
Math. Struct. in Comp. Science (1993), vol. 11, pp. 1{000 Copyright c
 Cambridge University PressThe Dynamics of Wait-Free DistributedComputationsEric GoubaultC.N.R.S & Ecole Normale Sup�erieure45 rue d'Ulm75230 PARIS Cedex 05, FRANCEReceived 15 December 19961. IntroductionThe work reported here is concerned with the robust or fault-tolerant implementationof distributed programs. More precisely, we are interested in wait-free implementationson a distributed machine composed of several units communicating through a sharedmemory via atomic read/write registers (described in Section 2). This means, in the caseof two such units, that the processes executed on the two processors (say P and P 0)must be as loosely coupled as possible so that even if one fails to terminate, the otherwill carry on computation and �nd a correct partial result. This excludes all mutualexclusion constructs such as semaphores, monitors etc. Wait-freeness is also intended tohelp solve an e�ciency problem: if one of the processors is much slower than the other,can we still implement a given function in such a way that the fast process will not haveto wait too much for the slow one?This �eld of distributed computing has received up to now considerable attention.Typically, one is interested in implementing a distributed database in which remotetransactions do not have to wait for each others. The kind of functions we have toconsider then is more like coherence relations between the possible local inputs on eachprocessor and the �nal global output of the machine. For instance, when two transactionswish to change the same shared item in the database in an asynchronous manner, onehas to choose which transaction will get the leading rôle, to keep the database coherent.This is the well known consensus problem. Formally, if we represent the values of theshared items by integers then the consensus problem is the input/output relation � �(ZZ � ZZ) � (ZZ � ZZ) de�ned as follows, given that a pair of integers represents a pair oflocal values on P , P 0.For all integers i, (i; i)�(i; i) (a). This means that if P and P 0 start with the same localinput value i, then they must end with the same output value i as well. This correspondsto the fact that they can only agree on the value i in that case.For all i, j, (i; j)�(i; i) (b) : if P and P 0 start with di�erent local input values, say i,j, then P and P 0 can agree on value i.For all i, j, (i; j)�(j; j) (c) : P and P 0 can also agree on value j.What if now one of the two processors fails to terminate? If we represent failure by

E. Goubault 2the symbol ?, then the coherence relation � has to be extended so that it expresses thebehaviour of the system in nasty cases.For all i, (i;?)�(i;?) (d): if P 0 fails then P must terminate and stick to its local valuei. We should also assume for all j, (?; j)�(?; j) (e) : if P fails then P 0 must terminateand stick to its local value j.In fact, it is well known that this relation cannot be implemented in a wait-free man-ner on a shared memory machine with atomic read/write registers (FLP85), whereasthe following approximate consensus, called binary pseudo-consensus in (Her94), has asolution:(a')For all i, j booleans, (i; j)�(i; i), (i; j)�(j; j). This is the same as (a), (b) and (c) (forboolean values 0 and 1).(b')(0; 1)�(1; 0).(c')Same as (d) and (e).We have just slightly relaxed the agreement problem by adding rule (b0) specifyingthat we could agree except for input (0; 1) where a minor error is tolerated (and we havealso restricted to the subdomain f0; 1g � ZZ). We can implement this one in a wait-freemanner, as will be shown in Section 11.1.1.We followhere the geometric view on distributed computation used in recent litteraturein distributed protocols (BG93; Cha90; Her94; HR94; HR95; HS93; HS94; SZ93) and insome ways in recent litterature in semantics of concurrency (Gou95; Gou96; Goult; Pra91;vG91; Gun94). The idea is that wait-free relations exhibit some geometrical properties(Section 9). We give another way of proving this (with respect to the way of M. Herlihy,N. Shavit and S. Rajsbaum), starting with a semantics of a shared memory language,bringing these considerations close to the semantics and language people. We actuallyare �rst interested in the case where we have two communicating units. This case is thesimplest possible and we will be able to discuss in a precise manner all the behaviour ofthese machines.We begin by de�ning a precise language accessing shared memory though atomic readsand writes. After giving a precise de�nition of wait-freeness, we prove that all programswritten in that language are wait-free. In the course of proving this, we will need toseparate out the part of the semantics which deals with control
ow and the one whichdeals with the information
ow (the values of the variables). Wait-freeness is a propertyon the control
ow basically asserting that it should be invariant under all possiblepermutations of processors, at each stage of the execution, hence if one action fails, thereis always a way to escape from failure by rescheduling actions yet to be executed, tobe the ones of the non-faulty processors. This will be explained geometrically as beingsemantics which are essentially contractible spaces.But the topology of the whole semantics can be studied explaining the link between thepossible schedules and the �nal states of the memory. Traversing the set of schedules wehave to go through critical points (determining the interactions between the processes).The fact that these interactions made of reads and writes can only change a small amountof the memory at each time, implies that there is a topological invariant throughout the

Wait-free Dynamics 3
Shared Memory

Processes

WRITEWRITE
READ

P u,v,r... u’,v’,r’... P’

x x’Fig. 1. Sketch of a shared memory machine with atomic read/write registers.dynamics, namely, some form of connectedness is preserved along the executions of aprogram.This has actually a reciprocal. Once again we can treat this exhaustively in the case oftwo processors. Basically, an input/output relation that preserves this kind of topologi-cal invariant we determined beforehand, is the \denotation" of a program in our smallread/write language. This should be seen as some kind of full-abstraction result, andalso a precise statement of the expressive power of wait-free atomic read/write sharedmemory distributed architectures.We derive a di�erent algorithm than the one of (Her94; HS94) based on the participat-ing set algorithm of (Bor95) directly from the semantics of our language (Section 11.3).Its short proof stems directly from its construction. Then, after giving a few examples,we compare both algorithms (Section 11.4) and show that ours gives the programs withthe minimum number of comparisons and accesses to the shared memory for all possibleexecutions, hence produces the most e�cient code for computing any wait-free binaryrelation.We then give a general methodology for dealing with these kinds of results from theoperational semantics to the geometric invariants of computations we might expect.We sketch a possible generalisation of this to the n-processor case. The geometric andsemantic phenomena are not di�erent from the 2-processor case but the combinatorics ismuch more intricate.Finally, we treat a general computability result concerning atomic read/write sharedmemory plus a test&set primitive. It can be shown now that any \�nite" binary relationcan be computed, and a general algorithm for doing so is sketched in Section 14.2. A Simple Asynchronous Distributed SystemWe consider a shared memory machine with two processors such as the one pictured inFigure 1. The shared memory is formalized by a collection of registers V = fx; yg. Proces-sor P (resp. P 0) has a local memory composed of locations u; v; r � � � (resp. u0; v0; r0 � � �).All reads and writes are done in an asynchronous manner on the shared memory. Thereis no con
ict in reads, nor in writes since we ensure that the writes of distinct processorsare made on distinct parts of the shared memory (P is only allowed to write on x, P 0 isonly allowed to write on x0).

E. Goubault 43. SyntaxWe use the following syntax for the shared memory language handling this machine. We�rst have a grammar for instructions I, and then another one for processes P ,I := updatej scanj r = f(r1; � � � ; rn)where c is a local register or a value (in ZZ), r; r1; � � � ; rn are local registers and f is anypartial recursive function.P := Ij case (u1; u2; : : : ; uk) of(a11; a12; : : : ; a1k) : P� � �(an1 ; an2 ; : : : ; ank) : Pdefault : Pj P ;Pwhere r is any local register. We also suppose that(ai1; � � � ; aik) = (aj1; � � � ; ajk)) i = jPrograms are Prog := (P j P) (we are considering programs on two processors only).update is the instruction that writes the local value u (resp. v0) of processor P (resp.P 0) in the shared variable x (resp. x0).scan reads the shared array in one round and stores it into a local register of theprocess in which it is executed. scan executed in P (resp. P 0) stores x0 (resp. x) in v(resp. u0).r = f(r1; � � � ; rn) computes the partial recursive function fcase is the ordinary case statement on any tuple of local registers, with any �nitenumber of branches allowed.; is the sequential composition of processes.j is the parallel composition of processes.4. A �rst Concrete SemanticsWe denote both the shared and local stores by � which is a function from V [([iVi) toZZ, the domain of values. The semantics is given in terms of a transition system generatedby the rules below. The states of the transition system are pairs (fP; P 0g; �) where P(respectively P 0) is the text of the program yet to be executed on the �rst processor(respectively second processor) and � is the value of the global and local memories atthis point of the computation.(update) (fupdate;R;P 0g; �) updateP- (fR;P 0g; �[x u])

Wait-free Dynamics 5(scan) (fscan;R;P 0g; �) scanP- (fR;P 0g; �[v x0])(calc) (f(r = f(r1 � � � rn));R;P 0g; �) calcP- (fR;P 0g; �[r f(r1 : : : rn)])(case)If 9k, 8i, �(ui) = aki ,0BBBB@8>>>><>>>>:0BBBB@ case (u1 : : : uk) of(a11 : : :a1k) : P1� � �(an1 : : :ank) : Pndefault : P 1CCCCA ;R;P 09>>>>=>>>>; ; �1CCCCA caseP- (fPk;R;P 0g; �)Otherwise, 0BBBB@8>>>><>>>>:0BBBB@ case (u1 : : :uk) of(a11 : : : a1k) : P1� � �(an1 : : : ank) : Pndefault : P 1CCCCA ;R;P 09>>>>=>>>>; ; �1CCCCA caseP- (fP ;R;P 0g; �)We also add the obvious symmetric rules where we interchange the rôles of P andP 0. The respective actions are denoted with a P 0 subscript, when needed. We call soloexecution of P (respectively P 0) all paths composed of actions of the form aP , a =scan; update; calc; case (respectively aP 0). A maximal path is a path for which there isno path containing it strictly.5. A �rst AbstractionThe basic idea here is to look only at the input/output relations that a given programinduces. This is the ordinary denotational view on the semantics of the program (CC92).Formally we de�ne an abstract domain of denotations of programs asD = (fPg � ZZ?)2 [(fP 0g � ZZ?)2Note the slight di�erence with a standard (relational) denotational semantics. Insteadof computing relations between pairs of values computed by P and Q, we look at soloexecutions of P and solo executions of Q, i.e. we compute relations between values of Por relations between values of Q. Let us be more formal now.Let pI(fR;Sg; �) = (P; �(u))pO(fR;Sg; �) = (P; �(x))qI(fR;Sg; �) = (P 0; �(v))qO(fR;Sg; �) = (P 0; �(y))Then the abstraction � from the transition systems de�ning the semantics of our

