
Components of the Fundamental CategoryL. Fajstrup (fajstrup@math.auc.dk) and M. Raussen(raussen@math.auc.dk)Department of Mathematical Sciences�, Aalborg University, DenmarkE. Goubault (eric.goubault@cea.fr) and E. Haucourt(haucourt@aigle.saclay.cea.fr)CEA/Saclayy, FranceAbstract. In this article we study the fundamental category (Goubault and Raussen,2002; Goubault, 2002) of a partially ordered topological space (Nachbin, 1965; John-stone, 1982), as arising in e.g. concurrency theory (Fajstrup et al., 1999). The\algebra" of dipaths modulo dihomotopy (the fundamental category) of such a po-space is essentially �nite in a number of situations: We de�ne a component categoryof a category of fractions with respect to a suitable system, which contains allrelevant information. Furthermore, some of these simpler invariants are conjecturedto also satisfy some form of a van Kampen theorem, as the fundamental categorydoes (Goubault, 2002; Grandis, 2001). We end up by giving some hints about howto carry out some computations in simple cases.Keywords: po-space, dihomotopy, fundamental category, category of fractions,component, weakly invertible morphism, pure system1. IntroductionThe aim of this paper is to show how to compute some algebraictopological invariants relevant to questions about concurrent and dis-tributed systems.A class of examples, which will be used throughout this text, gen-erating geometrical invariants, arises from a toy langage manipulatingsemaphores. Using Dijkstra's notation (Dijkstra, 1968), we considerprocesses to be sequences of locking operations Pa on semaphores aand unlocking operations V a. In this introduction, we consider onlybinary semaphores, ensuring mutual exclusion of accesses, but in fur-ther examples, we will also model and use counting semaphores, or� A preliminary version of this work was presented and discussed at the SeminarStructures for Computable Topology and Geometry at Schloss Dagstuhl. Part of thiswork was accomplished while the �rst two authors were visiting Ecole Polytechnique,France.y This work was completed during an academic visit of the third author to thecomputer science department of Macquarie University, Sydney. Acknowledgmentsare due to the members of Sydney Category Theory Seminar for numerous discus-sions on the subject. Part of this work was done while the fourth author was visitingAalborg University, with support from BRICS and Paris 7.c
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Figure 1. The Swiss Flag example - two processes sharing two resourcesk-semaphores (k > 1) which can be accessed concurrently by up to kprocesses.In the example where two processes share two resources a and b:T1 = Pa:Pb:V b:V aT2 = Pb:Pa:V a:V bthe geometric model is the \Swiss 
ag", Fig. 1, regarded as a subset ofIR2 with the componentwise partial order (x1; y1) � (x2; y2) if x1 � y1and x2 � y2. The (interior of the) horizontal dashed rectangle comprisesglobal states that are such that T1 and T2 both hold a lock on a: thisis impossible by the very de�nition of a binary semaphore. Similarly,the (interior of the) vertical rectangle consists of states violating themutual exclusion property on b. Therefore both dashed rectangles formthe forbidden region, which is the complement of the space X of (legal)states. This space with the inherited partial order provides us with aparticular po-space X (Nachbin, 1965; Johnstone, 1982), as de�ned inSect. 2.Moreover, legal execution paths, called dipaths, are increasing mapsfrom the po-space ~I (the unit segment with its natural order) to X .The partial order on X thus re
ects (at least) the time ordering on allpossible execution paths.Many di�erent execution paths have the same global e�ect: In the\Swiss Flag" example, for any execution path shaped like the one at theleft of Figure 2, T1 gets hold of locks a and b before T2 does. This impliesthat for the actual assignments on variable b that we have chosen inapcs4a.tex; 21/03/2003; 19:04; p.2
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Un−
reachableFigure 3. Deadlocks and unreachablesthis example: T1 does b := b+1 and T2 does b = b � 2, starting with aninitial value of 2, all execution paths below the hole will end up withthe value b = 6, since T1 will do b = 2 + 1 = 3 and then only afterwill T2 do b = 3 � 2 = 6. In fact, there are only two essentially di�erentexecution paths from the initial point (0; 0) to the �nal point (1; 1),that fully determine the computer-scienti�c behaviour of the system:one is the type of dipaths just discussed, the other one runs to theleft and above the central hole (see picture at the right hand side ofFigure 2). In terms of schedules of executions, the latter corresponds toexecutions in which T2 is the �rst to read and write (after having got thecorresponding locks) on a and b, before T1 does (ending up with resultb = 2�2+1 = 5). These are in fact the only two classes of dipaths from(0; 0) to (1; 1) modulo \continuous deformations" that do not reversetime, i.e., up to dihomotopy as de�ned in (Fajstrup et al., 1999) and inSection 2, and these are the only paths of execution which are relevantto the computation of the possible �nal values that our toy concurrentprogram can reach. This fact is indeed general, and is not at all limitedapcs4a.tex; 21/03/2003; 19:04; p.3



4to the example. For determining the possible outcome of a concurrentprogram (modelled in a suitable way, as for our PV programs), onlythe dihomotopy classes of dipaths count, and it is thus natural, bothon the mathematical side and for computer-scienti�c purposes to tryto characterize these classes.We are not only interested in maximal dipaths modulo deformation.Other interesting dipaths, in our example space start in the initialpoint (0; 0) and end in a deadlock, cf. the �rst picture of Figure 3, orstart in an unreachable state and end in the �nal point (1; 1), cf. theright hand side of Figure 3. In fact, all continuous increasing pathsentering the lower concavity below the holes is bound to end at theintersection of the two forbidden rectangles, which is the deadlock. Thislower concavity is called the unsafe region. Now, formally reversing theorder of time on the two coordinates give the picture, on the righthand side of Figure 3. Notice that the unsafe region, once time hasbeen reversed, is in fact what we call the unreachable states. It is theset of points which cannot be reached from the initial point (with theinitial ordering).In general, one of the important invariants of a concurrent systemis its fundamental category (Goubault, 2002; Goubault and Raussen,2002), classi�ying dipaths between any pair of points up to dihomotopy,i.e, a directed version of the fundamental groupoid (Brown, 1968) of atopological space. A drawback of the fundamental category is that it isless easy to compute than the fundamental groupoid or the fundamentalgroup. There are similarities though, for instance there is a van Kampentheorem in the directed case (Goubault, 2002; Grandis, 2001).Our aim is to go further in the study of the algebraic properties ofthe fundamental category in order to manipulate and compute it for avariety of systems. In nice cases, the relevant information in the funda-mental category is essentially �nite. This is shown using a constructionbased on categories of fractions (Gabriel and Zisman, 1967), which arebrie
y explained in Section 3. The principle is to formally \invert"systems of \inessential" morphisms in the fundamental category. Ofcourse, we should be able to deduce from this construction, applied tothe Swiss 
ag example, at least the regions of unsafe and unreachablestates, and also that we have two classes of maximal dipaths.In fact we want a little more than that. Our aim is to decompose thefundamental category into big chunks as the regions 1 to 10 in Figure4. Basically, inside these regions, or components, nothing importanthappens: �rst of all, there is at most one dihomotopy class of dipathbetween any two points in the same component. Moreover, compos-ing with morphisms (= dihomotopy classes of dipaths) within theseregions does not a�ect the \shape" of the future nor of the past. We
apcs4a.tex; 21/03/2003; 19:04; p.4



