forbidden region and in
reasing in ea
h 
oordi-nate - time 
annot run ba
kwards. We 
all these paths dire
ted paths or dipaths.This entails that paths rea
hing the states in the dashed square underneath theforbidden region, marked \unsafe" are deemed to deadlo
k, i.e. they 
annot pos-sibly rea
h the allowed terminal state (1; 1). Similarly, by reversing the dire
tionof time, the states in the square above the forbidden region, marked \unrea
h-able", 
annot be rea
hed from the initial state (0; 0). Noti
e that all terminatingpaths above the forbidden region are \equivalent" in some sense: they are all
hara
terized by the fa
t that T2 gets a and b before T1 (as far as resour
esare 
on
erned, we 
all this a s
hedule). Similarly, all paths below the forbiddenregion are 
hara
terized by the fa
t that T1 gets a and b before T2 does.In this pi
ture, one 
an already re
ognize many ingredients that are at the
enter of algebrai
 topology, namely the 
lassi�
ation of shapes modulo \elasti
deformation". As a matter of fa
t, the a
tual 
oordinates that are 
hosen torepresent the times at whi
h P s and V s o

ur are unimportant, and these 
anbe \stret
hed" in any manner, so the properties (deadlo
ks, s
hedules et
.) areinvariant under some notion of deformation, or homotopy. This has to be aparti
ular kind of homotopy though 
ausing many diÆ
ulties in later work. We
all it (in subsequent se
tions) a dire
ted homotopy or dihomotopy in the sensethat it should preserve the dire
tion of time.The semanti
s 
ommunity 
ame ba
k to these geometri
 
onsiderations withthe development of \truly-
on
urrent" semanti
s, as opposed to \interleaving"semanti
s. The base of the argument was that interleaving semanti
s, i.e. therepresentation of parallelism by non-determinism ignores real asyn
hronous be-haviours: a j b where a and b are atomi
 is represented by the same transitionsystem as the non-deterministi
 
hoi
e a then b or b then a. This fa
t 
reatesproblems in stati
 analysis of (asyn
hronous) 
on
urrent systems: Interleavingbuilds a lot of uninteresting states in the modelisation, hen
e indu
es a high
ost in veri�
ation. This is 
alled the state-spa
e explosion problem. Quite a fewmodels for true-
on
urren
y have appeared (see in parti
ular the a

ount of [50℄)but it is only in 1991 that geometry is proposed to solve the problem, in [36℄.The diagnosis is that interleaving is only the boundary of the real pi
ture. a j b isreally the �lled-in square whose boundary is the non-deterministi
 
hoi
e a thenb or b then a (the hollow square). The natural 
ombinatorial notion, extension oftransition systems, is that of a 
ubi
al set, whi
h is a 
olle
tion of points (states),edges (transitions), squares, 
ubes and hyper
ubes (higher-dimensional transi-tions representing the truly-
on
urrent exe
ution of some number of a
tions).This is introdu
ed in [36℄ as well as possible formalizations using n-
ategories,and a notion of homotopy. This is a
tually a 
ombinatorial view of some kind ofprogress graph. Look ba
k to Figure 2. Consider all interleavings of a
tions Pa,Pb, V a and V b: they form a subgrid of the progress graph. Take as 2-transitions



(i.e. squares in the 
ubi
al set we are building) the �lled-in squares. Only theforbidden region is really interleaved. Cubi
al sets generalize progress graphs, inthat they allow any amount of non-deterministi
 
hoi
es as well as dynami
 
re-ation of pro
esses. These 
ubi
al sets are 
alled Higher-Dimensional Automata(HDA) following [36℄ be
ause it really makes sense to 
onsider a hyper
ube assome form of transition. A
tually at about the same time, a bisimulation seman-ti
s was given in [47℄. Noti
e that 2-transitions or squares are nothing but a lo
al
ommutation relation as in Mazurkiewi
z tra
e theory [34℄, independen
e relationas in asyn
hronous transition systems, see [2℄, as in tra
e automata, as in tran-sition systems with independen
e [40℄, or (indire
tly) as with the \
on
uen
e"relation of 
on
urrent transition systems [45℄. There are two more ingredientswith HDA: the elegan
e and the power of the tools of geometri
 formalisations,and the natural generalisation to higher dimensions (i.e. \higher-order indepen-den
e relation" or n-ary independen
e relations).Example: Semaphores and progress graphs. In the rest of the paper, we will sti
kto one parti
ular model whi
h is suÆ
iently simple to explain, and gives suÆ-
iently many nasty example: the shared memory model, in whi
h asyn
hronouspro
esses read and write atomi
ally onto variables whi
h are all in a 
ommon(shared) memory. To prote
t writing onto shared variables, we use mutual ex-
lusion lo
ks, whi
h we put expli
itely before writing a variable x, by Px, andthat we release expli
itely after, by V x. It is then easy to see that writing ontwo distin
t variables are two independant a
tions, as well as reading two vari-ables (even the same one) by two pro
esses. This model 
an also easily in
lude[16℄ 
ounting semaphores whi
h are weakly syn
hronising obje
ts that 
an beshared by n but not n + 1 pro
esses at the same time (for some n > 1). Noti
ethat asyn
hronous message-passing with bounded bu�ers 
an be translated intothat framework. It is therefore not only a useful example, but a quite generalappli
ation indeed.The key idea is to regard a progress graph as a topologi
al spa
e in whi
hpoints are ordered globally through time, i.e., equipped with a (
losed) par-tial order �. Tra
es of exe
utions are 
ontinuous and in
reasing maps from thetotally ordered unit segment to (X;�). These are 
alled dipaths for \dire
tedpaths". A dihomotopy between two dipaths f and g on X is a deformation viadipaths interpolating 
ontinuously between f and g and �xing the endpoints.The te
hni
al de�nitions will be given in Se
t. 3. Now we 
an give semanti
sto a very simple language in whi
h a �nite number of pro
esses 
an only do adeterministi
 sequen
e of lo
kings Px and unlo
kings V x of shared resour
esx. So pro
esses are just strings of P 's and V 's. Suppose that ea
h semaphorex (binary or 
ounting) is equipped with a number s(x), the maximal numberof pro
esses that 
an share it at any time. Supposing that the length of thestrings Xi (1 � i � n) are integers li, the semanti
s of Prog is in
luded in[0; l1℄� � � � � [0; ln℄. A des
ription of the progress graph [[Prog℄℄ asso
iated withProg 
an be given by des
ribing indu
tively what should be digged into thishyperre
tangle. The semanti
s of our language 
an be des
ribed by the simplerule, [k1; r1℄� � � � � [kn; rn℄ 2 [[X1 j � � � j Xn℄℄2 if there is a partition of f1; � � � ; ng