E. Goubault 6language (forming a lattice T with the inclusion of transition systems as order) to thedomain D (which is a lattice with the inclusion of relations as order) is such that� : T - �(T) =[f(pI(s); pO(s0))=s!� s0 is a maximal solo execution of P in Tg[[f(qI(s); qO(s0))=s!� s0 is a maximal solo execution of Q in TgIn fact, we will need two other abstractions of the concrete semantics. The �rst oneis the abstraction of the semantics to the control
ow (�c) and the second one to theinformation
ow (�i). The interplay between these two will enable us to fully characterizethe denotational abstraction �.�c of a transition system generated by the SOS rules of the concrete semantics onlyretains the control part of the states, i.e. is a folding of the transition system on states,such that �c(fP; P 0g; �) = fP; P 0g.The abstract semantics of a term fP; P 0g executed from environment � is denoted[[P; P 0]]�c . We have the following rules for the abstract semantics,(update) [[update;R;P 0]]�c=fupdate;R;P 0g updateP- fR;P 0g [[[R;P 0]]�[x u]c(scan) [[scan;R;P 0]]�c=fscan;R;P 0g scanP- fR;P 0g [[[R;P 0]]�[v x0]c(calc)[[(r = f(r1 � � � rn));R;P 0]]�c=f(r = f(r1 � � � rn));R;P 0g calcP- fR;P 0g [[[R;P 0]]�[r f(r1 :::rn)]c(case)If 9k, 8i, �(ui) = aki ,[[0BBBB@ case (u1 : : : uk) of(a11 : : :a1k) : P1� � �(an1 : : :ank) : Pndefault : P 1CCCCA ;R;P 0]]�c caseP- fPk;R;P 0g [[[Pk;R;P 0]]�cOtherwise, [[0BBBB@ case (u1 : : :uk) of(a11 : : :a1k) : P1� � �(an1 : : :ank) : Pndefault : P 1CCCCA ;R;P 0]]�c caseP- fP ;R;P 0g [[[P ;R;P 0]]�c�i of a transition system generated by the SOS rules of the concrete semantics onlyretains the information part of the states, i.e. �i(fP; P 0g; �) = �.This abstract semantics is given by the following abstract rules.(update)

Wait-free Dynamics 7(�) updateP- (�[x u])(scan) (�) scanP- (�[v x0])(calc) (�) calcP- (�[r f(r1 : : : rn)])for all computable f(case) (�) caseP- (�)These are sound abstractions of the concrete semantics.6. A second Concrete Semantics: HDAIn fact, we do need to know more about how asynchronous the execution can be. Intu-itively, our machine is designed to be entirely asynchronous: there is no locks on any ofthe locations in the shared memory that would make one processor wait for the other.All programs written on this machine are wait-free in that sense (Lyn96) since we can-not emulate active polling because there is no loop construct. This statement should besomehow re
ected in the semantics of the language, an aspect which is missing in the in-terleaving semantics of Section 4, if we want to reason formally about this asynchronousmachine.In order to do this, we use HDA (Pra91; vG91; GJ92; Gou93; Goult) to model thelanguage. Basically we add up 2-transitions (transitions of dimension 2) to the transitionsof dimension 1 already speci�ed by the operational semantics of Section 4 that indicatethat the 1-transitions at its boundaries are executed in a concurrent manner. Formally, 2-transitions have two starting 1-transitions (respectively two ending 1-transitions) whereas1-transitions have one starting 0-transition, or state (respectively one ending 0-transition,or state). Hence we specify a 2-transitionA from the 1-transitions a, b to the 1-transitionsa0, b0 by the notation: a; b A- a0; b0In fact this notation is a direct abstraction of the general de�nition of HDA as foundin e.g. (Goult), that we recall and explain below.De�nition 1. An unlabeled semi-regular HDA is a collection of setsMn (n 2 IN) togetherwith functions Mp;q d0i- Mp�1;qMp;q�1d1i?for all n 2 IN and 0 � i; j � n� 1, such thatdki � dlj = dlj�1 � dki

E. Goubault 8
A

d A

d A

d d A

d d A

d d A

d d A

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

1

0

1

1

d d A

d d A

1

1

0

0

0

0
1
0

d A

d A

1

1

1

1

1

Fig. 2. The 2-transition A and its boundaries(i < j and k; l = 0; 1) and 8n;m n 6= m; Mn \Mm = ;.Elements x ofMp;q (dimx = p+ q = n) are called n-transitions (or states if n = 0). d0i(respectively d1i) are called the start boundary operators (respectively the end boundaryoperators). For a transition such as the 2-transition A 2M1;1 (for instance) denoted as,a; b A- a0; b0the start 1-transitions are a 2M0;1 and b 2M0;1, for instance,d00(A) = ad01(A) = band the end 1-transitions are a0 2M1;0 and b0 2M1;0 with,d10(A) = a0d11(A) = b0The 1-transitions a, b, a0 and b0 have also start and end 0-transitions or states, thatwe can write using the format of last de�nition as,d00(a) = � 2M�1;1d00(b) = �d00(a0) =
 2M0;0d00(b0) = � 2M0;0d10(a) = �d10(b) =
d10(a0) = � 2M1;�1d10(b0) = �One can check on this example that the commutation rule de�ning semi-regular HDA

Wait-free Dynamics 9is indeed veri�ed (as shown on Figure 2) on that particular example, for instance,d10(d01(A)) = d10(b)=
= d00(a0)= d00(d10(A))Let us review the rules for 2-transitions now. First, we need a little lemma on theinterleaving semantics.Lemma 1. Let a = (ft;P 0; s;Q0g; �) t! (fP 0; s;Q0g; �1)b = (ft;P 0; s;Q0g; �) s! (ft;P 0; Q0g; �2)a0 = (ft;P 0; Q0g; �2) t! (fP 0; Q0g; �3)b0 = (fP 0; s;Q0g; �1) s! (ft;P 0; Q0g; �4)with (t; s) 6= (updateP ; scanP 0) and (t; s) 6= (scanP ; updateP 0). Then �3 = �4.Proof. By simple case analysis, using the semantics of Section 4.Basically, this lemma states that all actions but update and scan commute with eachother, making them possible candidates for being run in a truly concurrent manner(hence delimiting 2-transitions). For an update and a scan run in di�erent orders, wemight get di�erent environments at the end. Nevertheless, the rule (interference) willstate that these two actions are run in a truly concurrent manner (no synchronisationbetween them is required by the machine), whereas some other systems (like those whichuse semaphores to handle read/write con
icts) would be speci�ed as sequential historiesonly (no 2-transition indicating asynchrony).(no interference)For 1-transitions a, b, a0 and b0 as in Lemma 1, or more generally, such that �3 = �4,a; b t
 s- a0; b0(interference)For 1-transitions a, b, a0, b0 of the form,a = (ft;P 0; s;Q0g; �) t! (fP 0; s;Q0g; �1)b = (ft;P 0; s;Q0g; �) s! (ft;P 0; Q0g; �2)a0 = (ft;P 0; Q0g; �2) t! (fP 0; Q0g; �3)b0 = (fP 0; s;Q0g; �1) s! (fP 0; Q0g; �4)with t = updateP and s = scanP 0 and such that �3 6= �4 introduce new 1-transitions,�1 = (ft;P 0; Q0g; �2) �! (fP 0; Q0g; �4)�2 = (fP 0; s;Q0g; �1) �! (fP 0; Q0g; �3)then,(1) a; b t
 s- �1; b0

E. Goubault 10(2) a; b s
 t- a0; �2The 2-transition created in (1) is abstracting the asynchronous behaviours of t and s inwhich s terminates after t. The one created in (2) represents the asynchronous executionsin which t terminates after s.7. A second Abstract Semantics: \Cut" semanticsFirst, we are able to generalise �c and �i to deal with 2-transitions.Basically, in the case where t and s are non-con
icting, taking the notations of Lemma1, [[t;P 0; s;Q0]]�c= a; b t
 s- a0; b0 [[[P 0; s;Q0]]�1c [[[t;P 0; Q0]]�2cIn the case where t and s are con
icting, we are generating a unique 2-transition t
 s,but disconnect the executions \above" and \below", since the two histories are di�erentin an essential manner,[[t;P 0; s;Q0]]�c= a; b t
 s- a0; b0 [[[P 0; s;Q0]]�1c [([[t;P 0; Q0]]�2c)0where the only intersection between [[P 0; s;Q0]]�1c and ([[t;P 0; Q0]]�2c)0 is the point fP 0; Q0gy.This is still a sound abstraction of the concrete semantics.As for �i we have to complete the abstract semantics as follows,If t and s are two non-con
icting 1-transitions, we have the following 2-transition,ai; bi t
 s- a0i; b0iwhere ai; bi; a0i; b0i are the respective transitions of the information
ow semantics.And if t and s are con
icting 1-transitions, we have two new 1-transitions,�i1 = (�2) �! (�4)�i2 = (�1) �! (�3)then, we have the two following 2-transitions,ai; bi t
 s- �i1; b0iai; bi s
 t- a0i; �i2Finally the � abstraction can be completed as well. Now we can relate not only inputswith outputs of solo executions but also pairs of inputs to pairs of outputs for executionsof both P and P 0. Formally, still using the pI , pO , qI and qO projection maps of Section5, we de�ne �0 to be the following abstraction of the HDA semantics, de�ned to be invalue in the domain D0 = (ZZ?�ZZ?)2. Let us call p1(s; s0) any 1-path such that the �rsty This \trick" will be explained in Section 12.

