Detecting Deadlocks in Concurrent Systems

Lisbeth Fajstrup? Eric Goubaultand Martin Rauflen*

October 1, 1997

Abstract

We study deadlocks using geometric methods based on generalized process graphs [Dij68],
i.e. cubical complexes or Higher-Dimensional Automata (HDA) [Prad1, vG91, GJ92, Gun94],
describing the semantics of the concurrent system of interest. Two algorithms are described
and fully assessed, both theoretically and practically. Implementations are available, applied
to a toy language. These algorithms not only compute the deadlocking states of a concurrent
system but also the so-called “unsafe region” which consists of the states which will eventually
lead to a deadlocking state. The first algorithm is still combinatorial in nature, since it is
mostly a traversing of the (higher-dimensional) transitions. Even if it is fairly competitive, the
second algorithm is the most interesting one because it exhibits much better performances,
and is based on a real geometric characterization of deadlocks.

1 Introduction and related work

This paper deals with the detection of deadlocks motivated by applications in data engineering,
e.g., scheduling in concurrent systems. Many fairly different techniques have been studied in the
numerous literature on deadlock detection. Unfortunately, they very often depend on a particular
(syntactic) setting, and this makes it difficult to compare them. Some authors have tried to classify
them and test the existing software, like [Cor96, CCA96], but for this one needs to translate the
syntax used by each of these systems into one another, and different translation choices can make
the picture entirely different. Nevertheless, we will follow their classification to put our methods in
context. Notice that in this article, we go one step beyond and also derive the “unsafe region” i.e.
the set of states that are bound to run into a deadlocking state after some time. This analysis is
done in order to be applied to finding schedulers that help circumvent these deadlocking behaviours
(and not just for proving deadlock freedom as most other techniques have been used for).

The first basic technique is a reachability search, i.e., the traversing of some semantic repre-
sentation of a concurrent program, in general in terms of transition systems, but also sometimes
using other models, like Petri nets [MR97]. Due to the classical problem of state-space explosion in
the verification of concurrent software, such algorithms are accompanied with state-space reduc-
tion techniques, such as virtual coarsening (which coalesce internal actions into adjacent external
actions) [Val89], partial-order techniques (which alleviate the effects of representation with inter-
leaving by pruning “equivalent” branches of search) such as sleep sets and permanent (or stubborn)
sets techniques [Val91, GPS96, GHPI5], and symmetry techniques (that reduce the state-space by
consideration of symmetry). These techniques only reduce the state-space up to three or four
times except for very particular applications

The second most well-known technique is based on symbolic model-checking as in [BGI6,
BCM*90, GIM+97, BG96]. Deadlocking behaviors are described as a logical formula, that the

model-checker tries to verify. In fact, the way a model-checker verifies such formulae is very often
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based on clever traversing techniques as well. In this case, the states of the system are coded in a
symbolic manner (BDDs etc.) which enables a fast search.

Then many of the remaining techniques are a blend of one of these two with some abstrac-
tions, or are compositional techniques [YY91], or based on dataflow analysis [DC94], or on integer
programming techniques [ABCt91] (but this in general only relies on necessary conditions for
deadlocking behaviors).

Based on some old ideas [Dij68] and some new semantic grounds [Pra91, vG91, Gun94, GJ92,
Gou9ba] (see §2), we develop an enhanced sort of reachability search in §2.3. This should mostly be
compared to ordinary reachability analysis and not to virtual coarsening and symmetry techniques
because these can also be used on top of ours. A first approach in the direction of virtual coarsening
has actually been made in [Cri95]. Some assessments about its practical use, based on a first
implementation applied to simple semaphore programs and also based on some general complexity
reasons are made in §3.5 and §3.6.

In some ways, this deadlock detection algorithm (which determines the so-called “unsafe re-
gion” made of all states bound to run some time or another into a deadlock) is still a combinatorial
search, which only takes advantage of the truly-concurrent representation of actions.

In §4, we propose a new algorithm based on an abstraction (in the sense of abstract interpre-
tation [CCT7, CCI2]) of the first truly-concurrent semantics, which takes advantage of the real
geometry of the executions. This one is an entirely different method from those in the literature.

As a matter of fact, in recent years, a number of people have used ideas from geometry and
topology to study concurrency: First of all, using geometric models allows one to use spatial intu-
ition; furthermore, the well-developed machinery from geometric and algebraic topology can serve
as a tool to prove properties of concurrent systems. A more detailed description of this point of
view can be found in J. Gunawardena’s paper [Gun94] — including many more references — which
contains a first geometrical description of safety issues. In another direction, techniques from alge-
braic topology have been applied by M. Herlihy, S. Rajsbaum, N. Shavit [HS95, HS96] and others
to find new lower bounds and impossibility results for distributed and concurrent computation.

We believe that this technique, which is assessed in §5.4 and §5.5 both on theoretical grounds
and on the view of benchmarks, can be applied in the static analysis of “real” concurrent programs
(and not only at the PV language of §3.1) by suitable compositions and reduced products with
other abstract interpretations, as sketched in §6.

The authors participated in the workshop “New Connections between Mathematics and Com-
puter Science” at the Newton Institute at Cambridge in November 1995. We thank the organizers
for the opportunity to get new inspiration. This paper is the first in a series of papers result-
ing from the collaboration of two mathematicians (L. Fajstrup & M. Raussen) and a computer
scientist (E. Goubault).

2 Models of concurrent computation

2.1 From Discrete to Continuous

A description of deadlocks in terms of the geometry of the so-called progress graph (cf. Ex. 1) has
been given earlier by S. D. Carson and P. F. Reynolds [CR&7], and we stick to their terminology.
The main idea in [CR&7] is to model a discrete concurrency problem in a continuous geometric
set-up: A system of n concurrent processes will be represented as a subset of Euclidean space R".
Each coordinate axis corresponds to one of the processes. The state of the system corresponds to
a point in R", whose i’th coordinate describes the state (or “local time”) of the i’th processor. An
execution is then a continuous increasing path within the subset from an initial state to a final
state.

Example 1 Consider a centralized database, which is being acted upon by a finite number of
transactions. Following Dijkstra [Dij68], we think of a transaction as a sequence of P and V actions
known in advance — locking and releasing various records. We assume that each transaction starts
at (local time) 0 and finishes at (time) 1; the P and V actions correspond to sequences of real



numbers between 0 and 1, which reflect the order of the P’s and V’s. The initial state is (0, ..., 0)
and the final state is (1,...,1). An example consisting of the two transactions Ty = P, PV, V,
and Ty = P, P, V,V, gives rise to the two dimensional progress graph of Figure 1.
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Figure 1: Example of a progress graph

The shaded area represents states, which are not allowed in any execution path, since they
correspond to mutual exclusion. Such states constitute the forbidden area. An execution pathis a
path from the initial state (0,0) to a final state (1, 1) avoiding the forbidden area and increasing
in each coordinate - time cannot run backwards.