into U [ V with 
ard(U) = s(a) + 1 for some obje
t a with, Xi(ki) = Pa,Xi(ri) = V a for i 2 U and kj = 0, rj = lj for j 2 V . This language is somehowdisappointing. To be able to 
onsider looping and bran
hing 
onstru
ts, we arelead to the notion of lo
al po-spa
es in Se
t. 3.1.Goals of the present paper. After having explained the geometri
 semanti
s, theidea of deformation of paths of exe
utions, and introdu
ed the di
onne
ted 
om-ponents approa
h to the state-spa
e explosion problem, we 
ompare (favorably)our te
hnique with 
lassi
al te
hniques su
h as persistent sets. We also reviewin Se
t. 7.3 some orthogonal te
hniques whi
h 
ould still be used on top of ourgeometri
 te
hnique.2 The fundamental group of a topologi
al spa
eIn this se
tion, we give a brief review of the fundamental group of a topologi
alspa
e, a very important 
on
ept from algebrai
 topology. See e.g. [1, 5, 27, 35℄for details. Hereafter, we develop a variation of this notion and apply it to statespa
e analysis.Topologi
al spa
es are abstra
tions of metri
 spa
es. For a metri
 spa
e X ,nearness is expressed by a metri
 d measuring the distan
e between pairs ofpoints. For a topologi
al spa
e Y , nearness is expressed with the aid of a 
olle
-tion of open subsets of Y . The usual de�nition for a 
ontinuous map betweentwo metri
 spa
es has the following generalisation for topologi
al spa
es: A mapf : Y ! Y 0 between topologi
al spa
es is 
ontinuous if and only if f�1(U) � Yis open for every open subset U � Y 0.In this paper, we will mainly be 
on
erned with (di�erent types of) paths,i.e., 
ontinuous maps f : I ! X from an interval I into a topologi
al spa
e X .For the moment, we let I = [0; 1℄ denote the unit interval with standard metri
and topology. In general, one 
annot 
ompose paths in X . But if the endpointf1(1) of f1 
oin
ides with the start point f2(0) of f2, their 
on
atenationf2 � f1 : I ! X is de�ned by (f2 � f1)(s) = �f1(2s); t � 12f2(2s� 1); t � 12 :Both paths are thus pursued with \double speed". Con
atenation de�nes a (non-
ommutative, non-asso
iative) operation on the spa
e P(X) of all paths on X .Two points x; y 2 X are 
alled path-
onne
ted, if there exists a path f withf(0) = x and f(1) = y. The equivalen
e 
lasses of this equivalen
e relation are
alled the path 
omponents of X . The image f(X0) � Y of a path 
omponentX0 � X under a 
ontinuous map f : X ! Y is path-
onne
ted. As a 
onse-quen
e, path 
omponents are 
ompletely independent of ea
h other, and one
an investigate them \one at a time". A loop in a topologi
al spa
e X is a pathf : I ! X su
h that f(0) = f(1). Loops with the same start/end-point 
an be
on
atenated. A homotopy of paths (loops) is a 
ontinuous map H : I � I ! Xwith H(t; 0) = H(0; 0) and H(t; 1) = H(0; 1) for all t 2 I . It should be regardedas a one-parameter family of paths Ht : I ! X; Ht(s) = H(t; s) (with �xed end



points) 
onne
ting H0 and H1. Two paths f0; f1 : I ! X with the same end-points are 
alled homotopi
 if there is a �xed end point homotopy H : I�I ! Xwith H0 = f0 and H1 = f1. Homotopy is an equivalen
e relation.A 
ontinuous and stri
tly in
reasing map ' : I ! I with '(0) = 0 and '(1) =1 
an be used to reparametrise a path, i.e., to pass from a path f in X to the(reparameterised) path f Æ' with the same image. Remark that ' is homotopi
to the identity map on I ; a homotopy is given by H(t; s) = (1� t)'(s) + ts. As a
onsequen
e, the paths f and its reparametrisation f Æ ' are homotopi
 via thehomotopy �H(t; s) = f(H(t; s)).A basi
 invariant of a topologi
al spa
e X is its fundamental group: Fix abase point x0 2 X . The elements of the fundamental group �1(X ;x0) are thehomotopy 
lasses of loops f : I ! X whi
h start and end at f(0) = f(1) = x0.Con
atenation of loops at x0 fa
torizes over homotopy to yield a 2-adi
 operationon �1(X ;x0). The homotopy 
lass of the 
onstant map 
 : I ! X; 
(s) = x0; s 2I; serves as the neutral element { sin
e f; f � 
 and 
 � f are homotopi
 to ea
hother. The inverse to the 
lass of the loop f is given by the the 
lass of the loopf� : I ! X; f�(t) = f(1� t): f� � f and f � f� are both homotopi
 to 
.The size of the fundamental group has an interesting interpretation: A loop f
an be regarded as a map from the unit 
ir
le �f : S1 ! X; �f(exp(2�is)) = f(s).The loop f represents the trivial element in �1(X ;x0) if it is homotopi
 to the
onstant loop 
. A homotopy H with H0 = 
 and H1 = f 
an be transformedinto an extension �H : D2 ! X of �f , viz. �H(t exp(2�is)) = H(t; s). Conversely,an extension of �f to a 
ontinuous map �H : D2 ! X gives rise to a homotopybetween f and 
. A homotopi
ally trivial loop 
an thus be \�lled in". Hen
e, thethe fundamental group of a spa
e \
ounts the numbers of holes" in it.The fundamental group of a spa
e does only depend on the path 
omponentof the base point: Let g denote an arbitrary path with g(0) = x0 and g(1) = x1.Then the map \
onjugation with g": �1(X ;x0) ! �1(X ;x1); [f ℄ 7! [g� � f � g℄is a group isomorphism .Examples: Proofs of the following statements 
an be found in almost any text-book on algebrai
 topology:- The fundamental group of Eu
lidean spa
e Rn is trivial for all n.- The fundamental group of the unit 
ir
le S1 is isomorphi
 to the integers.An expli
it isomorphism �1(S1) ! Z asso
iates to a loop its \winding number",i.e., it 
ounts (with a sign) the number of times a parti
ular value is attained.The fundamental group of an n-sphere Sn = fx 2 Rnj jjxjj = 1g is trivial forevery n > 1.- The fundamental group of \the �gure 8" (two 
ir
les with only a single basepoint in 
ommon) is the free group on two letters representing the two dire
tedloops.- For every group G, there is a path-
onne
ted topologi
al spa
e BG with�1(BG) ' G.



