
Detecting Deadlocks in Concurrent SystemsLisbeth Fajstrup+, Eric Goubault� and Martin Rau�en+LETI (CEA - Technologies Avanc�ees)DEIN-SLA, CEA F91191 Gif-sur-Yvette Cedex+Dept of Mathematics, Aalborg UniversityDK-9220 AalborgAbstractWe study deadlocks using geometric methods based on generalized process graphs[Dij68], i.e. cubical complexes or Higher-Dimensional Automata (HDA) [Pra91,vG91, GJ92, Gun94], describing the semantics of the concurrent system of interest.A new algorithm is described and fully assessed, both theoretically and practicallyand compared with more well-known traversing techniques. An implementation isavailable, applied to a toy language. This algorithm not only computes the dead-locking states of a concurrent system but also the so-called \unsafe region" whichconsists of the states which will eventually lead to a deadlocking state. This is basedon a real geometric characterization of deadlocks.1 Introduction and related workThis paper deals with the detection of deadlocks motivated by applications in data engineer-ing, e.g., scheduling in concurrent systems. Many fairly di�erent techniques have been stud-ied in the numerous literature on deadlock detection. Unfortunately, they very often de-pend on a particular (syntactic) setting, and this makes it di�cult to compare them. Someauthors have tried to classify them and test the existing software, like [Cor96, CCA96], butfor this, one needs to translate the syntax used by each of these systems into one another,and di�erent translation choices can make the picture entirely di�erent. Nevertheless, wewill follow their classi�cation to put our methods in context. Notice that in this article,we go one step beyond and also derive the \unsafe region" i.e. the set of states that arebound to run into a deadlocking state after some time. This analysis is done in order tobe applied to �nding schedulers that help circumvent these deadlocking behaviours (andnot just for proving deadlock freedom as most other techniques have been used for).The �rst basic technique is a reachability search, i.e., the traversing of some semanticrepresentation of a concurrent program, in general in terms of transition systems, but also�Work done partly while at Ecole Normale Sup�erieure, email:goubault at aigle.saclay.cea.fr1

sometimes using other models, like Petri nets [MR97]. Due to the classical problem of state-space explosion in the veri�cation of concurrent software, such algorithms are accompaniedwith state-space reduction techniques, such as virtual coarsening (which coalesce internalactions into adjacent external actions) [Val89], partial-order techniques (which alleviatethe e�ects of representation with interleaving by pruning \equivalent" branches of search)such as sleep sets and permanent (or stubborn) sets techniques [Val91, GPS96, GHP95], andsymmetry techniques (that reduce the state-space by consideration of symmetry). Thesetechniques only reduce the state-space up to three or four times except for very particularapplications.The second most well-known technique is based on symbolic model-checking as in [BG96,BCM+90, GJM+97, BG96]. Deadlocking behaviors are described as a logical formula, thatthe model-checker tries to verify. In fact, the way a model-checker veri�es such formulaeis very often based on clever traversing techniques as well. In this case, the states of thesystem are coded in a symbolic manner (BDDs etc.) which enables a fast search.Then many of the remaining techniques are a blend of one of these two with someabstractions, or are compositional techniques [YY91], or based on data
ow analysis [DC94],or on integer programming techniques [ABC+91] (but this in general only relies on necessaryconditions for deadlocking behaviors).Based on some old ideas [Dij68] and some new semantic grounds [Pra91, vG91, Gun94,GJ92, Gou95a] (see x2), we have developped an enhanced sort of reachability search (x2.3).This should mostly be compared to ordinary reachability analysis and not to virtual coars-ening and symmetry techniques because these can also be used on top of ours. A �rstapproach in the direction of virtual coarsening has actually been made in [Cri95]. Someassessments about its practical use, based on a �rst implementation applied to simplesemaphore programs are made in x2.4. Due to the page limit, we have not fully describedthis algorithm. We chose to focus on the really new aspect of deadlock detection using ageometric semantics.In x3, we propose a new algorithm based on an abstraction (in the sense of abstractinterpretation [CC77, CC92]) of the natural semantics, which takes advantage of the realgeometry of the executions. This one is an entirely di�erent method from those in theliterature.As a matter of fact, in recent years, a number of people have used ideas from geometryand topology to study concurrency: First of all, using geometric models allows one to usespatial intuition; furthermore, the well-developed machinery from geometric and algebraictopology can serve as a tool to prove properties of concurrent systems. A more detailed de-scription of this point of view can be found in J. Gunawardena's paper [Gun94] { includingmany more references { which contains a �rst geometrical description of safety issues. Inanother direction, techniques from algebraic topology have been applied by M. Herlihy, S.Rajsbaum, N. Shavit [HS95, HS96] and others to �nd new lower bounds and impossibilityresults for distributed and concurrent computation.We believe that this technique, which is assessed in x4.4 and x4.5 both on theoreticalgrounds and on the view of benchmarks, can be applied in the static analysis of \real"concurrent programs (and not only at the PV language of x2.3) by suitable compositions2