Wait-free Dynamics 11
inital cut:

final cut:

P

PP’

P’

P’

P

P’

P

α ’Fig. 3. Initial and �nal cuts of the dynamicsaction of p1 is an action by P from global state s, and that its last action is by P 0 withend global state s0. Similarly p2 starts at s by an action by P 0 and ends in s0 with anaction by P in the following sum,�0(T) =[f(pI(s); qI(s); pO(s0); qO(s0))=there is a 2-path between p1 and p2gThis actually generalises the denotational abstraction � of Section 5.If you think that P or P 0 may fail and give ? as a result then what we wrote as((P; u); (P 0; v); (P; x); (P 0; y)) 2 �0(T) (or (u; v)! (x; y) as a shortcut) is now ((P; u); (P; x)) 2�(T) (or (u;?)! (x;?) as a shortcut).Both of these control
ow abstractions can be represented as follows. If we look at thesemantics as real geometric shapes, we are looking at relations between the source andtarget of the semantics. We call source the initial \cut" of the dynamics, and target the�nal \cut" of the dynamics, as shown in Figure 3.As shown also in Figure 3, the relation induced by the dynamics is clearly a relationbetween two graphs, one is called the input graph, the other, the output graph.Formally, the input and output values are nodes of a graph that we will call the com-patibility graph SZZ = (V;E) de�ned as follows (see Figure 8 for a picture of S[1;M]\ZZ).| its set of vertices is V = fPg � ZZ [fQg � ZZ,| its set of edges is E = f(v1; v2)=v1 = (P; r); v2 = (Q; s)g with the obvious boundaries.And then, it is easy to check that all possible input and output graphs are subgraphsof SZZ. The input graph, the output graph and the relation between these is called thespeci�cation graph.8. Some General Properties of HDATo speak about \geometric" properties of paths we will be needing in the sequel, we needto change our point of view on the objects (HDA) we are manipulating.

E. Goubault 12De�nition 2. A (unlabeled) higher dimensional automaton (HDA) is a R-module Mwith two gradings associated to two boundary operators @0 and @1, that is, consists in:| a decomposition: M= Pp;q2ZZ Mp;q , such that8n; Xp+q=n Mp;q! \0@ Xr+s6=n Mr;s1A = 0| two di�erentials @0 and @1, compatible with the decomposition, giving M a structureof bicomplex: @0 :Mp;q �!Mp�1;q@1 :Mp;q �!Mp;q�1@0 � @0 = 0; @1 � @1 = 0; @0 � @1 + @1 � @0 = 0The connection between this de�nition and the one we had before is stated in thefollowing lemma,Lemma 2. Let M be a semi-regular HDA. Then M de�ned as,| Mp;q is the free R-module generated by Mp;q,| @0 =Pi=p+q�1i=0 (�1)id0i ,| @1 =Pi=p+q�1i=0 (�1)id1i .is a general HDA.Proof. We just check here that @0 � @0 = 0. The other two equations can be veri�edin a similar manner. Let x 2Mp;q ,@0 � @0(x) = Pi=p+q�2i=0 Pj=p+q�1j=0 (�1)i+jd0i � d0j (x)= P0�i<j�p+q�1(�1)i+jd0i � d0j(x) +Pp+q�2�i�j�0(�1)i+jd0i � d0j(x)= P0�i<j�p+q�1(�1)i+jd0j�1d0i (x) +Pp+q�2�i�j�0(�1)i+jd0i � d0j(x)= P0�J�I�p+q�2�(�1)I+Jd0Id0J (x) +Pp+q�2�i�j�0(�1)i+jd0i � d0j(x)= 0Paths of M can be easily de�ned in M . For instance, a (sequential) path from state� 2 Mp;�p to state � 2 Mp+k;�p�k is nothing but a sequence of 1-transitions that wecan picture as follows, p1 2Mp+1;�p d00- �p1 2Mp+2;�p�1 d00 - =d10?...pk 2Mp+k;�p�k+1 d00- =�d10?

Wait-free Dynamics 13thus verifying that the end of pi is the beginning of pi+1 and that the beginning of p1is � and the end of pk is �. Let us call P�;�1 the set of such paths (called 1-paths of pathsof dimension 1 since it only involves sequential executions) from state � to state �.Before looking at these objects, and to their higher-dimensional analogues, we have torestrict to a convenient case,Lemma 3. A HDA M is such that M = Lp;qMp;q (meaning that (p; q) 6= (p0; q0))Mp;q \Mp0;q0 = 0) if and only if for all p 6= q, Mp;�p \Mq;�q = 0. Such HDA will becalled acyclic.Proof. Suppose that there are two distinct pairs of indexes (p; q) and (p0; q0) such thatMp;q \Mp0;q0 6= ;. Let A 2 Mp;q \Mp0;q0 . Then let x = d0p+q�1 � � � � � d01 � d00(A). Asp+ q = p0+ q0 (one of the axioms of HDA) x 2Mq;�q and x 2Mq0 ;�q0 . As p+ q = p0+ q0and (p; q) 6= (p0; q0), we have q < q0 or q0 < q but not q = q0.Acyclic HDA M have the property that any state is in a unique submodule Mp;�p ofM and that any path from a point � 2Mp;�p and � 2Mk+1+p;�p�k�1 has length k.There is now a correspondance between these paths and a computable object in M ,for M acyclic,Lemma 4. The R-module generated by elements x = (x1; � � � ; xk) such that there is a� 2 R with,| xi 2Mp+i;�p�i+1,| @0(x) = @1(x) + �(� � �),is isomorphic to the R-module generated by P�;�1 .Proof. Let N be the �rst module de�ned in the lemma and de�ne the linear function,f : R�Mod(P�;�1) ! N(x1; � � � ; xk) ! (x1; � � � ; xk)First we prove that the image of f is indeed in N . Let y = Pmi=1 �i(xi1; � � � ; xik) with(xi1; � � � ; xik) 2 P�;�1 be an element of R � Mod(P�;�1). Notice �rst that for any path(x1; � � � ; xk) 2 P�;�1 we have, if x = f(x1; � � � ; xk),@0(x) � @1(x) = �+ @0(x2)� @1(x1) + � � �+ @0(xk)� @1(xk�1)� �= �� �Therefore, @0(y) � @1(y) = Pmi=1 �i(@0 � @1)(f(xi1; � � � ; xik))= (Pmi=1 �i)(�� �)f is an isomorphism since it is de�ned as the identity map.Nevertheless, we do not have R�Mod(P�;�1) isomorphic to the R-module P�;�1 de�nedas being the sub-R-module ofMp+1;�p�� � �Mp+k;�p�k+1 of x such that @0(x) = @1(x)+�(���) since these are generated by all paths, even the undirected ones, between � and�.All this can be generalised in higher dimensions in a easier way. Intuitively, a n-pathis a path where n processors are acting together asynchronously. Basically, these will be

E. Goubault 14
X

p

p

1

2

α

β

(i) (ii)

X

Y

X=three faces above and behind

Y=three faces in front and below

a

b

cFig. 4. A surface within two paths p1 and p2, and a hypersurface (the cube) between twosurfaces X and Ysome kind of sequences of n-transitions. These can be de�ned formally by considering Mdirectly, because from dimension 2 on, there is no need to direct surfaces.De�nition 3. Let n � 1 and M be a acyclic HDA. Let p1 and p2 be two (n � 1)-pathsbetween two (n � 2)-paths � and � (or if n = 1, p1 and p2 are just two states).Then the R-module of n-paths between p1 and p2 is the R-module composed of elementsx such that there exists � 2 R with,@0(x) = @1(x) + �(p1 � p2)This R-module is named Pp1 ;p2n (M).This means that, supposing pi = (p1i ; : : : ; pki) and p1i 2 Mn�1+s;�s, its elements x 2P p1;p2n (M) are x = (x1; : : : ; xk�1) such that| xs 2Mn+s;�s,| @0(xi+1) � @1(xi) = pi+11 � pi+12 2Mn+i;�i�1,| @0(x1) = p11 � p12,| �@1(xk) = pk1 � pk2.The basic idea is that a n-path (or hypersurface of dimension n) is enclosed at eachtime i within the ith stage of p1 and the ith stage of p2, as shown in Figure 4.Now we can de�ne what it is for a HDA to be wait-free. Intuitively, a program composedof n processes in parallel is wait-free if and only if the program terminates with a partialresult even if t (t � n � 1) processes fail. In the case of two processors, it is easy to seethat this can be characterized in a geometric manner (see Figure 5). Basically, mutualexclusions are not wait-free whereas asynchronous executions are.This can be characterized in terms of n-paths,De�nition 4. A HDA M is wait-free if and only if for all 2 � t � n, for all (t� 1)-pathsp and q (p 6= q) between � and �, Pp;qt 6= 0.This means that all executions are in fact part of asynchronous executions of t (t � n)processes (2 � t � n). Another way of seeing that is to take p to be any executionand q an execution in which the program of some process Pj is entirely executed before

Wait-free Dynamics 15
P1 P2 fails P2 failsP1Fig. 5. Geometry of non-wait-free with respect to wait-free programs

Fig. 6. Elementary reschedulings of actionsthe programs of Pi, i 6= j. Then M wait-free means that the execution can always bereordered (by the permutations of actions speci�ed by an element of P p;qt , see Figure6) so that Pj is executed �rst. Therefore, if Pj is the only non-faulty process, it willterminate even if the others fail at some point.Then the following characterization is useful,Proposition 1. Let M be a connected acyclic HDA of dimension n. Then M is wait-free if M is (n � 1)-connected, or if M is such that all its homology groups Hk(M) =Ker(@0 � @1)=Im(@0 � @1) (k � n� 1) are 0.Proof. The implication between the last two statements is Hurewicz theorem (May67;GZ67).We prove now that M is wait-free if all its homology groups up to dimension n � 1 aretrivial.Suppose M is not wait-free. Then there exist two (t� 1)-paths p and q (p 6= q) betweensome � and some � such that P p;qt = 0 (2 � t � n), by De�nition 4. We show now thatp� q 2 Ht(M) hence (as p � q 6= 0) Ht(M) 6= 0.

