
Coupling policy iteration with semi-definite
relaxation to compute accurate numerical

invariants in static analysis

Assalé Adjé+, Stéphane Gaubert∗ and Eric Goubault†

+ CEA, LIST and LIX, Ecole Polytechnique (MeASI),
F-91128 Palaiseau Cedex, France,

∗ INRIA Saclay and CMAP, Ecole Polytechnique,
F-91128 Palaiseau Cedex, France,

† CEA, LIST (MeASI),
F-91191 Gif-sur-Yvette Cedex, France,

Assale.Adje@cea.fr, Stephane.Gaubert@inria.fr, Eric.Goubault@cea.fr

Abstract. We introduce a new domain for finding precise numerical
invariants of programs by abstract interpretation. This domain, which
consists of level sets of non-linear functions, generalizes the domain of
linear “templates” introduced by Manna, Sankaranarayanan, and Sipma.
In the case of quadratic templates, we use Shor’s semi-definite relaxation
to derive computable yet precise abstractions of semantic functionals,
and we show that the abstract fixpoint equation can be solved accu-
rately by coupling policy iteration and semi-definite programming. We
demonstrate the interest of our approach on a series of examples (filters,
integration schemes) including a degenerate one (symplectic scheme).

1 Introduction

We introduce a complete lattice consisting of level sets of (possibly non-convex)
functions, which we use as an abstract domain in the sense of abstract interpreta-
tion [CC77] for precisely over-approximating numerical program invariants. This
abstract domain is parametrized by a basis of functions, akin to the approach
set forward by Manna, Sankaranarayanan, and Sipma (the template abstract do-
main [SSM05,SCSM06]), except that the basis functions or “templates” which
we use here need not be linear. The domains obtained in this way encompass
the classical abstract domains of intervals, octagons and (linear) templates.

To illustrate the interest of this generalization, let us consider an harmonic
oscillator: ẍ+ cẋ+ x = 0. By taking an explicit Euler scheme, and for c = 1 we
get the program shown at the left of Figure 1.

The invariant found with our method is shown right of Figure 1. For this, we
have considered the “template” based on functions {x,−x, v,−v, 2x2 + 3v2 +
2xv}, i.e. we consider a domain where we are looking for upper bounds of

The first author has been supported by a fellowship from the Région Île-de-France.
This work has been partially supported by the ANR project ASOPT.

Fig. 1. An harmonic oscillator, its Euler integration scheme and the loop invariant
found at control point 2

x = [0 , 1] ;
v : = [0 , 1] ;
h = 0 . 0 1 ;
whi l e (t rue) { [2]

w = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗w; [3] } {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

these quantities. This means that we consider the linear templates based on
{x,−x, v,−v}, i.e. intervals for each variable of the program, together with the
non-linear template 2x2 + 3v2 + 2xv. The last template comes from the Lya-
punov function that the designer of the algorithm may have considered to prove
the stability of his scheme, before it has been implemented. In view of proving
the implementation correct, one is naturally led to considering such templates1.
Last but not least, it is to be noted that the loop invariant using intervals, zones,
octagons or even polyhedra (hence with any linear template) is the very disap-
pointing invariant h = 0.01 (the variables v and x cannot be bounded.) However,
the main interest of the present method is to carry over to the non-linear set-
ting. For instance, we include in our benchmarks a computation of invariants (of
the same quality) for an implementation of the Arrow-Hurwicz algorithm, which
is essentially an harmonic oscillator limited by a non-linear saturation term (a
projection on the positive cone), or a highly degenerate example (a symplec-
tic integration scheme, for which alternative methods fail due to the absence of
stability margin).

Contributions of the paper We describe the lattice theoretical operations in terms
of Galois connections and generalized convexity in Section 2. We also show that
in the case of a basis of quadratic functions, good over-approximations FR of ab-
stractions F] of semantic functionals can be computed in polynomial time (Sec-
tion 3). Such over-approximations are obtained using Shor’s relaxation, which is
based on semi-definite programming. Moreover, we show in Subsection 4.3 that
the multipliers produced by this relaxation are naturally “policies”, in a policy
iteration technique for finding the fixpoints of FR, precisely over-approximating
the fixpoints of F]. Finally, we illustrate on examples (linear recursive filters, nu-
merical integration schemes) that policy iteration on such quadratic templates is
extremely efficient and precise in practice, compared with Kleene iteration with
widenings/narrowings. The fact that quadratic templates are efficient on such
algorithms is generally due to the existence of (quadratic) Lyapunov functions
that prove their stability. The method has been implemented as a set of Matlab
programs.

1 Of course, as for the templates of [SSM05,SCSM06], we can be interested in automat-
ically finding or refining the set of templates considered to achieve a good precision
of the abstract analysis, but this is outside the scope of this article.

Related work This work is to be considered as a generalization of [SSM05],
[SCSM06] because it extends the notion of template to non-linear functions,
and of [CGG+05], [GGTZ07], [AGG08], [GS07a] and [GS07b] since it also gen-
eralizes the use of policy iteration for better and faster resolution of abstract
semantic equations. Polynomial inequalities (of bounded degree) were used in
[BRCZ05] in the abstract interpretation framework but the method relies on a
reduction to linear inequalities (the polyhedra domain), hence is more abstract
than our domain. Particular quadratic inequalities (involving two variables - i.e.
ellipsoidal methods) were used for order 2 linear recursive filters invariant gener-
ation in [Fer05]2. Polynomial equalities (and not general functional inequalities
as we consider here) were considered in [MOS04,RCK07]. The use of optimiza-
tion techniques and relaxation for program analysis has also been proposed in
[Cou05], mostly for synthetizing variants for proving termination, but invariant
synthesis was also briefly sketched, with different methods than ours (concerning
the abstract semantics and the fixpoint algorithm). Finally, the interest of using
quadratic invariants and in particular Lyapunov functions for proving control
programs correct (mostly in the context of Hoare-like program proofs) has also
been advocated very recently by E. Féron et al. in [FF08,FA08].

2 Lattices of level sets and abstract support functions

We introduce a new abstract domain, parametrized by a basis of functions (P
below). The idea is that an abstract value will be a vector of bounds for each
of these functions, hence the name of “level sets”, with some abstract convexity
condition, Definition 3.

2.1 P -level sets, and their Galois connection with P(Rd)

Let P denote a set of functions from Rd to R, which is going to be the basis
of our templates. We denote F(P,R) the set of functions v from P to R =
R∪ {±∞}. We define a Galois connection (Proposition 1) between F(P,R) and
the set of subsets of Rd (made of a concretization operator v 7→ v?, Definition
1 and an abstraction operator C 7→ C†, Definition 2). This will give the formal
background for constructing abstract semantics using P -level sets using abstract
interpretation [CC77], in Section 3.