and reduced products with other abstract interpretations.The authors participated in the workshop \New Connections between Mathematicsand Computer Science" at the Newton Institute at Cambridge in November 1995. Wethank the organizers for the opportunity to get new inspiration. This paper is the �rst ina series of papers resulting from the collaboration of two mathematicians (L. Fajstrup &M. Raussen) and a computer scientist (E. Goubault).2 Models of concurrent computation2.1 From Discrete to ContinuousA description of deadlocks in terms of the geometry of the so-called progress graph (cf.Ex. 1) has been given earlier by S. D. Carson and P. F. Reynolds [CR87], and we stick totheir terminology. The main idea in [CR87] is to model a discrete concurrency problem ina continuous geometric set-up: A system of n concurrent processes will be represented asa subset of Euclidean space Rn. Each coordinate axis corresponds to one of the processes.The state of the system corresponds to a point in Rn, whose i'th coordinate describes thestate (or \local time") of the i'th processor. An execution is then a continuous increasingpath within the subset from an initial state to a �nal state.Example 1 Consider a centralized database, which is being acted upon by a �nite numberof transactions. Following Dijkstra [Dij68], we think of a transaction as a sequence of Pand V actions known in advance { locking and releasing various records. We assume thateach transaction starts at (local time) 0 and �nishes at (time) 1; the P and V actionscorrespond to sequences of real numbers between 0 and 1, which re
ect the order of theP 's and V 's. The initial state is (0; : : : ; 0) and the �nal state is (1; : : : ; 1). An exampleconsisting of the two transactions T1 = PaPbVbVa and T2 = PbPaVaVb gives rise to the twodimensional progress graph of Figure 1.The shaded area represents states, which are not allowed in any execution path, sincethey correspond to mutual exclusion. Such states constitute the forbidden area. An execu-tion path is a path from the initial state (0; 0) to a �nal state (1; 1) avoiding the forbiddenarea and increasing in each coordinate - time cannot run backwards.In Ex. 1, the dashed square marked "Unsafe" represents an unsafe area: There is noexecution path from any state in that area to the �nal state (1; 1). Moreover, its extent(upper corner) with coordinates (Pb; Pa) represents a deadlock. Likewise, there are noexecution paths starting at the initial state (0; 0) entering the unreachable area marked"Unreachable". Concise de�nitions of these concepts will be given in x2.2.Finding deadlocks and unsafe areas is hence the geometric problem of �nding n-dimensional \corners" as the one in Ex. 1. Back in 1981, W. Lipski and C. H. Papadimitriou[LP81] attempted to exploit geometric properties of forbidden regions to �nd deadlocks indatabase-transaction systems. But the algorithm in [LP81] does not generalize to systemscomposed of more than two processes. S. D. Carson and P. F. Reynolds indicated in [CR87]3

Unsafe Un-reachable(0,0) Pa Pb Vb VaPbPaVaVbT2
T1��� ��������������������������������� (1,1)-6

Figure 1: Example of a progress graphan iterative procedure identifying both deadlocks and unsafe regions for systems with anarbitrary �nite number of processes.In this section, we present a streamlined path to their results in a more general situation:Basic properties of the geometry of the state space are captured in properties of a directedgraph { back in a discrete setting. In particular, deadlocks correspond to local maxima inthe associated partial order.This set-up does not only work for semaphore programs: In general, the forbiddenarea may represent more complicated relationships between the processes like for instancegeneral k-semaphores, where a shared object may be accessed by k, but not k+1 processes.This is re
ected in the geometry of the forbidden area F , that has to be a union of higherdimensional rectangles or \boxes".Furthermore, similar partially ordered sets can be de�ned and investigated in moregeneral situations than those given by Cartesian progress graphs. By the same recipe,deadlocks can then be found in concurrent systems with a variable number of processesinvolved or with branching (tests) and looping (recursion) abilities. In that case, one has toconsider partial orders on sets of \boxes" of variable dimensions. This allows the descriptionand detection of deadlocks in the Higher Dimensional Automata of V. Pratt [Pra91] andR. van Glabbeek [vG91] (cf. E. Goubault [Gou95a] for an exhaustive treatment).In the mathematical parts below, i.e., x2.2 and x2.3, the explanations have been vol-untarily simpli�ed. The full treatment of the deadlock detection method can be found onthe Web (http://www.dmi.ens.fr/ goubault/analyse.html).2.2 The continuous setupLet I denote the unit interval, and In = I1 � � � � � In the unit cube in n-space. This isgoing to represent the space of all local times taken by n processes. We call a subsetR = [a1; b1] � � � � � [an; bn] an n-rectangle, and we consider a set F = Sr1Ri that is4

a �nite union of n-rectangles Ri = [ai1; bi1] � � � � � [ain; bin]. The interior �F of F is the\forbidden region" of In; its complement is X = Inn �F . Furthermore, we assume that0 = (0; : : : ; 0) 62 F , and 1 = (1; : : : ; 1) 62 F:De�nition 1 � 1. A continuous path � : I ! In is called a dipath (directed path) ifall compositions �i = pri � � : I ! I; 1 � i � n; are increasing: t1 � t2 (�i(t1) ��i(t2); 1 � i � n.� 2. A point y 2 X = Inn �F is in the future J+(x) of a point x 2 X if there is a dipath� : I ! X with �(0) = x and �(1) = y. The past J�(x) is de�ned similarly.� 3. A near future J+0 (x) of x 2 X is of the form J+(x)\ ([x1; x1+"]�� � �� [xn; xn+"])where " < minfaij � xj > 0; bij � xj > 0; 0 � i � r; 0 � j � ng.� 4. A point x 2 Inn �F is called admissible, if 1 2 J+(x); and unsafe else.� 5. Let A(F) � In denote the admissible region containing all admissible points in X,and U(F) � In the unsafe region containing all unsafe points in X.� 6. A point x 2 X is a deadlock if and only if J+(x) = fxg.In semaphore programs, the n-rectangles Ri characterize states where two transactionshave accessed the same record, a situation which is not allowed in such programs. Such\mutual exclusion"-rectangles have the property that only two of the de�ning intervals areproper subintervals of the Ij. Furthermore, serial execution should always be possible, andhence F should not intersect the 1-skeleton of In consisting of all edges in the unit cube.These special features will not be used in the present paper.A dipath represents the continuous counterparts of the traces of the concurrent system,which must not enter the forbidden regions.2.3 Continuous to discrete - a graph theory approachWe use geometrical ideas to construct a digraph where deadlocks are the leaves and theunsafe region is found by an iterative process. The setup is as in x2.2. For 1 � j � n, theset faij; bijj1 � i � rg � Ij gives rise to a partition of Ij into at most (2r + 1) subintervals:Ij = S Ijk, with an obvious ordering � on the subintervals Ijk. The partition of intervalsgives rise to a partition R of In into n-rectangles I1k1 � � � � � Inkn with a partial orderinggiven by I1k1 � � � � � Inkn � I1k01 � � � � � Ink0n , Ijkj � Ijk0j ; 1 � j � n:The partially ordered set (R;�) can be interpreted as a directed, acyclic graph, denoted(R;!): Two n-rectangles R;R0 2 R are connected by an edge from R to R0 { denotedR ! R0 { if R � R0 and if R and R0 share a face. R0 is then called an upper neighbor ofR, and R a lower neighbor of R0. A path in the graph respecting the directions will bedenoted a directed path.For any subset R0 � R we consider the full directed subgraph (R0;!). Particularlyimportant is the subgraph R �F consisting of all rectangles R � X = Inn �F .5