5will consider the category of fractions with these morphisms formallyinverted. A certain quotient of the fundamental category with respectto this system of \ inessential" morphisms forms then the category ofcomponents, which, in our example is the following �nite category:5 // 8 g02 // 107g01 OO g1 // 9g2OO3OO f 02 // 41f 01 OO f1 // 2f2OO // 6OOtogether with relations g02�g01 = g2�g1 and f 02�f 01 = f2 �f1 (comparewith e.g. (Gaucher and Goubault, 2001)). In some sense, this categoryof components �nitely presents the fundamental category. In particular,we can infer from this component category, all dihomotopy informationbecause of a lifting property, see Propositions 3 and 7.In general it is not obvious how to characterize the inessential mor-phisms, i.e., the morphisms which should be inverted formally. Thisleads to a more speci�c calculus of fractions, in particular left andright categories of fractions as de�ned in Section 4. Moreover, as shownin (Gabriel and Zisman, 1967), �nite limits and �nite colimits arepreserved when taking left and right categories of fractions. We canview equalizers, sums and products (when they exist, at least locally insome subcategories) as expressing particular equations between dipathsmodulo dihomotopy which the category of fractions we construct hasto preserve.We then apply this \abstract nonsense" to various topological sit-uations, arising from questions regarding dihomotopies. Last but notleast, we give some hints about how to compute these invariants forsimple spaces like some compact subsets of IRn with the componentwiseordering. This is done in Section 5.There are two importants points that need to be outlined, par-ticularly with respect to earlier work (Raussen, 2002; Goubault andRaussen, 2002):First, the \inessential" morphisms used to be de�ned with respectto sets of initial and �nal points. Dipaths were considered as pieces ofdipaths between a set of initial points and a set of �nal points. Thenew de�nitions allow us to be more natural, without any reference toapcs4a.tex; 21/03/2003; 19:04; p.5
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Figure 4. The components of the Swiss 
agspeci�c sets of points. This also tackles some of the problems with the\homotopy history equivalence" relation as de�ned in (Fajstrup et al.,1999) which also needed to be bipointed by sets of initial and �nalpoints. In some sense, Proposition 6 shows that the new de�nition ofinessential morphisms allows us to encompass all possible choices ofinitial and �nal sets.Another modi�cation arises from the fact that the fundamentalcategory does not satisfy cancellation properties, in general. This isthe reason for introducing the additional concept of a pure system(cf. De�nition 4.3): For instance, the fundamental category of a cubeminus an inner cube (see Section 6) is not trivial (as its fundamentalgroup). Close to the inner deleted cube, there are local obstructionsto directed homotopy of directed paths. But these are cancelled outunder any long enough extensions, in the future as well as in the past.In general it is not clear whether composites of essential morphismscan become inessential. To avoid this, we ask a system of morphimsto be inverted to satisfy the pureness property from Def. 4.3. Andfurthermore, this property has some very nice consequences as we showin section 5. Unfortunately, it is not clear in general how to constructsigni�cant systems of inessential morphisms satisfying this purenessproperty. 2. Basic de�nitionsThe framework for the applications we have in mind is mostly basedon the simple notion of a po-space: apcs4a.tex; 21/03/2003; 19:04; p.6



7DEFINITION 1.1. A po-space is a topological space X with a (global) closed partialorder � (i.e. � is a closed subset of X �X).2. A dimap f : X ! Y between po-spaces X and Y is a continuousmap that respects the partial orders (is non-decreasing).3. A dipath f : ~I ! X is a dimap whose source is the interval ~I withthe usual order.Po-spaces and dimaps form a category. To a certain degree, ourmethods apply to the more general categories of lpo-spaces (Fajstrupet al., 1999) (with a local partial order), of 
ows (Gaucher, 2002) andof d-spaces (Grandis, 2001), but for the sake of simplicity, we stick topo-spaces in the present paper. Dihomotopies between dipaths f and g(with �xed extremities � and � in X) are dimaps H : ~I � I ! X suchthat for all x 2 ~I , t 2 I ,H(x; 0) = f(x); H(x; 1) = g(x); H(0; t) = �; H(1; t) = �:A dihomotopy is to be understood as a 1-parameter family of dimapswithout order requirements in the second I-coordinate1. Now, we cande�ne the main object of study of this paper:DEFINITION 2. The fundamental category is the category ~�1(X) with:� as objects: the points of X,� as morphisms, the dihomotopy classes of dipaths: a morphismfrom x to y is a dihomotopy class [f ] of a dipath f from x to y.Concatenation of dipaths factors over dihomotopy and yields thecomposition of morphisms in the fundamental category. A dimap f :X ! Y between po-spaces induces a functor f# : ~�1(X) ! ~�1(Y ),and we obtain thus a functor ~�1 from the category of po-spaces to thecategory of categories.The fundamental category of a po-space generalizes the fundamentalgroup �1(X) of a topological space X (a single object=base point;morphisms=homotopy classes of loops). It is often an enormous gad-get (with uncountably many objects and morphisms) and possessesless structure than a group. It is the aim of this paper to \shrink"the essential information in the fundamental category to an associ-ated component category, that in many cases is �nite and possesses acomprehensible structure.1 This is slightly di�erent for d-spaces, but coincides in important cases.apcs4a.tex; 21/03/2003; 19:04; p.7



8 3. Categories of fractions and component categoriesMany of the tools we need for the study of the fundamental category canin fact be applied to at least all small categories. These are the notionsof categories of fractions, of left and right calculi of fractions and ofpure systems. The �rst two notions are well-known in the categorytheory literature (Gabriel and Zisman, 1967; Borceux, 1994) and werealready applied to the analysis of fundamental categories in (Raussen,2002; Goubault and Raussen, 2002). The new notion in this paper isthat of pure systems yielding far more satisfactory applications.3.1. Categories of fractionsIn the sequel, we will only consider small categories (most of the resultswould still hold with locally small categories (Mac Lane, 1971), but wedo not need these in the applications to the fundamental category).DEFINITION AND LEMMA 1. (Borceux, 1994) Let C be a category.1. A subset � �Mor(C) is called a system of morphisms of C if(i) 8x object of C, Idx 2 �(ii) 8�1 : x �! x0; �2 : x0 �! x00 2 �; �2 � �1 2 �.(In other words, the objects of C together with � form a widesubcategory of C.)2. Given a system � of morphisms2 in C, there is, up to isomorphismof categories, a unique category (denoted C[��1]) and a functorP� : C �! C[��1], such that:� 8� 2 �; P�(�) is an isomorphism of C[��1].� For any functor F : C �! D such that if � is an isomorphismof C then F (�) is an isomorphism of D, there is a uniquefunctor G : C[��1] �! D such that the following diagramcommutes : C F //P� ""EEEEEEEEE DC[��1] G <<xxxxxxxxx2 Note that the assumptions in 1. are not necessary for the existence of a categoryof fractions. Considering only those � that are subcategories of C will make thingssimpler in the rest of the paper, and we do not lose generality by this.apcs4a.tex; 21/03/2003; 19:04; p.8