Definition 1 (P -level sets). To a function v ∈ F(P,R), we associate the P -
level set denoted by v? and defined as:

v? = {x ∈ Rd | p(x) ≤ v(p), ∀p ∈ P}

When P is a set of convex functions, the P -level sets are the intersection of
classical level sets known in convex analysis. In our case, P can contain non-
convex functions so P -level sets are not necessarily convex in the usual sense.
2 A generalization to order n linear recursive filters is also sketched in this article.

Example 1. We come back to the first example and we are focusing on its repre-
sentation in term of P -level set. Let us write, for (x, v) ∈ R2, p1 : (x, v) 7→
x, p2 : (x, v) 7→ v and p3 : (x, v) 7→ 2x2 + 3v2 + 2xv. Let us take P =
{p1,−p1, p2,−p2, p3}, v(p1) = 1.8708, v(−p1) = 1.8708, v(p2) = 1.5275, v(−p2) =
1.5275, and v(p3) = 7. The set v? is precisely the one shown right of Figure 1.

Example 2. We next show some P -level sets which are not convex in the usual
sense. Let us write, for (x, y) ∈ R2, p1 : (x, y) 7→ −y2 − (x + 2)2, p2 : (x, y) 7→
−y2 − (x − 2)2 and p3 : (x, y) 7→ −(y − 2)2 − x2, p4 : (x, y) 7→ −(y + 2)2 − x2.
Let us take P = {p1, p2, p3, p4} and v(p1) = v(p2) = v(p3) = v(p4) = −2. The
set v? is shown Figure 2.

Fig. 2. A P -level set arising from non-
convex quadratic functions.

{y − x ≤ 3, y + x ≤ 3, −y ≤ 0}

Fig. 3. A P -level set arising from linear
forms.

In our case, P is a set of functions from Rd to R not necessarily linear, so we
generalize the concept of support functions (e.g see Section 13 of [Roc96]).

Definition 2 (Abstract support functions). To X ⊂ Rd, we associate the
abstract support function denoted by X† and defined as:

X†(p) = sup
x∈X

p(x)

Proposition 1. The pair of maps v 7→ v? and X 7→ X† defines a Galois con-
nection between F(P,R) and the set of subsets of Rd.

In the terminology of abstract interpretation, (.)† is the abstraction function,
and (.)? is the concretization function.

2.2 The lattices of P -convex sets and P -convex functions

The sets of points in Rd which are exactly represented by their corresponding
P -level sets are called P -convex sets, as in the definition below. These can be
identified to the set of abstract elements we are considering3. We show in Theo-
rem 1 that they constitute a complete lattice.

Definition 3 (P-convexity). Let v ∈ F(P,R), we say that v is a P -convex
function if v = (v?)†. A set X ⊂ Rd is a P -convex set if X = (X†)?.
3 Formally, this is the upper-closure in P(Rd) of the set of abstract elements.

Example 3. Let us consider a triangle, depicted in Figure 3. If P is the set of
linear forms defined by the faces of this triangle i.e P consists of the maps
(x, y) : 7→ y − x, (x, y) : 7→ y + x and (x, y) : 7→ −y, then it is an abstract convex
set. But if P is, for example, linear forms defined by orthogonal vectors to the
faces of the triangle, the previous triangle is no longer an abstract convex set.

Definition 4. We respectively denote by VexP(P 7→ R) and VexP(Rd) the set
of P -convex function of F(P,R) and the set of P -convex sets of Rd.

Definition 5 (The meet and join). Let v and w be in F(P,R). We denote by
inf(v, w) and sup(v, w) the functions defined respectively by, p 7→ inf(v(p), w(p))
and p 7→ sup(v(p), w(p)). We equip VexP(P 7→ R) with the meet (respectively
join) operator:

v ∨ w = sup(v, w) (1)

v ∧ w = (inf(v, w)?)† (2)

Similarly, we equip VexP(Rd) with the two following operators: X t Y = ((X ∪
Y)†)?, X u Y = X ∩ Y .

The family of functions VexP(P 7→ R) is ordered by the partial order of
real-valued functions i.e v ≤ w ⇐⇒ v(p) ≤ w(p) ∀p ∈ P . The family of set
VexP(Rd) is ordered by the inclusion order denoted by ⊆.

Theorem 1. (VexP(P 7→ R),∧,∨) and (VexP(Rd),u,t) are isomorphic com-
plete lattices.

Definition 6. For v ∈ F(P,R), we denote by vexP(v) the P -convex hull of v
which is the greatest P -convex function smaller than v.

Similarly, we denote by the set vexP(X) the P -convex hull of a subset X
which is the smallest P -convex set greater than X.

Example 4. Let us come back to the Example 3. Let us take P = {(x, y) : 7→
y + x, (x, y) :7→ x − y, (x, y) : 7→ −x}. Its P -convex hull is the one depicted
Figure 4. If we take instead P = {(x, y) :7→ y2 − x2, (x, y) :7→ x, (x, y) :7→ −x},
its P -convex hull is shown in Figure 5.

Proposition 2 (P-convex hull characterization). Let v be in F(P,R) and
X be a subset of Rd.

1. For p ∈ P , (vexP(v))(p) = sup{p(x) | x ∈ Rd, q(x) ≤ v(q), ∀q ∈ P}
2. vexP(X) =

⋂
{Y | Y ∈ VexP(Rd), X ⊆ Y }

2.3 Intervals, Zones, octagons and Manna et al’s Templates

The interval domain is naturally subsumed by our abstract convex sets: take
as basis P = {x1,−x1, . . . , xn,−xn} where xi (i = 1, . . . , n) are the program
variables. And abstract value v in our domain thus naturally corresponds to the
supremum of the interval for xi: v(xi) and its infimum: −v(−xi).

{x− y ≤ 3, y + x ≤ 3, −x ≤ 3}

Fig. 4. A convex hull of the triangle.

{y2 − x2 ≤ 9, x ≤ 3, −x ≤ 3}

Fig. 5. Another convex hull of the same
triangle, with a different set of templates.

Zones and octagons are treated in a similar manner. For instance, for zones,
take P = {xi − xj | i, j = 0, . . . , n, i 6= j}, adding a slack variable x0 (always
equal to 0), as customary, to subsume intervals. Of course, (linear) templates as
defined in [SSM05] are particular abstract convex sets, for which P is given by
a set of linear functionals.

