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Detecting Deadlocks in Concurrent SystemsLisbeth Fajstrup and Martin Rau�enBRICS�AbstractWe use a geometric description for deadlocks occuring in schedulingproblems for concurrent systems to construct a partial order and hence adirected graph, in which the local maxima correspond to deadlocks. Algo-rithms �nding deadlocks are described and assessed.Keywords: deadlock, partial order, search algorithm, concurrency, dis-tributed systems.1 Introduction { from discrete to continuousThis paper deals with the detection of deadlocks motivated by applications in dataengineering, e.g., scheduling in concurrent systems. A description of deadlocksin terms of the geometry of the progress graph had been given earlier by Carsonand Reynolds [1], and we stick to their terminology.The main idea in [1] is to model a discrete concurrency problem in a continuousgeometric set-up: A system of n concurrent processes will be represented asa subset of Euclidean space Rn. Each coordinate axis corresponds to one ofthe processes. The state of the system corresponds to a point in Rn, whosei'th coordinate describes the state of the i'th processor. An execution is then acontinuous increasing path within the subset from an initial state to a �nal state.In recent years a number of people have used ideas from geometry and topol-ogy to study concurrency: First of all, using geometric models allows one to usespatial intuition; furthermore, the well-developpedmachinery from geometric andalgebraic topology can serve as tools to prove properties of concurrent systems.A more detailed description of this point of view can be found in Gunawardena'spaper [5] { including many more references { which contains a geometrical de-scription of safety issues.�Basic Research in Computer Science,Centre of the Danish National Research Foundation.1



Example 1.1 Consider a centralized database, which is being acted upon by a�nite number of transitions. Following Dijkstra [2], we think of a transaction asa sequence of P and V actions known in advance { locking and releasing variousrecords. We assume that each transaction starts at (local time) 0 and �nishes at(time) 1; the P and V actions correspond to sequences of real numbers between0 and 1, which reect the order of the P 's and V 's. The initial state is (0; : : : ; 0)and the �nal state is (1; : : : ; 1). An example consisting of the two transactionsT1 = PaPbVbVa and T2 = PbPaVaVb gives rise to the following two dimensionalpicture:
Unsafe Un-reachable

(0,0) Pa Pb Vb VaPbPaVa
VbT2

T1����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������� (1,1)
-
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The shaded area represents states, which are not allowed in any executionpath, since they correspond to mutual exclusion. Such states constitute theforbidden area. An execution path is a path from the initial state (0; 0) to a �nalstate (1; 1) avoiding the forbidden area and increasing in each coordinate - timecannot run backwards. 2



In Ex. 1.1, the dashed square marked "Unsafe" represents an unsafe area:There is no execution path from any state in that area to the �nal state (1; 1).Actually it is also a deadlock. Likewise, there are no execution paths startingat the initial state (0; 0) entering the unreachable area marked "Unreachable".Concise de�nitions of these concepts will be given in x2.Finding deadlocks and unsafe areas is hence the geometric problem of �ndingn-dimensional \corners" as the one in Ex. 1.1. Carson and Reynolds indicatedin [1] an iterative procedure to achieve this. We give a much shorter treatmentby translating the underlying geometry to properties of a directed graph. Inparticular, deadlocks correspond to local maxima in the associated partial order.In general, the forbidden area may represent more complicated relationshipsbetween the processes like for instance general k-semaphores, where a sharedobject may be accessed by k, but not k+1 processes. This is reected in the ge-ometry of the forbidden area F , that has to be a union of higher dimensional rect-angles or \boxes". The set-up allows us to describe, for instance, k-semaphores,asynchronous message passing and other distributed systems as long as there areno cycles.Moreover, similar partially ordered sets can be de�ned and investigated inmore general situations than those given by Cartesian progress graphs. By thesame recipe, deadlocks can be found in concurrent systems with a variable numberof processes involved. In that case, one has to consider partial orders on setsof \boxes" of variable dimensions. This allows the description and detectionof deadlocks in the Higher Dimensional Automata of [6] and [7] (cf. [4] for anexhaustive treatment) as long as these have no cycles. Certainly, this latterrestriction can be overcome by considering toral geometries (instead of rectangles)with a number of vector �elds .Furthermore, non determinism can be modelled by glueing partial orders to-gether along the nodes where decisions have to be made.The geometrical and combinatorial de�nitions and results from x2 and x3 areapplied in x4 to describe and assess two algorithms for the detection of deadlocks.This paper was inspired by but is not depending on the insight provided bytools from algebraic topology as used in [3].Both authors participated in the workshop \New Connections between Math-ematics and Computer Science" at the Newton Institute at Cambridge in Novem-ber 1995. We thank the organisers for the opportunity to get new inspiration.2 From continuous to discreteLet I denote the unit interval, and In = I1�� � ��In the unit cube in n-space. Wecall a subset R = [a01; a11]� � � � � [a0n; a1n] an n-rectangle, and we consider a setF = Sr1Ri that is a �nite union of n-rectangles Ri = [ai01; ai11]�� � ��[ai0n; ai1n]. Wethink of F as the \forbidden region". Furthermore, suppose that 0 = (0; : : : ; 0) 623