In Ex. 1, the dashed square marked ” Unsafe” represents an unsafe area: There is no execution
path from any state in that area to the final state (1, 1). Moreover, its extent (upper corner) with
coordinates (Pb, Pa) represents a deadlock. Likewise, there are no execution paths starting at
the initial state (0,0) entering the unreachable area marked ”Unreachable”. Concise definitions of
these concepts will be given in §2.2.

Finding deadlocks and unsafe areas is hence the geometric problem of finding n-dimensional
“corners” as the one in Ex. 1. Back in 1981, W. Lipski and C. H. Papadimitriou [LP81] attempted
to exploit geometric properties of forbidden regions to find deadlocks in database-transaction
systems. But the algorithm in [LP81] does not generalize to systems composed of more than two
processes. S. D. Carson and P. F. Reynolds indicated in [CR87] an iterative procedure identifying
both deadlocks and unsafe regions for systems with an arbitrary finite number of processes.

In this section, we present a streamlined path to their results in a more general situation: Basic
properties of the geometry of the state space are captured in properties of a directed graph — back
in a discrete setting. In particular, deadlocks correspond to local mazima in the associated partial
order.

This set-up does not only work for semaphore programs: In general, the forbidden area may rep-
resent more complicated relationships between the processes like for instance general k-semaphores,
where a shared object may be accessed by k, but not & 4+ 1 processes. This 1s reflected in the
geometry of the forbidden area F', that has to be a union of higher dimensional rectangles or
“boxes”.

Furthermore, similar partially ordered sets can be defined and investigated in more general
situations than those given by Cartesian progress graphs. By the same recipe, deadlocks can then
be found in concurrent systems with a variable number of processes involved or with branching
(tests) and looping (recursion) abilities. In that case, one has to consider partial orders on sets
of “boxes” of variable dimensions. This allows the description and detection of deadlocks in the
Higher Dimensional Automata of V. Pratt [Pra91] and R. van Glabbeek [vG91] (cf. E. Goubault
[Gou9bal for an exhaustive treatment).



In the mathematical parts below, i.e.; §2.2 and §2.3, the explanations have been voluntarily
simplified. The full treatment of the deadlock detection method is done entirely in the algorithmic
and implementation part, §3.

2.2 The continuous setup

Let I denote the unit interval, and I™ = I; x --- x I, the unit cube in n-space. This is going
to represent the space of all local times taken by n processes. We call a subset R = [ay,b] ¥
-+ x [an, by] an n-rectangle, and we consider a set F' = [ J] R’ that is a finite union of n-rectangles

R = [ai,b}] x --- x [a’,b]. The interior }% of F' is the “forbidden region” of I"™; its complement

n»'n

is X = I\ }% Furthermore, we assume that 0 = (0,...,0) € F,and 1 =(1,...,1) ¢ F.

Definition 1 e 1. A continuous path o : I — I" is called a dipath (directed path) if all composi-
tions a; = pryoa: ] =1, 1 <i<n,areincreasing: t; <t3 < o;(t1) < ay(ta2), 1 < i< n.

e 2. Apointy € X = I\ }% is in the future J*(z) of a point € X if there is a dipath
a: I = X with a(0) = # and a(1) = y. The past J~ () is defined similarly.

e 3. A near future JI () of @ € X is of the form J*(x) N ([x1, 21 4+ €] X - X [®n, 2n + €])
Where6<min{a§—l‘j>0,b§»—xj>0, 0<i<r0<yj<n}.

e 4. A point x € "™\ ;7 is called admissible, if 1 € J*(z); and unsafe else.
e 5. Let A(F) C I" denote the admissible region containing all admissible points in X, and

U(F) C I™ the unsafe region containing all unsafe points in X.
e 6. A point z € X is a deadlock if and only if J*(z) = {z}.

In semaphore programs, the n-rectangles R’ characterize states where two transactions have
accessed the same record, a situation which is not allowed in such programs. Such “mutual
exclusion”-rectangles have the property that only two of the defining intervals are proper subin-
tervals of the [;. Furthermore, serial execution should always be possible, and hence F' should not
intersect the 1-skeleton of I consisting of all edges in the unit cube. These special features will
not be used in the present paper.

A dipath represents the continuous counterparts of the traces of the concurrent system, which
must not enter the forbidden regions.

2.3 Continuous to discrete - a graph theory approach

We use geometrical ideas to construct a digraph where deadlocks are the leaves and the unsafe
region 1s found by an iterative process. The setup is as in §2.2. For 1 < j < n, the set {aé», b§|1 <
i < r} C I; gives rise to a partition of I; into at most (2r + 1) subintervals: I; = |J I, with an
obvious ordering < on the subintervals [;;. The partition of intervals gives rise to a partition R
of I into n-rectangles Iy, X --- x L5, with a partial ordering given by

IlklX"'ankngflk’lX"'Xlnkﬁlﬁfjkjgljk;a 1<j<n.

The partially ordered set (R, <) can be interpreted as a directed, acyclic graph, denoted (R, —):
Two n-rectangles R, R’ € R are connected by an edge from R to R’ — denoted R —+ R’ —if R< R’
and if R and R’ share a face. R’ is then called an upper neighbor of R, and R a lower neighbor of
R’. A path in the graph respecting the directions will be denoted a directed path.

For any subset R’ C R we consider the full directed subgraph (R’, —). Particularly important

is the subgraph R consisting of all rectangles R C X = I\ ;7

Definition 2 Let R’ C R be a subgraph. An element R € R’ is a local maximum if it has no
upper neighbors in R’. Local minima have no lower neighbors. An n-rectangle R € Rz is called
a deadlock rectangle if R # R1, and if R is a local mazimum with respect to Rp. An unsafe
n-rectangle R € Rp 1is characterized by the fact, that any directed path o starting at R hits a
deadlock rectangle sooner or later [CR87].



In order to find the set U of all unsafe points — which is the union of all unsafe n-rectangles —
apply the following. (1) Remove F' from I™ giving rise to the directed graph (Rz,—). (2) Find
the set Sy of all deadlock n-rectangles (local maxima) with respect to Rp. Let Fy = FU Sy, (3)
Let Rz denote the full directed subgraph on the set of rectangles in I™ \ Fy, i.e., after removing
Si. (4 ) Fmd the set Sy of all deadlock n-rectangles with respect to Rp,. Let Fy = F1 U Sy, Carry
on the same completion mechanism etc.

Notice that it is enough to search among the lower neighbors of elements in F' in step 2, and
that the only candidates for deadlocks in step 4 are the lower neighbors of elements of S;. Since
there are only finitely many rectangles, this process stops after a finite number of steps, ending
with S, and yielding the following result:

Theorem 1 e 1. The unsafe region is determined by U(F) = |J] S

o 2. The set of admissible points is A(F) = I" \ (;7 UU(F)). Moreover, any directed path in
A(F) will eventually reach Ry.

In order to show the applicability of the previous method, we explain how to give semantics of
a toy language in terms of these forbidden regions, how to implement it, and how to implement
the deadlock detection algorithm.