We remark that in the case of zones, v(xi − xj) is exactly the entry i, j
of the DBM (Difference Bound Matrix) representing the corresponding zone.
Also, elements of VexP(P 7→ R) corresponding naturally to closed DBMs, that
is, canonical forms of DBMs. As well known [Min04b], the union of two zones
preserves closure whereas the intersection does not necessarily preserve closure.
This is reflected in our domain by (1) and (2).

3 Quadratic Zones

In this section, we instantiate the set P to linear and quadratic functions. This
allows us to give a systematic way to derive the abstract semantics of a program.
The main result is that the abstract semantics for an assignment for instance,
can be approximated precisely in polynomial time by Shor’s relaxation scheme,
Fact 1.

Definition 7. We say that P is a quadratic zone if every element (template)
p ∈ P can be written as:

x 7→ p(x) = xTApx+ bTp x+ cp,

where Ap is a d× d symmetric matrix (so A can be a zero matrix), xT denotes
the transpose of a vector x, bp is a Rd vector and cp a scalar.

Now, we suppose that P is finite and we suppose that for all q, v(q) > −∞.
We denote by F(P,R ∪ {+∞}) the set of functions from P to R ∪ {+∞} and
F(P,R+), the set of functions from P to R+.

Suppose now we are given a program with d variables (x1, . . . , xd) and n
control points numbered from 1 to n. We suppose this program is written in
a simple toy version of a C-like imperative language, comprising global vari-
ables, no procedures, assignments of variables using only parallel affine assign-
ments4 (x1, . . . , xd) = T (x1, . . . , xd) (i.e. T is an affine map), tests of the form
(x1, . . . , xd) ∈ C, where C is some shape in P(Rd), and while loops with similar
entry tests. We do not recap the standard collecting semantics that associates
to this program a monotone map F : (P(Rd))n → (P(Rd))n whose least fixed
points lfp F has as ith component (i = 1, . . . , n) the subset of Rd of values that
the d variables x1, . . . , xd can take at control point i.

The aim of this section is to compute, inductively on the syntax, the ab-
straction (or a good over-approximation of it) F] of F from F(P,R ∪ {+∞})n
to itself defined as usual as:

F](v) = (F (v?)†) (3)

The notation v? is in fact the vector of sets (v?1 , · · · , v?n) and (F (v?)†) is
also interpreted component-wise. The notation vexP(v) will be also understood
component-wise.

3.1 Shor’s semi-definite relaxation scheme

Shor’s relaxation scheme (see Section 4.3.1 of [TN01] or Shor’s original arti-
cle [Sho87] for details) consists of over-approximating the value of a general
quadratic optimization problem by the optimal value of a semi-definite pro-
gramming (SDP) problem. We know, if a dual feasibility condition holds, that
the SDP problems are solvable in polynomial time by an interior point method,
see e.g [Ali95].

Let p, {qi}i=1,...,m be quadratic functions on Rd. Let us consider the following
constrained maximization problem:

sup{p(x) | qi(x) ≤ 0, ∀i = 1, . . . ,m} (4)

The first step is to relax the latter optimization problem by Lagrange duality
techniques see e.g Section 5.3 of [AT03]. The relaxed problem is:

inf
λ∈Rm+

sup
x∈Rd

p(x) +
m∑
i=1

λiqi(x)

where λ ∈ Rm+ are called Lagrange multipliers. Its optimal value is always greater
or equal than the optimal value of the problem (4) and is, even, in well-known
cases equal (this will be used Proposition 3).

4 The abstraction of non-linear assignments is outside the scope of this article. Easy
ways to deal with them from the material given in this paper include: getting back,
locally, to an interval semantics in case of non-linear assignments, or using the lin-
earization methods of [Min04a].

Then, we introduce the matrix M(p), for a quadratic function as in Defini-
tion 7 p and the matrix N(y) for a real y defined as:

M(p) =
(
cp

1
2b
T
p

1
2bp Ap

)
, and N1,1(y) = y, Ni,j(y) = 0 if (i, j) 6= (1, 1) (5)

Let � denotes the Loewner ordering of symmetric matrices, so that A � B
if all eigenvalues of B −A are non-negative.

Shor’s relaxation scheme consists of solving the following SDP problem:

inf
λ∈Rm+
η∈R

{η s.t M(p) + ηN(−1)−
m∑
i=1

λiM(q)] � 0}

which is the optimal value of the relaxed problem, hence an over-approximation
of the optimal value of the problem (4).

3.2 Abstraction of assignments

In this subsection, we focus on assignments (x1, . . . , xd) = T (x1, . . . , xd) at con-
trol point i. Equation 3 translates in that case to (given that vi−1 defines the
abstract value at control point i− 1, i.e. immediately before the assignment):

(F]i (v))(p) = sup{p ◦ T (x) | q(x) ≤ vi−1(q),∀q ∈ P} (6)

We recognize the constrained optimization problem 4 and we use Lagrange
duality as in the first step of Subsection 3.1. In our case, the Lagrange multipliers
are some non-negative functions λ from P to R. We thus consider the transformed
optimization problem:

inf
λ∈F(P,R+)

sup
x∈Rd

p ◦ T (x) +
∑
q∈P

λ(q)[vi−1(q)− q(x)] (7)

We write FRi (v)(p) for the value of Equation 7. It is called the relaxed func-
tion of F]i . In general, FRi is more abstract than F]i , in other words:

Theorem 2. For all v ∈ F(P,R ∪ {+∞})n, for all p ∈ P ,

(F]i (v))(p) ≤ (FRi (v))(p)

Moreover, if a constraint qualification, called Slater condition, is satisfied, there
exists some λ which achieves the minimum in (7); and the over-approximation
we make is not in general that big; in some cases even, the inequality above is
an equality:

Proposition 3 (Selection Property). If the set {x ∈ Rd | q(x) − vi−1(q) <
0, ∀ q ∈ P} is nonempty, there exists λ∗ ∈ F(P,R+) such that:

FRi (v)(p) = sup
x∈Rd

p ◦ T (x) +
∑
q∈P

λ∗(q)[vi−1(q)− q(x)]

Furthermore, if p is a concave quadratic form and if vi−1(q) <∞ only when
q is a convex quadratic form, then, we get: (FRi (v))(p) = (F]i (v))(p).

The second part of Proposition 3 follows from the strong duality theorem for
convex optimization problems, see e.g. Proposition 5.3.2 of [AT03].

