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Abstract. We define several abstract semantics for the static analysis
of finite precision computations, that bound not only the ranges of values
taken by numerical variables of a program, but also the difference with
the result of the same sequence of operations in an idealized real num-
ber semantics. These domains point out with more or less detail (control
point, block, function for instance) sources of numerical errors in the pro-
gram and the way they were propagated by further computations, thus
allowing to evaluate not only the rounding error, but also sensitivity to
inputs or parameters of the program. We describe two classes of abstrac-
tions, a non relational one based on intervals, and a weakly relational
one based on parametrized zonotopic abstract domains called affine sets,
especially well suited for sensitivity analysis and test generation. These
abstract domains are implemented in the Fluctuat static analyzer, and
we finally present some experiments.

1 Introduction

In this article, we discuss several abstract domains for proving properties about
the potential loss of accuracy in numerical programs using finite-precision arith-
metics, such as IEEE 754 floating-point numbers, fixed point semantics, and
even integers with finite range. The goal of such abstractions is not to find run-
time errors, but rather to automatically prove the the computation made by a
program (using finite-precision arithmetics) conforms to what was expected by
the programmer (using real-number semantics). These properties are of utmost
importance in the field of embedded systems (see the Patriot bug for instance
[27]) and in computer architecture and numerical simulation (see for instance
[24]). Take as explanatory example the following simple C program:

1 f loat x = [ 0 , 1 ] ; f loat y=(x−1)∗(x−1)∗(x−1)∗(x−1);
2 f loat z=x∗x ;
3 f loat z=z∗z−4∗x∗z+6∗z−4∗x+1; f loat t=z−y ;

Using our analysis, we will find automatically (in our fully-fledged analyzer
Fluctuat, in less than 0.01 seconds) that y is in the real number semantics
within 0 and 1 with a negligible error in the floating-point number semantics in
[−4.2.10−7, 4.2.10−7] whereas z is in [−1.70, 2.25] (real number semantics) with
an error in the floating-point number semantics of [−2.1.10−6, 2.1.10−6] mostly
due to line 3. We will actually see in Section 5 that using other mechanisms,
implemented in Fluctuat [5], we can improve a lot these bounds and even prove
that t is almost 0, showing that z is the same calculation in real numbers as y.
On other examples, we will also demonstrate the use of Fluctuat to hint at less
well behaved rounding error.
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This paper is bridging the gaps between the initial proposal [11] and the
actual implementation in the Fluctuat tool as demonstrated in [17, 3, 5]. It de-
scribes in particular the relational abstraction of the imprecision errors, never
published before.
Related Work This article is linked with earlier work by the authors, in par-
ticular concerning the relational abstractions of real numbers using zonotopes
[15, 16] and is improving on [11, 14].

Other proposals have been made to analyze imprecision errors, most notably
[1], in which floating-point variables are represented as a triplet: its floating-point
value, its value computed using the real-number semantics, and its intended value
that the programmer ultimately wanted to compute. The first two components
correspond to our semantic model, although the error is not decomposed along
the history of computation in [1]. The last component allows for computing the
“model error” and not only the “implementation error”, but this is also feasible
with our relational abstraction described in Sections 4.1 and 4.2, see for instance
Example 3. Finally, our approach uses abstract interpretation and thus is fully
automatic, whereas the approach of [1] is based on Hoare proofs and thus is
interactive.

More generally, the subject of analyzing the floating-point number seman-
tics has gained importance in the early 2000s in fully-fledged static analyzers. A
common approach to go from a real number abstraction to a floating-number ab-
stract semantics is to use linearization, see [20, 21], as implemented in APRON
[25]. This approach allows for correctly abstracting the floating-point seman-
tics, but does not decompose it into its real number and error decomposition.
Also, the approach we are taking in Section 4.2 allows for finer results, even
though the computation of the decomposition of errors along the computation
history makes results less precise when we ask for finer information of the lo-
cation of these errors. For instance, we only find with these techniques, us-
ing linearizations of polyhedra (APRON/Polka): y in [0, 1] in real numbers, in
[−5.96.10−7, 1.00000059604653] in the floating-point semantics, but no relation
between the two abstract semantic values, and z in [−7, 6.75] in real numbers,
and in [−3.000002384, 5.7500668] in floating-point numbers and no relation be-
tween real and floating-point values. So we are even unable to prove with lin-
earizations of polyhedra that the imprecision error, notwithstanding its origin,
is small. Even the concretization of y obtained by our technique is better (in
[−4.17.10−7, 1.000000417]) and much better for z indeed.
Contents We begin by describing briefly the concrete semantics of finite-precisi-
on computations, focusing mostly on floating-point numbers, in Section 2. This
semantics is non-standard in that it attributes to each variable x a triplet
(fx, rx, ex) where fx (resp. rx, ex) is its floating-point (resp. real number, error)
value. In Section 3, we detail the first natural abstraction, by intervals, of the
values and the decomposition of error terms. We then describe in Section 4 a
more accurate zonotopic abstraction, using affine sets, of the values and errors.