De�nition 2 Let R0 � R be a subgraph. An element R 2 R0 is a local maximum if it hasno upper neighbors in R0. Local minima have no lower neighbors. An n-rectangle R 2 R �Fis called a deadlock rectangle if R 6= R1, and if R is a local maximum with respect to R �F .An unsafe n-rectangle R 2 R �F is characterized by the fact, that any directed path � startingat R hits a deadlock rectangle sooner or later [CR87].In order to �nd the set U of all unsafe points { which is the union of all unsafe n-rectangles { apply the following. (1) Remove F from In giving rise to the directed graph(R �F ;!). (2) Find the set S1 of all deadlock n-rectangles (local maxima) with respect toR �F . Let F1 = F [S1. (3) Let RF1 denote the full directed subgraph on the set of rectanglesin In n F1, i.e., after removing S1. (4) Find the set S2 of all deadlock n-rectangles withrespect to RF1. Let F2 = F1 [S2. Carry on the same completion mechanism etc.Notice that it is enough to search among the lower neighbors of elements in F in step2, and that the only candidates for deadlocks in step 4 are the lower neighbors of elementsof S1. Since there are only �nitely many rectangles, this process stops after a �nite numberof steps, ending with Sr and yielding the following result:Theorem 1 � 1. The unsafe region is determined by U(F) = Sr1 Si:� 2. The set of admissible points is A(F) = In n (�F [U(F)). Moreover, any directedpath in A(F) will eventually reach R1.A prototype analyser has been programmed on the base of an HDA semantics of PVprograms with the following syntax: Given a set of objectsO (like shared memory locations,synchronization barriers, semaphores, control units, printers etc.) and a function s : O !IN+ associating to each object a, the maximum number of processes s(a) > 0 which canaccess it at the same time, any process Proc can try to access an object a by action Paor release it by action V a, any �nite number of times. In fact, processes are de�ned bymeans of a �nite number of recursive equations involving process variables X in a set V:they are of the form X = Procd where Procd is the process de�nition formally de�ned as,Procd = � j Pa:Procd j V a:ProcdProcd + Procd j Y(� being the empty string, a being any object of O, Y being any process variable in V). APV program is any parallel combination of these PV processes, Prog = Proc j (Proc jProc). The typical example in shared memory concurrent programs is O being the set ofshared variables and for all a 2 O, s(a) = 1. The P action is putting a lock and the Vaction is relinquishing it. We will suppose in the sequel that any given process can onlyaccess once an object before releasing it. We also suppose that the recursive equations are\guarded" in the sense that for all process variablesX, ProcX does not contain a summandof the form X:T , T being any non-empty term.We deliver here only the theoretical and practical assessment of this \reference" algo-rithm (with which we are going to compare our new algorithm).6

Figure 2: The forbiddenregions for 3phil Figure 3: Unsafe (red) re-gion for 3phil2.3.1 Algorithmic issuesWe let the volume V ol(S) of a set S of nodes (n-rectangles) in R be the number of itselements. For every element R 2 Ri one has to check whether R has to be added to theunsafe region. Only if the answer is yes, the 2n operations of disconnecting R form its nsons and n parents and possibly, a single addition to, resp. removal from, the list of unsaferectangles, has to be performed. This implies:Proposition 1 For a pure term consisting of n transactions with a forbidden region F =Sr1Ri, the worst case complexity of the algorithm of is of order nV ol(F) + �r1V ol(Ri).Examples reaching the worst case have a high amount of global synchronization, whichshould be avoided in the programs involved. Hence one would expect a much better be-haviour in the average situation. In fact, if nV ol(F) is the dominating part, the complexityis at most nN .2.4 BenchmarksThe program has been written in C and compiled using gcc -O2 on an Ultra Sparc 170Ewith 496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using theddi.h library and the virtual times as provided by the command gethrvtime(). The dy-namic data (the graph of cubes itself for instance) was created using the standard malloc()function of the bsdmalloc library. No particular optimization was made here. Timingshave been rounded to the nearest hundredth of a second but are not more precise than acouple of hundredths of a second.In the table below, dim is the dimension of the program considered (look at AppendixA for explanations), #face is the number of all faces that are actually represented, samefor #cube but for the n-rectangles (including the forbidden ones) and for #forb, for then-rectangles that are in the forbidden region. Then tsem is the time needed to constructthe whole semantics, tdead is the time needed from then to compute the unsafe region and#d is the number of n-rectangles found to be in the unsafe region.7