From now on, we write, for a map w from P to R ∪ {+∞},

w◦ = {x ∈ Rd | q(x)− w(q) < 0, ∀q ∈ P}.

Let us suppose that v◦i−1 6= ∅, let us fix λ ∈ F(P,R+), and observe that the
sum

∑
q∈P λ(q)vi−1(q) does not depend on the variable x in (7). We now define

Fλi (v) by :

(Fλi (v))(p) =
∑
q∈P

λ(q)vi−1(q) + V λi (p) (8)

where V λi (p) = sup
x∈Rd

p ◦ T (x)−
∑
q∈P

λ(q)q(x) (9)

So that, (FRi (v))(p) = infλ∈F(P,R+)(Fλ(v))(p).
By applying the so-called “Simple Lemma” of Section 4.3.1 of [TN01], we

can write (9) as the following SDP problem:

V λi (p) = inf{η ∈ R |M(p ◦ T) + ηN(−1)−
∑
q∈P

λ(q)M(q) � 0}

where M(p ◦ T), N(−1) and M(q) are the matrices defined in (5).
So, by applying Shor’s relaxation scheme of Subsection 3.1, we get:

(FRi (v))(p) = inf
λ∈F(P,R+)

η∈R

η s.t M(p◦T)+ηN(−1)+
∑
q∈P

λ(q)[N(vi−1(q))−M(q)] � 0

(10)
which can be solved by a SDP solver.

To get a safe optimal value of (10), we can use a verified SDP solver as
VSDP [JCK07].

We remark that we can apply the Shor’s relaxation scheme for over-approxi-
mating the P -convex hull of a given function w ∈ F(P,R), which will be useful
in the next section.

Corollary 1. Let w be in F(P,R) and p in P we have:

(vexP(w))(p) ≤ inf
λ∈F(P,R+)

η∈R

η s.t M(p)+ηN(−1)+
∑
q∈P

λ(q)[N(w(q))−M(q)] � 0

Finally, we conclude that we can compute over-approximations of (6) as well
as over-approximations of the P -convex hull of an element of F(P,R) by solving
a SDP problem, which can be done in polynomial time [TN01]. We sum up what
we achieved in the following fact:

Fact 1. In the case of quadratic templates, the relaxed functional FR and a
sound over-approximation of the P -convex hull operation can be evaluated using
Shor’s semi-definite relaxation.

Example 5. We analyze the following parallel affine assignment T that imple-
ments a rotation of angle φ on the unit sphere S1 of R2:

T

(
x
y

)
=
(

cosφ − sinφ
sinφ cosφ

)(
x
y

)
where x2 + y2 = 1.

Let us take P = {p1(x, y) 7→ x2 + y2, p2(x, y) 7→ −(x2 + y2)} and we set
v1(p1) = 1 and v1(p2) = −1. Equation (10) translates into:

v2(p1) = T (v?1)†(p1) = sup{p1(T (x, y)) | p1(x, y) ≤ 1, p2(x, y) ≤ −1}
v2(p2) = T (v?1)†(p2) = sup{p2(T (x, y)) | p1(x, y) ≤ 1, p2(x, y) ≤ −1}

v2(p1) =

inf
λ(p1)≥0
λ(p2)≥0
η∈R

η s.t

−η + λ(p1)− λ(p2) 0 0
0 1− λ(p1) + λ(p2) 0
0 0 1− λ(p1) + λ(p2)

 � 0

and
v2(p2) =

inf
λ(p1)≥0
λ(p2)≥0
η∈R

η s.t

−η + λ(p1)− λ(p2) 0 0
0 −1− λ(p1) + λ(p2) 0
0 0 −1− λ(p1) + λ(p2)

 � 0

To solve these optimization problems, we could call an SDP solver, but in
this case, it suffices to solve a system of inequalities: all the diagonal elements
must be non-positive, for example, for the first problem, this implies that η ≥ 1
and since we minimize η we get η = 1.

Hence, we find v2(p1) = 1 and v2(p2) = −1. This simple analysis finds
automatically that the circle is invariant by a rotation.

3.3 Abstraction of simple tests

We assume here that a test (x1, . . . , xd) ∈ C is translated on three control points
j− 2, j− 1, j and j+ 1 as follows: Fj−1(X) = C, Fj(X) = Xj−2 ∩Xj−1, for the
“then” branch. For the “else” branch, beginning at control point k, we have
similarly Fk(X) = Xj−2 ∩ ¬Xj−1. As we deal with arbitrary C ∈ P(Rd), it is
sufficient to show here how to deal with the equations on control points j − 2,
j − 1 and j.

By using Equation (3), we get, for v ∈ F(P,R ∪ {+∞})n, and p ∈ P ,
(F]j (v))(p) = ((v?j−2 u v?j−1)†(p) then, by a simple calculus,

(F]j (v))(p) = (vj−2 ∧ vj−1)(p).

As for the abstraction of assignments, we calculate FRj instead of F]j . We can
compute FRj in two ways. The first one consists in using the fact that (vj−2 ∧
vj−1)(p) = vexP(inf(vj−2, vj−1))(p). Hence we can apply Proposition 1 to inf(vj−2-
, vj−1) as a practical means to compute FRj , using a SDP solver. This method
can be used during Kleene iteration, since at any iteration, we know the values
taken by vj−2 and vj−1. Unfortunately, this method cannot be used in policy
iteration, hence we use the following method in that case.

The second method consists in noticing that x ∈ v?j−2 u v?j−1 ⇒ ∀ q ∈
P, q(x) ≤ vj−2(q) and q(x) ≤ vj−1(q) so:

(F]j (v))(p) = sup{p(x) | q(x) ≤ vj−2(q), q(x) ≤ vj−1(q) ∀q ∈ P}

Then, supposing the Slater condition is satisfied, it suffices to apply the
same techniques as for the abstraction of assignments. The only difference is
that we have now a couple (λ, µ) of F(P,R+) as Lagrange multipliers, the first
one is associated to vj−1 and the second one to vj−2. The function (9) becomes
a function which depends on the two parameters (λ, µ), this new function is
written V

(λ,µ)
j , its evaluation is reduced once again to a SDP problem.

Thus, as for (8), we have the following affine form F
(λ,µ)
j on F(P,R∪{+∞}):

(F (λ,µ)
j (v))(p) =

∑
q∈P

λ(q)vj−1(q) +
∑
q∈P

µ(q)vj−2(q) + V
(λ,µ)
j (p) (11)

The latter affine form is used for computing by linear programming the small-
est fixpoint of a map associated to a policy (that, we will see in Section 4.3
corresponds to the Lagrange multipliers (λ, µ)).