9In fact, each morphism of C[��1] can be represented in the form��11 �a1�� � ����1k�1�ak where each ai is a morphism of C and ��1i denotesthe formal inverse of �i 2 �, cf. (Gabriel and Zisman, 1967; Borceux,1994).EXAMPLE 1. In algebraic topology, one considers the category of CW-complexes or of simplicial sets with formal inverses to the system of\weak equivalences", i.e., those maps which induce isomorphisms ofall homotopy groups. This category of fractions is called the homotopycategory or the category of \homotopy types" (Gabriel and Zisman,1967).3.2. Component categoriesAny morphism of the form s�11 � s2 � � � � � s�12k�1 � s2k; sj 2 �; k 2 Nis called a �-zig-zag morphism. The set ZZ(�) of all �-zig-zag mor-phisms forms a system of morphisms contained in the invertibles ofthe category of fractions, denoted Inv(C[��1]): Equality holds if �contains the invertibles Inv(C) of the original category C. In fact,C[(�[Inv(C))�1] = C[��1]. The subcategory of C[��1] with all objects,the morphisms of which are given by the zig-zag morphisms ZZ(�),forms in fact a groupoid.Two objects x; y 2 Ob(C) are called �-related { x '� y { if thereexists a zig-zag-morphism from x to y. This de�nition corresponds tousual path connectedness with respect to paths in � only { but re-gardless of orientation. Being �-related is an equivalence relation; theequivalence classes will be called the �-connected components { thepath components with respect to �-zig-zag paths, i.e., the componentsof the groupoid above. This can be rephrased by saying that '� isthe equivalence relation generated by the relation x � y if there exists� : x! y in �.Next, consider the smallest equivalence relation on the morphismsof C[��1] generated (under composition, when they make sense) by� ' � � sj ; � ' tj � � for � 2Mor(x; y)Remark that equivalent morphisms no longer need to have the samesource or target. In particular, every morphism in � is equivalent to theidentities in both its source and its target; hence, all zig-zag morphismswithin a component are equivalent to each other.Dividing out the morphisms in � within C, we arrive at a com-ponent category : The objects of the component category �0(C; �) areby de�nition the �-connected components of C; the morphisms fromapcs4a.tex; 21/03/2003; 19:04; p.9



10[x] to [y]; x; y 2 Ob(C), are the equivalence classes of morphisms inSx0'�x;y0'�y MorC[��1](x0; y0). The composition of [�] � [�] for � 2MorC[��1](x; y) and � 2 MorC[��1](y0; z) is given by [� � s � �] withs any zig-zag morphism from y to y0. The equivalence class of thatcomposition is independent of the choices of representatives � and �(by de�nition) and of the choice of the zig-zag path s by the preceedingremark.The overall idea is thus as follows: Having �xed a suitable system� of \weakly invertible" morphisms, we decompose the study of C intothe study of� the component category encompassing the global e�ects of irre-versibility and� the components with a groupoid structure given by the �-zig-zags.The original category C and the component category �0(C; �) arerelated by a functor �0(�) : C P��!C[��1] ! �0(C; �); the last arrow isthe quotient functor.As noticed by Marco Grandis and the anonymous referee, this ex-tends the case of quotients of groupoids by normal groupoids (see(Higgins, 1971)), at least in the case when the only endomorphisms inthe category C are the identities (hence every subgroupoid is normal), aswill be the case in most of what follows. Also, the component categorycan be seen as a pushout: let T be the functor which associates to a setS the trivial groupoid on S (one invertible arrow for each element of S).Let K be the set of connected components of �. Let R� be the functorwhich to each arrow � of � associates the identity on the component ofthe domain and range of � in the groupoid T (K). Then �0(�) is partof the following pushout diagram:� � //R� �� C�0(�)��T (K) // �0(C; �)3.3. FunctorsLet � denote a system of morphisms in the category C and � a systemof morphisms in the category D. To ensure that a functor F : C !D induces a well-de�ned functor between the categories of fractionsC[��1] ! D[��1] and then between the categories of components�0(C;�) and �0(D;�), we need to assume that F (�) � �. This is not atapcs4a.tex; 21/03/2003; 19:04; p.10



11all automatically satis�ed in easy geometric examples with systems ofweakly invertible morphisms. But one can always re�ne a given systemto ensure this condition:LEMMA 1. F induces� a functor F�;� from C[(�\ F�1(�))�1] to D[��1].� a functor �0F�;� from �0(C;�\ F�1(�)) to �0(D;�).Proof. Obvious.Particularly important is the case of an inclusion i : �1 ,! �2 ofsystems of morphisms within the same category C. The identity on Cleads immediately to the functor i�1 �2 : C[�1]�1 ! C[�2]�1 and to thefunctor �0i�1 �2 : �0(C;�1) ! �0(C;�2) which re
ects an inverse to are�nement. In general, it is useful to understand the structure of widesub-categories of fractions of C[��1] where we invert fewer morphismsthan the ones of �.LEMMA 2. Let L� be the poset of categories of the form C[��1] where� � �, with the inclusion of morphisms as partial order. L� is acomplete lattice.Proof. Let (�i)i2I a family of system of morphisms. It is easy to seethat C[(\i2I�i)�1] is the greatest lower bound in L�.Let the least system of morphisms stable under composition of theunderlying category, containing all �i and identities on all objects of�i be denoted by ]i2I�i. Then C[(]i2I�i)�1] is the least upper boundof the families of categories C[��1i ].In fact, the induced functor of Lemma 1 is the largest functor agree-ing with F , meaning that it is couniversal with respect to inclusionmaps C[��1] ,! C[��1] (which are the maps induced by set-theoreticinclusion maps � ,! �). If one uses the components with respect to asystem � of morphisms as the basis for a topology on the objects, thenLemma 1 states that we can always take the greatest such topologymaking F continuous.4. Calculi of fractions4.1. Weakly invertible morphismsIn the case of the fundamental category C = ~�1(X) of a po-space (X;�),we want to de�ne morphisms to be \weakly invertible" if no \decision"apcs4a.tex; 21/03/2003; 19:04; p.11