3 The fundamental 
ategory of an lpo-spa
e3.1 Lpo-spa
es and dipathsThere are many models for state spa
es for 
on
urrent pro
esses and the exe
u-tions on them, 
f. Se
t. 7. In this paper, we follow the basi
 idea from [16℄: Apo-spa
e 
onsists of a topologi
al spa
e X with a partial order �� X �X . Thepartial order is assumed to be 
losed (as a subset of X�X) to ensure 
oheren
ebetween topology and order: this makes it possible to take limits \under the �sign". For an example of su
h a po-spa
e (in fa
t, a progress graph) see Fig. 3;the left �gure represents the state spa
e for two pro
esses that a
quire and re-linquish a lo
k to a single shared resour
e; the right �gure pi
tures the situationwhere lo
ks to two shared resour
es have to be a
quired in reverse order by thetwo pro
esses. The bla
k areas are the \forbidden regions" of the progress graphwhi
h are not part of the state spa
e.
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RFig. 3. Square with a hole and 
omplement of a "Swiss 
ag"If one or several of the pro
esses 
ontain loops, the resulting abstra
tion willno longer have a global partial order. Instead one requires for a lo
al po-spa
e(lpo-spa
e) a relation � on X that restri
ts to a partial order on suÆ
ientlysmall subsets of X that form a basis for the topology. Two su
h relations areequivalent (and de�ne the same lo
al partial order) if they agree on suÆ
ientlysmall open sets forming a basis for the topology. For an example, 
onsider therelation on the unit 
ir
le S1 � R2 given by x � y , the angle from x to y isless than �. This relation is 
ertainly not transitive, but it de�nes a lo
al partialorder if and only if � � �; for � � � these are all equivalent.2Tra
es of a 
on
urrent system (exe
utions) are modelled by so-
alled dipaths{di is an abbreviation for dire
ted. A short, resp. long dipath in an lpo-spa
e Xis de�ned as an order preserving 
ontinuous map from the interval ~I = [0; 1℄,resp. from the non-negative reals R�0 = fx 2 Rj x � 0g (with the naturalorder) into X . A short dipath models a 
on
urrent pro
ess from a start point to2 This version of the de�nition is due to Ulri
h Fahrenberg; it is in fa
t equivalent tothe one given in [16, 17℄.



an end point, while a long dipath runs inde�nitely (e.g., in loops) but avoidingzeno exe
utions. Te
hni
ally, one requires that a long dipath does not admit alimit for t!1.3.2 DihomotopyWhen 
an you be sure that two exe
ution tra
es in a 
on
urrent program providethe same result? This is the 
ase if the 
orresponding dipaths f; g : I ! Xare dihomotopi
. This means, that there exists a 
ontinuous order-preservingdihomotopy H : I�~I ! X with H0 = f and H1 = g. Remark that the parameterinterval is equipped with the trivial order, i.e., (t; s) � (t0; s0) , t = t0 ^ s � s0.In parti
ular, every \intermediate" path Ht has to be a dipath. Moreover, werequire a �xed start point (H(t; 0) = H(0; 0)) and, for short dipaths, a �xed endpoint (H(t; 1) = H(0; 1)); for long dipaths all the paths Ht have to be non-zeno.3.3 The fundamental 
ategoryFor an lpo-spa
e, one should no longer wat
h out for a fundamental group. Thereverse of a dipath is no longer a dipath. On a global po-spa
e, there are no(non-trivial) dire
ted loops at all. Instead, one has to work with the fundamental
ategory of a lo
al po-spa
e X , or rather with two versions of it, depending onwhether short or long dipaths are 
onsidered:The obje
ts of the fundamental 
ategory ~�1(X) are the points of X . Themorphisms between elements x and y are given as the dihomotopy 
lasses in~�1(X ;x; y). Composition of morphisms~�1(X ;x; y)� ~�1(X ; y; z) ! ~�1(X ;x; z)is given by 
on
atenation of dipaths { up to dihomotopy.The 
ategory ~�11 (X) 
ontains ~�1(X). It has an additional maximal element1 with Mor(x;1) 
onsisting of the dihomotopy 
lasses of long dipaths startingat x and Mor(1; y) = ; for y 2 X [ f1g. Con
atenation of a (short) dipathfrom x to y with a (long) dipath from y yields a (long) dipath { up to dihomotopyvia long dipaths.Compared to the fundamental group, a fundamental 
ategory is an enormousgadget and it has a mu
h less ni
e algebrai
 stru
ture. On the other hand, in easyexamples one has the impression, that the 
ardinality of the set of morphismsbetween two points is quite robust when these points are perturbed a little.Example 1. For the square with one hole (Fig. 3), there is no morphism betweenthe regions marked L, resp. R, and no morphism from T to any other region,neither a morphism from any other region to B. There are two morphisms fromany point of B to any point of T . Moreover, from any point of B, 
ertain pointsof B;L;R 
an be rea
hed by (exa
tly one) morphism. Likewise, any point of T
an be rea
hed from (
ertain of the points in) L;R and T in one way.For the 
omplement of a \Swiss 
ag" (Fig. 3), the situation is a bit more
ompli
ated: There is no dipath leaving the unsafe re
tangle Us and there is nodipath entering the unrea
hable re
tangle Ur from the outside. It is possible to