program dim #face #cube #forb tsem tdead #dexample 2 112 79 14 0 0 13stair2 2 152 105 16 0.01 0 41stair3 3 1614 960 290 0.18 0.01 356stair3' 3 6027 2314 80 0.64 0.02 0lipsky 3 939 556 158 0.08 0 03phil 3 190 123 32 0 0 14phil 4 1152 611 190 0.09 0 15phil 5 6298 2899 1048 0.82 0.02 16phil 6 32596 13455 5482 5.82 0.13 17phil 7 162990 61703 27668 42.35 0.86 13 Continuous to discrete - invoking the geometryThe �rst algorithm uses very little of the rich geometry available. In fact there is a muchbetter way to look at deadlocks.3.1 The boundary of the forbidden areaTo study dipaths and futures of points in X = Inn �F e�ciently, we need a closer geo-metric/combinatorial examination of the boundary of the forbidden area. Moreover, thisanalysis will be helpful in analyzing dihomotopy relations between dipaths; this has an in-terest in studying equivalence of execution paths, cf. [Gou95a, Gou95b], and, in particular,safety issues, cf. [Gun94]. Details in that direction will be worked out elsewhere.Let R = [a1; b1]� � � � � [an; bn] denote an n-rectangle. Its boundary @(R) decomposesinto� the lower boundary @�(R) := fx 2 Rj8j : xj < bj; 9j : xj = ajg;� the upper boundary @+(R) := fx 2 Rj8j : xj > aj; 9j : xj = bjg;� the intermediate boundary @�(R) := fx 2 Rj9j1; j2 : xj1 = aj1; xj2 = bj2g.Let again �F� In denote the forbidden region and let X = Inn �F . In the sequel, weneed the following genericity property of the rectangles in F :If �Ri1 \ �Ri2 6= ;; then ai1j = ai2j) ai1j = 0 and bi1j = bi2j) bi1j = 1; 1 � j � n:This property is obviously satis�ed for forbidden regions for \mutually exclusion" mod-els, in particular for PV-models.Points in In with at least one coordinate 0 or 1 play a special role: In a mutual exclusionmodel they stand for situations where not all processors have started their execution orwhere some of them already have terminated. These points require special attention. Tocircumvent lengthy case studies in the mathematical part, we slightly change our model inorder to include the upper boundary @+(In) of In into the forbidden region. To this end,let ~I = [0; 2] and In � ~In. 8

Slightly changing the notation, letRi = [0; 2]i�1�[1; 2]�[0; 2]n�i; 1 � i � n, and shiftingindices by n, Rn+1; : : : ; Rn+r will denote the n-rectangles used in the previous model F ofthe forbidden region modi�ed to maintain genericity: If bij = 1, then let bi+nj = 2. ThenSn1 Ri = ~Inn �In, and ~F = F [SRi = Sn+ri=1 Ri: By an abuse of notation, we will from nowon write F for ~F .The boundary @F � F decomposes as @F = @�F [@+F [@�F with @F = (Si @Ri)n �F ,@�F = (Si @�Ri)n �F , @+F = (Si @+Ri)n �F and @�F = (Si @�Ri)n �F .Looking at dipaths starting from a point x 2 X, we can concentrate attention on pointsx 2 @�F , since there are no local obstructions for all the other points:Lemma 1 For x = (x1; : : : ; xn) 2 (X n @�F), the future J+(x) contains a complete cone[x1; x1 + "]� � � � � [xn; xn + "] for some " > 0. �For points x 2 @�F , the structure of the near future J+0 (x) can be explained in termsof a boundary strati�cation:Let Ri = [ai1; bi1] � � � � � [ain; bin], and for any nonempty index set J = fi1; : : : ; ikg �f1; : : : ; n + rg de�ne RJ = Ri1 \ � � � \ Rik , i.e., RJ = [aJ1 ; bJ1] � � � � � [aJn; bJn] with aJj =maxfaijji 2 Jg and bJj = minfbijji 2 Jg. This set is again an n�rectangle unless it is empty(if akj > blj for some 1 � j � n and k; l 2 J). To the index set J we associate @�RJ =@�Ri1 \ � � � \ @�Rik and the boundary stratum (in @�F) @J�F = RJ \ @�F = @�RJn �F :An index set ; 6= J � f1; : : : ; n+ rg is called f-relevant (f for future) if @J�F 6= ;, i.e.,RJ 6= ; and aJ 62 �F .Lemma 2 If I �6= J are both f-relevant, then @J�F �6= @I�F ; i.e., for every i 2 J there is atleast one coordinate such that aJj = aij � akj for all k 2 J: �In particular, we obtain the boundary strati�cation @�F = SJ f-relevant @J�F .Every f-relevant subset ; 6= J � f1; : : : ; n + rg comes with a partition pJ of the setf1; : : : ; ng: pJ (i) = fjj1 � j � n; aJj = aijg: In other words: j 2 pJ (i) if and only if aij =aJj = maxfakj jk 2 Jg:Lemma 3 � 1. For every f-relevant subset ; 6= J � f1; : : : ; n+rg, pJ is in fact a partitionof f1; : : : ; ng.� 2. The strati�cation (3.1) of @�F above can be described as follows:x 2 @J�F , 8i 2 J 9j 2 pJ (i) : xj = aJj = aij:In other words:x 2 @J�F if and only if xj is minimal in RJ (xj = aJj) for at least one j 2 pJ (i):The strati�cation (3.1) above allows us to describe the local future J+0 (x) of a pointx 2 @�F :Proposition 2 Let x 2 @J�F . Then, J+0 (x) � @J�F :y = (y1; : : : ; yn) 2 J+0 (x)): 8i 2 J 9j 2 pJ (i) : xj = yj = aij:9