E. Goubault 16First, p � q 2 Ker(@0 � @1). To prove this write p = (p1; � � � ; pk) and q = (q1; � � � ; qk)(acyclicity implies that p and q have the same length). Then,(@0 � @1)(p� q) = (@0 � @1)(p) � (@0 � @1)(q)= �� � � (�� �)= 0Then we prove that p� q 62 Im(@0 � @1).Suppose the contrary, i.e. p� q = (@0 � @1)(A) for some A. This proves A 2 P p;qt hencea contradiction since Pp;qt = 0.Basically this says that M is wait-free if for any two t-paths p and q between � and�, we have p and q homotopic. This also implies that homotopic t-paths (or t-schedules(Gou95)) start at the same global state and end at the same global state, therefore,t-schedules characterize the possible outcomes of a distributed computation.We need some general statements about k-connectedness, which will be useful in thesequel.Lemma 5. Let A and B be two connected and k-connected shapes such that A \B isconnected and k-connected (k � 1). Then A [B is connected and k-connected.Proof. By Hurewicz theorem, being connected and k-connected is equivalent to beingconnected and simply-connected and having all its homology groups up to k being trivial.By Seifert/Van Kampen's theorem (GZ67), A [B is connected and simply-connected.We can now prove k-connectedness of A[B by looking only at its homology groups. Weuse the Mayer-Vietoris exact sequence (ML63),� � � - Hk(A \B) - Hk(A)�Hk(B) - Hk(A [B) - Hk�1(A \B) - � � �All terms appearing in this exact sequence (at the right of the �rst � � �) are equal to 0except for Hk(A [B), Hk�1(A [B) etc. that we do no know yet. The exactness of thesequence above force them to be also equal to 0.9. Some General Properties of the Second SemanticsTo be able to understand what the language we are considering can compute, we need anaccurate picture of the semantics of every term (at least modulo some kind of \directedhomotopy" (Gun94)).First, we need a general remark on the SOS-style de�nition of programming languages.Basically, when de�ning a language by SOS rules we only consider those states which arereachable from the initial state i = (fP;Qg; �) by an increasing path. Therefore, if theinitial state is in M0;0 and if x is another state of M then there is at least one 1-pathp = (p1; � � � ; pk) from i to x therefore Mk;�k contains x (others might as well contain xthough). This also implies that the semantics of any term is a connected space.Lemma 6. Both the concrete HDA semantics of Section 6 and the abstract control
owsemantics of any term from any environment are acyclic.Proof. De�ne the size � of a state (fP;Qg; �) as the pair of the numbers of ; plus the

Wait-free Dynamics 17numbers of case in the strings P and P 0. Obviously s = s0) �(s) = �(s0). Then it iseasy to show on the semantics that for all actions a(fP;Qg; �) a- (fP 0; Q0g; �0)we have �(fP;Qg; �) = �(fP 0; Q0g; �0) + (1; 0) or �(fP;Qg; �) = �(fP 0; Q0g; �0) + (0; 1)with the pointwise addition on IN2. Therefore the execution of a program looks like anunfolding (because of the actual value of �) of a sub-grid of IN2. This means that allpaths from the initial state to any state x has the same length and that a state cannotbelong to Mp;�p and Mq;�q with p 6= q. Hence M is acyclic by Lemma 3.Then,Lemma 7. There is always a unique solo execution of P (respectively of P 0) from anyglobal state (fP;Qg; �). It is denoted p(fP;Qg;�) (respectively q(fP;Qg;�)).Proof. This amounts to proving that each process written in our language is purely de-terministic. We prove that given a state s = (fP;Qg; �) there cannot be two 1-transitionsa and b of P such that, s0��b�s @@aR s00with s0 = (fP 0; Qg; �0) di�erent from s00 = (fP 00; Qg; �00). Looking at the standard se-mantics, we have two cases,| a 6= case and b 6= case. Then a = b and P 0 = P 00. Each of the rules (update), (scan)and (calc) imply �0 = �00 thus s0 = s00.| a = b = case. Then, P = 0BBBB@ case (u1 : : :uk) of(a11 : : : a1k) : P1� � �(an1 : : : ank) : Pndefault : P 1CCCCA ;Rand P 0 = P 00 = Pk;R (for some k) or P 0 = P 00 = P ;R. Furthermore the rule (case)implies that �0 = �00 hence s0 = s00.The HDA semantics still allows us to speak of solo executions, but also allows us toreason about 2-processor executions (or here, global executions).Theorem 1. The abstract control
ow semantics of Section 7 of any term, for any initialenvironment, is wait-free.To prove this, we �rst need a lemma describing the intersection of the semantics oftwo programs.

E. Goubault 18Lemma 8. Let P1 and P2 be two programs, �1 and �2 two contexts. Then,[[P1]]�1 \ [[P2]]�2 = [(x;�)2[[P1]]�1\[[P2]]�2 [[x]]�Proof. By Lemma 7, given any state s = (fa;P 0; b;Q0g; �) there are unique soloexecutions by P or by Q from it, hence, looking at the rules (no interference) and(interference) we have two cases,| (a; b) 6= (scan; update) and (a; b) 6= (update; scan) then there is a unique 2-transitiont that can be �red between the solo executions ps and qs. We notes t- s0| (a; b) = (scan; update) or (a; b) = (update; scan) then two 2-transitions t1 and t2 canbe �red between ps and qs. We also note (for i = 1; 2),s ti- s0Using this new notation (generalizing the notation on 1-transitions) the proof goes asfollows.Let (x; �) t- (x0; �0) be a transition (of any dimension) in [[P1]]�1\ [[P2]]�2, then (x; �) 2[[P1]]�1 \ [[P2]]�2 and t 2 [[x]]�.Reciprocally, let (x; �) 2 [[P1]]�1 \ [[P2]]�2 and t 2 [[x]]� and (y; �0) t- (z; �00). There isalso a path from (x; �) to (y; �0). As (x; �) 2 [[P1]]�1 (respectively (x; �) 2 [[P2]]�2) thenthere is a path from (P1; �1) (respectively (P2; �2)) to (x; �) hence to (y; �0). Thereforet 2 [[P1]]�1 and t 2 [[P2]]�2.Then the proof of Theorem 1 is as follows,Proof. We prove that for all �, [[x]]�c is (n�1)-connected and even more, is contractible,by induction on the size �(x). By and Proposition 5 this will entail that for all programsx, its semantics is wait-freez.The ground case is �(x) = 0 then [[x]]�c = ; which is contractible.Now take x such that �(x) > 0 and suppose the result hold for all x0 started in anyenvironment �0, with �(x0) < �(x).�(x) > 0 hence we have the following three case,(1) x = fa;P 0; �g.(2) x = f�; b;Q0g.(3) x = fa;P 0; b;Q0g.In cases (1) and (2), [[x]]�c is the union of the segment x a- x0 and of [[x0]]�0c . �(x0) < �(x)hence [[x0]]�0c is contractible. The segment t is also contractible. The intersection of bothspaces is the point x0. As [[x]]�c is connected we can choose any base point for homotopygroups as they are all isomorphic. Choose as base point x0. Any (even higher-dimensional)z To relate to the ordinary notion of wait-freeness, we only need to prove that �c(x) is (n�1)-connected,since the only important thing to know is if we can reschedule actions, no matter the actual values inthe memory are.

Wait-free Dynamics 19
(x ,)

(x ,)

(x ,)

ρ

ρ

ρ
1

1

3 3

2 2Fig. 7. the relative con�guration between [[x1]]�1, [[x2]]�2 and [[x3]]�3loop is a composition of loops in t or in [[x0]]�0c , each of which is contractible to the basepoint. Hence, every loop is homotopic to x0 in [[x]]�c, and [[x]]�c is contractible.Case (3) is more complex. We have a priori two subcases,(i) (a; b) 6= (scan; update) and (a; b) 6= (update; scan).(ii) (a; b) = (scan; update) or (a; b) = (update; scan).In case (i), the beginning of the dynamics at (x; �) looks like,(x1; �1)��a� @@bR(x; �) t (x3; �3)@@bR ��a�(x2; �2)Now [[x]]�c is the union of t (a square, hence contractible), of [[x1]]�1c and of [[x2]]�2c . Both[[x1]]�1c and [[x2]]�2c are contractible by the induction hypothesis since �(x1) < �(x) and�(x2) < �(x). Now, by Lemma 8, the intersection of [[x1]]�1 and [[x2]]�2 is a union of some[[x0]]�0. [[x3]]�3 is one of these since it is obviously in both [[x1]]�1 and [[x2]]�2. But we knowthat the execution is all tied up within sub-grids of IN2 (when you do not look at theenvironments). So [[x3]]�3 has to be the maximal element of the set of all these [[x0]]�0,hence should contain them all (look at Figure 7).By the induction hypothesis, [[x3]]�3c is contractible, so U = [[x1]]�1c [[[x2]]�2c is contractible(Lemma 5). Now, U and t have only in common two connected segments, so once again,as t is contractible, [[x]]�c = t [U is contractible.Case (ii) is just about the same. The only di�erence is that the beginning of the control
ow semantics is the union of a square, of [[x1]]�1c and of [[x2]]�2c such that,| by the induction hypothesis, [[x1]]�1c is contractible,| by the induction hypothesis, [[x2]]�2c is contractible,| the square t is contractible,