Then, the relaxed function of F]j is evaluated by solving the same kind of
SDP problem as in Equation (10).

3.4 Abstraction of loops

The only thing that we do not know yet how to interpret in the collecting
semantics equations is the equation at control point i where we collect the values
of the variables before the entry in the body of the loop, at control point i− 1,
with the values of the variables at the end of the body of the loop, at control point
j: Fi(X) = Xi−1 ∪Xj , since we know now how to deal with the interpretation
of tests.

By using Equation (3), for v ∈ F(P,R ∪ {+∞})n and p ∈ P , (F]i (v))(p) =
(v?i−1 t v?j)†(p), by a simple calculus, the latter equality becomes:

(F]i (v))(p) = vexP(sup(vi−1, vj))(p).

Hence, the calculus of the union can be reduced to a P -convex hull computation,
see Proposition 1.

During a fixpoint iteration (as in Section 4), we only have to deal with
“closed” abstract values, that is, elements v in VexP(P 7→ R)n. As for zones,
we notice that the union of two such “closed” abstract values vi−1 and vj is di-
rectly given by taking their maximum on each element of the basis of quadratic
functions P , without having to take its closure.

4 Solving the semantic equation

4.1 Fixpoint equations in quadratic zones

We recall that P is a finite set of quadratic templates and F is a monotone
map which interprets a program with d variables and n labels in (P(Rd))n. We
want to find the smallest vector in (P(Rd))n such that F (X) = X. This fixpoint
equation is generally unsolvable algorithmically. So as customary in abstract
interpretation, we solve instead the abstract equation:

inf{v ∈ VexP(P 7→ R)n | v = FR(v)} (12)

where v belongs to VexP(P 7→ R)n.
We recall that v? denotes the vector of sets ((v1)?, · · · , (vn)?) and F](v) =

(F (v?))† i.e ∀ i, F]i (v) = (Fi(v?))† and FR is the map, the components of which
are the relaxed functions of F].

We define and compare two ways of solving the fixpoint equation: Kleene
iteration in Section 4.2, and policy iteration in Section 4.3.

4.2 Kleene iteration

We note by ⊥ the smallest element of VexP(P 7→ R)n i.e for all i = 1, · · · , n and
for all p ∈ P , ⊥i (p) = −∞. The Kleene iteration sequence in VexP(P 7→ R)n is
thus as follows:

1. v0 =⊥
2. for k ≥ 0, vk+1 = vexP(sup(vk, FR(vk)))

This sequence converges to the smallest fixpoint of vexP(FR). But, the com-
putation of it can be very slow or can never end so we use an acceleration
technique to over-approximate it rapidly. After a certain number of iterations
and during some iterations, we round bounds outwards with a decreasing pre-
cision (akin to the widening used in [GPBG08]). The closure we use, after each
widening step during Kleene iteration, might end up not being a widening (as
is the case in zones). So we extrapolate the result to > (>i(p) = ∞ for all
i = 1, · · · , n and all p ∈ P) after a fixed number of steps.

4.3 Policy iteration algorithm

Selection property and policy iteration algorithm To define a policy
iteration algorithm, we need policies. Here, our policies are given by the Lagrange
multipliers introduced by the relaxation in the interpretation of assignments,
Section 3.2, and in the interpretation of tests, Section 3.3. Hence the set of
policies is the union of the sets of Lagrange multipliers for each assignment of
the program and couple of Lagrange multipliers for each test of the program.

To define a policy iteration algorithm, we also need a selection property, as
in e.g [GGTZ07]. We saw in Proposition 3 that the selection property is given
by a constraint qualification argument. We thus introduce FS(P,R)n, the set of
elements of F(P,R) which satisfy the Slater condition:

– when the component Fi of F corresponds to an assignment, the set of policies
at i is the union of the sets of Lagrange multipliers,

– when the component Fj of F corresponds to a test, the set of policies at j
is the union of the sets of couple of Lagrange multipliers.

We saw that for other coordinates, the set of policy is a singleton. We denote
by Π the set of all policies π and by πi a policy at i.

Algorithm 1 Policy Iteration in Quadratic Templates

1 Choose π0 ∈ Π such that V π
0
< +∞, k = 0.

2 Compute V π
k
i = {V π

k
i (q)}q∈P .

3 Compute the smallest fixpoint vk in F(P,R)n of Fπ
k

.
4 Compute wk = vexP(vk).
5 If wk ∈ FS(P,R)n continue otherwise return wk.
6 Evaluate FR(wk), if FR(wk) = wk return wk otherwise take πk+1 s.t FR(wk) =

Fπ
k+1

(wk) and go to 2.

Remark 1. The initial policy is given after few Kleene iterations: this gives us a
vector v ∈ VexP(P 7→ R)n, then we compute, by solving Equation (10) and its
equivalent for the abstraction of tests, a policy π0.

For the third step of Algorithm 1, since P is finite and using (8) and (11),
Fπ

l

is monotone and affine F(P,R)n, we compute the smallest fixpoint of Fπ
l

by solving the following linear program see Section 4 of [GGTZ07]:

min
n∑
i=1

∑
q∈P

vi(q) s.t (Fπ
l

k (v))(q) ≤ vk(q), ∀k = 1, · · · , n, ∀q ∈ P (13)

Remark 2. To ensure the feasibility of the solution of (13) computed by the LP
solver, we replace, when possible, the constraint set by Fπ

l

(v) + ε ≤ v, where ε
is a small constant (typically of the order of several ulp(v)).

To obtain safe bounds even though we run our algorithm on machine which
uses finite-precision arithmetic, we should use a guaranteed LP solver (e.g LU-
RUPA see [Kei05]) to check that the solution obtained verifies Fπ

l

(v) ≤ v.

We can only prove that policy iteration on quadratic templates converges
(maybe in infinite time) towards a post-fixed point of our abstract functional and
that under some technical conditions, it converges towards a fixed point. One
interest in policy iteration for static analysis is that we can always terminate the
iteration after a finite time, and ends up with a post-fixed point.

Theorem 3. The sequence vl computed by Algorithm 1 is non-increasing.

Remark 3. In the case of intervals, zones and templates, at least for programs
containing only linear or concave quadratic expressions in assignments, Propo-
sition 3 implies that F] = FR. Therefore, we are giving a policy iteration algo-
rithm in this paper, computing the same least fixpoints as the policy iteration
algorithms described in papers [CGG+05,AGG08,GGTZ07].