We will see that different choices of abstraction lead to a different way to see
the triplet (fx, rx, ex). With intervals, fx will be first computed, then we will
deduce ex. Finally, rx can be deduced by ex +fx, or computed directly. Whereas
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relational abstractions naturally apply to real numbers, but not to their finite-
precision approximations: we will first compute rx, then deduce ex and fx. We
discuss in Section 5 the implementation of these abstractions, and show detailed
examples and benchmarks.

2 Modelling finite precision computations

We insist here more specifically on the modelling of more standard floating-point
numbers; however the domains presented hereafter are perfectly well suited to the
handling of fixed-point numbers. Indeed, an abstract domain for the analysis of
programs in fixed-point numbers is implemented in our static analyzer Fluctuat.

2.1 Finite precision computations

Floating-point arithmetic We recall here very briefly some basic properties
of floating-point arithmetic, and refer the reader to [10, 22] for instance for more
details. The IEEE 754 standard [7] specifies the way most processors handle
finite-precision approximation of real numbers known as floating-point numbers.
It specifies four rounding modes. When the rounding mode is fixed, it then
uniquely specifies the result of rounding of a real number to a floating-point
number. Let ↑: R → F be the function that returns the rounded value of a real
number r. Whatever the rounding mode and the precision of the floating-point
analyzed are, there exist two positive constants δr and δa (which value depend
on the format of the floating-point numbers), such that the error rx− ↑ rx

when rounding a real number rx to its floating-point representation ↑ rx can be
bounded by

|rx− ↑ rx| ≤ max(δr| ↑ rx|, δa). (1)

For any arithmetic operator on real numbers � ∈ {+,−,×, /}, we note �F the
corresponding operator on floating-point numbers, with rounding mode the one
of the execution of the analyzed program. IEEE-754 standardises these four
operations, as well as the square root: the result of the floating-point operation
is the same as if the operation were performed on the real numbers with the
given inputs, then rounded.

We are not interested in run-time errors or exceptions: when an overflow or
undefined behaviour is encountered, our analysis simply reports > as a result.
Integers Machine integers have finite range: we consider modular arithmetic,
where adding one to the maximum value representable in a given data type gives
the minimum value of this data type. The difference with natural integers is an
error term in our model (the “real” value being the natural integer).
Fixed-point arithmetic Fixed-point numbers are a finite approximation of
real numbers with a fixed number of digits before and after the radix. They
are essentially integer numbers scaled by a specific factor determined by the
type. The main differences with floating-point arithmetic are that the range of
values is very limited, and that the absolute rounding error is bounded and not
the relative error. As the only properties we will use in our abstractions, are a
function giving the rounded value ↑ rx of a real number rx, and a range for the
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rounding error rx− ↑ rx (no abstraction of the relative error is used), all the
work below naturally applies to the analysis of fixed-point arithmetic.

2.2 Concrete model

The underlying idea of the concrete model, first sketched in [11], then further
described in more details in [18], and meanwhile implemented in a first version
of the Fluctuat static analyzer [12], is to describe the difference of behaviour
between the execution of a program in real numbers and in floating-point num-
bers. For that, the concrete value of a program variable is a triplet (fx, rx, ex),
where fx ∈ F is the value of the variable if the program is executed with a
finite-precision semantics, rx is the value of the same variable if the program
is executed with a real numbers semantics, and ex is the rounding error, that
is ex = rx − fx. A variation of the same idea is used in the context of formal
proof in [1], where the concrete model of a floating-point variable relies on its
floating-point and idealized real values.

Another idea of [11, 18, 12], also developed here, is that it could be of interest
for a static analysis to decompose the error term ex along its provenance in the
source code of the analyzed program, in order to point out the main sources
of numerical discrepancy. For that, depending on the level of detail required,
control points, blocks, or functions of a program can be annotated by a label
`, which will be used to identify the errors introduced during a computation.
We note L the set of labels of the program, and L+ the set of words over these
labels, then we express the error term as a sum

ex =
⊕

u∈L+

eu, (2)

where eu ∈ R is the contribution to the global error of operations involved in
word u. A word of length n thus identifies an order n error, which originates from
several points in the program, and as for labels, we can choose different levels of
abstraction of multiple sources of errors. We refer to [18] for details about this.