E. Goubault 20
(P,1) (P,2) (P,3) ... (P,M)

(P’,1) (P’,2) (P’,M)Fig. 8. The input graph for values in [1;M] \ ZZ.| the intersection of [[x1]]�1 and [[x2]]�2 is a point.Hence [[x]]�c is contractible as the amalgamated sum of two contractible shapes (t[[[x1]]�1cand [[x2]]�2c) above a contractible subshape.10. Geometric properties and impossibility resultsSpeci�cation graphs represent the relation computed by programs written in our wait-free language. Conversely, given a binary relation, can we determine whether it can beimplemented in our language (that is, whether it is a wait-free binary relation or whetherit is the \denotational" semantics of some program in our language)? The answer is yes,and could be proved as a particular case of a general theorem by M. Herlihy and N.Shavit (HS93). The criterion in our case is as follows. Suppose that P and P 0 ran alone(i.e. with the other process not being �red in parallel) are the identity functions on theirinputs, and that the allowed initial states are such that �(x) = �(y) = ?, then,Theorem 2. Let fe1; : : : ; ekg be the image of a segment e = ((P; u); (P 0; v0)) of the inputgraph under the relation �, i.e. the set of segments e0 such that e�e0. Then e1; : : : ; ek isa path from (P; u) to (P 0; v0) in the output graph.Proof. We do know pretty much of the shape of the dynamics in our little language(thanks to the detailed proof of wait-freeness, Theorem 1). The only states at which wehave a choice between two behaviours are states like,(1) (fscanP ;P 0; updateP 0 ;Q0g; �),(2) (fupdateP ;P 0; scanP 0 ;Q0g; �).At each of these, we may unfold the \�lled-in subgrid of IN2" which would normally bethe shape of the remaining of the dynamics into two of these (as you choose between theupper face t1 or the lower face t2 in the semantics). Therefore, at each of these \criticalpoints" we have a kind of a \paper clip" shape in the control
ow semantics (see Figure9). These shapes may appear anywhere on the underlying grid. This might give \multiplepaper clip" as in Figure 10.A multiple paper clip separates out layers which we can index as in Figure 10 from level1 to level n going from the P edge to the P 0 edge (the index is based on the size of the P 0process). Looking at the �nal cuts of the dynamics we see that each cut is a segment, sincethe dynamics is wait-free and 2-dimensional and that each of the segments correspondbiunivoquely (the layers are all distinct) to the di�erent possible �nal environments, andto the homotopy classes of 1-paths (see Figure 10).

Wait-free Dynamics 21
(scan,update)

Fig. 9. The \paper clip" shape
(scan,update)

(P,u)

(Q,v)(P,u’)

(Q,v’)
(P,u’’)

(Q,v’’)

1

2

3

P

P’Fig. 10. Multiple paper clip

E. Goubault 22Now we have characterized the control
ow by exhibiting the essential schedulers (thehomotopy classes of 1-paths(Gou95)), we have to see how the contents of the environmentis changed when looking at di�erent schedules (i.e. when looking at di�erent histories ofinteractions between P and P 0).Let us carry on with our assumption that we have n di�erent layers labelled from 1 ton. Layer i + 1 is separated from layer i by a critical point ci (with environment �i) oftype ni being 1 or 2. The semantic rule dealing with scan and update operations showsus that the action on the environment is as follows,(1) ni = 1. Then the new environment �0,(a) at the start of layer i + 1 (execution of scanP before updateP 0) is such that�0(x) = �i(x), �0(y) = �i(v0), �0(u) = �i(u), �0(v) = �i(y), �0(u0) = �i(u0) and�0(v0) = �i(v0),(b) at the start of layer i (execution of scanP before updateP 0) is such that �0(x) =�i(x), �0(y) = �i(v0), �0(u) = �i(u), �0(v) = �i(v), �0(u0) = �i(u0) and �0(v0) =�i(v0).(2) ni = 2. Just exchange the local variables of P and P 0 in subcases (a) and (b).Therefore, if we call (�i; �i) the segment which is the �nal cut semantics for layer i, wehave the following equations,(1) if ni = 1 then the di�erence between the environments of layer i and layer i + 1can only reside in the variables local to P and as there is no other (scan; update)con
ict after ci, there are only local computations to P and P 0 remaining, therefore�i+1 = �i: only the variables of P may change in layer i + 1 with respect to layer i(by induction on the information
ow semantics),(2) if ni = 2 then the di�erence between the environments of layer i and layer i + 1 canonly reside in the variable local to P 0 (by looking at the information
ow semantics),therefore �i+1 = �i.Therefore, the n segments in the �nal cut semantics form a connected graph. As P 0 cannotmodify P 's variables nor P can modify P 0's variables (reasoning on the information
owsemantics), two of the points in this connected graph are the solo executions of P andP 0 respectively (corresponding to the schedules P ;P 0 and P 0;P respectively).This geometric condition is satis�ed for the pseudo-consensus relation as one can seeby looking at the speci�cation graph of Figure 11.The situation is not quite the same with binary consensus (Figure 12). An easy in-spection shows that the image of the segment ((P; 0); (P 0; 1)) is a set of two disconnectedsegments, thus violating the result of Theorem 2. Therefore, binary consensus cannotbe implemented in a wait-free manner. The intuition behind this result is quite simple.Consensus requires that a process can tell whether it is the �rst or last to choose, becauseotherwise there is no way to be sure that the two processes will agree on any value. Thismeans it needs a synchronization, a break of the connexity of the cuts of the dynamics(Gou96). This is of course impossible in a wait-free language.Similarly, if the input values are given locally to the processes as we supposed in The-orem 2, parallel or (or ordered binary consensus, see the speci�cation graph, Figure 13)

Wait-free Dynamics 23
∆

∆

∆

∆

(P’,0)(P,0)

(P,1) (P’,1) (P,1)

(P,0) (P’,0)

(P’,1)Fig. 11. The speci�cation of the binary pseudo-consensus.
(P,0)

(P,1) (P,1)

(P,0)

∆

∆

∆

∆

(P’,0)

(P’,1)

(P’,0)

(P’,1)Fig. 12. The speci�cation of the binary consensus.cannot be implemented in a wait-free manner. There is though a wait-free solution forparallel or if the input is stored in the shared memory right from the beginning:Prog = P j QP = update; Q = update;scan; scan;case v of case u of1 : u = 1;update 1 : v = 1;updatedefault : update default : updateThe connectivity condition is indeed preserved throughout the execution of parallel or.But starting with a non-empty environment implies that there might just be no relationbetween solo executions and 2-schedules.11. Geometric properties: the reciprocalTo complete our \full abstraction" theorem, we start o� with a relation � betweeninput/output values and pairs of inputs/pairs of outputs.

E. Goubault 24
(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆

Fig. 13. The speci�cation of parallel or.
(P,x)

(P,x’)

(P,x)

(P’,y’)

(P’,y)

(P’,y’)Fig. 14. Subdivision of a segment into three segments.11.1. Usual CaseWe suppose here that all paths image by � of any segment of the input graph are madeof distinct segments (one should say, oriented segments, as we will see later on). We canalso suppose here that � restricted to vertices is the identity relation.11.1.1. Subdivision of a segment into three segments The program Prog = P [�] j P 0[�]with P and P 0 de�ned below (being programs with one hole [] in which we can plug anyother program) implements the speci�cation graph of Figure 14 (the segments not beingpictured are mapped onto themselves).P = update; P 0 = update;scan; scan;case (u; v) of case (u; v) of(x; y0) : u = x0;update; [] (x; y0) : v = y;update; []default : update default : updateProof. Using the semantics, we have the following three possible 1-schedules (upto homotopy), since the only possible interactions are between the scan and updatestatements,

Wait-free Dynamics 25
(P,x) (P,x)

(P,x)

(P,x)

(P,x)
1

2

n-1

n

n

3

2

(P’,y’)

(P’,y)

(P’,y)

(P’,y)

(P’,y)Fig. 15. Subdivision of a segment into a path.(i) Suppose the scan operation of P is completed before the update operation of P 0 isstarted: P does not know y so it chooses to write x. Prog ends up with ((P; x); (P 0; y)).(ii) Symmetric case: Prog ends up with ((P; x0); (P 0; y0)).(iii)The scan operation of P is after the update of P 0 and the scan of P 0 is after theupdate of P . Prog ends up with ((P; x0); (P 0; y)).The semantics of this program from the segment (x; y0) has the \multiple paper clip"shape of Figure 10.Example 1. The binary pseudo-consensus whose speci�cation graph is given in Figure11 is implemented by this program with x = 0, x0 = 1, y = 0, y0 = 1.11.1.2. Subdivision of a segment into a path The programProg = P (x1; y1; � � � ; xn; yn) j P 0(x1; y1; � � � ; xn; yn)with P and P 0 de�ned below, implements the speci�cation graph of Figure 15.P (x1; y1; � � � ; xn; yn) = P (x1; y1; xn; yn)[P (xn; yn�1; � � � ; x2; y1)]P 0(x1; y1; � � � ; xn; yn) = P 0(x1; y1; xn; yn)[P 0(xn; yn�1; � � � ; x2; y1)]where P (x1; y1; xn; yn) j P 0(x1; y1; xn; yn) is the program of last section with x = x1,y = y1, x0 = xn and y0 = yn.Proof. The idea is to subdivide the segment (x1; yn) in a recursive manner (see Fig-ure 15). First subdivide (x1; yn) into f(x1; y1); (xn; y1); (xn; yn)g by using the programP (x1; y1; xn; yn) j P 0(x1; y1; xn; yn). Then subdivide recursively (xn; y1) into the path oflength n�1 (xn; yn�1; : : : ; x2; y1) using P (xn; yn�1; : : : ; x2; y1) j P 0(xn; yn�1; : : : ; x2; y1).Prog works since (as all the segments (xi; yi) are distinct) there is no interference be-tween P (x1; y1; xn; yn) and P 0(xn; yn�1; : : : ; x2; y1) nor between P 0(x1; y1; xn; yn) andP (xn; yn�1; : : : ; x2; y1).