12is taken. This means that composition on the left and on the right withsuch morphims induce (natural) bijections between sets of morphisms.This idea can be formulated for general small categories:Let C!x (respectively Cy!) denote the full subcategory of C consist-ing of objects z such that C(z; x) 6= ; (respectively C(y; z) 6= ;), andconsider �rst the Yoneda functor: YC : C ! Ĉ, where Ĉ is the categoryof presheaves over C.DEFINITION 3. We say that a morphism � : x ! y in C is weaklyinvertible on the left (respectively on the right) if for all objects z, YC(�)(respectively YCop(�)) is a natural isomorphism when restricted to C!x(respectively on Cop!y = Cy!). We say that � is weakly invertible if � isweakly invertible both on the left and on the right3.Less abstractly formulated, we ask that all maps (for all v; z 2 C):C(y; z) // C(x; z) C(v; x) // C(v; y)g // g � � h // � � hare set-theoretic bijections: zx ??�������� � // y!OO���v! OO��� ??�������whenever C(y; z) 6= ; (respectively, on the right-hand side, C(v; x) 6= ;).Obviously,LEMMA 3. The weakly invertible morphisms in C form a system ofmorphisms (cf. Def. 1).As an example, consider the po-space of Figure 5, which is ~I � ~Iminus the interior of a square.All morphisms with end-points within the closed square region Aor D are weakly invertible in the sense above. Similarly, all morphisms3 The fact, that we look only at restrictions of the Yoneda functor on C!x andCy! is of primary importance: otherwise we would de�ne the weakly invertiblemorphism to be the isomorphisms in the original category, by Yoneda's Lemma.apcs4a.tex; 21/03/2003; 19:04; p.12
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Figure 5. A simple po-space and components containing only weakly invertiblemorphismswith both end points within the open regions B, resp. C, are weaklyinvertible.4.2. Calculi of left and right fractionsWhether a morphism s 2 C(x; y) is weakly invertible or not dependsonly on the morphisms with a target reachable from y, resp. with asource that can reach x. This condition is thus, in general too weak tocompare objects with respect to all ingoing and outgoing morphisms.EXAMPLE 2. In Fig. 6, the \vertical" morphism � is weakly invert-ible, but \taking" this morphism represents a decision (in particular toend in a deadlock or to have the possibility of ending in the �nal state).This defect can be repaired by an extra condition to the system � to bechosen. This \lr" condition moreover allows us to represent morphismsin the category of fractions and in the component category in a mucheasier way:DEFINITION 4. (Borceux, 1994) Let C be a category. A system � ofmorphisms in C is said to admit a right calculus of fractions (for short:is an r-system) if it satis�es (in addition to properties (i) and (ii) fromDef.4): apcs4a.tex; 21/03/2003; 19:04; p.13



14 (iii) 8
 : y0 �! x0, 8� : x �! x0 2 �, 9�0 : y �! y0, 9
 0 : y �! xsuch that � �
 0 = 
 ��0, i.e. the following diagram is commutative:y9�02���� � � � 9
0��>>>>y0 8
 ��>>>>>>> x8�2�����������x0(iv) 8
1; 
2 : x �! y, 8� : y �! y0 2 � such that � � 
1 = � � 
2,9�0 : x0 �! x 2 � such that 
1 � �0 = 
2 � �0x09�02�X//___ x 8
1 668
2 (( y 8�2�X// y0Property (iii) will be called the extension property for calculi of rightfractions. A left calculus of fractions is de�ned similarly. We will alsocall such a system � an r-system, respectively l-system respectively lr-system for left and right fractions).A straightforward consequence of the extension property for calculiof right fractions { and explaining the name { is that every morphismof C[��1] can be written as [(a��1)] for certain morphisms a of C and� 2 �.As for ordinary fractions, fs�1 and gt�1 can represent equivalentmorphisms in the category of fractions C[��1]. In fact they do if onecan �nd morphisms x : X ! I and y : X ! J in C such as in thefollowing commutative diagram: BI f ??�������� s ��???????? Xxoo_ _ _ y //___ Jg__@@@@@@@t��~~~~~~~Aand such that sx (=ty) is in �. Now the composite of equivalenceclasses of fs�1 : A ! B with gt�1 : B ! C is the class of morphism(g � h)(s � r)�1 as pictured in the following diagram:apcs4a.tex; 21/03/2003; 19:04; p.14



15CJ g ??������� t ��???????K h ??~~~~ r ��@@@@ BI f ??�������� s ��???????? AThe object K and the morphisms h and r arise from the extensionproperty of calculi of right fractions.For the properties of the component category with respect to anlr-system, cf. Sect. 5.2.LEMMA 4. The class of weakly invertible morphisms on the rightsatisfy property (iv) of calculi of right fractions. The class of weaklyinvertible morphisms on the left satisfy property (iv) of calculi of leftfractions.Proof. Let s : z ! x be a weakly invertible on the right and f; g :x! y such that f � s = YCop(s)(f) = g � s = YCop(s)(g).As s is weakly invertible on the right, YCop(s) is a bijection fromC(x; y) to C(z; y) so we must have f = g. Just take t = Idy whichis weakly invertible on the right (by (i)): this gives property (iv) ofright-fractions.The dual of (iv) is proven similarly by using YC(s).It is not true in general that the class of weakly invertible morphismsis a calculus of left or right fractions. An example is the fundamentalcategory of the swiss 
ag again, Figure 1. Every morphism is weaklyinvertible in regions 1, 2, 3, 5, 6, 8, 9 and 10 of Figure 4 but there isno way to \detect" regions 4 and 7. Look at Figure 6, if we supposes to be weakly invertible, p is the dipath shown on this �gure, wecannot �nd a way that property (iii) is satis�ed. So if we impose thelr properties, then we are bound to subdivide furthermore the regions,to �nd regions 4 and 7. There are examples for which the only left andright calculus of fractions included in the weak-invertibles is the set ofidentities, making the retract of the fundamental category no simplerthan the fundamental category itself (see Figure 9).apcs4a.tex; 21/03/2003; 19:04; p.15



16
?

p

sFigure 6. How to �nd the components with lr conditions4.3. Pure systemsWhy not just stop here? If we look at simple examples, the category ofcomponents seems alright. For instance the component category of theweakly invertible morphisms (de�ning here a left and right category offractions) of De�nition 3) for the po-space from Fig. 5 is just the freecategory on the graph delineated in Figure 8.But now, consider the po-space consisting of the left part of Figure7, i.e., ~I� ~I� ~I minus the interior of a cube. Then all morphisms in theinterior of the 26 regions delineated in the right hand side of the same�gure are weakly invertible. But any dipath from the initial to the�nal point is weakly invertible as well, composed of the compositionof a number of non weakly invertible morphisms going from one ofthe 26 regions to a neighbouring one (we will come back to the fullcalculation in Section 6). This means that the component categorygiven by inverting the weakly invertible morphisms would actually havesome endomorphisms which would not be the identity. In the concretecase here, when we impose the lr-conditions, the problem disappears,but it is not at all clear, that this is true in general.So we try to eliminate such pathologies by imposing some extracondition at the calculus of invertibles, that we now de�ne:DEFINITION 5. A system of morphisms � within a category C iscalled pure if(v) for all � 2 �, if we can decompose � as g �f then g and f mustbe in � too.Another way to phrase this property is that no invertibles should bedecomposed using a non-invertible, or that Mor(C) n� is closed undercomposition. In some ways, a real inessential morphism should be aapcs4a.tex; 21/03/2003; 19:04; p.16