4.4 A detailed calculation on the running example

Now we give details on the harmonic oscillator of Example 1. The program of
this example implements an Euler explicit scheme with a small step h, that is,

which simulates the linear system (x, v)T ← T (x, v)T with T =
(

1 h
−h 1− h

)
.

The function (x, v) :7→ (x, v)L(x, v)T is a Lyapunov function of the new linear

system with L =
(

2 1
1 3

)
.

We write x : (x, v) 7→ x, v : (x, v) 7→ v, L : (x, v) 7→ (x, v)L(x, v)T and finally
P = {x,−x, v,−v, L}. For p = x, −x, v, −v, L and w ∈ F(P,R), we get the
semantic equations described below the corresponding C code, at Figure 6, for
all three control points.

Fig. 6. Implementation of the harmonic oscillator and its semantics in F(P,R)3

x = [0 , 1] ;
v = [0 , 1] ; [1]
h = 0 . 0 1 ;
whi l e (t rue) { [2]

u = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗u ; [3] }

F]1 (w)(p) = {x(x, v) ≤ 1, −x(x, v) ≤ 0, v(x, v) ≤ 1, −v(x, v) ≤ 0, L(x, v) ≤ 7}
F]2 (w)(p) = sup{w1(p), w3(p)}
F]3 (w)(p) = sup

(x,v)∈(w2)?
(p ◦ T)(x, v)

Now we are going to focus on the third coordinate of (FR(v))(p). Let us
consider, for example, p = x, we get: (FR3 (v))(x) =

inf
λ∈F(P,R+)

∑
q∈P

λ(q)v2(q)+sup
(x,v)

(x, v)(λ(L)(x, v)T+
(

1 + λ(−x)− λ(x)
h+ λ(−v)− λ(v)

)
(x, v)T+0.

(14)

By introducing the following symmetric matrices, we can rewrite (14) as (8):
M(x)(1, 2) = M(x)(2, 1) = 1

2 and 0 otherwise. M(v)(1, 3) = M(−v)(3, 1) =
1
2 and 0 otherwise. M(L)(2, 2) = 2, M(L)(3, 3) = 3, M(L)(2, 3) = M(L)(3, 2) =
1 and 0 otherwise. Furthermore, M(−x) = M(x) and M(−v) = M(v).

M(x ◦ T) =

0 1
2
h
2

1
2 0 0
h
2 0 0

To initialize Algorithm 1, we choose a policy π0. For the third coordinate

of FR, we have to choose a policy π0
3 such that V π

0
3

3 (p) is finite. We can start,
for example, by π0

3(p) = (0, 0, 0, 0, 1) for all p ∈ P . This consists, for p = x, in
taking λ(x) = λ(−x) = λ(v) = λ(−v) = 0 and λ(L) = 1 in (14). By a Matlab5

implementation, using Yalmip [L04] and SeDuMi [Stu99], we find:
V
π0
3

3 (x◦F) = V
π0
3

3 (−x) = 0.149, V π
0
3

3 (v) = V
π0
3

3 (−v) = 0.099 and V π
0
3

3 (L) = 0.
We solve the following linear program (see (13)):

min
3∑
i=1

∑
p∈P

βi(p)

β2(L)+V π
0
3 (p◦F)≤β3(p) ∀p

β3(p)≤β2(p), ∀p
1≤β2(x), 0≤β2(−x),1≤β2(v), 0≤β2(−v), 7≤β2(L)

1≤β1(x), 0≤β1(−x),1≤β1(v), 0≤β1(−v), 7≤β1(L)

Using solver Linprog, we find:

w0
1(x) = 1.0000 w0

2(x) = 7.1490 w0
3(x) = 7.1490

w0
1(−x) = 0 w0

2(−x) = 7.1490 w0
3(−x) = 7.1490

w0
1(v) = 1.0000 w0

2(v) = 7.0990 w0
3(v) = 7.0990

w0
1(−v) = 0 w0

2(−v) = 7.0990 w0
3(−v) = 7.0990

w0
1(L) = 7.0000 w0

2(L) = 7.0000 w0
3(L) = 7.0000

The calculus of u = vexP(w1) returns:

u0
1(x) = 1.0000 u0

2(x) = 2.0493 u0
3(x) = 2.0493

u0
1(−x) = 0 u0

2(−x) = 2.0493 u0
3(−x) = 2.0493

u0
1(v) = 1.0000 u0

2(v) = 1.6733 u0
3(v) = 1.6733

u0
1(−v) = 0 u0

2(−v) = 1.6733 u0
3(−v) = 1.6733

u0
1(L) = 7.0000 u0

2(L) = 7.0000 u0
3(L) = 7.0000

Using again Yalmip with the solver SeDuMi, the vector u is not a fixpoint of
FR, so we get the new following new policy: π1

3(x) = (0.9035, 0, 0, 0, 0.0134),
π1

3(−x) = (0, 0.9035, 0, 0, 0.0134), π1
3(v) = (0, 0, 0.8830, 0, 0.0135), π1

3(−v) =
(0, 0, 0, 0.8830, 0.0135), π1

3(L) = (0, 0, 0, 0, 0.9946). The invariant of the loop i.e.
w?2 at control point 2 is {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 +
3v2 + 2xv ≤ 7} and is computed in 14 seconds. We draw w?2 at each iteration of
Algorithm 1 in Figure 7.

5 Matlab is a registered trademark of the MathWorks,Inc.

{−2.0493 ≤ x ≤ 2.0493, −1.6733 ≤ v ≤ 1.6733, 2x2 + 3v2 + 2xv ≤ 7}

{−2.0462 ≤ x ≤ 2.0426, −1.665 ≤ v ≤ 1.665, 2x2 + 3v2 + 2xv ≤ 7}
{−1.9838 ≤ x ≤ 1.9838, −1.6097 ≤ v ≤ 1.6097, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8971 ≤ x ≤ 1.8971, −1.5435 ≤ v ≤ 1.5435, 2x2 + 3v2 + 2xv ≤ 7}
{−1.8718 ≤ x ≤ 1.8718, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

Fig. 7. Successive templates along policy iteration, at control point 2, for the harmonic
oscillator.

This method is to be compared with the classical Kleene iteration with
widening. On this example, we find without widening x ∈ [−1.87078, 1.87083],
v ∈ [−1.52753, 1.52752] and 2x2 +3v2 +2xv ≤ 7 in 1360 iterations (for an overall
time, under Matlab of 69 minutes).