E. Goubault 26
a

b

a

b

cFig. 16. Example of a speci�cation graph.11.2. Reduction to the Usual Case11.2.1. Rotation of the speci�cation graph We wish here to construct part of the codein charge of ensuring that we are left with solving a speci�cation problem � such that(u;?)�(u;?) and (?; v)�(?; v).Suppose (u;?)�(f(u);?) and (?; v)�(?; g(v)). By Church's thesis, f and g are par-tial recursive functions. Then the program Prog = P (f) j P 0(g) with P (f) and P 0(g)de�ned below solves the speci�cation � if and only if P j P 0 solves the speci�cation �0with (f(u);?)�0(f(u);?), (?; g(v))�0(?; g(v)) and (f(u); g(v))�0(f(u0); g(v0)) whenever(u; v)�(u0; v0). P (f) = (u = f(u)); P 0(g) = (v = f(v));P P 0Proof. Using the standard semantics, we can show that the line of code before thecalls to P and P 0 only acts on the local memory of each processor, hence there is noother action than the one deduced from the purely sequential behaviour of P (f) andP 0(g) respectively.11.2.2. Minimal unfolding of the output graph We now suppose that we have to solve aspeci�cation problem with a relation which is such that it is the identity relation whenrestricted to the vertices of the graph. We ful�ll now the hypotheses of Theorem 2.Let e = ((P; u); (P 0; v)) be any segment of the input graph, and Ge be the subgraphof the output graph (connected by Theorem 2), image of e by the speci�cation relation�. Let Ge be the directed graph generated by Ge where each segment has an inverse.To exemplify the whole process described in this section, look at Figure 16 for the spec-i�cation graph corresponding to a segment e = (a; b) (the graph Ge is at the right-handside of the picture), and to the left of Figure 17 for a picture of Ge. An unfolding of Geis any path p from (u;?) to (?; v) in Ge such that p traverses all segments of Ge. Theminimal unfolding is the shortest of such paths. Its interest lies in the fact that fromthere we will be able to generate a code for P and P 0 that will implement this subpart ofthe speci�cation graph. We will see in next section and in Section 11.4.2 that the lengthof this code is linearly related to the length of this unfolding, hence the usefulness of�nding the shortest path to get the most e�cient code.An algorithm for determining such a minimal unfolding is based on a breadth-�rsttraversing strategy (Sed88) of the graph, the traversing being complete when the crite-rion \having gone through all non-oriented segments and ending at (?; v)" is met. For

Wait-free Dynamics 27
c a

b

a

a

b

c 1

2

3Fig. 17. Minimal unfolding (right) of the graph (left).
(P,0) (P,0)

(P’,1) (P’,1) (P,1)

(P’,0)Fig. 18. A speci�cation graph.instance, this algorithm constructs the minimal unfolding of Ge which is pictured at theright of Figure 17.Example 2.| We can carry on the example speci�ed in Figure 16, setting for instance a = (P; x),b = (P 0; y0) and c = (P 0; y) the program implementing the speci�cation (i.e. thesubdivision of the segment (a; b) into the minimal unfolding ((a; c); (c; a); (a; b))) isProg = P j P 0 with,P = update; P 0 = update;scan; scan;case (u; v) of case (u; v) of(x; y0) : u = x;update (x; y0) : v = y;updatedefault : update default : update| Consider the speci�cation graph pictured in Figure 18. The minimal unfolding isshown in two di�erent ways in Figure 19. Using the result above, the code for im-plementing it is Prog = P j P 0 with P = P (0; 0; 0; 0)[P (0; 0; 1;0)[P (1; 1; 1; 0)]] andP 0 = P 0(0; 0; 0; 0)[P 0(0; 0; 1; 0)[P 0(1; 1; 1; 0)]].11.3. An algorithmThe speci�cation graph is given. The algorithm terminates with an error (if the relationspeci�ed is not wait-free) or with the text of the two processes that implements therelation. The algorithm is as follows,| Determine the rotation code (Section 11.2.1),| For all segments e = ((P; u); (P 0; v)) of the input graph, do,

E. Goubault 28
1

6

7
3

4

5
2 =

(P,0)

(P,1)

(P,1)

(P,0)

(P’,0)

(P’,0)

(P’,0)

(P’,1)Fig. 19. The corresponding minimal unfolding and minimal path.{ determine the connected subgraph Ge of the output graph, image of e under thespeci�cation relation �,{ determine the minimalunfolding ((P; x1) : : : (P; xn); (P 0; yn)) ofGe (Section 11.2.2),{ The program up to that point isProge = P (x1; : : : ; yn) j P 0(x1; : : : ; yn)of Section 11.1.2,| Mix the code for all segments.We saw all the material needed in the previous sections except the \mixing" of thecode for all segments. As a matter of fact, we have shown how to derive a code for thespeci�cation of just one input (a segment). Now we have to mix the codes for all inputs.The idea here is quite simple:Mix(Prog1; P rog2) (Prog1 = P1 j P 01, Prog2 = P2 j P 02)is essentially a program whose processes are Mix(P1; P2) and Mix(P 01; P 02) such that alltheir case entries are the union of the case entries of P1 and P2 (respectively of P 01 andP 02). Formally, Mix is an operation on processes that can be de�ned inductively whenapplied to the processes that subdivide segmentsif (x; y0) 6= (X;Y 0),Mix(P (x; y; x0; y0)[P1]; P (X;Y;X0; Y 0)[P2]) =update;scan;case (u; v) of(x; y0) : u = x0;update;P1(X;Y 0) : u = X 0;update;P2default : update11.4. Comparison with related work11.4.1. The participating set and Herlihy's algorithm The participating set algorithmaims at solving the simplex agreement task of (Her94), that is, a generalization to anynumber of processors of the speci�cation graph of Figure 14.The intuition behind this algorithm is to subdivide all segments of the input graph, in

Wait-free Dynamics 29
etc.

i=1

i=2Fig. 20. Herlihy's iterated subdivision on the binary sphere.a uniform manner, and enough so that all the subdivisions of the segments we need toimplement the relation can be deduced from it. As a matter of fact, if we have subdivided asegment into N segments, then all subdivisions intoM segments,M � N can be deducedfrom it by just identifying the points in the �ner subdivision which are not needed. Thee�ect of the iterated participating set algorithm is (as shown in Figure 20) to create atiteration i a subdivision of all segments into 3i segments.11.4.2. Complexity matters As one might have already noticed, we have a strong rela-tionship between the length of the minimal unfoldings, the number of times the programhas to test the values of its variables, and the number of reads in the main memory. Lett(e) be the maximum number of tests that Prog has to make for all executions startingat segment e. Let s(e) be the maximumnumber of scan that Prog has to execute for allexecutions starting at segment e. Then, calling p(e) the minimal unfolding of Ge,Lemma 9. s(e) = t(e) = length(p(e)) � 12Proof. Looking at the algorithm of Section 11.3, we see that all paths are recursivelydecomposed using the programs of type P (x; y; x0; y0)[] j P 0(x; y; x0; y0)[] such that atiteration z, we have subdivided e into a path of length 1 + 2z. The cost in terms of testsand accesses to the main memory of each iteration is one. This entails the result.Whereas in case of Herlihy's algorithm we have up to 3 �maxe(s(e)) accesses to theshared memory. In the case when all segments are mapped onto a segment except for one(like the one of Figure 21), the cost of computation is the same for all inputs and can bequite enormous.

E. Goubault 30
etc.

(Q,y’)

(Q,y’)

(P,x)(P,x)

Fig. 21. The worst complexity case for a speci�cation graph.The algorithm proposed in this article is optimal in the sense that it minimizes s(e)and t(e) for all e whereas Herlihy's one subdivides all segments a power of three timesuniformly.Notice that the maximal complexity of the computation of wait-free relations on[0;M] \ ZZ is not very high and is attained by our implementation for the speci�ca-tion graph shown in Figure 21 (for all input segments). It is such that for all inputs e,s(e) = t(e) is asymptotically �M2 with 12 � � � 1.Proof. In all Ge there are M2 segments. Hence an unfolding of Ge has at least M2segments and at most 2M2 segments. We use Lemma 9 to conclude.12. A General MethodologyWhat we have done in dimension two is a good example of what we could try to do onmore general architectures.First of all, we have to explain the unfolding in the control
ow semantics. To do this, letus represent the control
ow in a slightly di�erent manner, reminiscent of what has beendone on process graphs (CRJ87; Dij68; Gun94). Let us represent commutation of two 1-transitions by �lling their interleaving by a 2-transition, and represent non-commutationby not �lling the interleaving with 2-transitions. This amounts to identifying the con-trol
ow of our asynchronous language with a semaphore program, for which the pair(scan; update) of actions is identi�ed with an exchange of information, by P=V synchro-nisation. This is a good analogue up to the extent we are only interested by the e�ect ofthe history of the communications on the environment, look at Figure 22.We then have mainly two con�gurations of \holes" on a square, when we look at thehomotopy classes of directed paths (1-schedules), as shown in Figure 23x.In the �rst con�guration, there are three 1-schedules (when the holes are \incompa-rable"), whereas in the second con�guration, there are four 1-schedules (when the holesare \comparable"). Therefore, if you look at some more complex con�guration betweenx There can be no overlapping of holes as in the case of P=V programs

Wait-free Dynamics 31
Forbidden

Pa Va

Pa

Va

x

x

1

2

Fig. 22. A P/V analogue to scan=update
P

P’