17
Figure 7. Weakly invertible morphisms need not be pure.C // DAOO // BOOFigure 8. The category of components of a simple po-space.morphism that does not make any decision, not only from start toend point but also on the way: some decisions cancel out but we wantto have the \atomic" ones. This technical condition will also proveextremely useful in the proofs of most propositions in Sections 5.2 and5.3.4.4. Maximal systemsIn the following, we will mainly be concerned with pure lr-systems ofmorphisms. A system of morphisms always contains a largest subsystemwhich is lr, but there is no reason that there should be a maximal purelr subsystem.Given a system of morphisms � in a category C. The least subsystem�0 � � that has the l-, r-, lr-property, consists just of the identitymorphisms Idx. But there is also always a greatest such system:LEMMA 5. Let (�i)i2I a family of systems of morphisms so that 8i 2I, �i satis�es all the conditions of the right (left, respectively) calculusof fractions and �i � �. Then ]i2I�i � � satis�es all the conditionsof the right (left, respectively) calculus of fractions.apcs4a.tex; 21/03/2003; 19:04; p.17



18 Proof. The �rst and second conditions are clearly satis�ed. Therest is easily done by induction on the number of compositions ofmorphisms.If we are lucky enough to start with a pure subcategory � (meaningthat factorization of morphisms are always within �) of weakly invert-ible morphisms, then it is the case that the greatest lr-subcategory isstill pure. This is of course in that case the \maximal pure lr-system"in �:PROPOSITION 1. Let � be any pure subcategory of the weakly invert-ible morphisms in a category C (with unique identity endomorphisms).Then the greatest left and right calculus of fractions in � for C is apure calculus of fractions.Proof. We take any sub-lr-system �0 of � and we suppose it is notpure. Then there exists � = f1 �f2 with f1 or f2 not in �0. Consider �00the category generated by �0 and f1 (similarly for f2). Then it can beshown that it is a lr-system, including strictly �0, but included in �.This proves that the greatest lr-system (which always exists by Lemma5) in � has to be pure.In the general situation, one may proceed as follows: We work withpairs (C;�) of categories and admissible systems of weakly invert-ible morphisms (admissible means lr, pure lr etc.) Call a functor F :(C1;�1)! (C2;�2) with F (�1) � �2 an elementary equivalence if� C1 = C2 or� �0F�1�2 : �0(C1;�1)! �0(C2;�2) is an equivalence of categories.the �rst of which re
ects re�nements, cf. Sect. 3.3. Regard the equiv-alence relation on these pairs generated by elementary equivalences.Then the component category with respect to any admissible systemof morphisms is equivalent to the original category with the system ofidentities. Of course, it is still interesting to ask for as large as pos-sible admissible systems (as coarse as possible component categories),although these might not be unique.5. Properties of systems of weakly invertible morphismsand corresponding components5.1. Weakly invertible morphisms and historiesThere is a strong link between factorization properties in C and weak in-vertibility (as categories of fractions and factorization systems do haveapcs4a.tex; 21/03/2003; 19:04; p.18



19in general, see (Borceux, 1994)), which will have a strong geometric andconcurrency theoretical meaning: the homotopy histories of (Fajstrupet al., 1999). First, we need a de�nition:DEFINITION 6. Given two objects x0, x1 in C and f : x0 ! x1 amorphism in C, the history hx0;x1 [f ] of f is de�ned ashx0;x1 [f ] = fx 2 Cj 9f0 : x0 ! x; f1 : x! x1 with f = f1 � f0g:Two objects x; y 2 C are history equivalent (for a given x0 and x1,noted x �x0;x1 y, if x 2 hx0;x1 [f ], y 2 hx0;x1 [f ] for all f : x0 ! x1.LEMMA 6. Let C be a category where the only endomorphisms areidentities. Then, � : x ! y has surjective composition on the left (asweakly invertible on the left, in Def.3, except we only require surjectiv-ity) and on the right if and only if,� x �x0;x1 y for all x0 and x1 such that C(x0; x) 6= ; and C(y; x1) 6=;,� � is the only morphism from x to y in C.Proof. Easy diagram chasing. The second condition of the lemmais of course needed geometrically: take for instance the square minusone square in Figure 5. Regions A and D are in the same homotopy-history equivalence classes. This is implied by the surjectivity of leftcomposition with � by the same argument as the one of Proposition 2.This implies that weak invertibility re�nes the notion of homotopyhistory equivalence of (Fajstrup et al., 1999). In the case where C isthe fundamental category of a sub-pospace of IR2, these are in turnequivalent to � : x! y is weakly invertible (see (Raussen, 2000)).When applied to the fundamental category of po-spaces, this meansthat the essential schedules in a concurrent system are separated outby the notion of component. Notice that this is true also for partialschedules and not just the maximal ones as in e.g. (Goubault andRaussen, 2002) and (Fajstrup et al., 1999).5.2. General properties of systems of weakly invertiblemorphismsIn this section, we state and prove essential properties of the partitioninto components of a small category C that a system � of weakly in-vertible morphisms induces. The most important case we have in mindis the fundamental category C = ~�1(X) of a po- or d-space X togetherwith a maximal pure lr-system of weakly invertible morphisms in Capcs4a.tex; 21/03/2003; 19:04; p.19



20from Sect. 4.4. Several properties are true for more general systems,and they will thus be stated with a minimal set of conditions.First an easy formal consequence of the de�nitions:LEMMA 7. The weakly invertible morphisms in C �D are products ofweakly invertible morphisms in C with weakly invertible morphisms inD.PROPOSITION 2. Let � consist of weakly invertible morphisms andlet s 2 �(x; y). Then the mapsC(x; x) s# // C(x; y) C(y; y)s#ooare bijections.If, in particular, C(x; x) = fIdxg4, then C(x; y) = �(x; y) = fsg: Inother words: The components in the component category �0(C; �) haveunique endomorphisms.Proof. Immediate from de�nitions.PROPOSITION 3. Let � denote an l-system of morphisms in C.1. For every f 2 C(x; y) and every x0 �� x there exists y0 �� y andf 0 2 C(x0; y0) such that f 0 �� f .2. Let [f ]� 2 �0(C; �)([x]�; [y]�) and let x0 2 [x]�. Then there existsy0 2 [y]� and f 0 2 C(x0; y0) such that [f 0]� = [f ]�.Statement (2) should be interpreted as a lifting property, lifting mor-phisms from the component category �0(C; �) to the original categoryC. Another useful interpretation is as follows: the components are the\right" counterparts of connected components in the classical case. As amatter of fact, dihomotopy classes can be read if we use a bipointing, asin e.g. (Grandis, 2001), and not just a base point as in the classical case.What this last proposition implies in particular, is that we can changethe pair of base points chosen, without changing the classes of dipathsbetween these points, as long as they stay in the same componentsand as long as they are consistent: the \end" base point should bereachable (by a dipath) from the \start" end point. In some ways, theset of components should be called the set of diconnected components(a ~�0 in some sense) and the algebraic structure of dipaths betweendiconnected components is really the counterpart of the fundamentalgroup (or groupoid). In fact, in the classical case of the fundamental4 This condition is always satis�ed for the fundamental category of a po-space.apcs4a.tex; 21/03/2003; 19:04; p.20