3.2 DeadlocksUsing the geometrical insight gained from the strati�cation, we give another descriptionof deadlocks and unsafe areas. Deadlock points can now be found as those x 2 @�F withJ+(x) = J+0 (x) = fxg.Proposition 3 A point x 2 @�F is a deadlock if and only if x 6= 1 and there is an f-relevant n-element index set J = fi1; : : : ; ing; and x = aJ = [aJ1 ; : : : ; aJn] = min(Ri1 \ � � � \Rin). In that case, @J�(F) is the one point set faJg:As an immediate consequence, we get a method to avoid deadlocks that is easy to check:Corollary 1 A forbidden region F = Sn+r1 Ri � In has a deadlock-free complement X =In n F if and only if for any index set J = fi1; : : : ; ing with jJ j = nRJ = Ri1 \ � � � \ Rin = ; or RJ = f1g or minRJ 2 �F : �3.3 Unsafe regionsThe boundary strati�cation gives a very e�cient way of describing n-rectangles \under" adeadlock that consist entirely of unsafe points:Let J = fi1; : : : ; ing � f1; : : : ; n+rg denote an n-element index set with @J�(F) = fa =(aJ1 ; : : : ; aJn) = (ai11 ; : : : ; ainn) = minRJ ; g, i.e, a is a deadlock. For every 1 � j � n, wechoose faJj as the \second largest" of the aikj , i.e.,faJj = aisj with aikj � aisj < aJj for aikj 6= aJj :We associate to a the n-rectangle Ua = [faJ1 ; aJ1]� � � � � [faJn; aJn].Proposition 4 The \half-open" n�rectangle Uan@�(Ua) =]faJ1 ; aJ1]�� � �]faJn; aJn] is unsafe,i.e., every dipath in In from a point x 2 (Ua n @�(Ua)) will enter �F .In general, the n-rectangle Ua will be considerably larger than the n-rectangles from thegraph algorithm; it will contain several of the n-rectangles in the partitionR. This is wherewe gain in e�ciency: look at Figures 4, 5, 6 and 7. They describe the 3 iterations neededin the following streamlined algorithm, whereas the �rst algorithm needed 26 iterations(two for each thirteen unsafe 2-rectangles).In analogy with the graph algorithm we can now describe an algorithm �nding thecomplete unsafe region U � In as follows: Find the set D of deadlocks in X and, for everydeadlock a 2 D, the unsafe n-rectangle Ua. Let F1 = F [Sa2D Ua. Find the set D1 ofdeadlocks in X1 = X nF1 � X, and, for every deadlock a 2 D1, the unsafe n-rectangle Ua.Let F2 = F1 [Sa2D1 Ua etc. 10

Figure 4: The for-bidden region Figure 5: First stepof the algorithm Figure 6: Secondstep of the algo-rithm Figure 7: Last stepof the algorithmThis algorithm stops after a �nite number n of loops ending with a set U = Fn andsuch that Xn = X n U does no longer contain any deadlocks. The set U n @�(U) consistsprecisely of the forbidden and of the unsafe points.The example of Figure 4 demonstrates that there may be arbitrarily many loops in thissecond algorithm { even in the case of a 2-dimensional forbidden region associated to asimple PV-program: Obviously, the \staircase" in Figure 4 (corresponding to the PV termexample, see Appendix A) producing more and more unsafe n-rectangles can be extendedad libitum by introducing extra rectangles Ri to F along the \diagonal".We now show the applicability of the method by exemplifying it on our toy PV language.4 Implementation of the geometric algorithm4.1 The semanticsNow we have a dual view on PV terms. Instead of representing the allowed n-rectangles,we represent the forbidden n-rectangles only. First, let T = X1 j � � � j Xn (for some n � 1)be a pure term (i.e. no recursion nor plus operator) of our language such that all itssubterms are pure as well. We consider here the Xi (1 � i � n) to be strings made out ofletters of the form Pa or V b, (a; b 2 O). Xi(j) will denote the jth letter of the string Xi.Supposing that the length of the strings Xi (1 � i � n) are integers li, the semantics ofProg is included in [0; l1]� � � � � [0; ln]. A description of [[Prog]] from above can be givenby describing inductively what should be digged into this n-rectangle. The semantics ofour language can be described by the simple rule, [k1; r1]� � � � � [kn; rn] 2 [[X1 j � � � j Xn]]2if there is a partition of f1; � � � ; ng into U [V with card(U) = s(a) + 1 for some object awith, Xi(ki) = Pa, Xi(ri) = V a for i 2 U and kj = 0, rj = lj for j 2 V .Now we have to take care of unpure terms. Geometrically, a branching between twosets of n concurrent processes can be represented in an Rn+s, with s big enough, with thecoordinate-wise ordering as in the \pure case". In our language, a branching comes froma choice operator in a sequential process, so s can be taken equal to one. Formally, theforbidden n-rectangles in [[X1 j � � � j Yi + Zi j � � � j Xn]]2 are [0; 0] � [[X1 j � � � j Yi j � � � j11

