
Detecting Deadlocks in Concurrent SystemsLisbeth Fajstrup�, Eric Goubaultyand Martin Rau�enzOctober 1, 1997AbstractWe study deadlocks using geometric methods based on generalized process graphs [Dij68],i.e. cubical complexes or Higher-Dimensional Automata (HDA) [Pra91, vG91, GJ92, Gun94],describing the semantics of the concurrent system of interest. Two algorithms are describedand fully assessed, both theoretically and practically. Implementations are available, appliedto a toy language. These algorithms not only compute the deadlocking states of a concurrentsystem but also the so-called \unsafe region" which consists of the states which will eventuallylead to a deadlocking state. The �rst algorithm is still combinatorial in nature, since it ismostly a traversing of the (higher-dimensional) transitions. Even if it is fairly competitive, thesecond algorithm is the most interesting one because it exhibits much better performances,and is based on a real geometric characterization of deadlocks.1 Introduction and related workThis paper deals with the detection of deadlocks motivated by applications in data engineering,e.g., scheduling in concurrent systems. Many fairly di�erent techniques have been studied in thenumerous literature on deadlock detection. Unfortunately, they very often depend on a particular(syntactic) setting, and this makes it di�cult to compare them. Some authors have tried to classifythem and test the existing software, like [Cor96, CCA96], but for this one needs to translate thesyntax used by each of these systems into one another, and di�erent translation choices can makethe picture entirely di�erent. Nevertheless, we will follow their classi�cation to put our methods incontext. Notice that in this article, we go one step beyond and also derive the \unsafe region" i.e.the set of states that are bound to run into a deadlocking state after some time. This analysis isdone in order to be applied to �nding schedulers that help circumvent these deadlocking behaviours(and not just for proving deadlock freedom as most other techniques have been used for).The �rst basic technique is a reachability search, i.e., the traversing of some semantic repre-sentation of a concurrent program, in general in terms of transition systems, but also sometimesusing other models, like Petri nets [MR97]. Due to the classical problem of state-space explosion inthe veri�cation of concurrent software, such algorithms are accompanied with state-space reduc-tion techniques, such as virtual coarsening (which coalesce internal actions into adjacent externalactions) [Val89], partial-order techniques (which alleviate the e�ects of representation with inter-leaving by pruning \equivalent" branches of search) such as sleep sets and permanent (or stubborn)sets techniques [Val91, GPS96, GHP95], and symmetry techniques (that reduce the state-space byconsideration of symmetry). These techniques only reduce the state-space up to three or fourtimes except for very particular applicationsThe second most well-known technique is based on symbolic model-checking as in [BG96,BCM+90, GJM+97, BG96]. Deadlocking behaviors are described as a logical formula, that themodel-checker tries to verify. In fact, the way a model-checker veri�es such formulae is very often�Dept of Mathematics, Aalborg University, email:fajstrup at math.auc.dkyC.N.R.S. and D�ept de Math. et d'Info., Ecole Normale Sup�erieure, email:goubault at dmi.ens.frzDept of Mathematics, Aalborg University, email:raussen at math.auc.dk1

based on clever traversing techniques as well. In this case, the states of the system are coded in asymbolic manner (BDDs etc.) which enables a fast search.Then many of the remaining techniques are a blend of one of these two with some abstrac-tions, or are compositional techniques [YY91], or based on data
ow analysis [DC94], or on integerprogramming techniques [ABC+91] (but this in general only relies on necessary conditions fordeadlocking behaviors).Based on some old ideas [Dij68] and some new semantic grounds [Pra91, vG91, Gun94, GJ92,Gou95a] (see x2), we develop an enhanced sort of reachability search in x2.3. This should mostly becompared to ordinary reachability analysis and not to virtual coarsening and symmetry techniquesbecause these can also be used on top of ours. A �rst approach in the direction of virtual coarseninghas actually been made in [Cri95]. Some assessments about its practical use, based on a �rstimplementation applied to simple semaphore programs and also based on some general complexityreasons are made in x3.5 and x3.6.In some ways, this deadlock detection algorithm (which determines the so-called \unsafe re-gion" made of all states bound to run some time or another into a deadlock) is still a combinatorialsearch, which only takes advantage of the truly-concurrent representation of actions.In x4, we propose a new algorithm based on an abstraction (in the sense of abstract interpre-tation [CC77, CC92]) of the �rst truly-concurrent semantics, which takes advantage of the realgeometry of the executions. This one is an entirely di�erent method from those in the literature.As a matter of fact, in recent years, a number of people have used ideas from geometry andtopology to study concurrency: First of all, using geometric models allows one to use spatial intu-ition; furthermore, the well-developed machinery from geometric and algebraic topology can serveas a tool to prove properties of concurrent systems. A more detailed description of this point ofview can be found in J. Gunawardena's paper [Gun94] { including many more references { whichcontains a �rst geometrical description of safety issues. In another direction, techniques from alge-braic topology have been applied by M. Herlihy, S. Rajsbaum, N. Shavit [HS95, HS96] and othersto �nd new lower bounds and impossibility results for distributed and concurrent computation.We believe that this technique, which is assessed in x5.4 and x5.5 both on theoretical groundsand on the view of benchmarks, can be applied in the static analysis of \real" concurrent programs(and not only at the PV language of x3.1) by suitable compositions and reduced products withother abstract interpretations, as sketched in x6.The authors participated in the workshop \New Connections between Mathematics and Com-puter Science" at the Newton Institute at Cambridge in November 1995. We thank the organizersfor the opportunity to get new inspiration. This paper is the �rst in a series of papers result-ing from the collaboration of two mathematicians (L. Fajstrup & M. Raussen) and a computerscientist (E. Goubault).2 Models of concurrent computation2.1 From Discrete to ContinuousA description of deadlocks in terms of the geometry of the so-called progress graph (cf. Ex. 1) hasbeen given earlier by S. D. Carson and P. F. Reynolds [CR87], and we stick to their terminology.The main idea in [CR87] is to model a discrete concurrency problem in a continuous geometricset-up: A system of n concurrent processes will be represented as a subset of Euclidean space Rn.Each coordinate axis corresponds to one of the processes. The state of the system corresponds toa point in Rn, whose i'th coordinate describes the state (or \local time") of the i'th processor. Anexecution is then a continuous increasing path within the subset from an initial state to a �nalstate.Example 1 Consider a centralized database, which is being acted upon by a �nite number oftransactions. Following Dijkstra [Dij68], we think of a transaction as a sequence of P and V actionsknown in advance { locking and releasing various records. We assume that each transaction startsat (local time) 0 and �nishes at (time) 1; the P and V actions correspond to sequences of real2

numbers between 0 and 1, which re
ect the order of the P 's and V 's. The initial state is (0; : : : ; 0)and the �nal state is (1; : : : ; 1). An example consisting of the two transactions T1 = PaPbVbVaand T2 = PbPaVaVb gives rise to the two dimensional progress graph of Figure 1.
Unsafe Un-reachable(0,0) Pa Pb Vb VaPbPaVaVbT2