21groupoid �1, �0 can be read from it as its set of connected components(see e.g. (Gabriel and Zisman, 1967)).Proof. Immediate from the de�nition of an l-system.There is of course an analogous statement for liftings in r-familiesof morphisms.PROPOSITION 4. Let � denote a pure l-system of weakly invertiblemorphisms. Let C(x; x) = fIdxg and let x �� y. Ifx f // z g // y;then f; g 2 � and z �� x.Proof. Since x �� y with � an l-system, there exist morphisms� 2 �(x; u); � 2 �(y; u) in the diagramx f //� ��???????? z g // y����������u :By Prop. 2, these are the only morphisms beween x and u, resp. y andu. In particular, � �g�f = �. Since � is pure, we conclude that f; g 2 �.Again, there is an analogous property (with an analogous proof) forpure r-families of weakly invertible morphisms.The result can be understood as a \diconvexity" property of thecomponents. Here is a negative formulation of the result: If x 6�� z andC(z; y) 6= ;, then x 6�� y. You never return to a component that youhave left.PROPOSITION 5. Let � denote a pure l-system of morphisms in C,let �; � 2 �(x;�). There exists a solution of the extension problem� //___ �0 �x� OO � // �OO��� � 0with both morphisms �0; � 0 2 �.Proof. From the extension condition we get �0 2 � and � 0 2 C suchthat � 0 � � = �0 � � 2 �. Since � is pure, � 0 has to be in �, as well.Again, there is an analogous statement for extensions with respect topure r-families of morphisms. apcs4a.tex; 21/03/2003; 19:04; p.21



22COROLLARY 1. Let � denote a pure l-system (resp. r-system) ofmorphisms in C. Every morphism in the subcategory generated by � inC[�]�1 can be represented in the form ��11 � �2 (resp. �1 � ��12 ); �i 2�; 1 � i � 2.Proof. The same proof as for the expression of general morphismsusing the �-extension property from Prop. 5.PROPOSITION 6. Let � be a pure l-system (or pure r-system or anlr-system) and suppose x1 �� x2. Then there exist objects u; v and�-morphisms as in the following diagram:x2 �2 // vu�2 OO �1 // x1:�1OOProof. For an l-system, x1 �� x2 ensures the existence of v; �1 and�2 as in the diagram. Proposition 5 allows to extend this part of thediagram with �-morphisms �i. For a pure r-system, the proof proceedsin the reverse sequence.For a pure system �, the li�ng property from Prop. 3 can be sharp-ened:PROPOSITION 7. Let � be a pure l-system (or pure r-system) withinC. Let C1; C2 � Ob(C) denote two components such that the set ofmorphisms (in �0(C; �)) is �nite. Then, for every x1 2 C1 there existsx2 2 C2 such that the quotient mapC(x1; x2)! �0(C; �)(C1; C2); f 7! [f ]is onto. If � is a pure lr-system of weakly invertible morphisms withC(x; x) = fIdxg for all x 2 Ob(C) , the quotient map is even a bijection.Proof. By repeated application of Prop. 3, all n morphisms fromC1 to C2 can be lifted to morphisms f1; : : : ; fn with source in x1 andtargets in y1; : : : ; yn 2 C2. By repeated application of Prop. 6, thereexist morphisms �i 2 � from yi to the same target x2 2 C2; 1 � i � n.The quotient map is onto, since �i � fi ' fi; 1 � i � n.To prove injectivity, assume fi 2 C(x1; x2) with[f1] = [f2] 2 �0(C; �)(C1; C2)Then, there exist x0 2 C1; x3 2 C2 and morphisms �i 2 �(x0; x1); �i 2�(x2; x3); 1 � i � 2; such that �1 � f1 ��1 = �2 � f2 ��2 2 C(x0; x3). ByProp. 2, �1 = �2 and �1 = �2. Since �1 and �1 are weakly invertible, weconclude: f1 = f2 2 C(x1; x2). apcs4a.tex; 21/03/2003; 19:04; p.22



23Another application of Prop. 6 shows that any component can pos-sess at most one maximal, resp. minimal object:DEFINITION 7. Let D � Ob(C). An object m 2 D is a minimalelement in D, if C(x;m) 6= ; ) x = m or x =2 D. A maximal elementis de�ned similarly.COROLLARY 2. Let � be a pure l-system (or pure r-system) withinC. Every component with respect to � can at most have one maximaland one minimal element.REMARK 1. From easy geometric examples as Ex. 5, we know thata component in general need not possess a minimal or maximal el-ement. Question: Is there always an in�mum (supremum) for everycomponent? Are those unique? We conjecture that some of the resultsof (Kelly et al., 1993) could be useful for proving this.In the presence of maximal or minimal elements for the objects of thewhole category, several nice properties can be proved to hold withoutthe pureness assumption. The �rst lemmas are relevant for the unsaferegions in deadlock analysis (cf. (Fajstrup et al., 1998)):DEFINITION 8. For x 2 Ob(C), let x!, resp. x denote the set ofmaximal (minimal) elements x0; y0 2 Ob(C) with C(x; x0) 6= ; (C(y0; x) 6=;), i.e., the maximal elements reachable from x (minimal elements thatcan reach x).LEMMA 8. Let � denote an r-system of morphisms in C, and let�(x; y) 6= ;. Then x! = y!. If � is an l-system, then x = y .Proof. Consider an extension problemy //___x�2� OO f // x0OO���with x0 a maximal element. The right vertical arrow has to be anendomorphism of x0, and hence x0 can be reached from y.LEMMA 9. Let � denote an r-system of morphisms in C and let x0denote a maximal element of Ob(C). If �(x; x0) 6= ; and C(x; y) 6= ;,then �(y; x0) 6= ;.In other words: If x and x0 are �-equivalent, then every y reachablefrom x is �-equivalent to x. apcs4a.tex; 21/03/2003; 19:04; p.23



24 Proof. Consider an extension problemy //____xf OO �2� // x0:OO���Again, the right vertical arrow has to be an endomorphism of x0, andhence there is a �-morphism from y to x0.PROPOSITION 8. Let � denote an r-system of weakly invertible mor-phisms in C and let x0 denote a maximal element of Ob(C) with C(x0; x0)= fIdx0g. If �(x; x0) 6= ; and C(x; y); C(y; z);C(y; x0) are all non-empty, then all these sets consist of a single element.In other words: If x and x0 are �-equivalent, the category is trivialbetween x and x0 (no non-trivial dihomotopy between x and x0 in thefundamental category).Proof.Any composition x f�!y g�!z h�!x0 is equal to the unique mor-phism � 2 �(x; x0) by Prop. 2. By Lemma 9, �(y; x0) 6= ; 6= �(z; x0),and by Prop. 2, C(z; x0) = �(z; x0) = fhg; C(y; x0) = �(y; x0) =fh�gg. Since h�g is weakly invertible, f is the only element of C(x; y);since h is weakly invertible, g is the only element of C(y; z).5.3. Topological propertiesMore precise information on components relies on topological prop-erties on top of the categorical ones. From now on we investigate atopological category C, i.e., the objects Ob(C) form a topological spaceX . Additionally, a system � of morphisms in C is given.DEFINITION 9.1. Let U denote an open set in X and x; y 2 U . A morphism f 2C(x; y) is called a U -morphism iff = f2 � f1; f1 2 C(x; z); f2 2 C(z; y)) z 2 U:The set of all such U -morphisms from x to y will be denoted CU(x; y).2. An open set U � X is called �-simple ifa) x; y 2 U ) jCU(x; y)j � 1.b) For all x �� y 2 U there exists z 2 U such that�(x; z) 6= ; 6= �(y; z). apcs4a.tex; 21/03/2003; 19:04; p.24