Our concrete model also models integers. The semantics of machine integers
does not introduce rounding errors, but there are two sources of error terms.
First, the effect of rounding errors on a floating-point variable that is cast in
an integer i, is considered as an error term ei. Second, the effect of the finite
representation of integers by modular arithmetic is also expressed as an error
term, as compared to a computation with infinite integers.

We will now describe two different abstractions of this concrete model.

3 A non relational abstraction

3.1 Interval abstraction of values and error decomposition

The first natural idea to get an efficient abstract domain of our concrete model,
is to abstract the values and errors with intervals, and to agglomerate all errors
of order greater than one in a remaining interval term. This is what was first
implemented in the Fluctuat static analyzer, and partially described in [12].
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Correctness of the transfer functions is based on the separate Galois connection
abstraction on each of the component of the triplet (fx, rx, ex) of the collecting
semantics based on the concrete semantics of Section 2.2.
Interval arithmetic We denote intervals by bold letters. For two intervals with
real bounds x = [x, x] and y = [y, y], we define:

x + y = [x+ y, x+ y]; x− y = [x− y, x− y]
x× y = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]

The same operators can also be defined over finite precision approximations
of the real numbers (typically floating-point numbers), for the current rounding
mode. Finally, for the implementation, we need to define an abstraction of in-
terval arithmetic over real numbers: we thus need the same operators defined
over the set of floating-point of arbitrary precision p, noted Fp, with outward
rounding: x +Fp

y = [x+−∞Fp
y, x+∞Fp

y], (3)
where +−∞Fp

(resp. +∞Fp
) denotes the plus operator on floating-point numbers with

an arbitrary precision p and rounding towards minus infinity (resp. rounding
towards plus infinity).
Abstract model An abstract element x is a triplet

x =

(
fx, rx,

⊕
l∈L

ex
l ⊕ ex

ho

)
(4)

where fx = [fx, fx] bounds the finite precision value, with (fx, fx) ∈ F × F,
rx = [rx, rx] bounds the real value, with (rx, rx) ∈ R× R, ex

l = [ex
l , e

x
l ] bounds

the first-order contribution of control point l on the error between the real and
the computed value of variable x, and ex

ho = [ex
ho, e

x
ho] the sum of all higher-order

contributions (most of the time negligible), with (ex
l , e

x
l ) ∈ R × R, for all l in

L∪ho. The first-order errors are the propagated elementary rounding errors that
can be associated to a specific control point. Higher-order errors appear in non
affine arithmetic operations, and are non longer associated to a specific control
point: they occur for instance when multiplying two error terms. The sum of
the error intervals over-approximates the global error ex due to finite precision
computation or to initial errors on inputs.

3.2 Transfer functions for arithmetic operations

Constants and inputs For an interval rx = [rx, rx], we note ↑ rx = [↑ rx, ↑ rx].
Using bound (1), we can over-approximate the rounding error of a real value
given in interval rx to its finite precision representation, by the interval

e(rx) = [−ux, ux] ∩ (rx− ↑ rx), (5)
where ux = max(δr max(| ↑ rx|, | ↑ rx|), δa). This expresses the fact that we can
compute the error as the intersection of the abstraction of bound given by (1),
and the actual difference between the real and the finite precision values. The
right-hand side or the left-hand side will be more accurate in different cases,
depending for instance on the width of the range of values abstracted.
Arithmetic operations Then, using this abstraction of the rounding error with
the fact that the arithmetic operations on floating-point operations are correctly
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rounded (Section 2.1), we define the transfer function for expression z = x �n y
at label n. When � is the plus or minus operator, we have:

z = (fx �F fy, rx � ry,
⊕

l∈L∪ho

(ex
l � ey

l )⊕ e(fx � fy)),

where the new error term e(fx � fy) is associated to label n. Indeed, the error
on the result of an arithmetic operation combines the propagation of existing
errors on the operands, plus a new round-off error term.
For the multiplication, we define:

z = (fx×Ffy, rx×ry,
⊕

l∈L∪ho

(fx×ey
l +fy×ex

l )⊕
∑

(l,k)∈(L∪ho)2

ex
l ey

k⊕ e(fx×fy)).

The semantics for the division x/y is defined using a first-order Taylor ex-
pansion to compute the inverse of fy

⊕
l∈L∪ho ey

l : the approximation error is
bounded and seen as an additional error. This expansion is all the more accurate
as the errors are small compared to the value.
Integer computations The cast of a floating-point (or fixed-point) number to
an integer, as long as it does not result in an overflow of the integer result, is not
seen as an additional error, so that the real value rx is also cast in an integer. Let
us note (int)(rx) the result of casting a real variable to an integer, and (int)(a)
its extension to an interval a, then we define i = (int)x by:

i =

(
(int)(fx), (int)(rx),

( ∑
l∈L∪ho

ex
l + [−1, 1]

)
∩ ((int)(rx)− (int)(fx)

)
,

where the error is fully assigned to the label of the rounding operation: the
sources of errors in previous computations are thus lost, we only keep track of
the fact that rounding errors on floating-point computation can have an impact
on an integer variable.