T1��� ��������������������������������� (1,1)-6
Figure 1: Example of a progress graphThe shaded area represents states, which are not allowed in any execution path, since theycorrespond to mutual exclusion. Such states constitute the forbidden area. An execution path is apath from the initial state (0; 0) to a �nal state (1; 1) avoiding the forbidden area and increasingin each coordinate - time cannot run backwards.In Ex. 1, the dashed square marked "Unsafe" represents an unsafe area: There is no executionpath from any state in that area to the �nal state (1; 1). Moreover, its extent (upper corner) withcoordinates (Pb; Pa) represents a deadlock. Likewise, there are no execution paths starting atthe initial state (0; 0) entering the unreachable area marked "Unreachable". Concise de�nitions ofthese concepts will be given in x2.2.Finding deadlocks and unsafe areas is hence the geometric problem of �nding n-dimensional\corners" as the one in Ex. 1. Back in 1981, W. Lipski and C. H. Papadimitriou [LP81] attemptedto exploit geometric properties of forbidden regions to �nd deadlocks in database-transactionsystems. But the algorithm in [LP81] does not generalize to systems composed of more than twoprocesses. S. D. Carson and P. F. Reynolds indicated in [CR87] an iterative procedure identifyingboth deadlocks and unsafe regions for systems with an arbitrary �nite number of processes.In this section, we present a streamlined path to their results in a more general situation: Basicproperties of the geometry of the state space are captured in properties of a directed graph { backin a discrete setting. In particular, deadlocks correspond to local maxima in the associated partialorder.This set-up does not only work for semaphore programs: In general, the forbidden area may rep-resent more complicated relationships between the processes like for instance general k-semaphores,where a shared object may be accessed by k, but not k + 1 processes. This is re
ected in thegeometry of the forbidden area F , that has to be a union of higher dimensional rectangles or\boxes".Furthermore, similar partially ordered sets can be de�ned and investigated in more generalsituations than those given by Cartesian progress graphs. By the same recipe, deadlocks can thenbe found in concurrent systems with a variable number of processes involved or with branching(tests) and looping (recursion) abilities. In that case, one has to consider partial orders on setsof \boxes" of variable dimensions. This allows the description and detection of deadlocks in theHigher Dimensional Automata of V. Pratt [Pra91] and R. van Glabbeek [vG91] (cf. E. Goubault[Gou95a] for an exhaustive treatment). 3

In the mathematical parts below, i.e., x2.2 and x2.3, the explanations have been voluntarilysimpli�ed. The full treatment of the deadlock detection method is done entirely in the algorithmicand implementation part, x3.2.2 The continuous setupLet I denote the unit interval, and In = I1 � � � � � In the unit cube in n-space. This is goingto represent the space of all local times taken by n processes. We call a subset R = [a1; b1] �� � �� [an; bn] an n-rectangle, and we consider a set F = Sr1Ri that is a �nite union of n-rectanglesRi = [ai1; bi1]� � � � � [ain; bin]. The interior �F of F is the \forbidden region" of In; its complementis X = Inn �F . Furthermore, we assume that 0 = (0; : : : ; 0) 62 F , and 1 = (1; : : : ; 1) 62 F:De�nition 1 � 1. A continuous path � : I ! In is called a dipath (directed path) if all composi-tions �i = pri � � : I ! I; 1 � i � n; are increasing: t1 � t2 (�i(t1) � �i(t2); 1 � i � n.� 2. A point y 2 X = Inn �F is in the future J+(x) of a point x 2 X if there is a dipath� : I ! X with �(0) = x and �(1) = y. The past J�(x) is de�ned similarly.� 3. A near future J+0 (x) of x 2 X is of the form J+(x) \ ([x1; x1 + "] � � � � � [xn; xn + "])where " < minfaij � xj > 0; bij � xj > 0; 0 � i � r; 0 � j � ng.� 4. A point x 2 Inn �F is called admissible, if 1 2 J+(x); and unsafe else.� 5. Let A(F) � In denote the admissible region containing all admissible points in X, andU(F) � In the unsafe region containing all unsafe points in X.� 6. A point x 2 X is a deadlock if and only if J+(x) = fxg.In semaphore programs, the n-rectangles Ri characterize states where two transactions haveaccessed the same record, a situation which is not allowed in such programs. Such \mutualexclusion"-rectangles have the property that only two of the de�ning intervals are proper subin-tervals of the Ij . Furthermore, serial execution should always be possible, and hence F should notintersect the 1-skeleton of In consisting of all edges in the unit cube. These special features willnot be used in the present paper.A dipath represents the continuous counterparts of the traces of the concurrent system, whichmust not enter the forbidden regions.2.3 Continuous to discrete - a graph theory approachWe use geometrical ideas to construct a digraph where deadlocks are the leaves and the unsaferegion is found by an iterative process. The setup is as in x2.2. For 1 � j � n, the set faij ; bijj1 �i � rg � Ij gives rise to a partition of Ij into at most (2r + 1) subintervals: Ij = S Ijk, with anobvious ordering � on the subintervals Ijk. The partition of intervals gives rise to a partition Rof In into n-rectangles I1k1 � � � � � Inkn with a partial ordering given byI1k1 � � � � � Inkn � I1k01 � � � � � Ink0n , Ijkj � Ijk0j ; 1 � j � n:The partially ordered set (R;�) can be interpreted as a directed, acyclic graph, denoted (R;!):Two n-rectangles R;R0 2 R are connected by an edge from R to R0 { denoted R! R0 { if R � R0and if R and R0 share a face. R0 is then called an upper neighbor of R, and R a lower neighbor ofR0. A path in the graph respecting the directions will be denoted a directed path.For any subset R0 � R we consider the full directed subgraph (R0;!). Particularly importantis the subgraph R �F consisting of all rectangles R � X = Inn �F .De�nition 2 Let R0 � R be a subgraph. An element R 2 R0 is a local maximum if it has noupper neighbors in R0. Local minima have no lower neighbors. An n-rectangle R 2 R �F is calleda deadlock rectangle if R 6= R1, and if R is a local maximum with respect to R �F . An unsafen-rectangle R 2 R �F is characterized by the fact, that any directed path � starting at R hits adeadlock rectangle sooner or later [CR87]. 4

In order to �nd the set U of all unsafe points { which is the union of all unsafe n-rectangles {apply the following. (1) Remove F from In giving rise to the directed graph (R �F ;!). (2) Findthe set S1 of all deadlock n-rectangles (local maxima) with respect to R �F . Let F1 = F [S1. (3)Let RF1 denote the full directed subgraph on the set of rectangles in In n F1, i.e., after removingS1. (4) Find the set S2 of all deadlock n-rectangles with respect to RF1 . Let F2 = F1 [S2. Carryon the same completion mechanism etc.Notice that it is enough to search among the lower neighbors of elements in F in step 2, andthat the only candidates for deadlocks in step 4 are the lower neighbors of elements of S1. Sincethere are only �nitely many rectangles, this process stops after a �nite number of steps, endingwith Sr and yielding the following result:Theorem 1 � 1. The unsafe region is determined by U(F) = Sr1 Si:� 2. The set of admissible points is A(F) = In n (�F [U(F)). Moreover, any directed path inA(F) will eventually reach R1.In order to show the applicability of the previous method, we explain how to give semantics ofa toy language in terms of these forbidden regions, how to implement it, and how to implementthe deadlock detection algorithm.3 Implementation of the combinatorial approach3.1 The languageWe consider in the following the language PV whose syntax is de�ned below. Given a set ofobjects O (like shared memory locations, synchronization barriers, semaphores, control units,printers etc.) and a function s : O ! IN+ associating to each object a, the maximum number ofprocesses s(a) > 0 which can access it at the same time, any process Proc can try to access anobject a by action Pa or release it by action V a, any �nite number of times. In fact, processesare de�ned by means of a �nite number of recursive equations involving process variables X in aset V: they are of the form X = Procd where Procd is the process de�nition formally de�ned as,Procd = � j Pa:Procd j V a:ProcdProcd + Procd j Y(� being the empty string, a being any object of O, Y being any process variable in V) A PVprogram is any parallel combination of these PV processes, Prog = Proc j (Proc j Proc).The typical example in shared memory concurrent programs is O being the set of shared variablesand for all a 2 O, s(a) = 1. The P action is putting a lock and the V action is relinquishing it. Wewill suppose in the sequel that any given process can only access once an object before releasingit. We also suppose that the recursive equations are \guarded" in the sense that for all processvariables X, ProcX does not contain a summand of the form X:T , T being any non-empty term.3.2 The semanticsThe semantics of the PV language as a graph of n-rectangles is as follows1. An environment is afunction � : O ! IN, whose value for an object a represents the number of times a can still beaccessed by the processes. A n-rectangle or state of the program is a pair (C; �) where C is anelement of the language, � is a context. Basically, C represents the program that remains to beexecuted and � is the current context in which C has to be executed.The representation of the graph of n-rectangles is done by explicitly representing the glueingfaces which de�ne then the \neighboring" relation between n-rectangles (as in x2.3). Look at1This had already been \pictured" under the name of process graphs by E.W.Dijkstra [Dij68], Carson andReynolds [CR87], J. Gunawardena [Gun94] in the case of terms with no choice operator nor recursive equations.The formal semantics in terms of this graph of n-rectangles, or HDA [Gou95a] is new here.5