3 Implementation of the combinatorial approach

3.1 The language

We consider in the following the language PV whose syntax is defined below. Given a set of
objects O (like shared memory locations, synchronization barriers, semaphores, control units,
printers etc.) and a function s : O — INT associating to each object @, the maximum number of
processes s(a) > 0 which can access it at the same time, any process Proc can try to access an
object a by action Pa or release it by action Va, any finite number of times. In fact, processes
are defined by means of a finite number of recursive equations involving process variables X in a
set V: they are of the form X = Procg where Procy is the process definition formally defined as,

Procy = € | Pa.Procy | Va.Procy
Procy+ Procy | Y

(e being the empty string, a being any object of O, Y being any process variable in V) A PV
program is any parallel combination of these PV processes, Prog = Proc | (Proc | Proc).
The typical example in shared memory concurrent programs is O being the set of shared variables
and for all ¢ € O, s(a) = 1. The P action is putting a lock and the V" action is relinquishing it. We
will suppose in the sequel that any given process can only access once an object before releasing
it. We also suppose that the recursive equations are “guarded” in the sense that for all process
variables X, Procx does not contain a summand of the form X.T', T" being any non-empty term.

3.2 The semantics

The semantics of the PV language as a graph of n-rectangles is as follows'. An environment is a
function p : O — IN, whose value for an object a represents the number of times a can still be
accessed by the processes. A n-rectangle or state of the program is a pair (C, p) where C' is an
element of the language, p is a context. Basically, C represents the program that remains to be
executed and p is the current context in which ' has to be executed.

The representation of the graph of n-rectangles is done by explicitly representing the glueing
faces which define then the “neighboring” relation between n-rectangles (as in §2.3). Look at

IThis had already been “pictured” under the name of process graphs by E.W.Dijkstra [Dij68], Carson and
Reynolds [CR&87], J. Gunawardena [Gun94] in the case of terms with no choice operator nor recursive equations.
The formal semantics in terms of this graph of n-rectangles, or HDA [Gou95a] is new here.
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Figure 2: Semantics of (Pa.Va | Pa.Va) as a discretisation of its geometry (left), as a graph of
n-rectangles (right).

Figure 2 for an explanation in the case of the semantics of (Pa.Va | Pa.Va). The collection of
faces of each n-rectangle is separated in n start faces, here for example for the 2-rectangle A, d(A)
and dj(A), and n end faces, here dj(A) and d}(A). The order between the different n-rectangles,
as sketched in this example by the graph at the right-hand side of Figure 2, is generated by the
relation “having a d' face equal to a d° face”. Here A < B because ¢ = d}(B) = d}(A). This
encoding is standard in the HDA framework where faces are (n — 1)-transitions and n-rectangles
are n-transitions (see [Gou95a] for more explanations).

Let us separate out our semantics in two distinct phases. Consider first the “pure” terms
consisting of those terms for which the syntactic tree of each process begins by a sequential
composition of a P or a ¥V with any term. Any set of &k PV processes in parallel X; | --- | X
may generate k-rectangles according to the environment it is executed in. Supposing none of these
processes are empty, we write X; = Q;a;.Y;, 1 < i <k, where @Q; i1s Por V, a; € O and Y; is a
process. We then have the following semantic equation describing the semantics [X7 | --- | Xi]p
in environment p. If for all a € O, p(a) > 0,

IXa | I Xelp=(Xa |- | X, p) + YL X2 | | Xillpr + -+ X | | X | Yi]pw

where p;, 1 < i < kis such that p;(b) = p(b) for all b € O, b # a;, and p;(a;) = p(a;) = 11f Q; = P
or pi(a;) = p(a;) + 1if Q; = V. If there is an a € O, p(a) < 0,

[Xo |- | Xelp=[Y1 [ Xo |- [ Xelpr +- -+ [X0 |- | X | Yilpw

with the same environments p;, 1 <1 < k.

These equations should be understood as follows. (X | --- | X, p) is a k-rectangle, which
is not forbidden if and only if all & processes can progress. This is not the case if one of the
processes is waiting for an object to be released (in the second case, there is an a € O such
that p(a) < 0). If we want to generate only reachable states, then it is enough to forget the
second semantic equation. In the first case, the k start boundaries and the k end boundaries of

dimension k — 1 of this k-rectangle are?, d%(Xy | -+ | Xp,p) = (X1 | -+ | Xi | -+ | Xu,p,9),
(the face at the right-hand side is defined if the n-rectangle at the left-hand side is defined), and
di(Xy | | Xg) = (X1 | -+ | Xi | -+ | Xk, pi,i). This last component for the faces is not

needed in general, but it permits to unfold entirely the graph of cubes (thus the semantics does
not create fake unfoldings that the verification algorithms would believe to be divergences — see
the discussion of §3.4.1 and §3.4.2).
Now for the “non-pure” terms, we use the following two rules in order to get to pure terms,
(Elimination of process variables)

[X [ | VY o] Xidp = X || Proey.Yi || Xelp

2The notation X1, ---, X;,--- means that we have the collection X1, Xs,--- except X;.



Elimination of plus
( p
X | Vit Ze | | Ko = [X | | X+ [ | 2| Xl

The first equation eliminates the process variable Y by its definition Procy. The second
equation eliminates the choice operator in the definition of the ith process. The plus symbol
at the right hand-side of this equation denotes an amalgamated sum (i.e., a union) of its two
arguments, identifying the face (X1 |-+ | Y; | -+ X, p, i) with the face (X1 |-+ | Z; | -+ X, p, ©).

Notice that using this semantic definition, we can define directly the n-transitions of a program
consisting of n processes in parallel, generating also the (n— 1)-transitions, but not the transitions
of lower dimension.

3.3 The implementation

A general purpose C library has been written to generate and manipulate graphs of n-rectangles
(in fact, any HDA). Basically such a graph is described by incidence matrices. To be more precise,
R is represented by a 4uple (R2_;, RL_;, RS, RL). R! is the (sparse) matrix whose lines R! (z)
are indexed by the n-rectangles « (states of dimension n as described in the semantics), and which
contain the corresponding lower (for i = 0) and upper (for i = 1) boundaries of . R _; is the
co-incidence matrix whose lines R, _,(y) are indexed by the faces y (states of dimension n—1) and
consist of the n-rectangles whose lower boundary (for ¢ = 0) contains y or whose upper boundary
(for ¢ = 1) contains y. The full description of the techniques involved in such fast representations
will be worked out elsewhere. It has been developed for more general calculations than those used
in this article. In the specific case of deadlock detection we are interested in, we also maintain a
list F' of forbidden n-rectangles. The semantics of the PV language has been implemented in a
rather straightforward and naive manner. This has the advantage of being easily generalizable to
more complex languages.

It consists of a main recursive function sem(s,f,c) taking the current state s from which we
want to give the semantics, its father state® £ which asked the semantics of s in order to compute
its semantics, and ¢ is the (n — 1)-state which is at the common boundary? of s and £.

We first try to get to the case where s is a “pure” term. We first replace all process variables
X that would come as X.y in the definition of one of the processes of the program, where y is any
sequential term, by its definition, which will not begin by a process variable because we restricted
to guarded terms.