The addition, subtraction and multiplication on integer variables can be di-
rectly extended from their floating-point version (same propagation of existing
errors, no additional rounding error, but an additional error of MAX INT-MIN INT
if an overflow occurs). The integer division can be interpreted by a division over
reals (error propagation with no additional error) followed by a cast to an integer.

3.3 Order-theoretic operations

Join The most natural join operation between two abstract values is to define
it by component-wise join on the intervals:

x ∪ y =

(
fx ∪ fy, rx ∪ ry,

⊕
l∈L

(ex
l ∪ ey

l )⊕ (ex
ho ∪ ex

ho)

)
,

where the join of two intervals a and b is a∪b = [min(a, b),max(a, b)]. This join
operation presents an inconvenience: when joining abstract values coming from
different control flows, the joined abstract value will contain the elementary er-
rors coming from these different control flows, so that the sum of the elementary
errors of this joined value can be larger than when first computing the sums of
errors then joining the result. In practice, in order to overcome this problem,
we keep in the abstract domain an interval representing the global error, that
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is obtained by interval join of the global error, and which is thus more accurate
than the decomposed sum.
Test interpretation Our analysis relies on the assumption that the control
flow of the program is the same for the finite precision and real values of the
program. If this is found not to be the case when evaluating a boolean condition
in real and in floats, an unstable test is indicated. The finite precision control
flow is followed: this can give unsound error bounds, but the user is indicated
which test to look at. A solution to avoid this assumption is to follow the two
control flows and at the next join, merge the abstract values, by adding to the
abstract value of the finite precision control-flow, the difference with the value of
the real value control-flow as a rounding error. However, this can become quite
costly and will not be expanded further in this paper.

Now, with the assumption that the finite precision and real values take the
same control-flow, we define the meet operation by x∩y = (fx ∩ fy, rx ∩ ry, ex),
where the meet of two intervals a and b is a ∩ b = [max(a, b),min(a, b)]. (by
convention, the interval which lower bound is greater than the upper bound is
the empty interval) The hypothesis that the finite precision and real control flow
are the same also allows to reduce the error terms.
3.4 Fixpoint iteration

In order to ensure termination of the fixpoint computation, we define the follow-
ing natural widening operator on abstract values, by applying the component-
wise classical interval widening on each elementary terms:

x∇y =

(
fx∇fy, rx∇ry,

⊕
l∈L

(ex
l ∇ey

l )⊕ (ex
ho∇ex

ho)

)
,

where the widening on intervals is for instance the classical one proposed of [4].
Note that it is most of the time necessary to operate a semantic loop unrolling
to ensure a good convergence of fixpoint computations [16].

4 A zonotopic abstraction

The abstraction of Section 3 naturally suffers from the over-estimation of inter-
val analysis. We will now present an abstraction of the triplet (fx, rx, ex) relying
on a zonotopic weakly-relational abstract domain for the analysis of real value
variables, based on ideas from affine arithmetic [2]: these domains that we de-
veloped over the last few years use a parametrization of zonotopes we call affine
sets, that allow an accurate and computationally efficient functional abstraction
of input-output relations on the values of real variables [14, 15, 8, 9].

As the good algebraic properties of real numbers do not hold on floating-
point (or fixed-point) number, the relational domains do not apply directly on
finite precision values. We will present here how we can use them to bound the
real value rx and the error ex of the triplet (fx, rx, ex). From this, the finite
precision value of variables can be bounded by the reduced product of rx − ex

with the intersection of a direct interval computation of fx. Hints on previous
work on the subject were given in [26, 13, 14], but never actually described a
relational abstraction of the error terms.
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After a quick introduction in Section 4.1 to affine sets for real value estima-
tion, we focus in section 4.2 on their use to abstract the full value (fx, rx, ex).
4.1 Zonotopic abstract domain for real values

Affine arithmetic [2] is a more accurate extension of interval arithmetic, that
takes into account linear correlation between variables. An affine form x̂ is a
formal sum over a set of noise symbols εi: x̂ = αx

0 +
∑n

i=1 α
x
i εi, where αx

i ∈
R and the noise symbols εi are independent symbolic variables with unknown
value in [−1, 1]. The coefficients αx

i ∈ R are the partial deviations to the center
αx

0 ∈ R of the affine form. These deviations can express uncertainties on the
values of variables, for instance when inputs or parameters are given in a range
of values, but also uncertainty coming from computation. The sharing of the
same noise symbols between variables expresses implicit dependency. The values
that a variable x defined by an affine form x̂ can take is in the range

γ(x̂) =

[
αx

0 −
n∑

i=1

|αx
i |, αx

0 +
n∑

i=1

|αx
i |

]
. (6)

Assignment The assignment of a variable x whose value is given in a range
[a, b], is defined as a centerd form using a fresh noise symbol εn+1 ∈ [−1, 1],
which indicates unknown dependency to other variables: x̂ = (a+b)

2 + (b−a)
2 εn+1.