Pa Va

Pa

Va

A B C

D E

F G H

A B C

D E

F G H

d (A)

d (A)

d (A)=d (B)

d (A)=d (D)0

1

1
1 1

0 1

0

0

0

0
0

(c)
(d)

=c

=dFigure 2: Semantics of (Pa:V a j Pa:V a) as a discretisation of its geometry (left), as a graph ofn-rectangles (right).Figure 2 for an explanation in the case of the semantics of (Pa:V a j Pa:V a). The collection offaces of each n-rectangle is separated in n start faces, here for example for the 2-rectangle A, d00(A)and d01(A), and n end faces, here d10(A) and d11(A). The order between the di�erent n-rectangles,as sketched in this example by the graph at the right-hand side of Figure 2, is generated by therelation \having a d1 face equal to a d0 face". Here A � B because c = d01(B) = d10(A). Thisencoding is standard in the HDA framework where faces are (n � 1)-transitions and n-rectanglesare n-transitions (see [Gou95a] for more explanations).Let us separate out our semantics in two distinct phases. Consider �rst the \pure" termsconsisting of those terms for which the syntactic tree of each process begins by a sequentialcomposition of a P or a V with any term. Any set of k PV processes in parallel X1 j � � � j Xkmay generate k-rectangles according to the environment it is executed in. Supposing none of theseprocesses are empty, we write Xi = Qiai:Yi, 1 � i � k, where Qi is P or V , ai 2 O and Yi is aprocess. We then have the following semantic equation describing the semantics [[X1 j � � � j Xk]]�in environment �. If for all a 2 O, �(a) � 0,[[X1 j � � � j Xk]]� = (X1 j � � � j Xk; �) + [[Y1 j X2 j � � � j Xk]]�1 + � � �+ [[X1 j � � � j Xk�1 j Yk]]�kwhere �i, 1 � i � k is such that �i(b) = �(b) for all b 2 O, b 6= ai, and �i(ai) = �(ai)� 1 if Qi = Por �i(ai) = �(ai) + 1 if Qi = V . If there is an a 2 O, �(a) < 0,[[X1 j � � � j Xk]]� = [[Y1 j X2 j � � � j Xk]]�1 + � � �+ [[X1 j � � � j Xk�1 j Yk]]�kwith the same environments �i, 1 � i � k.These equations should be understood as follows. (X1 j � � � j Xk; �) is a k-rectangle, whichis not forbidden if and only if all k processes can progress. This is not the case if one of theprocesses is waiting for an object to be released (in the second case, there is an a 2 O suchthat �(a) < 0). If we want to generate only reachable states, then it is enough to forget thesecond semantic equation. In the �rst case, the k start boundaries and the k end boundaries ofdimension k � 1 of this k-rectangle are2, d0i (X1 j � � � j Xk; �) = (X1 j � � � j X̂i j � � � j Xk; �; i),(the face at the right-hand side is de�ned if the n-rectangle at the left-hand side is de�ned), andd1i (X1 j � � � j Xk) = (X1 j � � � j X̂i j � � � j Xk; �i; i). This last component for the faces is notneeded in general, but it permits to unfold entirely the graph of cubes (thus the semantics doesnot create fake unfoldings that the veri�cation algorithms would believe to be divergences { seethe discussion of x3.4.1 and x3.4.2).Now for the \non-pure" terms, we use the following two rules in order to get to pure terms,(Elimination of process variables)[[X1 j � � � j Y:Yi j � � � j Xk]]� = [[X1 j � � � j ProcY :Yi j � � � j Xk]]�2The notation X1; � � � ; X̂i; � � � means that we have the collection X1; X2; � � � except Xi.6

(Elimination of plus)[[X1 j � � � j Yi + Zi j � � � j Xk]]� = [[X1 j � � � j Yi j � � � j Xk]]�+i [[X1 j � � � j Zi j � � � j Xk]]�The �rst equation eliminates the process variable Y by its de�nition ProcY . The secondequation eliminates the choice operator in the de�nition of the ith process. The plus symbolat the right hand-side of this equation denotes an amalgamated sum (i.e., a union) of its twoarguments, identifying the face (X1 j � � � j Yi j � � �Xk; �; i) with the face (X1 j � � � j Zi j � � �Xk; �; i).Notice that using this semantic de�nition, we can de�ne directly the n-transitions of a programconsisting of n processes in parallel, generating also the (n�1)-transitions, but not the transitionsof lower dimension.3.3 The implementationA general purpose C library has been written to generate and manipulate graphs of n-rectangles(in fact, any HDA). Basically such a graph is described by incidence matrices. To be more precise,R is represented by a 4uple (R0n�1; R1n�1; R0n; R1n). Rin is the (sparse) matrix whose lines Rin(x)are indexed by the n-rectangles x (states of dimension n as described in the semantics), and whichcontain the corresponding lower (for i = 0) and upper (for i = 1) boundaries of x. Rin�1 is theco-incidence matrix whose lines Rin�1(y) are indexed by the faces y (states of dimension n�1) andconsist of the n-rectangles whose lower boundary (for i = 0) contains y or whose upper boundary(for i = 1) contains y. The full description of the techniques involved in such fast representationswill be worked out elsewhere. It has been developed for more general calculations than those usedin this article. In the speci�c case of deadlock detection we are interested in, we also maintain alist F of forbidden n-rectangles. The semantics of the PV language has been implemented in arather straightforward and naive manner. This has the advantage of being easily generalizable tomore complex languages.It consists of a main recursive function sem(s,f,c) taking the current state s from which wewant to give the semantics, its father state3 f which asked the semantics of s in order to computeits semantics, and c is the (n � 1)-state which is at the common boundary4 of s and f.We �rst try to get to the case where s is a \pure" term. We �rst replace all process variablesX that would come as X:y in the de�nition of one of the processes of the program, where y is anysequential term, by its de�nition, which will not begin by a process variable because we restrictedto guarded terms.Then we look at all processes of the form y + z, y and z being any sequential term. If thereare any, like Prog = (X1 j � � � j y + z j � � � j Xn), we call sem((X1 j � � � j y j � � � j Xn; �),f,c) andsem((X1 j � � � j z j � � � j Xn; �),f,c). This has the e�ect of glueing the two possible branches at c.This is done iteratively until we get to consider only pure terms s.Then, by looking at the context of each state (s and f) we determine if these states areforbidden or not. If both are forbidden, we do not create any n-rectangle corresponding to s (bythe second semantic equation of \pure" terms). This enables to generate only the n-rectangles atthe boundary of the forbidden region. If at most one of the two is forbidden we create a n-rectanglex corresponding to s, i.e., we update the 4uple (R0n�1; R1n�1; R0n; R1n). If s is forbidden, then weadd the pointer to x to the list F . In this implementation, we chose to generate only the reachablestates.The creation of n-rectangles and faces of dimension (n�1) is subject to a check that they do notalready exist (in case we are looping, or in case we branch the execution). A fast search algorithmhas been implemented to test for existence of such states, using a basic hashing algorithm. Thereis one hash table per dimension, and the ones used in the benchmarks results use 65536 entries.The hash function is a modular function that uses the third component (\coordinate") of thestate (modulo 32) and a polynomial in terms of the lengths of the terms representing the di�erent3If any. This is NULL if s is an initial state.4It is NULL as well if c is an initial state. 7