P

P’Fig. 23. The two possible relative con�gurations of holesmany holes, as in Figure 24, its set of 1-schedules is described by a complex tree-likepicture (also in Figure 24).As a matter of fact, we could easily describe a superset of the 1-schedules. To do this,look at Figure 25.This was basically what we have been doing in the control
ow semantics, by unfoldingor tearing the shape of Figure 25.Formally, two holes are comparable if there is a directed path from the end of one ofthe holes to the start of the other hole. Comparability is a partial order, and we canshow that any linearisation of this partial order (one of which is pictured in Figure 25,by deforming the shape to have the holes in a linear con�guration) gives a superset of thepossible 1-schedules. But a chain (under this order, compatible with the comparability

E. Goubault 32
1

2

3

4

5

H1

H2

H3

H1

H2 H2

H31 2 3

4 5Fig. 24. A more complex situation
H1

H2

H3

H1

H3

H2Fig. 25. A method to compute a superset of 1-schedulespartial order) of holes has exactly the \directed" homotopy type of a binary tree (Figure26).To any leaf of the tree is associated a 1-simplex in the output graph. In the semanticsof the scan=update language, going from a leaf of the binary tree from the next one, wealways share one vertex (a P vertex or a P 0 vertex), so the complex that is reached bythe possible 1-schedules is connected. We have made this sketch of proof for a superset of
H1

H2

H3

1

2

3

4

6
7

8

1 2 3 4 5 6 7 8

H3 H3

H1

H2 H2 H2 H25Fig. 26. The homotopy type of a chain of holes

Wait-free Dynamics 33possible 1-schedules. This does not change the connectivity argument, which completesthe proof of Theorem 2.This gives us a precise idea of how to study the expressiveness of distributed languagesor architectures.First, de�ne the semantics of your system in such a way that you can formalise n-schedules (for instance using HDA, or using full information complexes as in (Her94)).To be more precise, you should specify the control
ow part and the information
ow partof the semantics. There is a great deal of
exibility when it comes to de�ning the \control
ow" semantics. In this section we choosed to use some kind of P=V analogue, whereasin the previous sections, we abstracted the control
ow directly from the semantics.Basically, we need only to be able to de�ne the n-schedules so any weakly homotopy-equivalent (in the \directed" sense) spaces would do.Then you might be able to prove, as a side e�ect, that your system is t-resilient (i.e. thedynamics is t-connected). All k-schedules (or homotopy classes of directed k-paths) in thecontrol
ow semantics may give a (k � 1)-simplex in the output complex, that representa possible �nal global state of your system. The best is to characterise a superset ofthese k-schedules, since it is in general very di�cult to fully characterise the precise setof k-schedules itself.Then you might be able to �nd a natural order on these k-schedules, because in generalthe control
ow semantics will have the \directed" homotopy type of some kind of treestructure. Going from one schedule to the next one (under that order) means modifyingin the most elementary manner the histories, hence the knowledge that one processor hasfrom the other at some time of computation. This part is given to you by the semantics ofthe medium through which interaction or communication occurs. Using the information
ow semantics, you might show that some boundaries of these (k�1)-simplexes associatedwith these k-schedules are common, since the change in the information is not so radicalwhen going from one schedule to the next one. This methodology will be applied brie
y inthe two next sections. The �rst one deals with higher-dimensional schedules. The secondone shows the di�erence of result we might expect if we do not change the control
owdynamics, but just change the information
ow semantics.13. Some Hints in Higher-DimensionsThe machine we are considering now has n processors P1; � � � ; Pn communicating througha shared memory, in a similar manner as in Section 4. Processor Pi can only write on thelocation xi, by an update of its local value uii. It can also scan the whole memory andstores all xj in its local registers uji .The semantics will basically follow the same rules that we had taken for the 2-dimensional case. The skeleton of dimension one of [[P]]� (P = (P1 j � � � j Pn)) is theone de�ned by the standard concrete semantics of Section 4 where the states are now ofthe form (fP1; � � � ; Png; �). Now we have the following lemma, generalizing Lemma 1.Lemma 10. (look at Figure 27) Letai =(ft1;P1; � � � ; tn;Png; ��) ti- (ft1;P1; � � � ; Pi; � � � ; tn;Png; �i)

E. Goubault 34
a a

a

a

a

1
2

3

1

2

3

1

12

3
a

Fig. 27. n non-interfering transitionsbe a 1-transition for all 1 � i � n. We have the following 1-transitions that can be�red from the end states of these 1-transitions, for all S 2 (f1; � � � ; ng)� (a string on thealphabet f1; � � � ; ng), if i 62 S (meaning i does not appear in the stringS),aSi =(f� � � ; Pj; � � � ; tk;Pk; � � �g; �S) ti- (f� � � ; Pj; � � � ; Pi; � � � ; tk;Pk; � � �g; �S:i)where the index j ranges over the indices that do appear in S and the index k rangesover the indices that do not appear in S, except index i. Then if no (ti; tj) is equal to(scan; update) then �1���k = ��(1)����(k)for all k and for all permutations � on f1; � � � ; kg.Proof. By induction on n and case analysis on the ti, using the SOS semantics ofSection 4. This only states the fact that all actions but scan and update commute in thestandard concrete semantics.In the HDA framework, we decide to make all these actions (the ones of Lemma10) completely asynchronous, therefore we should have a n-transition within these 1-transitions. This is denoted as follows.The n-transition generated by the n 1-transitions a1; � � � ; an is denoted by a1
� � �
an.A n-transition has n (n�1)-dimensional start boundaries and n (n�1)-dimensional endboundaries. These will be speci�ed as in the 2-dimensional case: a n-transition will gofrom a list of n (n� 1)-transitions to a list of n (n� 1)-transitions.In the case of Lemma 10, we have the following rules,(non� interference)
i 6=1ai; � � � ;
i 6=nai a1
 � � �
 an-
i 6=1a1i ; � � � ;
i 6=naniNow the possible interferences in the n-dimensional case are combinatorially morecomplex than in dimension 2. The principle, though, is very similar.Suppose that we have two subsets S; U � f1; � � � ; ng with S\U = ;, S[U = f1; � � � ; ng

Wait-free Dynamics 35such that S is the set of indices i for which ti = scan and U is the set of indices i forwhich ti = update. Let us call (U; S)-shu�e any sequence of sets T = (Ti)1�i�2k suchthat,| each Ti is a (possibly non-proper) subset of S or of U ,| T0 = fT2i=1 � i � kg forms a partition of S,| T1 = fT2i�1=1 � i � kg forms a partition of U ,| for all i < k, T2i 6= ;,| for all i > 1, T2i�1 6= ;.We have a weaker lemma than Lemma 10, but we can still recognize that some of thestates might just be the same. If s is a string on the alphabet f1; � � � ; ng, we call l(s) theset of letters that s is made of.Lemma 11. Let s be a string (with no repetition) on the alphabet f1; � � � ; ng. Given Sand U two disjoint subsets of f1; � � � ; ng and T a (U; S)-shu�e, we say that s 2 T is andonly if s can be decomposed as s = s1s2 � � �s2k with,l(si) = TiThen whenever s and s0 are two strings in the same shu�e T , �s = �s0 .Proof. Tedious case analysis proof on the semantics. Basically, any path that has gonethrough updates of some �xed set of processes and then through scans of some other �xedset of processes etc. should end up in a state depending only on these sets of processes.Now we generate one n-transition for each (U; S)-shu�e, and unfold this to separateout all future executions of all di�erent (U; S)-shu�es, as we have be doing in the 2-dimensional case{ .Basically, all these n-transitions will have as start (n � 1)-transitions the transitions
i 6=1ai; � � � ;
i 6=nai as in the non-interfering case. All these n-transitions will lead to theenvironment characterized by a given (U; S)-shu�e, and include all of the 1-skeleton(de�ned by the standard SOS semantics). This leads to n-dimensional shapes like theone pictured in Figure 28, the higher-dimensional counterpart of the paper clips we sawin dimension 2.Let us call CT the n-transition generated by the (U; S)-shu�e T . Then, as there areless that n! of these shu�es, we can give a ordering on these such that the levels are dealtwith using the following rules, if 0 � lv(T) � n! andA1; � � � ; An CT- A01; � � �A0nthen all states of A01; � � � ; A0n (which are not in A1; � � � ; An, whose states were of level l)are of level n!l + lv(T) (this is an unfolding of the n-schedules).The 1-skeleton of the semantics remains basically the same as we had in the 2-processorcase, so the proofs of the following facts remain essentially the same,{ There was only two possible shu�es in dimension 2, namely one corresponding to doing scan beforeupdate, and the other corresponding to doing update before scan.