Affine operations The result of linear operations on affine forms is an affine
form. For two affine forms x̂ and ŷ, and a real number λ, we get

λx̂+ ŷ = (λαx
0 + αy

0) +
n∑

i=1

(λαx
i + αy

i )εi

Multiplication For non affine operations, we select an approximate linear re-
sulting form, and bounds for the error committed using this approximate form
are computed, that create a new noise term added to the linear form:

x̂ŷ = αx
0α

y
0 +

n∑
i=1

(αx
i α

y
0 + αy

i α
x
0) εi +

 n∑
i=1

|αx
i α

y
i |+

n∑
i<j

|αx
i α

y
j + αx

jα
y
i |

 εn+1.

The joint concretization of these affine forms is a center-symmetric polytope,
that is a zonotope. We defined in [15, 8, 9] abstract domains based on extensions
of these affine forms, with an order relation, and corresponding join and meet
operators. In particular, we defined in [9] a meet operation using a logical product
of our affine sets with an abstract domain over the noise symbols: the constraints
generated by the tests are interpreted over the noise symbols of the affine forms.
We do not detail these operations here, we will refer in the rest of the paper to
x̂ ∪ ŷ and x̂ ∩ ŷ for respectively the join and meet over two affine forms x̂ and
ŷ. The order relation on abstract values ensures the geometric ordering for the
zonotope including the current variables and the inputs of the program, that is
we have a functional abstraction of the behaviour of the program.
4.2 Abstract domain for finite precision computations

The triplet (fx, rx, ex) is now abstracted using two sets of noise symbols: the
εr

i that model the uncertainty on the real value, and the εe
i that model the
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uncertainty on the error. An abstract value consists of an interval and two affine
forms: x = (fx, r̂x, êx). The uncertainty on the real value also introduces an
uncertainty on the error, which is partially modelled:

r̂x = rx
0 +

∑
i

rx
i ε

r
i

êx = ex
0 +

∑
i

ex
i ε

r
i +

∑
l

ex
l ε

e
l

In the error expression êx, ex
l ε

e
l expresses the uncertainty on the rounding

error committed at point l of the program (its center being in ex
0), and its

propagation through further computations, while ex
i ε

r
i expresses the propagation

of the uncertainty on value at point i, on the error term; it allows to model
dependency between errors and values.
Transfer functions We now define the transfer function for expression z =
x �n y at label n. When � is the plus or minus operator, we define:

r̂z = r̂x � r̂y,

êz = êx � êy + newεe(e(γ(r̂z − êx � êy))),
fz = (fx � fy) ∩ (r̂z − êz)

where γ is the interval concretization on affine forms defined by (6), interval
function e is the interval abstraction of the rounding error defined in (5), and
function newεe creates a new error noise symbol: for an interval I, we define
newεe(I) = mid(I) + dev(I)εe

n+1, where εe
n+1 is a fresh error noise symbol,

mid(ı) = I+I
2 denotes the center of the interval, and dev(I) = I−I

2 the deviation
to its center. The affine form for the real value is obtained by the operation on
affine forms r̂x � r̂y as defined in Section 4.1. Then the error is obtained by the
sum of the propagation of the existing error êx � êy still by affine arithmetic, and
of the new error of rounding the result in real numbers of r̂z − êx � êy to the
floating-point result fz.

For the multiplication, we define:
r̂z = r̂xr̂y,

êz = r̂y êx + r̂xêy − êxêy + newεe(e(γ(r̂z − (r̂y êx + r̂xêy − êxêy)))),
fz = (fxfy) ∩ (r̂z − êz).

The real value is obtained by the multiplication on affine forms r̂xr̂y as de-
fined in Section 4.1. The propagation of the existing errors, obtained by express-
ing r̂xr̂y− (r̂x− êx)(r̂y− êy), is computed by r̂y êx + r̂xêy− êxêy. The operations
occurring in this expression are those over affine forms, with partially shared
noise symbols between the real and error affine forms. When the propagation
error is computed, we can finally deduce the new rounding error due to the mul-
tiplication by newεe(e(γ(r̂z − (r̂y êx + r̂xêy − êxêy)))).