Xn]]2S[[X1 � � � j Zi j � � � j Xn]]2� [0; 0].Things are more complex when it comes to recursive equations. A loop (with the rightpre-order indicating the progress of time) cannot be embedded into an Rn with the partialorder induced by the order on each coordinate. But it can be embedded into a quotient ofthis partial order. So we have to change the semantic domain we use to be a pair of a set offorbidden n-rectangles together with a sequence of n equivalence relations, describing theidenti�cations of the local times (or the foldings, or the cycles) that the recursive equationsenforce.The semantics of pure terms is unchanged, except we have an extra component in thesemantics, ([k1; r1] � � � � � [kn; rn]; (;; � � � ; ;)) 2 [[X1 j � � � j Xn]]2 if there is a partition off1; � � � ; ng into U [V with card(U) = s(a) + 1 for some object a with, Xi(ki) = Pa,Xi(ri) = V a for i 2 U and kj = 0, rj = lj for j 2 V . This means that for pure terms, noidenti�cation of local times is made so all relations are empty.When a recursive call to the same process variable is found Xi(j) = Xi for some localtime j � 1 then the ith equivalence relation is updated to contain also the equivalence1Rij.4.2 The implementationA general purpose library for manipulating �nite unions of n-rectangles (for any n) hasbeen implemented in C. A n-rectangle is represented as a list of n closed intervals. Regions(like the forbidden region) are represented as lists of n-rectangles. We also label somen-rectangles by associating to them a region. Labeled regions are then lists of such labeledn-rectangles.Let us look �rst at the semantics of pure terms. Three arrays are constructed from thesyntax in the course of computation of the forbidden region. For a process named i and anobject (semaphore) named j, tP[i][j] is updated during the traversing of the syntactictree to be equal to the ordered list of times at which process i locks semaphore j. SimilarlytV[i][j] is updated to be equal to the ordered list of times at which process i unlockssemaphore j. Finally, an array t[i] gives the maximal (local) time that process i runs.For all objects a, we build recursively all partitions as in x4.1 of f1; � � � ; ng into a setU of s(a) + 1 processes that lock a and V such that U [V = f1; � � � ; ng and U \ V = ;.For each such partition (U; V) we list all corresponding pairs (Pa; V a) in each process Xi,i 2 U . As we have supposed that in our programs, all processes must lock exactly once anitem before releasing it, these pairs correspond to pairs (tP[i][a]j;tV[i][a]j) for j rangingover the elements of the lists tP[i][a] and tV[i][a]. Then we deduce the n-rectangle inthe forbidden region for each partition and each such pair.For the unpure terms, we choose �rst a representation of the sequence of equivalencerelations (R1; � � � ; Rn). As they are �nitely generated by simple foldings, each of theserelations R are implemented as a list lj (j = 1; � � � ; l) of ordered lists ljk 2 IN (k =1; � � � ;mj). The set fljkjk = 1; � � � ;mjg is exactly an equivalence class in R. We alsoconstruct this so that lj1 is an ordered list. The operations min(x,y) and max(x,y) incoordinate i are then quite simple. We determine for x and y their minimal representatives12

xm and ym under Ri using the representation above: this is a lj1 for some suitable j orx (resp. y) themselves. Then min(x,y)= min(xm; ym). Similarly, we can determine themaximal representatives xM and yM of x and y and then max(x,y)=max(xM ; yM).Now we have to handle extra-coordinates induced by the operator plus. In fact, insteadof using the mathematical representation of n-rectangles, we can describe the branchingstructure of the processes in a separate manner. Basically, we represent the pre-orderdetermining the time
ow together with the forbidden regions by a tree whose leavesconsist of an n-rectangle together with an equivalence relation (represented as explainedabove). Each branching in this tree represents a plus operation. At the leaves is thesemantics of all terms with no plus. In order to do that, we unfold the syntactic tree (justonce for the moment) of the processes, and each time we traverse a plus node, we create abranching in this tree. Then at some point we end with a pure term whose subterms arepure (or contain process variables). We apply the rule for the semantics of such terms foreach leaf, also deriving the equivalence relation for each process.4.3 Implementation of the second deadlock algorithmThe implementation uses a global array of labeled regions called pile: pile[0],...,pile[n-1](n being the dimension we are interested in). The idea is that pile[0] contains at �rstthe initial forbidden region, pile[1] contains the intersection of exactly two distinct re-gions of pile[0], etc., pile[n-1] contains the intersection of exactly n distinct regions ofpile[0].The algorithm is incremental. In order to compute the e�ect of adding a new forbiddenn-rectangle S the program calls the procedure complete(S,;). This calls an auxiliaryfunction derive also described in pseudo-code below, in charge of computing the unsaferegion generated by a possible deadlock created by adding S to the set of existing forbiddenregions. The resulting forbidden and unsafe region is contained in pile[0].complete(S,l)if S is included into a X in pile[0] returnfor i=n-2 to 0 by -1 do pile[i+1]=intersection(pile[i]\l,S)pile[0]=union(pile[0],S)for all X in pile[n-1] do pile[n-1]=pile[n-1]\Xderive(X)The intersection of a labeled region R (such as pile[i] above) with a n-rectangle Sgives the union of all intersections of n-rectangles X in R (which are also n-rectangles)labeled with the concatenation of the label of X with S (which is a region). Thereforelabels of elements of regions in pile are the regions whose intersection is exactly theseelements.Now, derive(X) takes care of deriving an unsafe region from an intersection X of nforbidden or unsafe distinct n-rectangles. Therefore X is a labeled n-rectangle, whoselabels is X1,...,Xn (the set of the n n-rectangle which it is the intersection of). We callX(i) the projection of X on coordinate i. 13