Then we look at all processes of the form y + z, y and z being any sequential term. If there
are any, like Prog= (X1 |- |y+2z]- | Xn), wecall sem((Xy1 |-+ |y | - | Xn,p),£,c) and
sem((Xy |-+ |z| | Xn,p),£,¢). This has the effect of glueing the two possible branches at c.

This is done iteratively until we get to consider only pure terms s.

Then, by looking at the context of each state (s and f) we determine if these states are
forbidden or not. If both are forbidden, we do not create any n-rectangle corresponding to s (by
the second semantic equation of “pure” terms). This enables to generate only the n-rectangles at
the boundary of the forbidden region. If at most one of the two is forbidden we create a n-rectangle
z corresponding to s, i.e., we update the 4uple (RS _,, RL |, R} RL). If s is forbidden, then we
add the pointer to « to the list F'. In this implementation, we chose to generate only the reachable
states.

The creation of n-rectangles and faces of dimension (n—1) is subject to a check that they do not
already exist (in case we are looping, or in case we branch the execution). A fast search algorithm
has been implemented to test for existence of such states, using a basic hashing algorithm. There
is one hash table per dimension, and the ones used in the benchmarks results use 65536 entries.
The hash function is a modular function that uses the third component (“coordinate”) of the
state (modulo 32) and a polynomial in terms of the lengths of the terms representing the different

3If any. This is NULL if s is an initial state.
41t is WULL as well if c is an initial state.



Figure 3: An example of cyclic behavior and its 1-unfolding

sequential processes in parallel (modulo 2048). Notice that only the faces of dimension (n — 1)
that are necessary for glueing n-rectangles are generated.

This is only a first rough implementation. In particular no efficient specialized memory man-
agement program has been used (only the standard malloc() of the BSD library which is not
space-efficient).

3.4 Implementation of the first deadlock algorithm

We describe here how to compute the subset D of the set of ascendants of a given set S of states
such that all its descendants finally (only) reach S. We suppose that S is organized into a FIFO
queue q. We can perform operations empty?, eng (for enqueue) and deq (for dequeue) on it
which should have an obvious semantics. We suppose that S is only composed of n-rectangles, n
fixed. The HDA representing the semantics is implemented as explained in Section 3.3. It can be
constructed once and for all or it can be constructed on the fly, when boundaries are demanded
by the algorithm. This corresponds to the deadlock algorithm sketched in §2.3 when S 1s taken
to be the set of forbidden n-rectangles.

3.4.1 Cycles as divergences

The standard way of constructing D is to compute the ascendants as the transitive closure of the
“parent” relation (by iteration) and similarly for the descendants. Tt is actually quite expensive
and 1s not necessary in our case. To be more precise, the algorithm below is sound and complete,
in the sense that it computes faithfully D if there is no cycle in the semantics, or if we consider
cycles to represent finite and infinite paths (i.e., cycles contain non-deadlocking paths). We treat
the case when cycles represent only finite paths in §3.4.2.
We suppose that an integer m, is associated to each n-rectangle z generated by the semantics,
such that,
e for any n-cube z in S the integer m, is initialized to 0,
e for any other n-rectangle, m, is initialized to its number of sons
Then,
e the multiset P, of n-rectangles, parents of a given n-rectangle x i1s the union of the lists
Ry, _y(y) for y € Ry (2).
e the algorithm for finding D is as follows. D is empty at the beginning, then,
[(1)] if empty? then we have reached the result.
[(2)] decrement m, by one for all 2 € Pyeq.
[(3)] if in this process, one of the z considered has m. equal to zero then add z to D and
eng(z).
[(4)] loop back at point (1).

3.4.2 Cycles as finite iterations

Look at Figure 3 (notice that here, the forbidden region is represented by the dashed lines). If
we use the deadlock algorithm of §3.4.1 on the picture at the left, then we detect no deadlock nor
unsafe region. Then x has my; = 3 because it has two sons in the forbidden region and the third



Figure 4: Duality between the graph of Figure 5: And in the case of branches
n-cubes and the interleaving semantics things are different

one is y. Canceling the two forbidden 2-rectangles leaves m, = 1 at the end of the algorithm and
z is not detected as an unsafe 2-rectangle. Tt is true that z has one non-forbidden son (y) but it
allows for a non-deadlocking behaviour only if we consider infinite paths through = and y. If we
are only considering finite paths, then we are bound to end up blocked by the forbidden region.

In fact, if we are considering finite paths only, it is enough to unfold the graph of n-cubes (as in
the right hand side of Figure 3) to determine deadlocks and unsafe regions, with the same algorithm
as in §3.4.1. A general unfolding algorithm can be used, but we chose in the implementation to
generate an unfolded semantics (which unfolds just once) of the terms before applying the deadlock
algorithm. For this purpose, it suffices to associate to each equation defining a process variable
X a flag fx (basically indicating if we have already traversed a X node during the computation
of the semantics). Then in the semantics of pure terms, we only replace a process variable Y by
its definition (by the “elimination of process variables” equation of §3.2) if fy is false, and if so
we set fy to true. Remaining process variables (that cannot be eliminated) are not interpreted in
this semantics. This at least generates a superset of the unsafe region. It is not proven yet that it
is (or not) equal to the unsafe region in the general case.

3.5 Complexity issues
3.5.1 Representation issues

As a matter of fact when we are only considering pure terms (no branching nor looping), the
semantics of §3.2 is “almost isomorphic” to the standard interleaving semantics, by a standard
duality argument: map the n-cubes to the vertices of the transition system, and the (n — 1)-cubes
to the transitions of the transition system, as pictured in Figure 4. Then, we have almost the right
interleaving semantics, up to the upper right corner (delineated by the dashed lines in Figure 4).
So we gain some (but in a quite weak manner) conciseness in representing the semantics of non-
branching, non-looping concurrent systems, especially if the grain of parallelism is coarse. In the
implementation, we gain even more since we only build the faces that are necessary for glueing the
n-rectangles. For instance in Figure 4, the semantics implemented only generates 4 2-rectangles
and 4 edges, whereas the standard interleaving semantics generates 12 transitions and 9 states.
In some ways, some edges are not represented because they are equivalent to some others, since
the 2-rectangles relate them. This approach seems somehow related to the “Compact Transition
Systems” of C. Priami and P.-P. Degano [DP94], but we have not had time to make any formal
link.

When we allow branching and loopings we gain even more. Look at Figure 5 for an example.
At the left is what is represented using our semantics: 2 2-rectangles (dotted lines) and 1 edge,
whereas at the right hand side is the corresponding interleaving semantics: 7 transitions and 6
states.

Let us be more precise, and give some theoretical bounds of what we can expect.

To be formal, we look at the respective number of é-rectangles (0 < ¢ < n) in a subdivided
n-rectangle (in which the semantics of pure terms takes value). Let I be the unit interval in R, I*
being the unit interval subdivided & times. To be more precise, I* is the unit interval subdivided



Figure 6: The forbidden re- Figure 7: Unsafe (red) region
gions for 3phil for 3phil

in such a way that, (I*), = %, 0 <j<k}and (I*) = {[‘7,@;1,%], 1 <j < k}. Hence, I*
has k& + 1 O-rectangles and k 1-rectangles. More generally, concerning the k-subdivided unit n-
rectangle (I*)" let tf’n be the number of i-rectangles in (1*)", then tf’n = CPk'(k 4+ 1)"~* where
o = % is the ¢th binomial coefficient of degree n.