x

y

x

yFigure 3: An example of cyclic behavior and its 1-unfoldingsequential processes in parallel (modulo 2048). Notice that only the faces of dimension (n � 1)that are necessary for glueing n-rectangles are generated.This is only a �rst rough implementation. In particular no e�cient specialized memory man-agement program has been used (only the standard malloc() of the BSD library which is notspace-e�cient).3.4 Implementation of the �rst deadlock algorithmWe describe here how to compute the subset D of the set of ascendants of a given set S of statessuch that all its descendants �nally (only) reach S. We suppose that S is organized into a FIFOqueue q. We can perform operations empty?, enq (for enqueue) and deq (for dequeue) on itwhich should have an obvious semantics. We suppose that S is only composed of n-rectangles, n�xed. The HDA representing the semantics is implemented as explained in Section 3.3. It can beconstructed once and for all or it can be constructed on the
y, when boundaries are demandedby the algorithm. This corresponds to the deadlock algorithm sketched in x2.3 when S is takento be the set of forbidden n-rectangles.3.4.1 Cycles as divergencesThe standard way of constructing D is to compute the ascendants as the transitive closure of the\parent" relation (by iteration) and similarly for the descendants. It is actually quite expensiveand is not necessary in our case. To be more precise, the algorithm below is sound and complete,in the sense that it computes faithfully D if there is no cycle in the semantics, or if we considercycles to represent �nite and in�nite paths (i.e., cycles contain non-deadlocking paths). We treatthe case when cycles represent only �nite paths in x3.4.2.We suppose that an integer mx is associated to each n-rectangle x generated by the semantics,such that,� for any n-cube x in S the integer mx is initialized to 0,� for any other n-rectangle, mx is initialized to its number of sonsThen,� the multiset Px of n-rectangles, parents of a given n-rectangle x is the union of the listsR1n�1(y) for y 2 R0n(x).� the algorithm for �nding D is as follows. D is empty at the beginning, then,[(1)] if empty? then we have reached the result.[(2)] decrement mz by one for all z 2 Pdeq.[(3)] if in this process, one of the z considered has mz equal to zero then add z to D andenq(z).[(4)] loop back at point (1).3.4.2 Cycles as �nite iterationsLook at Figure 3 (notice that here, the forbidden region is represented by the dashed lines). Ifwe use the deadlock algorithm of x3.4.1 on the picture at the left, then we detect no deadlock norunsafe region. Then x has mx = 3 because it has two sons in the forbidden region and the third8

Figure 4: Duality between the graph ofn-cubes and the interleaving semantics Figure 5: And in the case of branchesthings are di�erentone is y. Canceling the two forbidden 2-rectangles leaves mx = 1 at the end of the algorithm andx is not detected as an unsafe 2-rectangle. It is true that x has one non-forbidden son (y) but itallows for a non-deadlocking behaviour only if we consider in�nite paths through x and y. If weare only considering �nite paths, then we are bound to end up blocked by the forbidden region.In fact, if we are considering �nite paths only, it is enough to unfold the graph of n-cubes (as inthe right hand side of Figure 3) to determine deadlocks and unsafe regions, with the same algorithmas in x3.4.1. A general unfolding algorithm can be used, but we chose in the implementation togenerate an unfolded semantics (which unfolds just once) of the terms before applying the deadlockalgorithm. For this purpose, it su�ces to associate to each equation de�ning a process variableX a
ag fX (basically indicating if we have already traversed a X node during the computationof the semantics). Then in the semantics of pure terms, we only replace a process variable Y byits de�nition (by the \elimination of process variables" equation of x3.2) if fY is false, and if sowe set fY to true. Remaining process variables (that cannot be eliminated) are not interpreted inthis semantics. This at least generates a superset of the unsafe region. It is not proven yet that itis (or not) equal to the unsafe region in the general case.3.5 Complexity issues3.5.1 Representation issuesAs a matter of fact when we are only considering pure terms (no branching nor looping), thesemantics of x3.2 is \almost isomorphic" to the standard interleaving semantics, by a standardduality argument: map the n-cubes to the vertices of the transition system, and the (n� 1)-cubesto the transitions of the transition system, as pictured in Figure 4. Then, we have almost the rightinterleaving semantics, up to the upper right corner (delineated by the dashed lines in Figure 4).So we gain some (but in a quite weak manner) conciseness in representing the semantics of non-branching, non-looping concurrent systems, especially if the grain of parallelism is coarse. In theimplementation, we gain even more since we only build the faces that are necessary for glueing then-rectangles. For instance in Figure 4, the semantics implemented only generates 4 2-rectanglesand 4 edges, whereas the standard interleaving semantics generates 12 transitions and 9 states.In some ways, some edges are not represented because they are equivalent to some others, sincethe 2-rectangles relate them. This approach seems somehow related to the \Compact TransitionSystems" of C. Priami and P.-P. Degano [DP94], but we have not had time to make any formallink.When we allow branching and loopings we gain even more. Look at Figure 5 for an example.At the left is what is represented using our semantics: 2 2-rectangles (dotted lines) and 1 edge,whereas at the right hand side is the corresponding interleaving semantics: 7 transitions and 6states.Let us be more precise, and give some theoretical bounds of what we can expect.To be formal, we look at the respective number of i-rectangles (0 � i � n) in a subdividedn-rectangle (in which the semantics of pure terms takes value). Let I be the unit interval in R, Ikbeing the unit interval subdivided k times. To be more precise, Ik is the unit interval subdivided9

Figure 6: The forbidden re-gions for 3phil Figure 7: Unsafe (red) regionfor 3philin such a way that, (Ik)0 = f jk ; 0 � j � kg and (Ik)1 = f[j�1k ; jk]; 1 � j � kg. Hence, Ikhas k + 1 0-rectangles and k 1-rectangles. More generally, concerning the k-subdivided unit n-rectangle (Ik)n, let tk;ni be the number of i-rectangles in (Ik)n, then tk;ni = Cni ki(k+ 1)n�i whereCni = n!i!(n�i)! is the ith binomial coe�cient of degree n.Now, we would like to measure the ratio of the number of i-rectangles with respect to the num-ber of n-cubes in some classes of sub-complexes5 of (Ik)n. The idea is to measure the \compressionratio" that one has if one considers the transitions of highest dimension instead of the states, orother transitions in the representation of automata, and thus the speedup that we might gain inalgorithms that traverse graphs of cubes as the �rst deadlock algorithm. We �rst de�ne someinteresting classes of sub-complexes of (Ik)n. Let Sk;ni be the class of connected sub-complexesgenerated6 by n-rectangles of (Ik)n such that for all n-rectangles t1 and t2, we have t1\t2 = t1 = t2or t1 \ t2 = ; or dim(t1 \ t2) = i. This means that if two n-rectangles have a proper intersection,then it must be of dimension i. In other terms, this class describes programs for which therecan be exactly n� i processes among n which can synchronize at the same time (synchronizationbarrier). We are only interested here in asymptotic results, i.e., when k is very high. Hencewe consider sub-complexes Sni de�ned similarly as Sk;ni but with respect to (I1)n which is theCartesian product of n denumerable subdivisions of I. Let us call rni;j the ratio of the numbertni;j of j-rectangles of some X 2 Sni by tni;n. Now we have the following asymptotic bounds (whentni;n ! 1), For 0 � j � i; Cnj � rni;j � Cij2i�j(2n�i n!i! � 1) and for i + 1 � j � n; rni;j = Cnj 2n�jIn the case of our PV language, we have i = n� 1, so we can expect a compression ratio betweenn and 2n � 1 at least (because we have not taken into account the fact that we do not repre-sent all faces). In the case of other languages, where branchings are expressible, like ConcurrentPascal whose HDA semantics has been implemented by Regis Cridlig [Cri95], some �gures areavailable. For instance the classical mutual exclusion algorithms Dekker and Peterson, for twoprocessors, generate respectively (for an already slightly abstracted HDA semantics) 1048 states,2095 1-transitions, 274 2-transitions, and 790 states, 1609 1-transitions, 198 2-transitions.3.5.2 Algorithmic issuesWe let the volume V ol(S) of a set S of nodes (n-rectangles) in R be the number of its elements.For every element R 2 Ri one has to check whether R has to be added to the unsafe region. Only ifthe answer is yes, the 2n operations of disconnecting R form its n sons and n parents and possibly,a single addition to, resp. removal from, the list of unsafe rectangles, has to be performed. Thisimplies:5If you do not know the terminology, just think of that as geometrical subshapes, or sub-graphs of n-rectangles.6By this, we mean that all j-rectangles (j � n � 1) of these sub-complexes are faces of these generating n-rectangles. 10