F , and 1 = (1; : : : ; 1) 62 F:De�nition 2.1 1. A continuous path � : I ! In is called increasing, if allcompositions pri � � : I ! I; 1 � i � n; are increasing.2. A point x 2 In n F is called admissible, if there exists an increasing path� : I ! In n F with �(0) = x and �(1) = 1; and unsafe else.3. Let A � In denote the admissible region containing all admissible points,and U � In the unsafe region containing all unsafe points.In semaphore programs, the n-rectangles Ri characterize states where twotransactions have accessed the same record, a situation which is not allowed insuch programs. Such \mutual exclusion"-rectangles have the property that onlytwo of the de�ning intervals are proper subintervals of the Ij. Furthermore, serialexecution should always be possible, and hence F should not intersect the 1-skeleton of In consisting of all edges in the unit cube. These special features willnot be used in the present section.For 1 � j � n, the set fai0j; ai1jj1 � i � rg � Ij gives rise to a partition of Ijinto at most (2r+1) subintervals: Ij = S Ijk, with an obvious ordering � on thesubintervals Ijk. The partition of intervals gives rise to a partition R of In inton-rectangles I1k1 � � � � � Inkn with a partial ordering given byI1k1 � � � � � Inkn � I1k01 � � � � � Ink0n , Ijkj � Ijk0j ; 1 � j � n:Remark 2.2 1. Admissibility with respect to the forbidden region F can bede�ned in terms of these n-rectangles: Two points in the same n-rectangleof the partition above are either both admissible or both unsafe points.2. The rectangle R1 containing 1 is the global maximum for R, the rectangleR0 containing 0 is the global minimum.The partially ordered set (R;�) can be interpreted as a directed, acyclic graph,denoted (R;!): Two n-rectangles R;R0 2 R are connected by an edge from Rto R0 { denoted R ! R0 { if R � R0 and if R and R0 share a face. R0 is thencalled an upper neighbour of R, and R a lower neighbour of R0.For any subset R0 � R we consider the full directed subgraph (R0;!). Par-ticularly important is the subgraph R �F consisting of all rectangles R � In n F .De�nition 2.3 1. Let R0 � R be a subgraph. An element R 2 R0 is a localmaximum if it has no upper neighbours in R0. Local minima have no lowerneighbours.2. A rectangle R 2 R �F is called a deadlock if R 6= R1, and if R is a localmaximum with respect to R �F . 4



3. An unsafe n-rectangle R 2 R �F is characterized by the fact, that any in-creasing path � starting at R hits a deadlock sooner or later [1].Remark 2.4 1. An element R 2 R �F is a deadlock if R 6= R1, and if allits upper neighbours in R are contained in F . Deadlocks in R �F are themaximal corners of the unsafe regions.2. Unreachable rectangles can be de�ned similarly. Local minima ( 6= R0) aretheir minimal corners.In order to �nd the set U of all unsafe points { which is the union of all unsafen-rectangles { apply the followingAlgorithm 2.5 1. Remove F from In giving rise to the directed graph (R �F ;!).2. Find the set S1 of all deadlock n-rectangles (local maxima) with respect toR �F . Let F1 = F [ S1.3. Let RF1 denote the full directed subgraph on the set of rectangles in In nF1,i.e., after removing S1.4. Find the set S2 of all deadlock n-rectangles with respect to RF1 . Let F2 =F1 [ S2.5. etc.Notice that it is enough to search among the lower neighbours of elements inF in step 2, and that the only candidates for deadlocks in step 4 are the lowerneighbours of elements of S1. Since there are only �nitely many rectangles, thisprocess stops after a �nite number of steps, ending with Sr and yielding thefollowing result:Theorem 2.6 1. The unsafe region is determined by U = Sr1 Si:2. The set of admissible points is A = In n (F [ U). Moreover, any increasingpath starting in A will eventually reach 1.Proof: Only the last assertion has still to be shown. The set A is non-empty sinceit contains the global maximum R1. Now �x any increasing path starting froman arbitrary n-rectangle in A. It will run through (�nitely many) n-rectanglesin A until it reaches a local maximum. This local maximum must be the globalmaximum R1, since A does not contain any deadlock. 25