Now, we would like to measure the ratio of the number of ¢-rectangles with respect to the num-
ber of n-cubes in some classes of sub-complexes® of (I*)". The idea is to measure the “compression
ratio” that one has if one considers the transitions of highest dimension instead of the states, or
other transitions in the representation of automata, and thus the speedup that we might gain in
algorithms that traverse graphs of cubes as the first deadlock algorithm. We first define some
interesting classes of sub-complexes of (I*)". Let Sf’n be the class of connected sub-complexes
generated® by n-rectangles of (Ik)” such that for all n-rectangles ¢; and ¢, we have t; Nty = ¢ = ¢
or t1 Nty = O or dim(¢; Nt2) = i. This means that if two n-rectangles have a proper intersection,
then it must be of dimension ¢. In other terms, this class describes programs for which there
can be exactly n — i processes among n which can synchronize at the same time (synchronization
barrier). We are only interested here in asymptotic results, i.e., when k is very high. Hence
we consider sub-complexes ST defined similarly as Sf’n but with respect to (I°°)" which is the
Cartesian product of n denumerable subdivisions of I. Let us call 7} . the ratio of the number

¥
ti’; of j-rectangles of some X € .57 by ¢',. Now we have the following asymptotic bounds (when

th, —o00), For 0 < j<i, CF <rfy < C’;Qi_j(Q”_i?—!! —1landfori+1<j<n r; = C’?Q”‘j
In the case of our PV language, we have : = n — 1, so we can expect a compression ratio between
n and 2n — 1 at least (because we have not taken into account the fact that we do not repre-
sent all faces). In the case of other languages, where branchings are expressible, like Concurrent
Pascal whose HDA semantics has been implemented by Regis Cridlig [Cri95], some figures are
available. For instance the classical mutual exclusion algorithms Dekker and Peterson, for two
processors, generate respectively (for an already slightly abstracted HDA semantics) 1048 states,
2095 1-transitions, 274 2-transitions, and 790 states, 1609 1-transitions, 198 2-transitions.

3.5.2 Algorithmic issues

We let the volume Vol(S) of a set S of nodes (n-rectangles) in R be the number of its elements.
For every element R € R; one has to check whether R has to be added to the unsafe region. Only if
the answer is yes, the 2n operations of disconnecting R form its n sons and n parents and possibly,
a single addition to, resp. removal from, the list of unsafe rectangles, has to be performed. This
implies:

5If you do not know the terminology, just think of that as geometrical subshapes, or sub-graphs of n-rectangles.
6By this, we mean that all j-rectangles (7 € n — 1) of these sub-complexes are faces of these generating n-
rectangles.
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Proposition 1 For a pure term consisting of n transactions with a forbidden region I' = U: R;,
the worst case complexity of the algorithm of §3.4 is of order nVol(F) + XjVol(R;).

Remark 1 This estimate is worst, when the term X7V ol(R;) dominates the term nVol(F), i.e.,
when F' consists of many large n-rectangles with large overlap. The absolute worst case occurs
in the following situation of a two-phase locked semaphore program, where n transactions access
k records: Suppose that each transaction wants access to each record, and that each transaction
frees the records in the same order as it locks them. Then there are N = (2k + 1)™ states, and
moreover k 721 ) n-rectangles R;, which all have volume k?(2k + 1)"~2. The volume of F is at
most (2k)". Hence the complerity is n?kN.

Examples of this kind have a high amount of global synchronization, which should be avoided in
the programs involved. Hence one would expect a much better behaviour in the average situation.
In fact, if nVol(F') is the dominating part, the complexity is at most nN.

3.6 Benchmarks

The program has been written in C and compiled using gcc -04 on an Ultra Sparc 170E with
496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using the ddi.h library
and the virtual times as provided by the command gethrvtime(). The dynamic data (the graph
of cubes itself for instance) was created using the standard malloc() function of the bsdmalloc
library. No particular optimization was made here. Timings have been rounded to the nearest
hundredth of a second but are not more precise than a couple of hundredths of a second.

program | dim | #face | #cube | #forb | tsem | tigeaa | #d
example 2 112 79 14 0 0 13
stair2 2 152 105 16 0.01 0 41
stair3 3 1614 960 290 0.18 | 0.01 | 356
stair3’ 3 6027 2314 80 0.64 | 0.02 0
lipsky 3 939 556 158 0.08 0 0
3phil 3 190 123 32 0 0 1
4phil 4 1152 611 190 0.09 0 1
5phil 5 6298 2899 1048 0.82 | 0.02 1
6phil 6 32596 | 13455 5482 5.82 | 0.13 1
Tphil 7 162990 | 61703 | 27668 | 42.35 | 0.86 1

In this table, dim is the dimension of the program considered (look at Appendix A for expla-
nations), #face is the number of all faces that are actually represented, same for #cube but for
the n-rectangles (including the forbidden ones) and for #forb, for the n-rectangles that are in the
forbidden region. Then t;.,, is the time needed to construct the whole semantics, {444 18 the time
needed from then to compute the unsafe region and #d is the number of n-rectangles found to be
in the unsafe region.

4 Continuous to discrete - invoking the geometry

The first algorithm uses very little of the rich geometry available. In fact there 1s a much better
way to look at deadlocks.

4.1 The boundary of the forbidden area

To study dipaths and futures of points in X = 1™\ ;7 efficiently, we need a closer geomet-
ric/combinatorial examination of the boundary of the forbidden area. Moreover, this analysis
will be helpful in analyzing dihomotopy relations between dipaths; this has an interest in studying
equivalence of execution paths, cf. [Gou95a, Gou9d5b], and, in particular, safety issues, cf. [Gun94].
Details in that direction will be worked out elsewhere.

11



Let R =[ai,b1] X -+ X [an, by] denote an n-rectangle. Its boundary 9(R) decomposes into
o the lower boundary 0_(R) :={x € R|Vj : z; <b;, j: z; = q;};
o the upper boundary 04 (R) :={x € R|Vj : x; > a;, 3j : z; = b;};
o the intermediate boundary 0+ (R) := {x € R|3j1,j2 : &, = a;,, zj, = bj, }.
Let again }%C I"™ denote the forbidden region and let X = I\ }% In the sequel, we need the
following genericity property of the rectangles in F'
V] ]

If R N R+ (), then aé»l = aé? = aé»l =0 and b;l = b;g = b;l =1,1<j<n.

This property is obviously satisfied for forbidden regions for “mutually exclusion” models, in
particular for PV-models.

Points in I with at least one coordinate 0 or 1 play a special role: In a mutual exclusion model
they stand for situations where not all processors have started their execution or where some of
them already have terminated. These points require special attention. To circumvent lengthy
case studies in the mathematical part, we slightly change our model in order to include the upper
boundary 04 (I") of I" into the forbidden region. To this end, let = [0,2] and I C ™.