Proposition 1 For a pure term consisting of n transactions with a forbidden region F = Sr1Ri,the worst case complexity of the algorithm of x3.4 is of order nV ol(F) + �r1V ol(Ri).Remark 1 This estimate is worst, when the term �r1V ol(Ri) dominates the term nV ol(F), i.e.,when F consists of many large n-rectangles with large overlap. The absolute worst case occursin the following situation of a two-phase locked semaphore program, where n transactions accessk records: Suppose that each transaction wants access to each record, and that each transactionfrees the records in the same order as it locks them. Then there are N = (2k + 1)n states, andmoreover k� n2 � n-rectangles Ri, which all have volume k2(2k + 1)n�2. The volume of F is atmost (2k)n. Hence the complexity is n2kN .Examples of this kind have a high amount of global synchronization, which should be avoided inthe programs involved. Hence one would expect a much better behaviour in the average situation.In fact, if nV ol(F) is the dominating part, the complexity is at most nN .3.6 BenchmarksThe program has been written in C and compiled using gcc -O4 on an Ultra Sparc 170E with496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using the ddi.h libraryand the virtual times as provided by the command gethrvtime(). The dynamic data (the graphof cubes itself for instance) was created using the standard malloc() function of the bsdmalloclibrary. No particular optimization was made here. Timings have been rounded to the nearesthundredth of a second but are not more precise than a couple of hundredths of a second.program dim #face #cube #forb tsem tdead #dexample 2 112 79 14 0 0 13stair2 2 152 105 16 0.01 0 41stair3 3 1614 960 290 0.18 0.01 356stair3' 3 6027 2314 80 0.64 0.02 0lipsky 3 939 556 158 0.08 0 03phil 3 190 123 32 0 0 14phil 4 1152 611 190 0.09 0 15phil 5 6298 2899 1048 0.82 0.02 16phil 6 32596 13455 5482 5.82 0.13 17phil 7 162990 61703 27668 42.35 0.86 1In this table, dim is the dimension of the program considered (look at Appendix A for expla-nations), #face is the number of all faces that are actually represented, same for #cube but forthe n-rectangles (including the forbidden ones) and for #forb, for the n-rectangles that are in theforbidden region. Then tsem is the time needed to construct the whole semantics, tdead is the timeneeded from then to compute the unsafe region and #d is the number of n-rectangles found to bein the unsafe region.4 Continuous to discrete - invoking the geometryThe �rst algorithm uses very little of the rich geometry available. In fact there is a much betterway to look at deadlocks.4.1 The boundary of the forbidden areaTo study dipaths and futures of points in X = Inn �F e�ciently, we need a closer geomet-ric/combinatorial examination of the boundary of the forbidden area. Moreover, this analysiswill be helpful in analyzing dihomotopy relations between dipaths; this has an interest in studyingequivalence of execution paths, cf. [Gou95a, Gou95b], and, in particular, safety issues, cf. [Gun94].Details in that direction will be worked out elsewhere.11

Let R = [a1; b1]� � � � � [an; bn] denote an n-rectangle. Its boundary @(R) decomposes into� the lower boundary @�(R) := fx 2 Rj8j : xj < bj ; 9j : xj = ajg;� the upper boundary @+(R) := fx 2 Rj8j : xj > aj; 9j : xj = bjg;� the intermediate boundary @�(R) := fx 2 Rj9j1; j2 : xj1 = aj1 ; xj2 = bj2g.Let again �F� In denote the forbidden region and let X = Inn �F . In the sequel, we need thefollowing genericity property of the rectangles in F :If �Ri1 \ �Ri2 6= ;; then ai1j = ai2j) ai1j = 0 and bi1j = bi2j) bi1j = 1; 1 � j � n:This property is obviously satis�ed for forbidden regions for \mutually exclusion" models, inparticular for PV-models.Points in In with at least one coordinate 0 or 1 play a special role: In a mutual exclusion modelthey stand for situations where not all processors have started their execution or where some ofthem already have terminated. These points require special attention. To circumvent lengthycase studies in the mathematical part, we slightly change our model in order to include the upperboundary @+(In) of In into the forbidden region. To this end, let ~I = [0; 2] and In � ~In.Slightly changing the notation, let Ri = [0; 2]i�1 � [1; 2]� [0; 2]n�i; 1 � i � n, and shiftingindices by n, Rn+1; : : : ; Rn+r will denote the n-rectangles used in the previous model F of theforbidden region modi�ed to maintain genericity: If bij = 1, then let bi+nj = 2. Then Sn1 Ri =~Inn �In, and ~F = F [SRi = Sn+ri=1 Ri: By an abuse of notation, we will from now on write F for~F . The boundary @F � F decomposes as @F = @�F [@+F [@�F with @F = (Si @Ri)n �F ,@�F = (Si @�Ri)n �F , @+F = (Si @+Ri)n �F and @�F = (Si @�Ri)n �F .Looking at dipaths starting from a point x 2 X, we can concentrate attention on pointsx 2 @�F , since there are no local obstructions for all the other points:Lemma 1 For x = (x1; : : : ; xn) 2 (X n@�F), the future J+(x) contains a complete cone [x1; x1+"]� � � � � [xn; xn + "] for some " > 0. �For points x 2 @�F , the structure of the near future J+0 (x) can be explained in terms of aboundary strati�cation:Let Ri = [ai1; bi1]�� � ��[ain; bin], and for any nonempty index set J = fi1; : : : ; ikg � f1; : : : ; n+rgde�ne RJ = Ri1 \ � � � \ Rik , i.e., RJ = [aJ1 ; bJ1] � � � � � [aJn; bJn] with aJj = maxfaijji 2 Jg andbJj = minfbij ji 2 Jg. This set is again an n�rectangle unless it is empty (if akj > blj for some1 � j � n and k; l 2 J). To the index set J we associate @�RJ = @�Ri1 \ � � � \ @�Rik and theboundary stratum (in @�F) @J�F = RJ \ @�F = @�RJn �F :An index set ; 6= J � f1; : : : ; n+ rg is called f-relevant (f for future) if @J�F 6= ;, i.e., RJ 6= ;and aJ 62 �F .Lemma 2 If I �6= J are both f-relevant, then @J�F �6= @I�F ; i.e., for every i 2 J there is at leastone coordinate such that aJj = aij � akj for all k 2 J: �In particular, we obtain the boundary strati�cation @�F = SJ f-relevant @J�F .Every f-relevant subset ; 6= J � f1; : : : ; n+ rg comes with a partition pJ of the set f1; : : : ; ng:pJ (i) = fjj1 � j � n; aJj = aijg: In other words: j 2 pJ (i) if and only if aij = aJj = maxfakj jk 2Jg:Lemma 3 � 1. For every f-relevant subset ; 6= J � f1; : : : ; n + rg, pJ is in fact a partition off1; : : : ; ng.� 2. The strati�cation (4.1) of @�F above can be described as follows:x 2 @J�F , 8i 2 J 9j 2 pJ (i) : xj = aJj = aij:In other words:x 2 @J�F if and only if xj is minimal in RJ (xj = aJj) for at least one j 2 pJ (i):12