Note that we chose not to separate the higher-order from the first-order term
as in the non-relational semantics. Indeed, this decomposition would be more
costly for no gain of accuracy. But most of all, we noticed that the higher-
order terms tend to converge much more slowly in fixpoint iterations than if
agglomerated as proposed here.
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Using more refined properties of floating-point numbers Some specific
properties of floating-point numbers can be used to refine the estimation of the
new error in some cases. For instance, the well-known Sterbenz Theorem [28]
that says that is x and y are two floating-point numbers such that y

2 ≤ x ≤ 2y,
then the result of x − y is a floating-point number, so that no new rounding
error is added in this case. This allows to refine the subtraction by writing
êz = êx − êx when the floating-point values of x and y satisfy the hypotheses
of Sterbenz Theorem. Note that it is more accurate to verify the satisfaction of
this condition on the affine forms r̂x − êx and r̂y − êy than on the intervals fx

and fy.
Example 1. Let x, y, and z be double precision floating-point numbers, and x
initially given in range [0, 2] for the following sequence of instructions:

1 x := [ 0 , 2 ] ;
2 y = 0.75∗x ;
3 z = x−y ;

With the interval analysis, we get fz = [−1.5, 2] and ez = [−1.11e−16, 1.11e−16]2+
[−2.22e−16, 2.22e−16]3. Indeed, as no relation is kept between x and y, the value
of z is computed inaccurately, and so is the error, as it does not realize that
Sterbenz theorem applies. Whereas with the relational analysis, r̂x = 1 + εr

1,
r̂y = 0.75 + 0.75εr

1, êy = 1.11e−16εe
2, and finally r̂z = 0.25 + 0.25εr

1 ∈ [0, 0.5] and
êz = −1.11e−16εe

2 ∈ [−1.11e−16, 1.11e−16] as Sterbenz theorem applies.

Casts from floating-point value to integers For lack of place, we only detail
a very simple version of the cast. As already stated, the truncation due to the
cast is not seen in itself as an error. So, the affine form for the real value is
also cast to an integer, which results in a partial loss of relation, of amplitude
bounded by 1. If the error on x was not zero, a loss of relation also applies. For
the floating-point value, the cast directly applied to the interval value will be
more accurate than ri − ei. The cast i = (int)x then writes

r̂i = r̂x + newεr ([−1, 1])

êi =

0 if ex = 0
newεe([−1, 1]) if γ(ex) ∈ [−1, 1]
ex + newεe([−1, 1]) otherwise

f i = (int)fx

Order-theoretic operations The join operation is computed component-wise,
using the join over intervals and affine forms x ∪ y = (fx ∪ fy, r̂x ∪ r̂y, êx ∪ êy).
Note that we do not have here the over-estimation problem over errors that we
had with the non-relational join. Indeed, the join we define over affine forms
keeps only the greatest common relation (see [15, 8, 9]). It will thus lose the
sources of errors that are not common to all execution paths of the programs,
but will assign them to the label of the corresponding join operator.

As in the non relational abstraction, we make the assumption for the analysis
that the control flow of the program is the same for the floating-point and real
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executions (see Section 3.3 for the discussion of this assumption), so that we
interpret the tests over the real and floating-point values. For the meet operation,
we thus interpret r̂x ∩ r̂y and r̂x− êx ∩ r̂y − êy. Remember (it was briefly stated
in Section 4.1, see [9] for more details) that the interpretation of tests yields
constraints on the noise symbols. By lack of place, we will not detail this formally
here.
Fixpoint computation, widening We described in [15, 8, 9] fixpoint iterations
and widening operators for affine sets, along with some convergence results on
fixpoint computations. They can be applied here component-wise to our abstract
values.
Remark: computing the finite precision value only Simpler variations of
this abstract domain can be used to compute the finite precision value only,
basically using only one affine form. Each operation creates a new noise symbol
that is used either to over-approximate a non-affine operation, either to add
a rounding error, or both. The results for the finite precision value would be
comparable to those we obtain through our more decomposed abstract domain,
though some slight differences would be due to a different interpretation of tests
and to the different decomposition (the results for the direct computation of the
values would be slightly more accurate in general).

5 Implementation and results

These abstract domains are among those implemented in the Fluctuat analyzer,
some of the case studies realized with the zonotopic abstract domain on real in-
dustrial programs, are reported in [17, 3, 5]. We discuss here the implementation
in finite precision, and present benchmarks and some results on simple examples.