Slightly changing the notation, let R* = [0,2]'~ x [1,2] x [0,2]""% 1 < i < n, and shifting
indices by n, R*t! ... R will denote the n-rectangles used in the previous model F of the
forbidden region modified to maintain genericity: If bé» = 1, then let b;"'" = 2. Then U} R =

~ o ~ . .
I\ " and F = FUR = U?:-I_f R'. By an abuse of notation, we will from now on write F' for
F.

The boundary OF C F decomposes as OF = O_F Ud,F U dLF with 0F = (|J; 0RY)\ ;7,

. [ . [ . V]

O-F = (U 0-RN\F, 01 F = (U; 04 R\ F and 0+ F = (J; 9+ R)\ F.

Looking at dipaths starting from a point x € X, we can concentrate attention on points
x € J_F since there are no local obstructions for all the other points:

Lemma 1 Forx = (z1,...,2,) € (X\O_F), the future J*(x) contains a complete cone [z, z1 +
€] X -+ X [Xn, 2y + €] for some € > 0. O

For points x € J_F, the structure of the near future JS' (x) can be explained in terms of a
boundary stratification: o

Let R = [a}, b}]x- - -x[ay,, b},], and for any nonempty index set J = {i1,..., i} C{1,...,n+7r}
define R7 = R* (.- N R*, ie., RY = [af,b{] x -+ x [a],b]] with af = max{d}|i € J} and
b}j = min{b§|i € J}. This set is again an n—rectangle unless it is empty ( if a? > bg for some
1 <j<mnand k!l € J) To the index set J we associate d_ R’/ = d_R"* N ---N J_R* and the
boundary stratum (in O_F) 0’ F = R'Nd_F = §_R7\ P

An index set § # J C {1,...,n+r} is called f-relevant (f for future) if 97 F # 0, i.e., R7 # 0
and a”’ Q;«”
Lemma 2 If ] g J are both f-relevant, then 97 F g OLF; ie., for every i € J there is at least

one coordinate such that a“f = aé» > a? fordl ke J |

In particular, we obtain the boundary stratification O_F = J; f.yelevant ol r.

Every f-relevant subset ) # J C {1,...,n4 r} comes with a partition p’ of the set {1,... n}:
p/(@) = {jl1 <j<n, a“f = aj}. In other words: j € p’(3) if and only if ab = a“f = max{aﬂk €
J}.

Lemma 3 e 1. For every f-relevant subset § # J C {1,...,n+r}, p’ is in fact a partition of

{1,...,n}.
o 2. The stratification (4.1) of O_F above can be described as follows:
x€d!Fevie Jjep’(i):a;=a] =adl.
In other words:

x € 97 F if and only if x; is minimal in R’ (z; = a“f) for at least one j € p”(i).

12



The stratification (4.1) above allows us to describe the local future Ji (x) of a point x € §_ F:

Proposition 2 Let x € 9/ F. Then, Ji (x) C 07 F:

y:(yl,...,yn)EJS'(x) = ViEJElepJ(i):xj:yj:a;.

4.2 Deadlocks

Using the geometrical insight gained from the stratification, we give another description of dead-
locks and unsafe areas. Deadlock points can now be found as those x € d_F with J*(x) =

T (x) = {x}.

Proposition 3 A point x € 0_F is a deadlock if and only if x # 1 and there is an f-relevant
n-element inder set J = {iy,...,i,}, and x = a’ = [a],... a)] = min(R* N --- A R"). In that

case, 7 (F) is the one point set {a’}.
As an immediate consequence; we get a method to avoid deadlocks that is easy to check:

Corollary 1 A forbidden region F = U?H R C I has a deadlock-free complement X = " \ F
if and only if for any index set J = {iy,... i, } with |J| =n

J _ pi1 in _ J_ cpd o f
R'=R*nNn---NR*"=0 or R ={1} or minR’ €F .

4.3 Unsafe regions

The boundary stratification gives a very efficient way of describing n-rectangles “under” a deadlock
that consist entirely of unsafe points:

Let J = {i1,...,in} C {1,...,n + r} denote an n-element index set with 97 (F) = {a =

i v

(af,...;al) = (a}},...,al») = min R/ }, ie, ais a deadlock. For every 1 < j < n, we choose aj

as the “second largest” of the aé»k, le.,

Aj_ ig : Tk s J Tk J
aj = a; with ¢} <aj* <aj for ai* # aj.

We associate to a the n-rectangle U, = [af, ai] x - - x [;7 all.

n-n

Proposition 4 The “half-open” n — rectangle U, \ 0_(Ua) =]a{,ai] x -- ~];T‘-];, al] is unsafe, i.e.,
every dipath in I"™ from a point x € (Ua \ 0—(Ua)) will enter }%

In general, the n-rectangle U, will be considerably larger than the n-rectangles from the graph
algorithm; it will contain several of the n-rectangles in the partition R. This is where we gain in
efficiency: look at Figures 8, 9, 10 and 11. They describe the 3 iterations needed in the following
streamlined algorithm, whereas the first algorithm needed 26 iterations (two for each thirteen
unsafe 2-rectangles).

In analogy with the graph algorithm we can now describe an algorithm finding the complete
unsafe region U C I™ as follows: Find the set D of deadlocks in X and, for every deadlock a € D,
the unsafe n-rectangle U,. Let Fy = F'UJ,cp Ua. Find the set Dy of deadlocks in Xy = X'\ Iy C
X, and, for every deadlock a € Dy, the unsafe n-rectangle U,. Let Fy = F1 U UaeD1 U, etc.

This algorithm stops after a finite number n of loops ending with a set U = F,, and such that
X, = X\ U does no longer contain any deadlocks. The set U \ d_(U) consists precisely of the
forbidden and of the unsafe points.

The example of Figure 8 demonstrates that there may be arbitrarily many loops in this second
algorithm — even in the case of a 2-dimensional forbidden region associated to a simple PV-program:

13



Figure 8: The forbid- Figure 9: First step of Figure 10: Second step Figure 11: Last step of
den region the algorithm of the algorithm the algorithm

Obviously, the “staircase” in Figure 8 (corresponding to the PV term example, see Appendix A)
producing more and more unsafe n-rectangles can be extended ad libitum by introducing extra
rectangles R' to F' along the “diagonal”.

As for the first deadlock algorithm, we show the applicability of the method by exemplifying
it on a toy PV language.

5 Implementation of the geometric algorithm

5.1 The semantics

Let us come back to giving a semantics to the PV language. Now we have a dual view on PV
terms. Instead of representing the allowed n-rectangles, we represent the forbidden n-rectangles
only. First, let T'= Xy | ---| X, (for some n > 1) be a pure term of our language such that all its
subterms are pure as well. We consider here the X; (1 < i < n) to be strings made out of letters
of the form Pa or Vb, (a,b € O). X;(j) will denote the jth letter of the string X;. Supposing
that the length of the strings X; (1 < ¢ < n) are integers /;, the semantics of Prog is included in
[0,01] x -+ x [0,1,]. A description of [Prog] from above can be given by describing inductively
what should be digged into this n-rectangle. The semantics of our language can be described by
the simple rule, [k1,71] X -+ X [kn,70] € [X1 | -+ | Xn]2 if there is a partition of {1,---,n} into
U UV with card(U) = s(a) + 1 for some object a with, X;(k;) = Pa, X;(r;) = Va for i € U and
k’jIO, Tj:lj for j e V.