rea
h Us by a dipath from B [Bl [Br; from Ur, one 
an rea
h Tl [ Tr [ T. Theonly possibility for two 
lasses of dipaths between points o

urs when the �rst isin B and the se
ond in T . Moreover, these 
lasses 
an be represented by dipathsalong the boundary, representing the two sequential exe
utions.The lesson to learn is that the 
omplete \dynami
s" of these state spa
e 
anbe des
ribed from the de
omposition into the blo
ks studied above. It is the aimof this paper to de�ne and des
ribe these \di
omponents" in the general 
ase andthus, in a realisti
ally large model, to provide a \
ollapse" of the exponentiallylarge state spa
e into pie
es that show the same behaviour with respe
t to exe-
ution paths between ea
h other. It is then enough to study the \
ow" betweenthese \
omponents" in order to 
apture the dynami
s of the whole system.4 Categories of fra
tions and 
omponents4.1 Categories of fra
tionsNext, we have to invest in a 
onstru
tion from 
ategory theory: We invert in asystemati
 way all those partial dipaths that never 
ontribute to a de
ision alongany dipath. The resulting 
ategory will then have many \zig-zag" isomorphismsgiving rise to the 
omponents. Here is a general method [18, 4℄:Let C denote a 
ategory. To keep things simple, assume C small, i.e., obje
tsand morphisms are sets. Let � � Mor(C) denote a system of morphisms, i.e.,� in
ludes all unit morphisms and is 
losed under 
omposition. For any su
hsystem, one may 
onstru
t the 
ategory of fra
tions C[��1℄ and the lo
alizationfun
tor q� : C ! C[��1℄ [18, 4℄ having the following universal property:- For every s 2 �, the morphism q�(s) is an isomorphism. - For any fun
torF : C ! D su
h that F (s) is an isomorphism for every s 2 �, there is a uniquefun
tor � : C[��1℄ ! D with � Æ q� = F .The obje
ts of C[��1℄ are just the obje
ts of C. To de�ne the morphisms ofC[��1℄, one introdu
es a (formal) inverse s�1 to every morphism s 2 �(x; y).These inverses are 
olle
ted in ��1(y; x); x; y 2 Ob(C) and then in ��1. Considerthe 
losure of Mor(C) [ ��1 under 
omposition and the smallest equivalen
erelation 
ontaining s�1Æs = 1x and sÆs�1 = 1y for s 2 �(x; y) that is 
ompatiblewith 
omposition. The equivalen
e 
lasses 
orrespond then to the morphisms ofC[��1℄. In parti
ular, if t Æ � = � Æ s for s; t 2 �, then � Æ s�1 = t�1 Æ �. Amorphism in C[��1℄ 
an always be represented in the forms�1k Æ fk Æ � � � Æ s�11 Æ f1; sj 2 �; fj 2Mor; k 2 N:Let Iso(C) denote the isomorphisms of the 
ategory C, and let � � Iso(C) denotethe system of morphisms generated by � and by Iso(C). The isomorphisms inC[��1℄ are the zig-zag morphisms, i.e.,Iso(C[��1℄) = fs�11 Æ s2 Æ � � � Æ s�12k�1 Æ s2k; sj 2 � � Iso(C); k 2 Ng:The sub
ategory of C[��1℄ with all obje
ts, the morphisms of whi
h are givenby the zig-zag morphisms in Iso(C[��1℄), forms in fa
t a groupoid [30℄.



4.2 ComponentsA \
ompression" of the 
ategory C[��1℄ is a
hieved by dividing out all isomor-phisms: Two obje
ts x; y 2 Ob(C) are �-isomorphi
 or �-
onne
ted { x '� y{ if there exists a zig-zag-morphism from x to y. This de�nition 
orresponds tousual path 
onne
tedness with respe
t to paths representing isomorphisms only {but regardless orientation. �-
onne
tivity is an equivalen
e relation; the equiva-len
e 
lasses are 
alled the �-
onne
ted 
omponents { the path 
omponents withrespe
t to �-zig-zag paths, viz. the 
omponents of the groupoid above.Next, 
onsider the equivalen
e relation on the morphisms of C[��1℄ gener-ated (under 
omposition) by � ' � Æ s; � ' t Æ � with � 2 Mor(x; y); s 2Inv(C[��1℄)(x0; x); t 2 Inv(C[��1℄)(y; y0): Remark that equivalent morphismsno longer need to have the same sour
e or target. Remark moreover, that anytwo zig-zag morphisms from x to y are equivalent to ea
h other; in parti
ular,they are equivalent to the unit-morphisms in both x and y.Example 2. If i0; i1; j0; j1 2 Inv(C[��1℄), then f0; f1; f2 2Mor(C) in the follow-ing diagram are equivalent to ea
h other in C[�℄�1:a0 f0 //j0   @
@@

@@
@@

@ b0a1 f1 // b1 i0 ??������� i1
��?

??
??

??a1 j1 >>~~~~~~~~ f2 // b2The obje
ts of the 
omponent 
ategory �0(C;�) are by de�nition the �-
onne
ted
omponents of C; the morphisms from [x℄ to [y℄; x; y 2 Ob(C), are the equiva-len
e 
lasses of morphisms in Sx0'�x;y0'�yMorC[��1℄(x0; y0). The 
ompositionof [�℄Æ [�℄ for � 2MorC[��1℄(x; y) and � 2MorC[��1℄(y0; z) is given by [� ÆsÆ�℄with s any zig-zag morphism from y to y0. The equivalen
e 
lass of that 
ompo-sition is independent of the 
hoi
es taken.Remark 1. These 
onstru
tions de
ompose the study of the morphisms of C intotwo pie
es: Firstly, the study of the groupoid Inv(C[��1℄) whi
h 
an be per-formed separately on ea
h of the �-
onne
ted 
omponents. For the fundamental
ategory, all these morphisms represent exe
utions that 
an be performed and/orba
ktra
ked without global e�e
ts. Se
ondly, 
ertainly more important for ap-pli
ations, the study of the 
omponent 
ategory, whi
h en
ompasses the globale�e
ts of irreversibility. In the 
ase of the 
omponent 
ategory of the fundamen-tal 
ategory, representatives of all non-unit dipath 
lasses may have (di�erent)global e�e
ts { ba
ktra
king along su
h a dipath 
lass may therefore 
hange theresult of a 
omputation.



