
Transitions take timeEric Goubault�Ecole Normale Sup�erieureExtended AbstractAbstractIn this article we take a rather di�erent view on models for real-time systems. First ofall, transitions are not instantaneous. They really bear time changes. Secondly, the modelis of geometric inspiration (following the intuitions of [16]). It is intuitively clearer thanother models in that executions can really be pictured as curves (or \trajectories"). Finallyit is based on a model of true concurrency which can express scheduling properties. Wepresent the model in a very progressive way, starting from ordinary transition systems, thengoing through some truly concurrent operational models, to end up with a fully formalisedmodel for real-time systems. The model (timed higher-dimensional automata or timedHDA in short) is made into a category where morphisms are simulations. It is shown tohave many interesting algebraic (complete, co-complete, cartesian closed, monoidal closed)and computer-scienti�c properties (the timing laws are given naturally by the categoricalcombinators). A discussion of important matters such as fairness and Zeno is also provided.1 IntroductionIn [11], real-time models were considered good enough if they were re�nable, digitizable,and operational. This means in particular that we should be able to look at a real-timesystem at di�erent levels of precision (this rules out formalisms depending on a base of time)and that its description should be based on systems of transitions. Timed automata ([2]),generalising �nite state machines over in�nite strings by adding a �nite set of real-valued clocksverify these requirements. The same holds for timed transition systems ([12]) which extendthe formalism of transition systems by imposing timing constraints on transitions. In the �rstmodel, states are waiting periods for clock constraints to be satis�ed and in the second one,transitions are instantaneous as well but are due to occur within precise time bounds. Thisis not a natural view on real-time systems. A transition should really take time in the sensethat it corresponds to an abstraction of some computation. As a matter of fact, we asked forre�nability so we cannot assume actions to be only \elementary" - almost instantaneous - ones.Unfortunately models for real-time concurrent systems having transitions bearing time changescan no longer be based on ordinary transition systems since interleaving of two actions a, b willresult in having an execution time equal to the sum of the times a and b take. This obviouslyruins all future reasoning and explains why this natural idea has never been formalised up tonow. A solution is to follow a truly concurrent operational approach. These approaches arediscussed in section 2.1. As more generally scheduling policies of processes onto processors havea direct impact on the measure of time, it appears that we need more than that. We need tobe able to describe the level of parallelism, i.e. the number of busy processors at a giventime. Some work has been done on this ([10]) and is introduced in section 2.2. The main idea�LIENS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris Cedex 05, FRANCE, email:goubault@dmi.ens.fr 1



is to conceive executions as geometric shapes. Ordinary transition systems can already bethought of as one-dimensional trajectories. Then the asynchronous execution of n actions isa trajectory (or transition) of dimension n. It is fully formalised in section 2.2. We carry on byrealising these shapes in some euclidean space IRn (section 2.4) as a basic step towards havingexecution time of transitions measured by their length. This situation is abstracted in section3.1 where the length depends on a norm associated with every transition. We construct acategory of models (timed HDA) by de�ning morphisms to be \simulations" (as in recent workin concurrency, [20]). A correctness criterion with respect to untimed semantics is obtained byforgetting the geometry and the norms (section 3.3). Fairness (3.2) is also discussed. In section3.4, Zeno behaviours are shown to be of a topological nature. Similarly to fairness properties,we propose to give a choice between allowing or not these behaviours. Finally in section 4,the model is shown to be natural in the sense that parallel composition, non-determisticchoice, : : : with suitable timing laws are categorical combinators in the category of timed HDA.Moreover the model covers di�erent paradigms since synchronised product and functionspaces are again natural constructions. The category of timed HDA is actually a model fornon-commutative intuitionistic linear logic. It has then enough categorical properties for beingused for denotational (or categorical) semantics. A SOS-like metalanguage is de�ned forthe operational semanticians.2 Untimed higher-dimensional automataWe begin by presenting a very simple geometric model for true concurrency, based on ideas byVaughan Pratt and Rob van Glabbeek ([16], [7]) and formalised in di�erent ways in [10], [9].2.1 An introduction to HDAOperational models for concurrency start with (ordinary) transition systems. A transitionsystem is a structure (S,i,L,Tran) where S is a set of states, i is the initial state, L is the setof labels and Tran � S � L � S is the transition relation.This de�nition has already some geometry in it since we are all used to represent them asarrows (transitions) between states (points or small circles). This does not ful�ll the aim wehad at the beginning, i.e. it does not provide us a semantics stable by re�nement ([8]) nor itdistinguishes non-determinism from truly concurrent (or asynchronous) execution. This shouldbe �xed (as said in the introduction) before using it as a basis for real-time modeling.A possible answer is to decorate the transition systems with some relation prescribing theindependence of some actions (or transitions). This can be done in more than one manner;just to mention a few: asynchronous transition systems ([3] and [18]), concurrent automata([19]) and transition systems with independence ([20]). We comment on the former only, sinceexhaustivity would be too space consuming.Asynchronous transition systems are equipped with an irre
exive symmetric binary indepen-dence relation I verifying a few conditions. The most important ones are conditions (3) and(4) in the formal de�nition below. They state that independence of actions means con
uenceof the transition relation for the actions involved. Conditions (1) (all events are used) and (2)(the transition system is deterministic) can be dropped in most cases:(1) e 2 E ) 9s; s0 2 S; (s; e; s0) 2 Tran(2) (s; e; s0) 2 Tran ^ (s; e; s00) 2 Tran) s0 = s00(3) e1Ie2 ^ (s; e1; s1) 2 Tran ^ (s; e2; s2) 2 Tran) 9u; (s1; e2; u) 2 Tran ^ (s2; e1; u) 2 Tran(4) e1Ie2 ^ (s; e1; s1) 2 Tran^ (s1; e2; u) 2 Tran) 9s2; (s; e2; s2) 2 Tran^ (s2; e1; u) 2 Tran2