E. Goubault 36
(scan,update,update)Fig. 28. A 3 dimensional paper clip| The HDA semantics of any term of the language is connected and acyclic,| There is always a unique solo execution (of a given process) from a given global state,| The control
ow semantics of any term is wait-free.Each cut in the �nal cut semantics is a n-simplex. The speci�cation graph is nowa speci�cation complex, which is a relation between an input complex and an outputcomplex, generalising the input, output graphs of Section 9.There again, a critical point c is any state for which the rule (interference) can apply.If k is the cardinal of the set S of indices of scan operations in c and l is the cardinalof the set U of update operations, there are, say s(c; l) shu�es and the critical point(\of index s") creates s di�erent n-dimensional layers. Again each of these layers is inbijection both with the set of �nal environments and the �nal cuts. These cuts are (n�1)-simplices. If the layers are numbered from 1 to m, the corresponding (n � 1)-simplicesare (�11; � � � ; �1n); � � � ; (�m1 ; � � � ; �mn). We prove that going from layer i to layer i + 1 wehave at most an index j such that 8r 6= j; �i+1r = �ir. First of all we notice that thiscondition is actually a very geometric one,Lemma 12. Let (�11; � � � ; �1n); � � � ; (�m1 ; � � � ; �mn) be a set of m (n � 1)-simplices suchthat 8i; 9j; 8r 6= j; �i+1r = �ir. Then the union of these (n� 1)-simplices is a connected,(n� 2)-connected shape.Proof. We prove this by induction on m. When m = 1 this is obvious since we haveonly one (n � 1)-simplex which is connected, (n � 1)-connected hence also connected,(n� 2)-connected.When m > 1, we have to glue together the �rst m�1 (n�1)-simplices (space A) with thelast (n�1)-simplex (space B). A is a connected, (n�2)-connected shape by the inductionhypothesis. We have also seen that B is connected and (n� 2)-connected. The condition8i; 9j; 8r 6= j; �mr = �m�1r means that A\B is a (n� 2)-simplex or a (n� 1)-simplex (if�mj = �m�1j holds as well, for instance), thus is at least a connected, (n � 2)-connected

Wait-free Dynamics 37shape. Applying Lemma 5 proves that A [B is connected, (n � 2)-connected, i.e. theresult for m.To prove that the hypothesis of this lemma holds, we need to enumerate the di�erentlevels (or layers).Let U and S be �xed subsets of f1; � � � ; ng. Let T be a (U; S)-shu�e. For all s 2 Sthere is a unique i in f1; � � � ; kg such that s 2 T2i. Consider now [1�j�iT2j�1. It is aset of indices in f1; � � � ; ng. We can represent it as a suborder of f1; � � � ; ng, or a stringupT (s).Let now T and T 0 be two (U; S)-shu�es. S being the set s1 < � � � < sk, we saythat T �(U;S) T 0 if and only if the string upT (s1) � � �upT (sk) is less or equal thanupT 0(s1) � � �upT 0(sk) in the lexicographic ordering. Then,For all U and S disjoint subsets of f1; � � � ; ng, �(U;S) is a total ordering on the set of(U; S)-shu�es.Now at a critical point of index s (depending on sets U and S) the di�erent valuesenvironment can take when going from a layer to one of the next ones are as follows,| change the value of Ps1 ,| or change the value of Ps2 ,| � � �,| or change the value of Psk .So the hypothesis of Lemma 12 is satis�ed and the image of any k-simplex under thedenotational relation is a (k � 1)-connected complex.14. Some Hints about Wait-free test&set ProtocolsIn this section we add to the language a test&set operation (t&s) on a
ag f sharedby the processes P1; � � � ; Pn, as a case example of the methodology outlined in Section12 . This is done by extending the case statement to include a test on t&s(f). Thissimple extension to the language changes quite dramatically what kind of relation it cancompute.The semantic rule for (case) should be changed as follows,(case)If 9k, 8i, ui = aki and f = �k,0BBBB@8>>>><>>>>:0BBBB@ case (u1 : : :uk; f) of(a11 : : : a1k; �1) : P1� � �(an1 : : : ank ; �n) : Pndefault : P 1CCCCA ;R;P 09>>>>=>>>>; ; �1CCCCA caseP- (fPk;R;P 0g; �)Otherwise,0BBBB@8>>>><>>>>:0BBBB@ case (u1 : : :uk; f) of(a11 : : :a1k; �1) : P1� � �(an1 : : :ank ; �n) : Pndefault : P 1CCCCA ;R;P 09>>>>=>>>>; ; �1CCCCA caseP- (fP ;R;P 0g; �)

E. Goubault 38
(P,x)

(P,x’)

(P,x)

∆

(P’,y) (P’,y)

(P’,y’)Fig. 29. The splitting of two segments in a speci�cation graphLet us �rst look at the case n = 2.Lemma 13. The speci�cation graph of Figure 29 can be implemented in our new lan-guage.Proof. The following program implements the \splitting" of one segment into twoothers,Prog = P j P 0P = update; P' = update;scan; scan;case (u; v; t&s(f)) of case (u0; v0; t&s(f)) of(x;?; 0) : u = x;update (?; x0; 0) : v0 = y;update(x; z; 1) : u = y;update (x; z; 1) : v0 = t;updateThe value of t&s(f) is found equal to 0 by the �rst process which tests it, and is foundequal to 1 by the second process which tests it.In particular, the binary consensus can be solved using test&set. The dynamics of thelanguage with test&set is just the same as the dynamics of the language without. Theonly di�erence is that the
ag enables any process to know if one or more processes havegone through a case statement (and thus executed a test&set operation), so that anyprocess can have a (very) partial view of the past history of the interactions (throughthe scans and updates).In dimension 2, when going from layer i to layer i+1 there is no reason why we shouldhave �i+1 = �i or �i+1 = �i.A reciprocal holds in a quite straightforward way,Theorem 3. Any speci�cation graph such that the image if a segment (u; v) under thespeci�cation relation is a union of a �nite number of connected components, containingmoreover points (u;?) and (?; v) can be implemented in a wait-free manner in ourtest&set language.Proof. The algorithm is quite straightforward. First split segments as much a you needto by using the program in the proof of Lemma 13. Then use the subdivision algorithmof Section 11.3.In dimension n in general, we conjecture that we have the following phenomenon. Theremight only exist two indices j and j0 such that 8r 6= j; j0�i+1r = �ir. This condition comesfrom the fact that there might be a partial knowledge of the history of communications

Wait-free Dynamics 39(by using test&set) only by no more than two processors at a time, therefore, only twoprocessors could change their decision values when going from a layer to the next one.We notice that this condition, as in the case of the language without t&s, is actuallya very geometric one,Lemma 14. Let (�11; � � � ; �1n); � � � ; (�m1 ; � � � ; �mn) be a set of m (n�1)-simplices such that8i; 9j; j0; 8r 6= j; j0; �i+1r = �ir. Then the union of these (n� 1)-simplices is a connected,(n� 3)-connected shape.Proof. We prove this by induction on m. When m = 1 this is obvious since we haveonly one (n � 1)-simplex which is connected, (n � 1)-connected hence also connected,(n� 3)-connected.When m > 1, we have to glue together the �rst m�1 (n�1)-simplices (space A) with thelast (n�1)-simplex (space B). A is a connected, (n�3)-connected shape by the inductionhypothesis. We have also seen that B is connected and (n� 3)-connected. The condition8i; 9j; j08r 6= j; j0�mr = �m�1r means that A\B is a (n� 3)-simplex or a (n� 2)-simplexor a (n � 1)-simplex (if �mj = �m�1j or �mj0 = �m�1j0 holds as well, for instance), thus isat least a connected, (n� 3)-connected shape. Applying Lemma 5 proves that A [B isconnected, (n� 3)-connected, i.e. the result for m.Therefore, we conjecture that our new machine has the following characterisation. Theimage of any k-simplex of the input graph under the speci�cation relation is (k � 1)-connected (k � 1).15. ConclusionWe have presented in this article some examples of semantic formalisations of the expres-sive power of some distributed machines and architectures. This is obviously the �rst steponly, towards purely mathematical characterisations of distributed computing. For thispurpose, we would need a complete formalisation of a theory of \directed" homotopy, asadvocated in (Gun94). We unfortunately have only very few results in general, and wecannot always resort to homological characterisations as we have done here, or as donein (Goult) (where some kind of \directed" homology was studied).One of the open problems in that respect would be to fully characterize t-resilientcomputations (using a language with some semaphores initialized to n � t � 1, or somesynchronisation barriers involving no more than n � t� 1 processors) and see if we caneven �nd a nice normal form to programs, as for shared memory wait-free computations.ReferencesE. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronouscomputations. In Proc. of the 25th STOC. ACM Press, 1993.E. Borowsky. Capturing the power of resiliency and set consensus in distributed systems. Tech-nical report, University of California in Los Angeles, 1995.P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpretation. InConference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principlesof Programming Languages, pages 83{94. ACM Press, 1992.

E. Goubault 40S. Chaudhuri. Agreement is harder than consensus: set consensus problems in totally asyn-chronous systems. In Proc. of the 9th Annual ACM Symposium on Principles of DistributedComputing, pages 311{334. ACM Press, August 1990.S. D. Carson and P. F. Reynolds Jr. The geometry of semaphore programs. ACM Transactionson Programming Languages and Systems, 9(1):25{53, January 1987.E.W. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commit with one faultyprocess. Journal of the ACM, 32(2):374{382, April 1985.E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CON-CUR'92, Stonybrook, New York, August 1992. Springer-Verlag.E. Goubault. Domains of higher-dimensional automata. In Proc. of CONCUR'93, Hildesheim,August 1993. Springer-Verlag.E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, La Jolla,June 1995. ACM Press, also available at http://www.ens.fr/~goubault.E. Goubault. A semantic view on distributed computability and complexity. In Proceedings ofthe 3rd Theory and Formal Methods Section Workshop. Imperial College Press, also availableat http://www.ens.fr/~goubault, 1996.E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure, to bepublished, 1995, also available at http://www.ens.fr/~goubault.J. Gunawardena. Homotopy and concurrency. In Bulletin of the EATCS, number 54, pages184{193, October 1994.P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. In Ergebnisse derMathematik und ihrer Grenzgebiete, volume 35. Springer Verlag, 1967.M. Herlihy. A tutorial on algebraic topology and distributed computation. Technical report,presented at UCLA, 1994.M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc. of the 13th AnnualACM Symposium on Principles of Distributed Computing. ACM Press, August 1994.M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, a primer. Technicalreport, Brown University, 1995.M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. InProc. of the 25th STOC. ACM Press, 1993.M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free computa-tion. In Proceedings of STOC'94. ACM Press, 1994.N. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company, inc, 1967.S. Mac Lane. Homology. In Die Grundlehren der Mathematischen Wissenschaften in Einzel-darstellungen, volume 114. Springer Verlag, 1963.V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Symposium onPrinciples of Programming Languages. ACM Press, 1991.B. Sedgewick. Algorithms. Addison-Wesley, 1988.M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of publicknowledge. In Proc. of the 25th STOC. ACM Press, 1993.R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report,Stanford University, Manuscript available on the web as http://theory.stanford.edu/~rvg/hda,1991.