5 Appli
ations to state spa
e analysisIn this se
tion, we apply the pre
eeding 
onstru
tions to our models of the statespa
e and the spa
e of exe
utions (from a given initial state) of a 
on
urrentprogram. The key task is to single out the relevant system of morphism � that isto be inverted. It should 
onsist of morphisms that, from a global point of view, donot 
ontribute with any de
ision to the out
ome of the 
on
urrent program. Here,we give the key de�nitions (in a general 
ategorial framework), their motivation,and a few elementary examples. For algorithms in low dimensions, 
f. Se
t. 6.5.1 Extensions of morphismsFor a small 
ategory, let X0; X1 � Ob(C). Let Mor0;1 = Sx02X0;x12X1 Mor(x0; x1)denote the set of all morphisms between X0 and X1. We asso
iate to a morphismf 2Mor(x; y) with x; y 2 Ob(C), the set of all its extensionsE(f) = fg Æ f Æ hj h 2Mor(X0; x); g 2Mor(x;X1)g �Mor01from X0 to X1. This set 
onsists of all morphisms from X0 to X1 that fa
torthrough f . It is empty if Mor(X0; x) = ; or if Mor(y;X1) = ;. In the parti
ular
ase f = 1x, the unit at x 2 Ob(C), the set E(x) = E(1x) 
onsists of all morphismsfrom X0 to X1 fa
toring through x.For 
on
atenable morphisms f1; f2 it is obvious that E(f2Æf1) � E(f1)\E(f2).The geometri
 example Ex. 2.1 in [38℄ shows that the left hand side may be aproper subset of the right hand side.5.2 Components on the spa
e of exe
utionsThe spa
e of partial exe
utions of a 
on
urrent program is modelled as the set ofmorphisms from the initial point x0 in the fundamental 
ategory ~�1(X). Moregenerally, one may asso
iate to any 
ategory C and any obje
t x0 2 Ob(C) the
omma 
ategory (x0 # C) of obje
ts under x0 [33℄: Its obje
ts are the morphismsin Mor(x0; x); x 2 Ob(C), and its morphisms are the 
ommutative trianglesx0f
}}||

||
||

|| g
!!C

CC
CC

CC
Cx1 h // x2with x0 in the top and h 2Mor(x1; x2).If C is the fundamental 
ategory ~�1(X) and x0 an initial element, the 
omma
ategories (x0 # ~�1(X)) and (x0 # ~�11 (X)) have as obje
ts the dihomotopy
lasses of dipaths starting at x0 : a partial dipath h 2 ~�1(x1; x2) with x1 2 Xand x2 2 X [ f1g indu
es a map ~�1(x0; x1) ! ~�1(x0; x2) by 
on
atenation.Assume given a (minimal) obje
t x0 su
h that X0 = fx0g and a set X1of maximal obje
ts in a 
ategory C. For the fundamental 
ategory ~�1(X), thisset X1 should be 
hosen as a dis
rete set of �nal a

epting states3, for thefundamental 
ategory ~�11 (X), the maximal obje
t should be 
hosen as 1.3 whi
h 
ould in
lude deadlo
king points



De�nition 1. A morphism s from f 2 Mor(x0; x) to g 2 Mor(x0; y) belongsto �1 if and only if E(f) = E(g) �Mor01.It is 
lear that either every or no morphism from f to g is 
ontained in �1.Obviously,�1 
ontains the units and is 
losed under 
omposition. For C = ~�1(X),a dipath s extending f to g is 
ontained in �1 if no \de
ision" has been madein between { all \
areers" in ~�1(X ;x0; X1) open to f are still open to g. No(globally dete
table) bran
hing o

urs between f and g.A dete
tion of the 
omponent 
ategory wrt. �1 entails the following bene�t:Proposition 1. Two dipaths f and g from x0 to x1 that pro
eed through thesame �1-
omponents are dihomotopi
.We illustrate the resulting 
omponent 
ategories by two elementary examples:Example 3. Let x0, resp. x1 denote the minimal, resp. the maximal element inthe po-spa
e X , the square with one hole from Fig. 3. Then Mor01 has twoelemens represented by dipaths fL; fR tou
hing R, resp. L. Any dipath withinB and any dipath within L [ R [ T is in �1. No dipath starting within B andending in L or R is in �1.The 
ategory (x0 # ~�1(X)) 
onsists of three �1-
onne
ted 
omponents: thedipaths ending in B; those tou
hing L and those tou
hing R. Observe: There isno zig-zag path t�1 Æ s from a dipath to R via T to a dipath to L sin
e there areno dipaths f from x0 to R and g from x0 to L with t � g dihomotopi
 to s � f .The 
omponent 
ategory �0(x0 # ~�1(X)); �1) 
an { apart from the units {be represented by (end points in)L [ T R [ TBbbFFFFFFFF

<<xxxxxxxxxExample 4. Let Y denote the \Swiss 
ag" po-spa
e from Fig. 3. Let x0 and x1denote the minimal, resp. the maximal elements, and let y denote the deadlo
kpoint (maximal within the unsafe region Us). The set of a

epting states is X1 =fx1; yg, and Mor01 
onsists of three elements { there is also a dihomotopy 
lasswith end point in y. The 
omponent 
ategory �0(x0 # ~�1(Y )); �1) is representedby the diagram (with obvious morphisms between the given regions/
omponents)L [ T l [ T Us R [ Tr [ TBlgleeJJJJJJJJJJ

hl ==|||||||| === BrhraaCCCCCCCC gr 99ssssssssssBflaaCCCCCCCC fr =={{{{{{{{with hl Æ fl = hr Æ fr.