The strati�cation (4.1) above allows us to describe the local future J+0 (x) of a point x 2 @�F :Proposition 2 Let x 2 @J�F . Then, J+0 (x) � @J�F :y = (y1; : : : ; yn) 2 J+0 (x)): 8i 2 J 9j 2 pJ (i) : xj = yj = aij:4.2 DeadlocksUsing the geometrical insight gained from the strati�cation, we give another description of dead-locks and unsafe areas. Deadlock points can now be found as those x 2 @�F with J+(x) =J+0 (x) = fxg.Proposition 3 A point x 2 @�F is a deadlock if and only if x 6= 1 and there is an f-relevantn-element index set J = fi1; : : : ; ing; and x = aJ = [aJ1 ; : : : ; aJn] = min(Ri1 \ � � � \Rin). In thatcase, @J�(F) is the one point set faJg:As an immediate consequence, we get a method to avoid deadlocks that is easy to check:Corollary 1 A forbidden region F = Sn+r1 Ri � In has a deadlock-free complement X = In n Fif and only if for any index set J = fi1; : : : ; ing with jJ j = nRJ = Ri1 \ � � � \Rin = ; or RJ = f1g or minRJ 2 �F : �4.3 Unsafe regionsThe boundary strati�cation gives a very e�cient way of describing n-rectangles \under" a deadlockthat consist entirely of unsafe points:Let J = fi1; : : : ; ing � f1; : : : ; n + rg denote an n-element index set with @J�(F) = fa =(aJ1 ; : : : ; aJn) = (ai11 ; : : : ; ainn) = minRJ ; g, i.e, a is a deadlock. For every 1 � j � n, we choose faJjas the \second largest" of the aikj , i.e.,faJj = aisj with aikj � aisj < aJj for aikj 6= aJj :We associate to a the n-rectangle Ua = [faJ1 ; aJ1]� � � � � [faJn; aJn].Proposition 4 The \half-open" n� rectangle Ua n @�(Ua) =]faJ1 ; aJ1]� � � �]faJn; aJn] is unsafe, i.e.,every dipath in In from a point x 2 (Ua n @�(Ua)) will enter �F .In general, the n-rectangle Ua will be considerably larger than the n-rectangles from the graphalgorithm; it will contain several of the n-rectangles in the partition R. This is where we gain ine�ciency: look at Figures 8, 9, 10 and 11. They describe the 3 iterations needed in the followingstreamlined algorithm, whereas the �rst algorithm needed 26 iterations (two for each thirteenunsafe 2-rectangles).In analogy with the graph algorithm we can now describe an algorithm �nding the completeunsafe region U � In as follows: Find the set D of deadlocks in X and, for every deadlock a 2 D,the unsafe n-rectangle Ua. Let F1 = F [Sa2D Ua. Find the set D1 of deadlocks in X1 = X nF1 �X, and, for every deadlock a 2 D1, the unsafe n-rectangle Ua. Let F2 = F1 [Sa2D1 Ua etc.This algorithm stops after a �nite number n of loops ending with a set U = Fn and such thatXn = X n U does no longer contain any deadlocks. The set U n @�(U) consists precisely of theforbidden and of the unsafe points.The example of Figure 8 demonstrates that there may be arbitrarily many loops in this secondalgorithm{ even in the case of a 2-dimensional forbidden region associated to a simple PV-program:13

Figure 8: The forbid-den region Figure 9: First step ofthe algorithm Figure 10: Second stepof the algorithm Figure 11: Last step ofthe algorithmObviously, the \staircase" in Figure 8 (corresponding to the PV term example, see Appendix A)producing more and more unsafe n-rectangles can be extended ad libitum by introducing extrarectangles Ri to F along the \diagonal".As for the �rst deadlock algorithm, we show the applicability of the method by exemplifyingit on a toy PV language.5 Implementation of the geometric algorithm5.1 The semanticsLet us come back to giving a semantics to the PV language. Now we have a dual view on PVterms. Instead of representing the allowed n-rectangles, we represent the forbidden n-rectanglesonly. First, let T = X1 j � � � j Xn (for some n � 1) be a pure term of our language such that all itssubterms are pure as well. We consider here the Xi (1 � i � n) to be strings made out of lettersof the form Pa or V b, (a; b 2 O). Xi(j) will denote the jth letter of the string Xi. Supposingthat the length of the strings Xi (1 � i � n) are integers li, the semantics of Prog is included in[0; l1] � � � � � [0; ln]. A description of [[Prog]] from above can be given by describing inductivelywhat should be digged into this n-rectangle. The semantics of our language can be described bythe simple rule, [k1; r1] � � � � � [kn; rn] 2 [[X1 j � � � j Xn]]2 if there is a partition of f1; � � � ; ng intoU [V with card(U) = s(a) + 1 for some object a with, Xi(ki) = Pa, Xi(ri) = V a for i 2 U andkj = 0, rj = lj for j 2 V .Now we have to take care of unpure terms. Geometrically, a branching between two sets ofn concurrent processes can be represented in an Rn+s, with s big enough, with the coordinate-wise ordering as in the \pure case". In our language, a branching comes from a choice operatorin a sequential process, so s can be taken equal to one. Formally, the forbidden n-rectangles in[[X1 j � � � j Yi+Zi j � � � j Xn]]2 are [0; 0]� [[X1 j � � � j Yi j � � � j Xn]]2S[[X1 � � � j Zi j � � � j Xn]]2� [0; 0].Things are more complex when it comes to recursive equations. A loop (with the right pre-orderindicating the progress of time) cannot be embedded into an Rn with the partial order induced bythe order on each coordinate. But it can be embedded into a quotient of this partial order. So wehave to change the semantic domain we use to be a pair of a set of forbidden n-rectangles togetherwith a sequence of n equivalence relations, describing the identi�cations of the local times (or thefoldings, or the cycles) that the recursive equations enforce.The semantics of pure terms is unchanged, except we have an extra component in the semantics,([k1; r1]�� � �� [kn; rn]; (;; � � � ; ;)) 2 [[X1 j � � � j Xn]]2 if there is a partition of f1; � � � ; ng into U [Vwith card(U) = s(a) + 1 for some object a with, Xi(ki) = Pa, Xi(ri) = V a for i 2 U and kj = 0,rj = lj for j 2 V . This means that for pure terms, no identi�cation of local times is made so allrelations are empty.When a recursive call to the same process variable is found Xi(j) = Xi for some local timej � 1 then the ith equivalence relation is updated to contain also the equivalence 1Rij.14