We now have at our disposal for the analysis, floating-point numbers with
an arbitrary precision p, instead of real numbers (using the MPFR [6] library).
For the non relational abstract domain, where operations on real numbers occur
on interval bounds, the abstraction by operations with numbers in Fp is kept
correct by using all such operations in interval arithmetic with outward rounding,
as in (3) for the addition. The affine forms of the relational domain can also
be computed using finite precision coefficients: the computation is made sound
by over-approximating the rounding error committed on these coefficients and
agglomerating the resulting error in new noise terms. Keeping track of these
particular noise terms is interesting as they quantify the overestimation in the
analysis specifically due to the use of finite precision for the analysis.

Finally, before eventually using a widening to ensure termination of the anal-
ysis, it proved interesting to use a convergence acceleration operator for the
computation of fixpoint, obtained by the progressive reduction of the precision
p of the floating-point used for the analysis (see [17], Section 2.4 for more details).

We now present some experiments made using Fluctuat, using both the non-
relational and the relational abstract semantics; part of the programs (the aca-
demic ones) can be found at http://www.lix.polytechnique.fr/~goubault/
{NAME}[.c][.apron]. Times are given on an Intel Core 2 Duo 2GHz, 4Gb of
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RAM, running under MacOS Snow Leopard, and include all the mechanisms
used in Fluctuat, including for instance alias analysis.

Let us first come back to the introductory example of Section 1: with the
relational domain using 1000 subdivisions, in 78 seconds we get for the real
value of t, rt ∈ [−2.10−6, 2.10−6] instead of [−1.95, 1.94] without subdivision,
and [−8, 8] with the non-relational domain. We already saw that the rounding
errors where negligible, we now also have that the two computations for y and
z are functionally very close in real numbers.

Example 2. Take the following simple program that implements 100 iterations
of a scheme proposed by Muller [23] and analyzed by Kahan, to demonstrate
the effect of finite precision on computation.

1 x0 = 1 1 / 2 . 0 ;
2 x1 = 61/ 11 . 0 ;
3 for ( i=1 ; i<=100 ; i++) {
4 x2 = 111 − (1130 − 3000/ x0 ) / x1 ;
5 x0 = x1 ; x1 = x2 ; }

Computed with exact numbers, this sequence should converge to 6. However,
this fixed point is repulsive, while the fixed point 100 is attractive. This means
that any perturbation from the exact sequence converging to this repulsive fixed
point will eventually lead to the attractive one. Thus, when computed in finite
precision, whatever the precision used, this sequence will eventually converge
to 100. Fluctuat, with the interval abstract domain, and using floating-point
numbers with 500 bits of precision, indeed finds in less than 0.15 second that x2
after the loop has a float value equal to 100, a real value equal to 5.999..., and a
global error equal to −94.000..., due to lines 2 and 4, and to higher order errors.
As a matter of fact, it is in particular because x1 is not represented exactly that
the dynamical system converges towards the attractive fixpoint (in floating-point
numbers). The fixed point for an arbitrary number of iterations will be > for the
real value and error. Using APRON with Polka (polyhedra) and linearization,
we find x1 equal to 5.999... in real-numbers and x1 equal to top (since the eighth
iterate) in floating-point numbers, even though we unravelled all 100 iterations
and infinite precision computation is made by the analyzer - this is due to the
linearization scheme.

Example 3. The function below computes (Householder method) the inverse of
the square root of the input I. The loop stops when the difference between two
successive iterates is below a criterion that depends on a value eps.

1 xn = 1.0/ I ; i = 0 ; r e s i d u = 2.0∗ eps ;
2 while ( f abs ( r e s i d u ) > eps ) {
3 xnp1 = xn∗(1.875+ I ∗xn∗xn∗(−1.25+0.375∗ I ∗xn∗xn ) ) ;
4 r e s i d u = 2 .0∗ ( xnp1−xn )/( xn+xnp1 ) ;
5 xn = xnp1 ; i ++; }
6 O = 1.0/ xnp1 ; sbz = O− s q r t ( I ) ;
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This algorithm is known to quickly converge when in real numbers, whatever the
value of eps is. However, in finite precision, the stopping criterion must be de-
fined with caution: for instance, executed in simple precision, with eps=10−8, the
program never terminates for some inputs, for instance I = 16.000005. Analyzed
with Fluctuat for an input in [16, 16.1], we obtain that the number of iterations i
of the algorithm is potentially unbounded. We also obtain that residu has a real
value bounded in [−3.66e−9, 3.67e−9] and a floating-point value is bounded in
[−2.79e−7, 2.79e−7] (50 subdivisions), so that the real value satisfies the stopping
criterion but not the floating-point value, which is also signalled by an unstable
test on the loop condition. Now, analyzing the same program but now for double
precision variables, Fluctuat is able to prove in 3 seconds that the number of
iterations is always 6 (both the real value and the floating-point value satisfy
the stopping criterion). Also, bounding the variable sbz, Fluctuat is also able to
bound the method error, so that we prove that the program indeed computes
something that is close to the square root: the real and float value of sbz are
found in [−1.03e−8,−1.03e−8], with an error due to the use of finite precision
in [−1.05e−14, 1.05e−14]. The non-relational analysis does not manage to bound
the values of variables nor the number of iterations.