Remark 2. In [43℄, S. Soko lowski introdu
ed a somehow similar approa
h result-ing in the fundamental poset 
1(X) of a po-spa
e X . Using our terminology, apreorder on (x0 # ~�1(X)) is de�ned by:f 2 ~�1(X ;x0; x) v g 2 ~�1(X ;x0; y) , 8h 2 ~�1(X ; y; z)9 a; j1 2 ~�1(X ;x; a); j2 2 ~�1(X ; z; a) with j1 � f = j2 � h � g 2 ~�1(X ;x0; a):The equivalen
e 
lasses given by \v and w" are the elements of the poset 
1(X),equipped with the partial order indu
ed by v.If one 
onsiders morphisms Mor01 
orresponding to a set X1 of maximalelements, it is easy to see that f v g , E(f) � E(g); and hen
e the �1-
onne
ted 
omponents agree with the elements of 
1(X). The partial orderbetween equivalen
e 
lasses in 
1(X) 
orresponds to the existen
e of morphismsin C[��1℄ between elements of these 
lasses. The 
omponent 
ategory 
ontainsmore information. It allows to 
ompare fa
torisations of two given morphismsand to dis
uss in whi
h parts of the po-spa
e they agree and in whi
h they di�er.P. Gau
her [19℄ has a quite di�erent 
ategori
al approa
h to bran
hing andmerging, not only for dipaths, but also for their higher-dimensional analoga.5.3 Components of the state spa
eNext, we shift attention to the entire state spa
e of a 
on
urrent program, mod-elled by an lpo-spa
e X with a minimal element x0, the only element of X0,and a (dis
rete) subset X1 of maximal elements. For an element x 2 X , weask: Whi
h essentially di�erent exe
ution paths pass through x? How does thisinformation develop throughout the state spa
e?De�nition 2. The system �2 �Mor(C) 
onsists of all morphisms s 2Mor(x; y)with x; y 2 Ob(C) satisfyingE(f) = E(s Æ f); E(g) = E(g Æ s) for all f 2Mor(�; x) and g 2Mor(y;�): (1)Obviously, �2 
ontains the units, and it is 
losed under 
omposition. It is easyto see that it suÆ
es to require (1) for all f 2Mor(x0; x) and g 2Mor(x;X1).Along a morphism s 2 �2(x; y), no de
isions with global e�e
ts are taken: 
on-
atenation with s does not alter any of the extension sets of morphisms withsour
e in y or target in x. States in the same �2-
omponent (or di
omponent)
annot be distinguished by the results of exe
utions passing through them.Example 5. Let again X denote the square with one hole and Y the \Swiss
ag" from Fig. 3 with minimal and maximal elements x0 (and y), resp. x1. The




omponent 
ategories �0(~�1(X);�2) and �0(~�1(Y );�2) are then of the formT TL ??������� R__@@@@@@@ L [ T l 55llllllllllllllll Us R [ TriiSSSSSSSSSSSSSSSSB__>>>>>>>>

??�������� BlccFFFFFFFFF
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=={{{{{{{{5.4 Relation to history equivalen
eThe �2-
omponents re�ne the notion of a di
omponent of an lpo-spa
e de�nedearlier in [16, 37℄. Those were only de�ned as sets and la
ked the dynami
alperspe
tive given by the 
omponent 
ategory:De�nition 3. The history hf of a morphism f 2Mor(X0; X1) is de�ned ashf = fx 2 Ob(C)j 9f0 2Mor(X0; x); f1 2Mor(x;X1) with f = f1 Æ f0g:Two obje
ts x; y 2 Ob(C) are history equivalent if and only if x 2 hf , y 2 hffor all f 2Mor(X0; X1).A history equivalen
e 
lass C � Ob(C) is thus a primitive element of the Booleanalgebra generated by the histories, i.e., an interse
tion of histories and their
omplements su
h that for all f 2Mor(X0; X1) either C � hf or C \ hf = ;.The following argument shows that a morphism s 2 �2(x; y) has historyequivalent sour
e and target:x 2 hf , f 2 E(x) = E(ix) = E(s) = E(iy) = E(y) , y 2 hf:Hen
e, a �2-
omponent is 
ontained in a path-
omponent of a history equiva-len
e 
lass.6 Algorithms for 2-dimensional mutual ex
lusion modelsIn this se
tion, we 
on�ne ourselves to the progress graphs des
ribed in theintrodu
tion. Classifying dipaths up to dihomotopy in these mutual ex
lusionmodels 
orresponds to �nding out whi
h (and how many) s
hedules for a given
on
urrent program 
an potentially yield di�erent results. An algorithm arrivingat su
h a 
lassi�
ation in dimension two, i.e, for semaphore programs with justtwo intera
ting transa
tions, was des
ribed in [37℄; the results in this se
tion relyon the methods des
ribed there.In this 
ase, the state spa
e has X = I2 n int(F ) as a model, i.e., a unitsquare from whi
h a forbidden region F (e.g., the region in bla
k in Fig. 3) is