derive(X)for all i do yi=max({Xj(i) / j=1,...,n}\{X(i)})Y=[y1,X(1)]x...x[yn,X(n)]if Y is not included in one of the Xj complete(Y,(X1,...,Xn))This last check is done when computing all yi. We use for each i a list ri of indexesj such that yi=Xj(i) (there might be several). If the intersection of all ri is not emptythen Y is included into one of the Xj. It is to be noticed that this algorithm considerscycles (recursive calls) as representing (unbounded) �nite computations.4.4 Complexity issuesThe entire algorithm consists of 3 parts: The �rst establishes the initial list pile[0]of forbidden n-rectangles, the second works out the complete array pile { including thedeadlocks encoded in pile[n] {, and the third adds pieces of the unsafe regions, recursively.Let again n denote the number of processes (the dimension of the state space), andr the number of n-rectangles. From a complexity viewpoint, the �rst step is negligeable;�nding the n-rectangles involves Cns(a)+1 searches in the syntactic tree for every sharedobject a { in each of the n coordinates.The array pile involves the calculation of S(r; n) = Pni=1 Cri intersections, each ofthem needing comparisons in n coordinates. Note that these comparisons show whichof the intersections are empty, as well. To �nd the deadlocks, one has to compare (ncoordinates of) the at most Crn non-empty elements in pile[n] with the r elements inpile[0]. Adding pieces of unsafe regions in the third step involves the same procedureswith an increased number r of n-rectangles. The worst-case �gure S(r; n) above can becrudely estimated as follows: S(r; n) � 2r for all n, and S(r; n) � nCrn for r > 2n { whichis a better estimate only for r >> 2n.Remark that the algorithm above has a total complexity roughly proportional to thegeometric complexity of the forbidden region. The latter may be expressed in terms ofthe number of non-empty intersections of elementary n-rectangles in the forbidden region.This �gure re
ects the degree of synchronization of the processes, and will be much lowerthat S(n; r) for a well-written program. We conjecture, that the number of steps in ev-ery algorithm detecting deadlocks and unsafe regions is bounded below by this geometriccomplexity. On the other hand, for the analysis of big concurrent programs, this geometriccomplexity will be tiny compared to the number of states to be searched through by atraversing strategy.4.5 BenchmarksThe program has been written in C and compiled using gcc -O2 on an Ultra Sparc 170Ewith 496 Mbytes of RAM, 924 Mbytes of cache. All times have been measured using theddi.h library and the virtual times as provided by the command gethrvtime(). Thedynamic data was created using the standard malloc() function of the bsdmalloc library.14

No particular optimization was made here. Timings have been rounded to the nearesthundredth of a second but are not more precise than a couple hundredths of a second.In the following table, dim represents the dimension of the program checked, #forbidis the number of forbidden n-rectangles found in the semantics of the program, t semanticsis the time it took to �nd these forbidden n-rectangles, t unsafe is the time it took to�nd the unsafe region and #unsafe is the number of n-rectangles found to be unsafe (theynow encapsulate many of the \unit" n-rectangles found by the �rst deadlock detectionalgorithm). These measures have been taken on a �rst implementation which does notinclude yet the branching and looping constructs.program dim #forbid t semantics t unsafe #unsafeexample 2 4 0.020 0 3stair2 2 6 0.020 0 15stair3 3 18 0.010 0 4stair3' 3 6 0.030 0 0lipsky 3 6 0.020 0 03phil 3 3 0.020 0 14phil 4 4 0.030 0 15phil 5 5 0.030 0 16phil 6 6 0.030 0 116phil 16 16 0.030 0.030 132phil 32 32 0.030 0.420 164phil 64 64 0.040 1.520 1128phil 128 128 0.100 26.490 15 Conclusion and future workWe have presented two algorithms for deadlock detection, including the computation of theset of states (the unsafe region) that will eventually lead to a deadlock. These algorithmswere based on geometric intuition and techniques. They have been implemented, and the�rst one shows good comparison with ordinary reachability search with some state-spacereduction techniques. But due to its complexity, this does not seem to be easily usable forvery big programs (except if combined with clever abstract interpretations) or for a bignumber of processes (6 or 7 seems to be a maximumin general for practical use). The secondalgorithm has shown much better promise. Its complexity depends on the complexity ofthe synchronization of the processes, and not on a fake number of global states, as in mosttechniques used. In this regard it is much more practical. Dealing with 128 processesis not a problem if they are not synchronizing too much (as in the dining philosophersproblem), but this is certainly intractable for reachability search with no clever partialorder techniques(there are more than 1085 global states in that case). It should be notedalso that these two algorithms could be enhanced by the use of some other well-knowntechnique, like symmetry and (for the �rst one) some state-space reduction techniques. Asthe second algorithm is based on an abstract interpretation of the semantics, it should be15

developed for the use on real concurrent languages in conjunction with other well-knownabstract interpretations. This is for future work. Also this should be linked with a fulldescription of \schedules" and veri�cation of safety properties of concurrent programs ashinted in [Gun94, Gou95b, FR96] using the geometric notions developed in this article.Acknowledgments We used Geomview (see the Web page http://freeabel.geom.umn.{edu/software/ download/geomview.html/) to make the 3D pictures of this article (in afully automated way).A The examples detailedYou can check the implementations and the examples at http://www.dmi.ens.fr/~goubault.� The dining philosophers' problem. The source below is for three philosophers, thenext one is for �ve. The way others of these examples are generated should be obviousfrom these examples./* 3 philosophers ``3phil'' */A=Pa.Pb.Va.VbB=Pb.Pc.Vb.VcC=Pc.Pa.Vc.VaThe output giving the unsafe region is then,(P(b).V(a).V(b)|P(c).V(b).V(c)|P(a).V(c).V(a),[c,0][b,0][a,0])/* 5 philosophers ``5phil'' */A=Pa.Pb.Va.VbB=Pb.Pc.Vb.VcC=Pc.Pd.Vc.VdD=Pd.Pe.Vd.VeE=Pe.Pa.Ve.Va� This is example of Figure 4./* ``example'' */A=Pa.Pb.Vb.Pc.Va.Pd.Vd.VcB=Pb.Pd.Vb.Pa.Va.Pc.Vc.Vd� This is the classical Lipsky/Papadimitriou example (see [Gun94]) which produces nodeadlock. 16