Now we have to take care of unpure terms. Geometrically, a branching between two sets of
n concurrent processes can be represented in an R"T* with s big enough, with the coordinate-
wise ordering as in the “pure case”. In our language, a branching comes from a choice operator
in a sequential process, so s can be taken equal to one. Formally, the forbidden n-rectangles in
[X0 | | Vit Z | - | Xl are [0,0]% [X |+ | Vi |- | Xale ULXs -+ | Z | -+« | Xl % [0,0].

Things are more complex when it comes to recursive equations. A loop (with the right pre-order
indicating the progress of time) cannot be embedded into an R™ with the partial order induced by
the order on each coordinate. But it can be embedded into a quotient of this partial order. So we
have to change the semantic domain we use to be a pair of a set of forbidden n-rectangles together
with a sequence of n equivalence relations, describing the identifications of the local times (or the
foldings, or the cycles) that the recursive equations enforce.

The semantics of pure terms is unchanged, except we have an extra component in the semantics,
([k1, 7] % - X [knya], (@, - ,0)) € [X1 | - | Xu]2 if there is a partition of {1, n}into UUV
with card(U) = s(a) 4+ 1 for some object a with, X;(k;) = Pa, X;(r;) = Va fori € U and k; = 0,
r; = l; for j € V.. This means that for pure terms, no identification of local times is made so all
relations are empty.

When a recursive call to the same process variable is found X;(j) = X; for some local time
j > 1 then the ith equivalence relation is updated to contain also the equivalence 1R;j.
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5.2 The implementation

A general purpose library for manipulating finite unions of n-rectangles (for any n) has been
implemented in C. A n-rectangle is represented as a list of n closed intervals. Regions (like the
forbidden region) are represented as lists of n-rectangles. We also label some n-rectangles by
associating to them a region. Labeled regions are then lists of such labeled n-rectangles.

Let us look first of the semantics of pure terms. Three arrays are constructed from the syntax
in the course of computation of the forbidden region. For a process named i and an object
(semaphore) named j, tP[i] [j] is updated during the traversing of the syntactic tree to be equal
to the ordered list of times at which process i locks semaphore j. Similarly tV[i] [j] is updated
to be equal to the ordered list of times at which process i unlocks semaphore j. Finally, an array
t[i] gives the maximal (local) time that process i runs.

For all objects a, we build recursively all partitions as in §5.1 of {1,--- ,n} into a set U of
s(a) + 1 processes that lock a and V such that U UV = {1,--- n} and U NV = @. For each
such partition (U, V) we list all corresponding pairs (Pa, Va) in each process X;, i € U. As we
have supposed that in our programs, all processes must lock exactly once an item before releasing
it, these pairs correspond to pairs (tP[7][al;,tV[il[al;) for j ranging over the elements of the
lists tP[¢] [a] and tV[¢][a]l. Then we deduce the n-rectangle in the forbidden region for each
partition and each such pair.

For the unpure terms, we choose first a representation of the sequence of equivalence relations

(Ry, -+, Ry). As they are finitely generated by simple foldings, each of these relations R are
implemented as a list [; (j = 1,---,1) of ordered lists [;, € IN (k= 1,---,m;). The set {{;1|k =
1,---,m;}is exactly an equivalence class in R. We also construct this so that [;; is an ordered list.

The operations min(x,y) and max(x,y) in coordinate ¢ are then quite simple. We determine for x
and y their minimal representatives z,, and y,, under R; using the representation above: thisis a
l;1 for some suitable j or x (resp. y) themselves. Then min(x,y)= min(z.m,, ¥n,). Similarly, we can
determine the maximal representatives z3 and yar of x and y and then max(x,y) = maz (2, yar)-

Now we have to handle extra-coordinates induced by the operator plus. In fact, instead of using
the mathematical representation of n-rectangles, we can describe the branching structure of the
processes in a separate manner. Basically, we represent the pre-order determining the time flow
together with the forbidden regions by a tree whose leaves consist of an n-rectangle together with
an equivalence relation (represented as explained above). Each branching in this tree represents
a plus operation. At the leaves is the semantics of all terms with no plus. In order to do that,
we unfold the syntactic tree (just once as in §3.4.2) of the processes, and each time we traverse
a plus node, we create a branching in this tree. Then at some point we end with a pure term
whose subterms are pure (or contain process variables). We apply the rule for the semantics of
such terms for each leaf, also deriving the equivalence relation for each process.

5.3 Implementation of the second deadlock algorithm

The implementation uses a global array of labeled regions called pile: pile[0],...,pile[n-1]
(n being the dimension we are interested in). The idea is that pile[0] contains at first the initial
forbidden region, pile[1] contains the intersection of exactly two distinct regions of pile[0],
etc., pile[n-1] contains the intersection of exactly n distinct regions of pile[0].

The algorithm is incremental. In order to compute the effect of adding a new forbidden n-
rectangle S the program calls the procedure complete(S,(). This calls an auxiliary function
derive also described in pseudo-code below, in charge of computing the unsafe region generated
by a possible deadlock created by adding S to the set of existing forbidden regions. The resulting
forbidden and unsafe region is contained in pile[0].

complete(S,1)
if S is included into a X in pile[0] return
for i=n-2 to 0 by -1 do pilel[i+1]=intersection(pile[i]\1,S)
pile[0]=union(pile[0],S)
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for all X in pile[n-1] do pile[n-1]=pile[n-1]\X
derive(X)

The intersection of a labeled region R (such as pile[i] above) with a n-rectangle S gives the
union of all intersections of n-rectangles X in R (which are also n-rectangles) labeled with the
concatenation of the label of X with S (which is a region). Therefore labels of elements of regions
in pile are the regions whose intersection is exactly these elements.

Now, derive(X) takes care of deriving an unsafe region from an intersection X of n forbidden
or unsafe distinct n-rectangles. Therefore X is a labeled n-rectangle, whose labels is X1,...,Xn
(the set of the n n-rectangle which it is the intersection of). We call X(i) the projection of X on
coordinate i.

derive(X)
for all i do yi=max({Xj(i) / j=1,...,nX\{X(1)})
Y=[y1,X(1)Ix...x[yn,X(n)]
if Y is not included in one of the Xj complete(Y,(X1,...,Xn))

This last check is done when computing all yi. We use for each i a list ri of indexes j such
that yi=Xj (i) (there might be several). If the intersection of all ri is not empty then Y is included
into one of the Xj. Tt is to be noticed that this algorithm considers cycles (recursive calls) as finite
only.

5.4 Complexity issues

The entire algorithm consists of 3 parts: The first establishes the initial list pile[0] of forbidden
n-rectangles; the second works out the complete array pile — including the deadlocks encoded in
pile[n] —, and the third adds pieces of the unsafe regions, recursively.