4.5 Benchmarks

We implemented an analyzer for the quadratic template domain we presented,
written in Matlab version 7.7(R2008b). This analyzer takes a text file in argu-
ment, this text file corresponds to the abstract equation v = F](v) where F] is
defined by Equation (2). The quadratic template can be loaded from a dat file
by the analyzer. The affine maps are treated in the same manner.

In this analyzer, we can choose to use the Kleene iteration method or policy
iteration. For the Kleene iteration method, the user gives as an argument a
maximal number of iteration and the iteration number at which the acceleration
method is applied. For the policy iteration method, the user gives the dat file
defining the initial policy or chooses to make Kleene iterations before determining
the initial policy.

Each ten steps during policy iteration, the user can decide to stop the analysis
and so a postfixpoint is reached (as in policy iteration the least fixed point is
always reached from above). Similarly, the Kleene iteration with acceleration
provides a postfixpoint after acceleration and widening to top, if the iteration
does not converge after a given number of iterations. The analyzer writes, in a
text file, information about time, quality of the invariants found and number of
iterations.

For the benchmarks, we used a PC equipped with a quad core AMD Phe-
nom(tm) II X4 920 Processor at 2.8 Ghz and a memory of 4 Gb. We indicate in
the Table 8, the name of the program analyzed, the method used (policy itera-
tion or Kleene iteration) for solving the fixpoint equation, the cardinality of the
basis of quadratic templates used, the number of lines of C code the program
has, the number of variables it manipulates, the number of loops. Then we indi-
cate the number of iterations made, whether it reaches a fixpoint or (strictly) a
postfixpoint, and the time it took with our Matlab prototype.

Programs Method #P #lines #var #loops #Iter. Inv. quality Time

Rotation2 Policy 2 2 2 0 0 Fixpoint 0.72

Rotation2 Kleene 2 2 2 0 1 Fixpoint 1.07

Rotation10 Policy 2 2 10 0 0 Fixpoint 1.17

Rotation10 Kleene 2 2 10 0 1 Fixpoint 1.82

Filter Policy 5 3 2 1 2 Fixpoint 9.35

Filter Kleene 5 3 2 1 2 Fixpoint 19.7

Oscillator Policy 5 3 2 1 5 Fixpoint 12

Oscillator Kleene 5 3 2 1 15 Fixpoint 18.8

Symplectic Policy 5 3 2 1 0 Fixpoint 3

Symplectic Kleene 5 3 2 1 15 Fixpoint 18.3

SymplecticSeu Policy 5 5 2 1 30 Postfixpoint 125.3

SymplecticSeu Kleene 5 5 2 1 30 Postfixpoint 78.9

Arrow-Hurwicz Policy 2 14 4 3 10 Postfixpoint 44.6

Arrow-Hurwicz Kleene 2 14 4 3 26 Postfixpoint 81.7

Fig. 8. Benchmarks results

The file Rotation10 is the problem of Example 5 in dimension 10. By the
fixpoint computation, we prove automatically that the unit sphere in dimension
10 is invariant by rotation. Both Kleene iteration and policy iteration find the
unit sphere as invariant.

The program Oscillator is the problem 1. The invariant depicted Figure 1 in
Section 1 is found by policy iteration whereas Kleene iteration after applying
acceleration techniques from the iteration 5 to iteration 15 finds the less precise
invariant {−2.44949 ≤ x ≤ 2.44949, −2 ≤ v ≤ 2, 2x2 + 3v2 + 2xv ≤ 10}, in
more time.

Symplectic is the implementation of a discretization of ẍ + cẋ + x = 0 with
c = 0 by a symplectic method. In the case of c = 0, the dynamical system
has imaginary eigenvalues (its orbits are circle), and the Euler scheme diverges,
so we use a symplectic discretization scheme (preserving the symplectic form,
see [HLW03]), which is an interesting highly degenerate numerical example from
the point of view of static analysis (because there is no “stability margin”, meth-
ods not exploiting the Lyapunov function are likely to produce trivial invariants
when c = 0). As in Oscillator, we start from a position x ∈ [0, 1] and a speed
v ∈ [0, 1]. The discretization of ẍ + x = 0 with the symplectic method and a
step τ = 0.1 gives us the matrix T such that T1,1 = 1 − τ

2 , T1,2 = τ − τ3

4 ,
T2,1 = −τ and T2,2 = 1 − τ

2 . We use the Lyapunov function L such that

L(x, v) = (x, v)Q(x, v)T with Q =
(

1 0
0 1− τ2

4

)
. The symplectic method en-

sures that L(T (x, v)) = L(x, v). Our method takes advantage of this conser-
vation law, since L is embedded as a template. The policy iteration returns:
{−1.41333 ≤ x ≤ 1.41333, −1.4151 ≤ v ≤ 1.4151, x2 + 0.9975v2 ≤ 1.9975}.
The Kleene iteration returns: {−3.16624 ≤ x ≤ 3.16624, −3.16628 ≤ v ≤
3.16628, x2 + 0.9975v2 ≤ 10}, which is less precise. In particular, the Kleene
algorithm misses the invariance of the Lyapunov function.

SymplecticSeu is a symplectic method with a threshold on v = ẋ. We iterate
the Symplectic method while v ≥ 1

2 , which gives the following code:

x = [0 , 1] ;
v = [0 , 1] ;
tau = 0 .1 [1]
whi l e [2] ((v>=1/2) [3]) { [4]

x = (1−tau /2)∗x+(tau−(tau ˆ3)/4)∗v ;
v = −tau∗x+(1−tau /2)∗v ; [5]

} ;

Arrow-Hurwicz is an algorithm to compute both primal and dual solutions for
convex constrained optimization problems. Arrow-Hurwicz ends when a fixpoint
for the algorithm is reached, by our techniques, we prove that, if the last line
of the program which implements the Arrow-Hurwicz method is attained, a
fixpoint is reached. Our analysis also permits to find bounds at each control
points. As pointed out in the introduction, the interest of the analysis resides
in the appearance of saturations (non-linear projections) in the scheme. For
both Kleene iteration and policy iteration, the invariant set of last line is {0 ≤
11
16 (u− x)2 + (v − y)2 ≤ 1e− 9}. The difference between the two final invariants
comes from other lines where the invariant found by policy iteration is always
smaller than the set found by Kleene, for example, when policy iteration returns,
for example at line 11, {0 ≤ 11

16 (u − x)2 + (v − y)2 ≤ 3.18292}, Kleene returns
{0 ≤ 11

16 (u− x)2 + (v − y)2 ≤ 10}.
The example files are available at:
http://www.lix.polytechnique.fr/~adje/publi-presentations.html.