5.2 The implementationA general purpose library for manipulating �nite unions of n-rectangles (for any n) has beenimplemented in C. A n-rectangle is represented as a list of n closed intervals. Regions (like theforbidden region) are represented as lists of n-rectangles. We also label some n-rectangles byassociating to them a region. Labeled regions are then lists of such labeled n-rectangles.Let us look �rst of the semantics of pure terms. Three arrays are constructed from the syntaxin the course of computation of the forbidden region. For a process named i and an object(semaphore) named j, tP[i][j] is updated during the traversing of the syntactic tree to be equalto the ordered list of times at which process i locks semaphore j. Similarly tV[i][j] is updatedto be equal to the ordered list of times at which process i unlocks semaphore j. Finally, an arrayt[i] gives the maximal (local) time that process i runs.For all objects a, we build recursively all partitions as in x5.1 of f1; � � � ; ng into a set U ofs(a) + 1 processes that lock a and V such that U [V = f1; � � � ; ng and U \ V = ;. For eachsuch partition (U; V) we list all corresponding pairs (Pa; V a) in each process Xi, i 2 U . As wehave supposed that in our programs, all processes must lock exactly once an item before releasingit, these pairs correspond to pairs (tP[i][a]j;tV[i][a]j) for j ranging over the elements of thelists tP[i][a] and tV[i][a]. Then we deduce the n-rectangle in the forbidden region for eachpartition and each such pair.For the unpure terms, we choose �rst a representation of the sequence of equivalence relations(R1; � � � ; Rn). As they are �nitely generated by simple foldings, each of these relations R areimplemented as a list lj (j = 1; � � � ; l) of ordered lists ljk 2 IN (k = 1; � � � ;mj). The set fljkjk =1; � � � ;mjg is exactly an equivalence class in R. We also construct this so that lj1 is an ordered list.The operations min(x,y) and max(x,y) in coordinate i are then quite simple. We determine for xand y their minimal representatives xm and ym under Ri using the representation above: this is alj1 for some suitable j or x (resp. y) themselves. Then min(x,y)=min(xm; ym). Similarly, we candetermine the maximal representatives xM and yM of x and y and then max(x,y)=max(xM ; yM).Now we have to handle extra-coordinates induced by the operator plus. In fact, instead of usingthe mathematical representation of n-rectangles, we can describe the branching structure of theprocesses in a separate manner. Basically, we represent the pre-order determining the time
owtogether with the forbidden regions by a tree whose leaves consist of an n-rectangle together withan equivalence relation (represented as explained above). Each branching in this tree representsa plus operation. At the leaves is the semantics of all terms with no plus. In order to do that,we unfold the syntactic tree (just once as in x3.4.2) of the processes, and each time we traversea plus node, we create a branching in this tree. Then at some point we end with a pure termwhose subterms are pure (or contain process variables). We apply the rule for the semantics ofsuch terms for each leaf, also deriving the equivalence relation for each process.5.3 Implementation of the second deadlock algorithmThe implementation uses a global array of labeled regions called pile: pile[0],...,pile[n-1](n being the dimension we are interested in). The idea is that pile[0] contains at �rst the initialforbidden region, pile[1] contains the intersection of exactly two distinct regions of pile[0],etc., pile[n-1] contains the intersection of exactly n distinct regions of pile[0].The algorithm is incremental. In order to compute the e�ect of adding a new forbidden n-rectangle S the program calls the procedure complete(S,;). This calls an auxiliary functionderive also described in pseudo-code below, in charge of computing the unsafe region generatedby a possible deadlock created by adding S to the set of existing forbidden regions. The resultingforbidden and unsafe region is contained in pile[0].complete(S,l)if S is included into a X in pile[0] returnfor i=n-2 to 0 by -1 do pile[i+1]=intersection(pile[i]\l,S)pile[0]=union(pile[0],S) 15

for all X in pile[n-1] do pile[n-1]=pile[n-1]\Xderive(X)The intersection of a labeled region R (such as pile[i] above) with a n-rectangle S gives theunion of all intersections of n-rectangles X in R (which are also n-rectangles) labeled with theconcatenation of the label of X with S (which is a region). Therefore labels of elements of regionsin pile are the regions whose intersection is exactly these elements.Now, derive(X) takes care of deriving an unsafe region from an intersection X of n forbiddenor unsafe distinct n-rectangles. Therefore X is a labeled n-rectangle, whose labels is X1,...,Xn(the set of the n n-rectangle which it is the intersection of). We call X(i) the projection of X oncoordinate i.derive(X)for all i do yi=max({Xj(i) / j=1,...,n}\{X(i)})Y=[y1,X(1)]x...x[yn,X(n)]if Y is not included in one of the Xj complete(Y,(X1,...,Xn))This last check is done when computing all yi. We use for each i a list ri of indexes j suchthat yi=Xj(i) (there might be several). If the intersection of all ri is not empty then Y is includedinto one of the Xj. It is to be noticed that this algorithm considers cycles (recursive calls) as �niteonly.5.4 Complexity issuesThe entire algorithm consists of 3 parts: The �rst establishes the initial list pile[0] of forbiddenn-rectangles, the second works out the complete array pile { including the deadlocks encoded inpile[n] {, and the third adds pieces of the unsafe regions, recursively.Let again n denote the number of processes (the dimension of the state space), and r thenumber of n-rectangles. From a complexity viewpoint, the �rst step is negligeable; �nding then-rectangles involves Cns(a)+1 searches in the syntactic tree for every shared object a { in each ofthe n coordinates.The array pile involves the calculation of S(r; n) = Pni=1Cri intersections, each of themneeding comparisons in n coordinates. Note that these comparisons show which of the intersectionsare empty, as well. To �nd the deadlocks, one has to compare (n coordinates of) the at most Crnnon-empty elements in pile[n] with the r elements in pile[0]. Adding pieces of unsafe regionsin the third step involves the same procedures with an increased number r of n-rectangles. Theworst-case �gure S(r; n) above can be crudely estimated as follows: S(r; n) � 2r for all n, andS(r; n) � nCrn for r > 2n { which is a better estimate only for r >> 2n.Remark that the algorithm above has a total complexity roughly proportional to the geometriccomplexity of the forbidden region. The latter may be expressed in terms of the number of non-empty intersections of elementary n-rectangles in the forbidden region. This �gure re
ects thedegree of synchronization of the processes, and will be much lower that S(n; r) for a well-writtenprogram. We conjecture, that the number of steps in every algorithm detecting deadlocks andunsafe regions is bounded below by this geometric complexity. On the other hand, for the analysisof big concurrent programs, this geometric complexity will be tiny compared to the number ofstates to be searched through by a traversing strategy.5.5 BenchmarksThe program has been written in C and compiled using gcc -O4 on an Ultra Sparc 170E with496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using the ddi.h libraryand the virtual times as provided by the command gethrvtime(). The dynamic data was createdusing the standard malloc() function of the bsdmalloc library. No particular optimization wasmade here. Timings have been rounded to the nearest hundredth of a second but are not moreprecise than a couple hundredths of a second. 16

In the following table, dim represents the dimension of the program checked, #forbid is thenumber of forbidden n-rectangles found in the semantics of the program, t semantics is the timeit took to �nd these forbidden n-rectangles, t unsafe is the time it took to �nd the unsafe regionand #unsafe is the number of n-rectangles found to be unsafe (they now encapsulate many of the\unit" n-rectangles found by the �rst deadlock detection algorithm). These measures have beentaken on a �rst implementation which does not include yet the branching and looping constructs.program dim #forbid t semantics t unsafe #unsafeexample 2 4 0.020 0 3stair2 2 6 0.020 0 15stair3 3 18 0.010 0 4stair3' 3 6 0.030 0 0lipsky 3 6 0.020 0 03phil 3 3 0.020 0 14phil 4 4 0.030 0 15phil 5 5 0.030 0 16phil 6 6 0.030 0 116phil 16 16 0.030 0.030 132phil 32 32 0.030 0.420 164phil 64 64 0.040 1.520 1128phil 128 128 0.100 26.490 16 Formal Relationship between the two approaches and Ex-tensionsThis work emerged from a purely algorithmic and geometric point of view. There is one importantstep we have not developed here, and which should be fully available in the companion technicalreport coming soon. One has to check that the two semantics given for the same language areconsistent indeed, and also that they are both consistent with the standard interleaving semanticsof the PV language. One can prove that the interleaving semantics is an abstraction of the seman-tics of x3.2, and the semantics of x5.1 is a dual-abstraction of the semantics of x3.2. As a matterof fact, it is easy to give an adjunction between the \continuous" representation of the semantics,and the discrete one. It is basically known as the geometric representation functor/singular cubefunctor adjunction [Gou95a, May67]. This gives an abstraction relation. But the semantics of x5.1only retains the holes in the continuous shape, thus the abstraction is dual.This proposition gives the idea that underlying the second semantics (of x5.1) there is anabstract domain that can be used for studying general languages. All these forbidden regionscan be generated for all contexts and values of variables (in a concurrent imperative languagefor instance). Obviously this should be composed with some other abstract interpretations togenerate a small number of these regions. Details should be worked out elsewhere.7 Conclusion and future workWe have presented two new algorithms for deadlock detection, including the computation of theset of states (the unsafe region) that will eventually lead to a deadlock. These algorithms werebased on geometric intuition and techniques. They have been implemented, and the �rst one showsgood comparison with ordinary reachability search with some state-space reduction techniques.But due to its complexity, this does not seem to be easily usable for very big programs (exceptif combined with clever abstract interpretations) or for a big number of processes (6 or 7 seemsto be a maximum in general for practical use). The second algorithm has shown much betterpromise. Its complexity depends on the complexity of the synchronization of the processes, andnot on a fake number of global states, as in most techniques used. In this regard it is much morepractical. Dealing with 128 processes is not a problem if they are not synchronizing too much17