deleted. This region is a union of re
tangles that are parallel to the axes. Sin
ewe are interested in dipaths 
onne
ting the minimal point to the maximal point,we may assume that X does not 
ontain neither unsafe nor unrea
hable points;this 
an always be a
hieved by a 
ompletion pro
ess, 
f. [37℄. As a 
onsequen
e([37℄, Lemma 4.1), every path-
omponent Fi � F has a global minimum zi =(xi; yi) and a global maximum zi = (xi; yi). We de�ne line segment subspa
esSxi ; Syi ; Six; Siy � X emerging horizontally and verti
ally from these minima andmaxima as follows:Sxi = fz = (x; y) 2 X j x � xi; y = yig Syi = fz = (x; y) 2 X j x = xi; y � yigSix = fz = (x; y) 2 X j x � xi; y = yig Siy = fz = (x; y) 2 X j x = xi; y � yig:All these subspa
es 
onsist of one or several line segments, that may be brokenup into pie
es by other 
omponents of the forbidden region. Let T xi � Sxi ; T yi �Syi ; T ix � Six and T iy � Siy denote the segment tou
hing Fi, 
f. Fig. 4. Theunions of these separating line segments will be 
alled T = Si(T xi [ T yi ); T =Si(T ix [ T iy) and T = T [ T . A dipath f : I ! X from x to y is said to 
rossT if there exists an i su
h that ; 6= f�1(T ) is 
ontained in the interior of I ,i.e., if its image 
ontains points on both sides of one of the segments. Similarly,one de�nes 
rossing wrt. T and to T . We 
an now dete
t whi
h of the dipath
lasses in X are inverted in the two 
ategories of fra
tions of Se
t. 5:Proposition 2. Let s : I ! X denote a (partial) dipath with f(0) = x andf(1) = y. Its dihomotopy 
lass [s℄ 2 ~�1(X ;x; y) is 
ontained in �1 if and only iff does not 
ross T ; in �2 if and only if f does not 
ross T .Example 6. In the example of Fig. 4 with a forbidden region 
onsisting of four
omponents Fi, there are six dihomotopy 
lasses of dipaths between x0 and x1,
f. [37℄, Fig. 14. The upper �gures 
ontain the line segments T �� that, togetherwith boundary segments of the forbidden region, 
ut out the 
omponents in thetwo 
ases dis
ussed in Se
t. 5. For instan
e, the 
omponent marked C in therightmost �gure is 
hara
terised by two ingoing non-unit morphisms that, ea
hhave two extensions. The lower �gures show the asso
iated 
omponent 
ategorieswith morphisms going upward. In this example, there are no non-trivial relations.A similar analysis in dimensions higher than two is 
ertainly more demanding.Not only the 
omponents of F , but also their �ner topologi
al properties will
ertainly play a role, 
f. the dis
ussion in [37℄, Se
t. 5.7 Classi
al state-spa
e redu
tion te
hniques7.1 Persistent setsLet (S; i; E; T ran; I) be an asyn
hronous transition system [2℄. This means that(S; i; E; T ran) is a transition system and that I � E � E is a relation betweenlabels E, the \independen
e relation" between two a
tions. We will not givea pre
ise axiomati
s for I here, and will keep on simple grounds. Basi
ally, Ishould satisfy the following 
onditions (taken from [22℄):
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Fig. 4. Components and their 
ategories in a 2-dimensional mutual ex
lusion model- if t1 (respe
tively t2) is enabled in s and s !t1 s0 (respe
tively s !t2 s0)then t2 (respe
tively t1) is enabled in s if and only if t2 (t1) is enabled in s0(independent transitions 
an neither disable nor enable ea
h other); and,- if t1 and t2 are enabled in s, then there is a unique state s0 su
h that boths !t1 s1 !t2 s0 and s !t2 s2 !t1 s0 (
ommutativity of enabled independenttransitions).In our te
hnique, I is just a set of squares, or 2-transitions, or in the topo-logi
al sense, they are elementary surfa
es, enabling us to 
ontinuously deformdipaths. We extend in an intuitive manner I to sets of a
tions by putting AIBif for all a 2 A, for all b 2 B, aIb. We identify a with the singleton fag.Let T be a set of a
tions, T � E, and p 2 S be a state. We say that T ispersistent in state p if, T 
ontains only a
tions whi
h are enabled at p, and, forall tra
es t beginning at p 
ontaining only a
tions q out of T , qIT . Suppose wehave a set of persistent a
tions Tp for all states p in an asyn
hronous transitionsystem. Then let us look at the following set of tra
es PT (identi�ed with aseries of states) in (S; i; E; T ran; I) de�ned indu
tively as follows: (i) 2 PT , andif (p1; : : : ; pn) 2 PT , then (p1; : : : ; pn; q) 2 PT where pn !t0 q 2 Tran and t0 62Tpn . Deadlo
k dete
tion 
an be performed on this subset PT of tra
es insteadof the full set of tra
es of (S; i; E; T ran; I). At least when (S; i; E; T ran; I) isa
y
li
, PT is enough for 
he
king LTL temporal formulas (and you 
an modifythe method so that it works generally). We exemplify the method on the pro
essPb:Pa:V b:V a j Pa:Pb:V a:V b. A standard interleaving semanti
s would be assket
hed in Figure 5, showing the presen
e of deadlo
king state 13. One setof persistent sets is T1 = fPag, T2 = fPbg, T5 = fPa; Pbg, T6 = fPb; V ag,T8 = fPa; V ag, T13 = ;, T9 = fV bg, T12 = fV ag, T17 = fPbg, T18 = fV ag,T22 = fV bg, T23 = ;, T7 = fPb; V bg, T14 = fV bg, T15 = fPbg, T16 = fPag,T20 = fV bg, T21 = fV ag, and we show the 
orresponding tra
es PT in Figure