Example 4. Consider the following set of second-order linear recursive filters:

1 A1=[0 .5 , 0 . 8 ] ; A2=[−1.5 ,−1]; A3 = [ 0 . 8 , 1 . 3 ] ; E0 = [ 0 , 1 . 0 ] ;
2 B1 = [ 1 . 3 9 , 1 . 4 1 ] ; B2 =[−0.71 ,−0.69] ; E= [ 0 , 1 . 0 ] ;
3 for ( i =1; i<=N; i++) { E1=E0 ; E0=E; E= [ 0 , 1 . 0 ] ;
4 S1=S0 ; S0=S ;
5 S=A1∗E+E0∗A2+E1∗A3+S0∗B1+S1∗B2 ; }

We find in 90 seconds, with the relational abstraction (the non-relational abstrac-
tion does not converge): S in [−15.08, 16.58] with error in [−7.9.10−14, 7.9.10−14]
(coming mostly from line 5). When unrolling the first 200 iterations, we find the
better estimate (convergence is actually very fast): S in [−5.63, 7.13], with er-
ror in [−2.93.10−14, 2.93.10−14]. Our abstraction allows for test case generation,
both in values (see for instance [5]) and for errors: indeed, similarly as in [5],
one can easily maximize or minimize the form êx = ex
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i +

∑
l e

x
l ε

e
l by

choosing the right inputs, i.e. the values for εr
i (see Section 4.2). Here we find

input values that allow for S to reach -0.92 and 5.36 (in real-numbers) and using
the subdivision mechanism of Fluctuat [5], we find even better: [-4.81,6.33]. For
errors, we find inputs reaching −2.49.10−14 and 2.6.10−14 very close to the static
analysis result.

Example 5. We finally consider a conjugate gradient algorithm applied to a class
of matrices close to a Lagrangian in one dimension, discretized in a 4×4 matrix.
Fluctuat shows that the error is coming from mostly evalA, the evaluation of
the perturbed Lagrangian (error in [−9.22.10−6, 9.22.10−6]), the scalar product
function (error in [−6.61.10−6, 6.61.10−6]), and the multiply add routine for
matrices ([−5.46.10−6, 5.46.10−6]) for xi[1]. The influence of the perturbation of
the Lagrangian matrix is negligible (of the order of 2.56.10−11), as well as the
influence of the perturbation of the initial condition (of the order of 1.98.10−10):
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this is a well-known phenomenon for well-behaved problems such as this one,
called orthogonality defects, see [19].

In terms of performance (time and memory), the relational abstract domain
is of the same order of complexity as the zonotopic domain for the analysis
of real values (though of course a little more costly, as there will be the error
noise symbols on top of the value noise symbols). For this abstract domain for
the analysis of real values, benchmarks and comparisons with other classical
abstract domains (APRON implementation) were presented in [8, 9].

Finally, here is a table of some experiments made using Fluctuat on real codes
coming from industry, which involve some intricate numerical computations:

Program #LOC Analysis Time(s) Memory(Mo)
subset of navigation code ∼10000 fixpoint 33 20
physical process monitoring ∼800 fixpoint 188 94
subset of navigation code ∼1000 unfolding 20000 it 520 16

6 Conclusion and future work

We presented in this paper non-relational and relational abstractions of finite-
precision computations allowing for determining precisely not only the bounds of
variables in real-number and finite precision (in particular, floating-point num-
ber) semantics, but also the discrepancy between these two semantics, and their
causes. The amount of information delivered is more important than in a classical
floating-point analysis, however we can obtain better results, in a very econom-
ical manner, both in time and memory. This extra information also allows us to
generate interesting outcomes such as worst-case inputs.

As a last word, let us notice that the rounding error of (normalized) floating-
point computations is classically bounded in relative error. In a relational analy-
sis, we would thus like to express the new rounding error of a real number defined
by an affine form over noise symbols, as a function of these noise symbols. How-
ever, this is no longer expressible purely as an affine form, hence we simply use
a noise symbol to abstract the whole range of error. A future direction could be
to enhance the abstract domain with the relative error, when particularizing our
technique to floating-point arithmetic.
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