(as in the dining philosophers problem), but this is certainly intractable for reachability searchtechniques (there are more than 1085 global states in that case). It should be noted also that thesetwo algorithms could be enhanced by the use of some other well-known technique, like symmetryand (for the �rst one) some reduction techniques. As the second algorithm is based on an abstractinterpretation of the semantics, it should be developed for the use on real concurrent languagesin conjunction with other well-known abstract interpretations. This is for future work. Also thisshould be linked with a full description of \schedules" and veri�cation of safety properties ofconcurrent programs as hinted in [Gun94, Gou95b, FR96] using the geometric notions developedin this article.Acknowledgments We used Geomview (see the Web page http://freeabel.geom.umn.edu/software/download/geomview.html/) to make the 3D pictures of this article (in a fully automated way).A The examples detailedYou will soon be able to check the implementations and the examples at http://www.dmi.ens.fr/~goubault.� The dining philosophers' problem. The source below is for three philosophers, the next oneis for �ve. The way others of these examples are generated should be obvious from theseexamples./* 3 philosophers ``3phil'' */A=Pa.Pb.Va.VbB=Pb.Pc.Vb.VcC=Pc.Pa.Vc.VaThe output giving the unsafe region is then,(P(b).V(a).V(b)|P(c).V(b).V(c)|P(a).V(c).V(a),[c,0][b,0][a,0])/* 5 philosophers ``5phil'' */A=Pa.Pb.Va.VbB=Pb.Pc.Vb.VcC=Pc.Pd.Vc.VdD=Pd.Pe.Vd.VeE=Pe.Pa.Ve.Va� This is example of Figure 8./* ``example'' */A=Pa.Pb.Vb.Pc.Va.Pd.Vd.VcB=Pb.Pd.Vb.Pa.Va.Pc.Vc.Vd� This is the classical Lipsky/Papadimitriou example (see [Gun94]) which produces no dead-lock./* ``lipsky'' */A=Px.Py.Pz.Vx.Pw.Vz.Vy.VwB=Pu.Pv.Px.Vu.Pz.Vv.Vx.VzC=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv 18

Figure 12: The Lip-sky/Papadimitriou ex-ample Figure 13: A close-upto a hole in the forbid-den region Figure 14: Turningaround Figure 15: Behind, no-tice the exit in the hole� This is a staircase (worst complexity case for the second algorithm)./* ``stair2'' */A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.VfB=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va� This is a 3-dimensional staircase. Notice that if you declare all semaphores used (a, b, c, d,e and f) to be initialized to 2 (example \stair3"'), there is no 3-deadlock./* ``stair3'' */A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.VfB=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.VaC=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.VaReferences[ABC+91] G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automatedanalysis of concurrent systems with the constrained expression toolset. IEEE Trans. Soft.Eng., 17(11):1204{1222, November 1991.[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic modelchecking: 1020 states and beyond. In Proc. of the Fifth Annual IEEE Symposium on Logicand Computer Science, pages 428{439. IEEE Press, 1990.[BG96] B. Boigelot and P. Godefroid. Model checking in practice: An analysis of the access.busprotocol using spin. In Proceedings of Formal Methods Europe'96, volume 1051, pages 465{478. Springer-Verlag, Lecture Notes in Computer Science, March 1996.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static analysisof programs by construction of approximations of �xed points. Principles of ProgrammingLanguages 4, pages 238{252, 1977.[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-tation, 2(4):511{547, August 1992.[CCA96] A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. An empirical comparison of static con-currency analysis techniques. Technical Report 96-84, Department of Computer Science, Uni-versity of Massachusetts, August 1996. 19

[Cor96] J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Trans-actions on Software Engineering, 22(3), March 1996.[CR87] S.D. Carson and P.F. Reynolds. The geometry of semaphore programs. ACM TOPLAS,9(1):25{53, 1987.[Cri95] R. Cridlig. Semantic analysis of shared-memory concurrent languages using abstract model-checking. In Proc. of PEPM'95, La Jolla, June 1995. ACM Press.[DC94] M. B. Dwyer and L. A. Clarke. Data
ow analysis for verifying properties of concurrentprograms. In Proc. of the Second Symposium on Foundations of Software Engineering, pages62{75, December 1994.[Dij68] E.W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor, Programming Lan-guages, pages 43{110. Academic Press, New York, 1968.[DP94] P.-P. Degano and C. Priami. Compact transition systems. Technical report, Universita diPisa, 1994.[FR96] L. Fajstrup and M. Rau�en. Some remarks concerning monotopy of increasing paths. unpub-lished manuscript, Aalborg University, 1996.[GHP95] P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching revisited. In FormalMethods and System Design, volume 7, pages 1{15. Kluwer Academic Publishers, November1995.[GJ92] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CON-CUR'92, Stonybrook, New York, August 1992. Springer-Verlag.[GJM+97] H. Garavel, M. Jorgensen, R. Mateescu, Ch. Pecheur, M. Sighireanu, and B. Vivien. Cadp'97{ status, applications and perspectives. Technical report, Inria Alpes, 1997.[Gou95a] E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure, 1995. tobe published, 1997, also available at http://www.dmi.ens.fr/~goubault.[Gou95b] E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, La Jolla,June 1995. ACM Press, also available at http://www.dmi.ens.fr/~goubault.[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in the formalvalidation of industrial concurrent programs. IEEE Transactions on Software Engineering,22(7):496{507, July 1996.[Gun94] J. Gunawardena. Homotopy and concurrency. Bulletin of the EATCS, 54:184{193, 1994.[HS95] M. Herlihy and S.Rajsbaum. Algebraic Topology and Distributed Computing. A Primer.volume 1000 of Lecture Notes in Computer Science. Springer-Verlag, 1995.[HS96] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Technicalreport, Brown University, Providence, RI, January 1996.[LP81] W. Lipski and C.H. Papadimitriou. A fast algorithm for testing for safety and detectingdeadlocks in locked transaction systems. Journal of Algorithms, 2:211{226, 1981.[May67] J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company, inc, 1967.[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. of Computer AidedVeri�cation. Springer-Verlag, 1997.[Pra91] V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Symposium onPrinciples of Programming Languages. ACM Press, 1991.[Val89] A. Valmari. Eliminating redundant interleavings during concurrent program veri�cation. InProc. of PARLE, volume 366, pages 89{103. Springer-Verlag, Lecture Notes in ComputerScience, 1989.[Val91] A. Valmari. A stubborn attack on state explosion. In Proc. of Computer Aided Veri�ca-tion, number 3, pages 25{41. AMS DIMACS series in Discrete Mathematics and TheoreticalComputer Science, 1991.[vG91] R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report,Stanford University, Manuscript available on the web as http://theory.stanford.edu/~rvg/hda,1991.[YY91] W. J. Yeh and M. Young. Compositional reachability analysis using process algebras. In Proc.of the symposium on Testing, Analysis and Veri�cation, pages 178{187. ACM Press, October1991. 20