6. We have not indi
ated the persistent sets 
orresponding to 3, 4 et
. sin
e in apersistent set sear
h, they will not be rea
hed anyway, so their a
tual 
hoi
e isuninteresting. In Figure 5 there are 16 paths from 1 to be traversed if no sele
tivesear
h was used. Six of them lead to the deadlo
k 13, and 10 (5 above the hole,5 below the hole) are going to the �nal point 23. In Figure 6, one 
an 
he
k thatthere are only 8 paths to be traversed if one uses the persistent sets sele
tivesear
h (3 to state 13, 1 to state 23 below the hole and 4 to state 23 above thehole).
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12Fig. 6.How did we �nd this set of persistent sets? In the PV 
ase this 
an bedone quite easily as follows. First the independen
e relation 
an be found outright away. Px and Py stand respe
tively for the query for a lo
k on x and y(nothing is 
ommitted yet) so they are independent a
tions, whatever x and yare. We should rather de
lare Px and V y dependent in general: if x = y this is
lear, and for x 6= y this 
an 
ome from the fa
t lo
ks on x and y are 
ausallyrelated (pre
isely as in the 
ase of Figure 5 with x = a and x = b). This is slightlydi�erent from the more usual 
ase of atomi
 reads and writes languages in whi
hthe independan
e relation 
an be safely determined as: a
tions are independent ifand only if they a
t on distin
t variables. The most elaborated te
hnique knownin this framework is that of \stubborn sets" see [46℄, and its adaptation to the
urrent presentation, see [22℄ for a pre
ise de�nition. The example of persistentset we gave in Figure 6 is in fa
t a stubborn set. As one 
an see as well, thepersistent set approa
h here redu
es the 5 paths below the hole into 1, whi
his a representant modulo dihomotopy of these 5 dipaths. In the di
onne
ted
omponents approa
h, one �nds the set of 7 di
onne
ted 
omponents and the
orresponding graph of regions pi
tured in Figure 7.7.2 Comparison with geometri
 te
hniquesThere are 4 dipaths to be traversed in the graph of di
onne
ted regions to de-termine the behaviour of this 
on
urrent system (two of them leading to state
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Pa Fig. 7.13 being dihomotopi
). In fa
t, there are two explanations why the method ofdi
onne
ted 
omponents is superior to the persistent set approa
h. In the latter,the independen
e relation does not in general depend on the 
urrent state (evenif this might be 
hanged by 
hanging the set of labels), Our notion of indepen-den
e is given by a 2-transition, whi
h depends on the 
urrent state (see forinstan
e [25℄ where the link is made formal). The se
ond and more importantreason is that the di
onne
ted graph algorithm determines regions using globalproperties, whereas the persistent sets approa
h uses only (in general synta
ti
)lo
al 
riteria for redu
ing the state-spa
e. Conversely, it is relatively easy to seethe following: For every state p in our asyn
hronous transition system (or by[25℄, in a 2-dimensional 
ubi
al set), all tra
es t 
omposed of a
tions outsideTp is su
h that all its a
tions are independent with Tp. So any tra
e from pmade up of any a
tion (those of Tp as well as those outside Tp) 
an be deformed(by dihomotopy, or \is equivalent to") into a tra
e �ring �rst a
tions from Tpand then a
tions outside Tp. Therefore the sele
tive sear
h approa
h using onlya
tions from Tp (for all p) is only traversing some representatives of the diho-motopy 
lasses of paths. The persistent sear
h approa
h is a parti
ular 
ase ofdihomotopi
 deformation (not optimal in general).7.3 Mis
ellaneous te
hniquesSleep sets. The sleep sets te
hnique 
an be seen as a mere amelioration of thetraversal we saw, and therefore 
an be 
ombined with the method of persistentsets (as well as ours). The problem we had in Se
tion 7.1 is that quite a few ofthe paths we are traversing go through the same states at some point, and havea 
ommon suÆx (like paths (1,2,6,8,14,16,20,21,23) and (1,2,5,8,14,16,20,21,23)in Figure 6). It is obviously not ne
essary to traverse again 
ommon suÆxes ifwe want to 
he
k future tense logi
al formulas. The sleep sets Sp (p a state in ourasyn
hronous transition system) use the information about the 
urrent traversalsmade, and not any information of any semanti
 kind to 
ope with this problem:see [21℄ for the pre
ise de�nition. This redu
es the number of transitions but notthe number of states as shown in Figure 8. We now produ
e only 5 paths. The



same method is applied on Figure 7 to give the optimal result of Figure 9 (3paths).
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Fig. 9.This does not entirely solve the suÆx problem. A 
lassi
al means to 
ompletethis method is to use \state spa
e hashing" [20℄. In this method (again orthogonalto \dihomotopy redu
tion"), one tries to maintain the set of states (and the setof transitions sometimes) already traversed avoiding to visit again the samesequen
es of states and transitions. As this database might be very big, oneuses standard hashing te
hniques whi
h qui
kly de
ide if two states are equal,but whi
h might \identify" unequal states. This was used for instan
e in one ofour simple implemented analyzers des
ribed in [14℄. Again, for 
y
li
 transitionsystems, this transformation does not 
hange the deadlo
k(s) or LTL (futuretense temporal logi
s) formulae that are true.Covering steps or Virtual Coarsening. Another idea, 
alled \
overing step" in[49℄ or sometimes 
alled in other situations \virtual 
oarsening", is to grouptogether interleavings of independent a
tions by \multiset" transitions or \
ov-ering steps". For instan
e, when possible (basi
ally, you should 
he
k that youare not in the situation of Figure 1), one repla
es an interleaving square of twoa
tions by the transition s0 !fa;bg s3. This is obviously subsumed by our notionof n-transition (formally, this 
an be done in the style of [39℄).Algorithmi
s of the representation of the state-spa
e. A number of 
lever algo-rithmi
 methods have been used to redu
e the representation of the state-spa
e inmemory without dis
arding any transition nor state, rather by 
ompressing therepresentation. A very mu
h used te
hnique in model-
he
king is the represen-tation of the transition relation with binary de
ision diagrams (BDDs) or QDDsas in [3℄ asso
iated with symboli
 representations of states [28℄. Some amount ofwork has been devoted to \on the 
y" te
hniques, also in model 
he
king, see forinstan
e [31℄: Only a part of the state-spa
e is represented during the analysis,



be
ause there is no need in general to 
onstru
t �rst the whole state-spa
e andthen traverse it. Last but not least some te
hniques involving redu
ing the state-spa
e using symmetry arguments have been proposed and su

essfully used, see[9℄. All these te
hniques 
ould be equally applied to our di
onne
ted 
omponentsapproa
h, and should be exempli�ed in future papers. For instan
e, symmetryte
hniques are quite well studied in geometry and should apply straightforwardlyto our geometri
 approa
h.8 Con
luding remarksTwo further arguments in favor of our geometri
 te
hniques should be devel-opped: We should be able to gain mu
h more when the dimension of the prob-lem (i.e. the number of pro
esses involved) in
reases. The persistent sets types ofmethods basi
ally use lo
al transpositions, or in our geometri
 phrasing, fa
es ofdimension 2, to equate some of the equivalent dipaths. Geometri
ally speaking,we 
an use sometime shorter deformation paths, like any hyper
ube, i.e. any
y
li
 permutation. The other argument is that geometri
 methods do 
ooper-ate well with abstra
tion me
hanisms (in the sense of abstra
t interpretation[11℄). It is in parti
ular shown in [15℄ that the upper-approximation (or lower-approximation) of the forbidden regions 
an be 
arried out simply for a varietyof languages, using 
lassi
al abstra
t interpretation domains. These give lower(respe
tively upper) approximations of the \interesting" s
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