25DEFINITION 10. Two �-components C1 and C2 are called neighboursif there are1. a morphism with source in C1 and target in C2 and2. a �-simple open set U containing an element p 2 C1 \ @C2 suchthat every g 2 C(p; x2); x2 2 C2 decomposes as g = g2 � g1 withg1 2 CU (p; z) and z 2 C2 (or the symmetric condition with p 2@C1 \ C2).PROPOSITION 9. Let (C;�) denote a category with a pure lr-systemof weakly invertible morphisms. Let C1 and C2 denote two neighbouring�-components such that C(xi; xi) = fIdxig for some xi 2 Ci. Fur-thermore assume there is a �-simple open set containing an elementp 2 @C1 \ @C2. Then, Mor(C1; C2) has exactly one element in thecomponent category �0(C; �).Proof. Choose an element p in the intersection of the boundariesof the components as in Def. 10 and assume p 2 C1 without loss ofgenerality. By Prop 3, every morphism from C1 to C2 is equivalentto one with source p; by Def. 10.1, there exists such a morphism. Byassumption in Def. 10.2, every such morphism decomposes as s�f withf a U -morphism and s a �-morphism within C2 (use Prop. 2) and ishence equivalent to the U -morphism f .Consider two U -morphisms f; f 0 with source p. By Def. 9, there areU -morphisms s; s0 2 � such that s � f = s0 � f 0. Thus f ' s � f =s0 � f 0 ' f 0.The result allows to interpret the component category as a directedgraph (rather than a multigraph) with relations. If, in particular, everymorphism decomposes into morphisms between neighbour components(as for the fundamental category of a po-space), one may use theclasses of these unique morphisms between neighbour components asgenerators for the component category.6. ExamplesIn the case of Figure 9, the only left and right calculus of fractionsincluded in the weakly invertible morphisms is easily shown to consistof the identities only. As a consequence, the category of componentswith respect to this greatest lr-system of weakly invertible morphismsin this case is isomorphic to the original category!The po-spaces arising from 2-dimensional mutual exclusion models,i.e., a square, from which a number of isothetic rectangles (with edgesapcs4a.tex; 21/03/2003; 19:04; p.25



26
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s

pFigure 9. A non-cubical po-spaceparallel to the square) have been deleted (as the forbidden region), arehandled completely in (Raussen, 2000) and (Goubault and Raussen,2002): A system of morphisms is a pure lr-system of weakly invert-ible morphisms if no such morphism crosses a system of line segmentsemerging from (certain of) the minima, resp. maxima of the rectanglesthat constitute the forbidden region.6.1. The surface of a 3-cubeNow for a more intricate example, treated in full details. The faces ofthe 3-cube C, or equivalently, the 3-cube minus an interior 3-cube, has26 components. Points on the faces of the 3-cube are f(x; y; z) 2!I 3jfx; y; zg\ f0; 1g 6= ;g. Let C = ~�1(C). Observe that� There are two elements in C ((0; 0; a); (1; 1; a)), C ((0; a; 0); (1; a; 1)))and C ((a; 0; 0); (a; 1; 1)) when a 62 f0; 1g. For instance the compo-sition of arrows from (0; 0; a) to (0; 1; a) and then to (1; 1; a) isdi�erent from going from (0; 0; a) to (1; 0; a) and then to (1; 1; a).They are di�erent, since all dipaths from (0; 0; a) to (1; 1; a) hasthe third coordinate a 2]0; 1[, and since the interior of the cube ismissing.� Between other pairs of points, there are at most one morphism.� All morphisms � : (x1; x2; x3) ! (y1; y2; y3) such that xi = 0 )yi = 0 and xi = 1 ) yi = 1 are weakly invertible. This is easy tosee by the geometry of the cube - the future and past of (x1; x2; x3)and (y1; y2; y3) have the same geometry.By the last property, we can restrict attention to the 26 classes of pointsrepresented by (x; y; z) 2 f0;�; 1g3 n (�;�;�) where the coordinate �apcs4a.tex; 21/03/2003; 19:04; p.26



27just means an interior point of ]0; 1[. We will see, that none of themorphisms between these points are in the system �. We will omit thecommas and write (0� 1) for (0;�; 1).6.1.1. The weakly invertible morphisms:We will �nd the arrows which are not weakly invertible. Since C((00�);(11�)) has 2 elements and C((00�); (1��)) has one element, the arrow(1� �) ! (11�) is not weakly invertible. Similarly, there is only oneelement in C((00�); (111)), so the arrow (11�)! (111) is not weaklyinvertible. Hence (the lack of) weak invertibility implies that no arrowfrom an upper face (1��), (�1�) or (�� 1) to an upper edge (11�),(1 � 1) or (�11) is in �, and similarly for all maps from lower edgesto lower faces. Lack of weak invertibility also implies that maps fromupper edges to (1; 1; 1) or from (0; 0; 0) to lower edges are not in �.Similarly, �((xy�); (11�)) = ;, when xy 6= 11 and �((00�); (xy�)) =;, when xy 6= 00 since there are no weakly invertible morphisms.Permuting the coordinates gives 24 other instances of this.Notice that the system of weakly invertible morphisms is not pure.6.1.2. The maximal lr-system in the weakly invertible morphisms.1. We study maps from any (abc) 6= (111), which is not an upper edge,to (111). These are weakly invertible, but they are not in �: Supposes : (abc)! (111) is in � and suppose c 6= 1. Let f : (abc)! (11�).Then the lr-property implies that we can complete the diagram(111) g //___ (xyz)(abc)s OO f // (11�)� OO���with � 2 �. Since (xyz) has to be (111), g is the identity.But �((11�); (111)) = ;, so the diagram cannot be completed with� 2 �. Hence �((abc); (111)) = ; when (abc) 6= (111) and similarlyfor maps from (000). Notice that this is a concrete example ofProp.82. Any morphism s : (ab0) ! (11�) is weakly invertible, since (ab0)is not reachable from (00�). But suppose s 2 �. Then the lr-property is violated: Let f : (00�) ! (11�) be one of the twomorphisms. Then the lr-property says that there are maps � 2 �and g completing the diagram: apcs4a.tex; 21/03/2003; 19:04; p.27