5 Conclusion and future work

We have presented in this paper a generalization of the linear templates of Manna
et al. [SSM05,SCSM06] that can also deal with non-linear templates. We showed
that in the case of quadratic templates, we could efficiently abstract the semantic
functionals using Shor’s relaxation, and compute the resulting fixpoint using pol-
icy iteration. Future work include the use of more tight relaxations for quadratic
problems. The use of SOS relaxation (see for instance [Las07] and [Par03]) for
dealing with more general polynomial templates will be also considered. An other
problem is to extend of the minimality result of [AGG08] which is currently only
available for the interval domain, to our template domain. Finally, we wish to

study more in-depth the complexity issues raised by our general policy iteration
algorithm.
Acknowledgement. We thank Thomas Gawlitza and David Monniaux for their
remarks on an earlier version of this paper.

References

[AGG08] A. Adje, S. Gaubert, and E. Goubault. Computing the smallest fixed point
of nonexpansive mappings arising in game theory and static analysis of pro-
grams. Technical report, arXiv:0806.1160, Proceedings of MTNS’08, Blacks-
burg, Virginia, July 2008.

[Ali95] F. Alizadeh. Interior point methods in semidefinite programming with ap-
plications to combinatorial optimization. SIAM Journal on Optimization,
5:13–51, 1995.

[AT03] A. Auslender and M. Teboulle. Asymptotic Cones and Functions in Opti-
mization and Variational Inequalities. Springer, 2003.

[BRCZ05] R. Bagnara, E. Rodŕıguez-Carbonell, and E. Zaffanella. Generation of basic
semi-algebraic invariants using convex polyhedra. In C. Hankin, editor,
Static Analysis: Proceedings of the 12th International Symposium, volume
3672 of LNCS, pages 19–34. Springer, 2005.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iter-
ation algorithm for computing fixed points in static analysis of programs. In
Proceedings of the 17th International Conference on Computer Aided Veri-
fication (CAV’05), volume 3576 of LNCS, pages 462–475. Springer, 2005.

[Cou05] P. Cousot. Proving program invariance and termination by parametric ab-
straction, lagrangian relaxation and semidefinite programming. In Sixth In-
ternational Conference on Verification, Model Checking and Abstract Inter-
pretation (VMCAI’05), volume 3385 of LNCS, pages 1–24. Springer, 2005.

[FA08] E. Feron and F. Alegre. Control software analysis, part II: Closed-loop
analysis. Technical report, arXiv:0812.1986, 2008.

[Fer05] J. Feret. Numerical abstract domains for digital filters. In International
workshop on Numerical and Symbolic Abstract Domains (NSAD 2005),
2005.

[FF08] E Feron and Alegre F. Control software analysis, part I: Open-loop prop-
erties. Technical report, arXiv:0809.4812, 2008.

[GGTZ07] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy
iteration on relational domains. In Proceedings of the Sixteenth European
Symposium Of Programming (ESOP’07), volume 4421 of LNCS, pages 237–
252. Springer, 2007.

[GPBG08] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the
accuracy in control systems: Principles and experiments. In Formal Methods
for Industrial Critical System (FMICS 2007), volume 4916 of LNCS, pages
3–20, 2008.

[GS07a] T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy
iteration. In R. De Nicola, editor, Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, volume 4421 of
LNCS, pages 300–315. Springer, 2007.

[GS07b] T. Gawlitza and H. Seidl. Precise relational invariants through strategy
iteration. In Jacques Duparc and Thomas A. Henzinger, editors, Com-
puter Science Logic, 21st International Workshop, CSL 2007, 16th Annual
Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007,
Proceedings, volume 4646 of LNCS, pages 23–40. Springer, 2007.

[HLW03] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration il-
lustrated by the Störmer/Verlet method. Acta Numerica, 12:399–450, 2003.

[JCK07] C. Jansson, D. Chaykin, and C. Keil. Rigorous error bounds for the optimal
value in semidefinite programming. SIAM J. Numer. Anal., 46(1):180–200,
2007.

[Kei05] C. Keil. Lurupa - rigorous error bounds in linear programming. In Algebraic
and Numerical Algorithms and Computer-assisted Proofs, 2005. http://

drops.dagstuhl.de/opus/volltexte/2006/445.
[Las07] J.-B. Lasserre. A sum of squares approximations of nonnegative polynomi-

als. SIAM Review, 49(4):651–669, 2007.
[L04] J. Lfberg. Yalmip : A toolbox for modeling and optimization in MATLAB.

In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. http:

//control.ee.ethz.ch/~joloef/yalmip.php.
[Min04a] A. Miné. Relational abstract domains for the detection of floating-point

run-time errors. In Proc. of the European Symposium on Programming
(ESOP’04), volume 2986 of LNCS, pages 3–17. Springer, 2004.

[Min04b] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
Polytechnique, Palaiseau, France, December 2004. http://www.di.ens.fr/

~mine/these/these-color.pdf.
[MOS04] M. Müller-Olm and H. Seidl. Computing polynomial program invariants.

Inf. Process. Lett., 91(5):233–244, 2004.
[Par03] P. Parillo. Semidefinite programming relaxations for semialgebraic prob-

lems. Math. Prog., 96(2, series B):293–320, 2003.
[RCK07] E. Rodŕıguez-Carbonell and D. Kapur. Automatic generation of polynomial

invariants of bounded degree using abstract interpretation. Sci. Comput.
Program., 64(1):54–75, 2007.

[Roc96] R.T. Rockafellar. Convex Analysis. Princeston University Press, 1996.
[SCSM06] S. Sankaranarayanan, M. Colon, H. Sipma, and Z. Manna. Efficient strongly

relational polyhedral analysis. In E. Allen Emerson and Kedar S. Namjoshi,
editors, Verification, Model Checking, and Abstract Interpretation: 7th In-
ternational Conference, (VMCAI), volume 3855 of LNCS, pages 111–125,
Charleston, SC, January 2006. Springer.

[Sho87] N. Shor. Quadratic optimization problems. Soviet J. of Computer and
Systems Science, 25(6):1–11, 1987.

[SSM05] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of lin-
ear systems using mathematical programming. In Sixth International Con-
ference on Verification, Model Checking and Abstract Interpretation (VM-
CAI’05), volume 3385 of LNCS, pages 25–41, January 2005.

[Stu99] J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625–653, 1999.

[TN01] A. Ben Tal and A. Nemirowski. Lecture on Modern Convex Optimization:
Analysis, Algorithm and Engineering Applications. SIAM, 2001.