Remark 2.7 We suggest that a better geometric understanding of the situationcan lead to much quicker algorithms �nding the unsafe regions: Instead of search-ing among lower neighbours one at a time, one would like to �nd their extremepoints: It is not di�cult to see that every unsafe region is again a union of n-rectangles with extent (i.e., maximal corner) the deadlock. We conjecture thatthe vertices (i.e, minimal corners) of those unsafe n-rectangles can be found bylooking at certain critical points on the hyperplanes fxi = ai0jg de�ning the dead-lock; see also [3]. Details { using Morse theory { will be worked out elsewhere.3 Deadlocks in semaphore programsIn this section, we give an alternative description of the deadlocks discussed inx2 in the case of a semaphore program. Remember that deadlocks occur at somepoint of an execution, when every transaction demands access to a record, whichis already locked by another transaction. Hence one should keep track of the setof records that are already accessed by some transaction at a given time. As inEx. 1.1, we follow Dijkstra [2] in our de�nition of records and transactions:De�nition 3.1 Let S be a �nite set, and let fT1; T2; � � � ; Tng be a set of words Tion the alphabet fPu; Vuju 2 Sg. For an initial partial word Ti;j; j > 0, consistingof the �rst j symbols of Ti, and every u 2 S, let a(u; i; j) = #fPu 2 Ti;jju 2Sg �#fVu 2 Ti;jju 2 Sg. We require that1. a(u; i; j) 2 f0; 1g for any choice of u; i and j.2. When j equals the length of the word Ti, i.e., j is maximal, then a(u; i; j) =0 for any u 2 S.Furthermore we de�ne A(Ti;j) = fu 2 Sja(u; i; j) = 1g; 1 � i � n.In the language of records and transactions, S is the set of records, fT1; T2; � � � ; Tngis the set of transactions and A(Ti;j) is the set of records accessed by Ti after jsteps.Deadlocks can be characterized as follows:Proposition 3.2 Let T1;j1 � T1; T2;j2 � T2; � � � ; Tn;jn � Tn be a collection ofinitial partial strings such that not all Ti;ji = Ti. The system of transactions isin a deadlock at time (j1; j2; :::; jn) if and only if1. 8i 6= k : A(Ti;ji) \A(Tk;jk) = ;;2. For each i, either Ti;ji = Ti, or there is a k 6= i such that A(Ti;ji+1) \A(Tk;jk) 6= ;. 6



Proof: The characterization above is an immediate translation of the conditionsfor a deadlock found in x2: The condition that not all Ti;ji = Ti means, that thesystem is not in the �nal position R1. Furthermore condition 1) expresses thatthe state (n-rectangle) considered is not already in the forbidden region F , whilecondition 2) states that any of its upper neighbours is contained in F . This isexactly what characterizes a total deadlock. 24 Algorithms and complexity considerationsThis �nal section describes two algorithms for �nding deadlocks in general sit-uations and gives estimates concerning their complexity. Certainly, one can domuch better under special well-described circumstances.The �rst algorithmis based on the description of deadlocks in x2 and involves the following datastructures: We represent the partial order R by the associated directed graph.We assume that a node (respresenting an n-rectangle) is equipped with pointersto its lower neighbours, i.e., its parents, and to its upper neighbours, i.e., its sons.Furthermore, every node is equipped with an integer record counting the numberof sons, two booleans indicating whether the node is in F , and whether it is aleaf, and a pointer to a list of leaves. Then a rough sketch of the algorithm is asfollows:1. Mark all the n-rectangles which are in F and nil all pointers to and fromthese, i.e., discard their parents and sons.2. The deadlocks are then all the leaves of the resulting graph except R1.More speci�cally: Let F = Sr1Ri. Then, for step 1 in the algorithm, gothrough all the Ri � F ; if a node representing an n-rectangle R � Ri is not yetmarked in F , mark it, nil the pointers to its sons and nil all pointers to it. Ifone of the parents becomes a leaf by this operation, add it to a list representing\potential deadlocks", and set a pointer to its place in the list. If R itself wasmarked a leaf previously, then remove it from the list of potential deadlocks.If the node has already been marked in F , do nothing. When this is donefor all nodes in R = Sr1Ri, the list of potential deadlocks contains only actualdeadlocks.We let the volume V ol(S) of a set S of nodes (n-rectangles) in R be thenumber of its elements. For every element R 2 Ri, one has to check, whetherR had been marked earlier. Only if the answer is no, the 2n nil operations and7