28 (00�) f // (11�)(xyz)� OO��� g //___ (ab0)s OObut since (xyz) is below (00�) and (ab0), we conclude that (xyz) =(000) and we know that �((000); (00�)) = ;. Hence s 62 �. Togetherwith what we found in 1), we have seen that no map to an upperedge, and symmetrically, no map from a lower edge is in �.3. Now for maps from and to intermediate edges: Suppose �rst, wemap to an upper face. The morphism t : (1 � 0) ! (1 � �) isweakly invertible. If it is in �, then we can complete the diagram(1� 0) t //f�� (1� �)g�����(110) � //____ (xyz)with � 2 �. But then (xyz) 2 f(11�); (111)g and we know there isno such �. So t 62 �. The only other option, which is not already cov-ered above, is to map to an intermediate vertex s : (1�0)! (110);use the diagram above - now assuming f = s 2 �. Symmetrically,no map from or to an intermediate edge is in �.4. Maps from and to faces: Maps from an upper face or to a lowerface are covered above. Now suppose s : (abc) ! (1 � �) is in�, and suppose (abc) is not an edge - these are covered above.Then suppose (abc) < (10�) (else (abc) < (01�), so this case issimilar). Let f : (abc) ! (10�) and do the diagram. There areno (nontrivial) morphisms from (10�), so s 62 �. The other casesfollow in a similar way.5. The last case we have to check is maps between intermediate ver-tices, since maps to and from all other types is covered above: Lets : (100) ! (110). If s 2 �, the diagram with f : (100) ! (1 � 0)should have a completion with � : (1 � 0) ! (xyz) 6= (1 � 0) andthere are no such morphisms from an intermediate edge.Hence, in this case, the biggest lr-system in the weakly invertiblemorphisms is in fact pure, since the morphisms between the 26 typesof points are all in the complement of �.apcs4a.tex; 21/03/2003; 19:04; p.28
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i i’

j j’Figure 10. A pushout of two po-spaces.7. Conclusion and future workWe hope to achieve an e�ective calculation of the component categoriesof the fundamental category of reasonable po-spaces by applying MarcoGrandis' directed version (Grandis, 2001) of a van Kampen theorem fordirected spaces. More precisely, let X = X1[X2 and let �0, �1 and �2denote admissible (lr, pure lr) systems of weakly invertible morphismsin the fundamental categories ~�1(X1\X2); ~�1(X1) and ~�1(X2). The taskis to derive an admissible system �12 of weakly invertible morphisms in~�1(X) { and thus derive a suitable component category for the union.For the time being, we can only state the following conjecture:Let i1 : X1 \ X2 ! X1 and i2 : X1 \ X2 ! X2 be the canonicalinclusion morphisms (respectively i�1 : ~�1(X1 \X2) ! ~�1(X1) and i�2 :~�1(X1\X2)! ~�1(X2) the induced functors between the correspondingfundamental categories).Our claim is:CONJECTURE 1. (van Kampen on components) The greatest left andright calculus of fractions (cf. Lemma 5) in the pushout � of �1 andapcs4a.tex; 21/03/2003; 19:04; p.29
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G

H IFigure 11. The inessential morphims after pushout.�2 above I12 := i�1�1(�1) \ i�2�1(�2) \ �0 as below5:I12 i�1 //i�2�� �1���2 // �is denoted ��12. Then the system�12 = fs 2 ~�1(X)j P��12(s) 2 ZZ(��12)g;containing all morphisms that are identi�ed with zig-zag morphisms inthe category of fractions with respect to ��12, is the admissible systemdescribing the \inessential" morphisms of the fundamental category~�1(X).As an example of this conjectural van Kampen theorem, considerthe situation of Figure 10 with two copies of Figure 5 glued togetheralong a common boundary. Figure 10 shows the corresponding pushoutdiagram of po-spaces X1 and X2.The left part of Figure 11 shows the union of the components of X1and X2. Extension properties imposed by the property to be left andright systems imply that some of the inessential morphisms should nolonger be considered as inessential in the union of the two spaces. Thegreatest left and right system (which is pure) is shown in the right partof Figure 11.As a second example, consider a rectangle X as the union of X1, arectangle without an inner square (Fig. 5), and X2 �lling in that innersquare (with a collar). The intersection X1 \X2 is dihomeomorphic to5 The induced functors from i�1 and i�2 on the invertible morphisms, still denotedthe same way, are the ones of Lemma 1. apcs4a.tex; 21/03/2003; 19:04; p.30



31X1. This example shows that it is necessary to \complete" ��12 in thecategory of fractions to arrive at the result �12 = �1(X).The system �12 in the conjecture is an lr-system almost by de�-nition. Probably, one needs additional assumptions (e.g., X1 \below"X2 or vice versa) to make sure that it consists of weakly invertiblemorphisms and/or satis�es pureness.For application purposes, we would like to exploit the van Kampenconjecture to arrive at a geometrically based algorithm detecting thecomponents in a mutual exclusion model (cf. Sect. 1) from a descriptionof the forbidden region, as a generalisation of our algorithm detectingdeadlocks, unsafe and unreachable regions (Fajstrup et al., 1998).Last but not least, we believe that our construction based on acategory of fractions of the fundamental category of a po-space hasclose connections to some kind of universal covering of the fundamentalcategory of a pospace (as de�ned in e.g. (Higgins, 1971)). In fact, thecategory of components enjoys a certain lifting property. The set ofweakly-invertibles itself is de�ned through suitable representations ofthe fundamental category: they are well-known to be in one to onecorrespondence with coverings of that category (Higgins, 1971).Acknowledgements.We would like to thank Marco Grandis for hisadvice and encouragement on behalf of this paper, and the anonymousreferee for helpful comments.ReferencesBorceux, F.: 1994, Handbook of Categorical Algebra 1 : Basic Category Theory.Cambridge University Press.Brown, R.: 1968, Elements of Modern Topology. McGraw Hill, Maidenhead.Dijkstra, E.: 1968, Cooperating Sequential Processes. Academic Press.Fajstrup, L., E. Goubault, and M. Raussen: 1998, `Detecting Deadlocks in Con-current Systems'. In: Proceedings of the 9th International Conference on Con-currency Theory, also available at http://www.dmi.ens.fr/~goubault. Springer-Verlag.Fajstrup, L., E. Goubault, and M. Raussen: 1999, `Algebraic Topology and Concur-rency'. submitted to Theoretical Computer Science, also technical report, AalborgUniversity.Gabriel, P. and M. Zisman: 1967, Calculus of fractions and homotopy theory, No. 35in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag.Gaucher, P.: 2002, `A convenient category for the homotopy theory of concurrency'.preprint available at math.AT/0201252.Gaucher, P. and E. Goubault: 2001, `Topological Deformation of Higher DimensionalAutomata'. Technical report, arXiv:math.AT/010760, to appear in HHA.Goubault, E.: 2002, `Some geometric perspectives in concurrency theory'. to appearin Homology Homotopy and Applications.apcs4a.tex; 21/03/2003; 19:04; p.31
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