Let again n denote the number of processes (the dimension of the state space), and » the
number of n-rectangles. From a complexity viewpoint, the first step is negligeable; finding the
n-rectangles involves C?(a) searches in the syntactic tree for every shared object @ — in each of
the n coordinates.

The array pile involves the calculation of S(r,n) = >_"_, C! intersections, each of them
needing comparisons in n coordinates. Note that these comparisons show which of the intersections
are empty, as well. To find the deadlocks, one has to compare (n coordinates of) the at most C7,
non-empty elements in pile[n] with the r elements in pile[0]. Adding pieces of unsafe regions
in the third step involves the same procedures with an increased number r of n-rectangles. The
worst-case figure S(r,n) above can be crudely estimated as follows: S(r,n) < 2" for all n, and
S(r,n) < nC7T for r > 2n — which is a better estimate only for r >> 2n.

Remark that the algorithm above has a total complexity roughly proportional to the geometric
complexity of the forbidden region. The latter may be expressed in terms of the number of non-
empty intersections of elementary n-rectangles in the forbidden region. This figure reflects the
degree of synchronization of the processes, and will be much lower that S(n,r) for a well-written
program. We conjecture, that the number of steps in every algorithm detecting deadlocks and
unsafe regions is bounded below by this geometric complexity. On the other hand, for the analysis
of big concurrent programs, this geometric complexity will be tiny compared to the number of
states to be searched through by a traversing strategy.

+1

5.5 Benchmarks

The program has been written in C and compiled using gcc -04 on an Ultra Sparc 170E with
496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using the ddi.h library
and the virtual times as provided by the command gethrvtime(). The dynamic data was created
using the standard malloc() function of the bsdmalloc library. No particular optimization was
made here. Timings have been rounded to the nearest hundredth of a second but are not more
precise than a couple hundredths of a second.
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In the following table, dim represents the dimension of the program checked, #forbid is the
number of forbidden n-rectangles found in the semantics of the program, t semantics 1s the time
it took to find these forbidden n-rectangles, t unsafe is the time i1t took to find the unsafe region
and #unsafe is the number of n-rectangles found to be unsafe (they now encapsulate many of the
“unit” n-rectangles found by the first deadlock detection algorithm). These measures have been
taken on a first implementation which does not include yet the branching and looping constructs.

program | dim | #forbid | t semantics | t unsafe | #unsafe
example 2 4 0.020 0 3
stair2 2 6 0.020 0 15
stair3 3 18 0.010 0 4
stair3’ 3 6 0.030 0 0
lipsky 3 6 0.020 0 0
3phil 3 3 0.020 0 1
4phil 4 4 0.030 0 1
5phil 5 5 0.030 0 1
6phil 6 6 0.030 0 1
16phil 16 16 0.030 0.030 1
32phil 32 32 0.030 0.420 1
64phil 64 64 0.040 1.520 1
128phil 128 128 0.100 26.490 1

6 Formal Relationship between the two approaches and Ex-
tensions

This work emerged from a purely algorithmic and geometric point of view. There is one important
step we have not developed here, and which should be fully available in the companion technical
report coming soon. One has to check that the two semantics given for the same language are
consistent indeed, and also that they are both consistent with the standard interleaving semantics
of the PV language. One can prove that the interleaving semantics is an abstraction of the seman-
tics of §3.2, and the semantics of §5.1 is a dual-abstraction of the semantics of §3.2. As a matter
of fact, it is easy to give an adjunction between the “continuous” representation of the semantics,
and the discrete one. It is basically known as the geometric representation functor/singular cube
functor adjunction [Gou95a, May67]. This gives an abstraction relation. But the semantics of §5.1
only retains the holes in the continuous shape, thus the abstraction is dual.

This proposition gives the idea that underlying the second semantics (of §5.1) there is an
abstract domain that can be used for studying general languages. All these forbidden regions
can be generated for all contexts and values of variables (in a concurrent imperative language
for instance). Obviously this should be composed with some other abstract interpretations to
generate a small number of these regions. Details should be worked out elsewhere.

7 Conclusion and future work

We have presented two new algorithms for deadlock detection, including the computation of the
set of states (the unsafe region) that will eventually lead to a deadlock. These algorithms were
based on geometric intuition and techniques. They have been implemented, and the first one shows
good comparison with ordinary reachability search with some state-space reduction techniques.
But due to its complexity, this does not seem to be easily usable for very big programs (except
if combined with clever abstract interpretations) or for a big number of processes (6 or 7 seems
to be a maximum in general for practical use). The second algorithm has shown much better
promise. Its complexity depends on the complexity of the synchronization of the processes, and
not on a fake number of global states, as in most techniques used. In this regard it 1s much more
practical. Dealing with 128 processes is not a problem if they are not synchronizing too much
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(as in the dining philosophers problem), but this is certainly intractable for reachability search
techniques (there are more than 10%° global states in that case). It should be noted also that these
two algorithms could be enhanced by the use of some other well-known technique, like symmetry
and (for the first one) some reduction techniques. As the second algorithm is based on an abstract
interpretation of the semantics, it should be developed for the use on real concurrent languages
in conjunction with other well-known abstract interpretations. This is for future work. Also this
should be linked with a full description of “schedules” and verification of safety properties of
concurrent programs as hinted in [Gun94, Gou95b, FR96] using the geometric notions developed
in this article.

Acknowledgments We used Geomview (see the Web page http://freeabel.geom.umn.edu/software/
download /geomview.html/) to make the 3D pictures of this article (in a fully automated way).

A The examples detailed

You will soon be able to check the implementations and the examples at http://www.dmi.ens.fr/ goubault.

e The dining philosophers’ problem. The source below is for three philosophers, the next one
is for five. The way others of these examples are generated should be obvious from these
examples.

/* 3 philosophers ‘‘3phil’’ */
A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pa.Vc.Va

The output giving the unsafe region 1s then,
(P(b).V(a).V(b) [P(c).V(b).V(c)IP(a).V(c).V(a), [c,0][b,0] [a,0])

/* 5 philosophers ‘‘5phil’’ */
A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pd.Vc.Vd
D=Pd.Pe.Vd.Ve
E=Pe.Pa.Ve.Va

e This is example of Figure 8.

/* ‘‘example’’ */
A=Pa.Pb.Vb.Pc.Va.Pd.Vd.Vc
B=Pb.Pd.Vb.Pa.Va.Pc.Vc.Vd

e This is the classical Lipsky/Papadimitriou example (see [Gun94]) which produces no dead-
lock.

/* ‘lipsky’’ */

A=Px.Py.Pz.Vx.Pw.Vz.Vy.Vw
B=Pu.Pv.Px.Vu.Pz.Vv.Vx.Vz
C=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv
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Figure 12: The Lip- Figure 13: A close-up Figure 14:  Turning Figure 15: Behind, no-
sky/Papadimitriou ex- to a hole in the forbid- around tice the exit in the hole
ample den region

e This is a staircase (worst complexity case for the second algorithm).

e This is a 3-dimensional staircase. Notice that if you declare all semaphores used (a, b, ¢, d,
e and f) to be initialized to 2 (example “stair3”’), there is no 3-deadlock.
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