possibly, a single addition to, resp. removal from, the list, has to be performed.This implies:Proposition 4.1 In a concurrent system of n transactions with a forbiddenregion F = Sr1Ri, the deadlocks can be found by an algorithm of complexitynV ol(F ) + �r1V ol(Ri).Remark 4.2 This estimate is worst, when the term �r1V ol(Ri) dominates theterm nV ol(F ), i.e., when F consists of many large n-rectangles with large over-lap. The absolute worst case occurs in the following situation of a two-phaselocked semaphore program, where n transactions access k records: Suppose thateach transaction wants access to each record, and that each transaction frees therecords in the same order as it locks them. Then there are N = (2k +1)n states,and moreover k� n2 � n-rectangles Ri, which all have volume k2(2k+1)n�2. Thevolume of F is at most (2k)n. Hence the complexity is n2kN .Examples of this kind have a high amount of global synchronization, whichshould be avoided in the programs involved. Hence one would expect a muchbetter behaviour in the average situation. In fact, if nV ol(F ) is the dominatingpart, the complexity is at most nN .The second algorithmbelow yields more favourable complexity estimates if the number r of n-rectanglesRj � F modelling mutual exclusions is somehow restricted.Let again F = Sr1Ri.Let RF , RRi, denote the partial orders on the set of rectangles in F , resp. Ri.De�nition 4.3 1. LetR denote the directed graph on n-rectangles in In fromabove, and let R0 be a full subgraph. Then the lower boundary @�R0 of R0is the set fR 2 R0jR has a lower neighbour outside R0g.2. An n-rectangle R is called a deadlock candidate if it is contained in R �F andif all of its upper neighbours are contained in at least one of the sets @�RRi.Obviously, any deadlock is a deadlock candidate. The algorithm below con-sists of two steps:1. Find (and mark) all deadlock candidates;2. Find out, which of those are actually deadlocks.For F = Sr1Ri, let rj � r denote the number of n-rectangles Rj whoseprojection to the interval Ij is a proper subinterval, 1 � j � n. An n-rectangleis a deadlock candidate, if its \extent", i.e., its maximal vertex, is contained inan intersection Tn1fxj = aijg of hyperplanes with aij = ai0j or aij = 1. Hence, the8



number of deadlock candidates is given by Qn1(rj + 1). Since every n-rectanglein R can be labelled by its extent, every deadlock candidate is found in a singlestep. In order to �nd out whether a deadlock candidate actually is a deadlock,one has to check whether1. R 2 R �F ;2. Each of the n upper neighbours of R is contained in RF .Each of these n+1 steps involves 4r operations, i.e., 4 inequality checks for eachof the r n-rectangles constituting F . Multiplying these estimates, and comparingwith the number of states N = Qn1(2rj + 1) of the system, we get the followingcomplexity estimate:Proposition 4.4 In a concurrent system with a forbidden region F = Sr1Ri, thedeadlocks can be found by an algorithm of order nr2n�2N .More concrete estimates can be given in the case of a semaphore program:Proposition 4.5 For a semaphore program with n transactions and at most rmutual exclusions, the deadlocks can be found by an algorithm of order 2n+2( rn )nrn.In particular, if there is a constant C such that r � Cn, then the number of stepscan be estimated by 2n+2Cn+1n2. The algorithm is of order n2 for C � 12.Proof: It was noted in the beginning of x2 for the model of a semaphoreprogram, that the projections of one n-rectangle Ri to the coordinate intervals Iswill yield the whole interval Is in n � 2 cases, and a proper subinterval [as0i; as1i]in 2 cases. Hence, one has to �nd the maximal value of Qn1 (rj + 1) under theconstraint 2r = Pn1 rj . This maximum occurs for rj = 2rn for all 1 � j � n. Asin the general case, the estimate 2n( rn)n has to be multiplied by 4nr. 2Remark 4.6 1. It would be interesting to know, whether it is reasonable toassume that r grows linearly as a function of n.2. For several applications, a relative situation should be studied: Given adeadlockfree transaction system, to which a single transaction is added.How di�cult is it to decide, whether the new system is deadlockfree, resp.,where the new deadlocks can be found?9
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