Figure 8: The Lip-sky/Papadimitriouexample Figure 9: A close-up to a hole in theforbidden region Figure 10: Turningaround Figure 11: Behind,notice the exit inthe hole/* ``lipsky'' */A=Px.Py.Pz.Vx.Pw.Vz.Vy.VwB=Pu.Pv.Px.Vu.Pz.Vv.Vx.VzC=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv� This is a staircase (worst complexity case for the second algorithm)./* ``stair2'' */A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.VfB=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va� This is a 3-dimensional staircase. Notice that if you declare all semaphores used (a,b, c, d, e and f) to be initialized to 2 (example \stair3"'), there is no 3-deadlock./* ``stair3'' */A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.VfB=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.VaC=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.VaReferences[ABC+91] G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automatedanalysis of concurrent systems with the constrained expression toolset. IEEE Trans.Soft. Eng., 17(11):1204{1222, November 1991.[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-bolic model checking: 1020 states and beyond. In Proc. of the Fifth Annual IEEESymposium on Logic and Computer Science, pages 428{439. IEEE Press, 1990.17

[BG96] B. Boigelot and P. Godefroid. Model checking in practice: An analysis of the ac-cess.bus protocol using spin. In Proceedings of Formal Methods Europe'96, volume1051, pages 465{478. Springer-Verlag, Lecture Notes in Computer Science, March1996.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for staticanalysis of programs by construction of approximations of �xed points. Principles ofProgramming Languages 4, pages 238{252, 1977.[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic andComputation, 2(4):511{547, August 1992.[CCA96] A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. An empirical comparison of staticconcurrency analysis techniques. Technical Report 96-84, Department of ComputerScience, University of Massachusetts, August 1996.[Cor96] J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEETransactions on Software Engineering, 22(3), March 1996.[CR87] S.D. Carson and P.F. Reynolds. The geometry of semaphore programs. ACMTOPLAS, 9(1):25{53, 1987.[Cri95] R. Cridlig. Semantic analysis of shared-memory concurrent languages using abstractmodel-checking. In Proc. of PEPM'95, La Jolla, June 1995. ACM Press.[DC94] M. B. Dwyer and L. A. Clarke. Data
ow analysis for verifying properties of concurrentprograms. In Proc. of the Second Symposium on Foundations of Software Engineering,pages 62{75, December 1994.[Dij68] E.W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor, ProgrammingLanguages, pages 43{110. Academic Press, New York, 1968.[FR96] L. Fajstrup and M. Rau�en. Some remarks concerning monotopy of increasing paths.unpublished manuscript, Aalborg University, 1996.[GHP95] P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching revisited. In For-mal Methods and System Design, volume 7, pages 1{15. Kluwer Academic Publishers,November 1995.[GJ92] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc.of CONCUR'92, Stonybrook, New York, August 1992. Springer-Verlag.[GJM+97] H. Garavel, M. Jorgensen, R. Mateescu, Ch. Pecheur, M. Sighireanu, and B. Vivien.Cadp'97 { status, applications and perspectives. Technical report, Inria Alpes, 1997.[Gou95a] E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure,1995. to be published, 1997, also available at http://www.dmi.ens.fr/~goubault.[Gou95b] E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95,La Jolla, June 1995. ACM Press, also available at http://www.dmi.ens.fr/~goubault.[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in theformal validation of industrial concurrent programs. IEEE Transactions on SoftwareEngineering, 22(7):496{507, July 1996.[Gun94] J. Gunawardena. Homotopy and concurrency. Bulletin of the EATCS, 54:184{193,1994.[HS95] M. Herlihy and S.Rajsbaum. Algebraic Topology and Distributed Computing. APrimer. volume 1000 of Lecture Notes in Computer Science. Springer-Verlag, 1995.[HS96] M. Herlihy and N. Shavit. The topological structure of asynchronous computability.18

Technical report, Brown University, Providence, RI, January 1996.[LP81] W. Lipski and C.H. Papadimitriou. A fast algorithm for testing for safety and de-tecting deadlocks in locked transaction systems. Journal of Algorithms, 2:211{226,1981.[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. of Com-puter Aided Veri�cation. Springer-Verlag, 1997.[Pra91] V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Symposiumon Principles of Programming Languages. ACM Press, 1991.[Val89] A. Valmari. Eliminating redundant interleavings during concurrent program veri�ca-tion. In Proc. of PARLE, volume 366, pages 89{103. Springer-Verlag, Lecture Notesin Computer Science, 1989.[Val91] A. Valmari. A stubborn attack on state explosion. In Proc. of Computer AidedVeri�cation, number 3, pages 25{41. AMS DIMACS series in Discrete Mathematicsand Theoretical Computer Science, 1991.[vG91] R. van Glabbeek. Bisimulation semantics for higher dimensional automata.Technical report, Stanford University, Manuscript available on the web ashttp://theory.stanford.edu/~rvg/hda, 1991.[YY91] W. J. Yeh and M. Young. Compositional reachability analysis using process algebras.In Proc. of the symposium on Testing, Analysis and Veri�cation, pages 178{187. ACMPress, October 1991.

19