Figure 1: Non-determinism (i) versus overlap in time (ii) abstracted by a transition of dimension2 (iii).
a b

(i) (ii) (iii)This decoration on ordinary transition systems (the independence relation I) is enough to makethe distinction between non-determinism and true concurrency. Suitable re�nement operatorscan be de�ned as well on these structures.There is a slight problem though. The level of parallelism is not de�ned in a very precisemanner. This is due to the fact that the independence relation is only a binary one. We haveto interpret \aIb and bIc and cIa" once and for all as \a, b and c can be run asynchronously"(maximal parallelism assumption) or \no more than two among the three actions a, b and c canbe run asynchronously" (minimal parallelism assumption). We insist on the \once and for all"in the last sentence, since changing the interpretation of the independence relation for di�erenttransition systems would amount to assuming implicit (external to the model) conventions. Ofcourse, a straightforward generalisation would be to replace the binary relation I by an n-aryrelation. This could be done (though we do not have any pointers in the literature) but thegeneralisation to real-time concurrent systems seems too heavy work (how to measure time forasynchronous executions ?).This can be tackled if we get back to our geometric intuition. Things have been made overlyunnatural by adding an object (the independence relation) which is not of the same natureas transitions and states. Just think of aIb as an abstraction of all possible asynchronousexecutions of a and b. As in [16], this can be pictured as the �lled-in square of the right-handside of �gure 1, distinguishing it in a striking manner with the interleaving at the left-hand sideof the same �gure. Notice that geometrically, the interior of the square consists of the unionof all paths where executions of a and b overlap \in time" (middle picture of �gure 1). Timealready makes its way into the model, though not quanti�ed yet.As a direct generalisation, asynchronous execution of n transitions give rise to hypercubes of di-mension n, called n-transitions (ordinary transitions are 1-transitions, states are 0-transitions).Interestingly enough, all this has a very neat algebraic formulation.2.2 FormalisationWe present the geometric shapes we are interested in as unions of points, segments, squares,: : :, hypercubes, i.e., as collections of n-transitions (n 2 IN). We glue them together by meansof boundary relations (see �gure 2), given by two boundary operators: d0, the start boundaryoperator and d1 the end boundary operator. They generalise the source and target functionsfor ordinary automata.Consider the square, (0; 0) a> (0; 1)b_ A b0_(1; 0) a0> (1; 1). This corresponds to the asynchronous execution ofactions a and b (a0 and b0 are copies of transitions of label a and b respectively). The objectof dimension 2 \interior of the square" A should certainly have two source boundaries, upto the order on fa; bg, d00(A) = a and d01(A) = b since from state (0; 0) we can �re a and3



Figure 2: Glueing of elementary shapes to get a semi-regular HDA.
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b. Similarly, it should have two target boundary operators d10(A) = a0 and d11(A) = b0 sincefrom the parallel execution of a and b (represented by A) we can end �rst action a (giving\residue" b0) or action b (giving \residue" a0). We will see that again when speaking aboutpaths. Notice that with this ordering on vertices, we have, d0(d01(A)) = (0; 0) = d0(d00(A)) andd1(d01(A)) = (1; 0) = d0(d10(A)). We can show that for any hypercube of dimension n, we canchoose an ordering on vertices, squares : : : such that the 2 � n boundary operators verify thecommutation rules1, dki � dlj = dlj�1 � dki for k = 0; 1, l = 0; 1 and i < j (� is the ordinarycomposition of functions).Now we can glue these elementary shapes in order to get HDA. This is exempli�ed in �gure2. We verify on the example the commutation rule between the source and target boundaryoperators d0 and d1 respectively.We can then introduce these formally under the name of unlabelled semi-regular HDA. Wewill not develop the full theory of labelled semi-regular HDA (or higher-dimensional transitionsystems) in this extended abstract due to lack of space.De�nition 1 An unlabelled semi-regular HDA is a collection of sets Mn (n 2 IN) together withfunctions Mn d0id1j>> Mn�1 for all n 2 IN and 0 � i; j � n�1, such that dki � dlj = dlj�1 � dki(i < j; k; l = 0; 1) and 8n;m n 6= m; Mn \Mm = 0.Elements x of Mn (dimx = n) are called n-transitions (or states if n = 0).In order to be able to study \natural" constructions on HDA, we de�ne a notion ofmorphismbetween them. As customary in recent work in concurrency ([20]), morphisms look like simu-lations. In geometrical terms, morphisms preserve shapes (every n-transition is mapped ontoa n-transition), time and orientation.De�nition 2 Let M and N be two semi-regular HDA, and f a family fn : Mn ! Nn offunctions. f is a morphism of semi-regular HDA if and only if fn �d0i = d0i � fn+1 and fn �d1i =d1i � fn+1 for all n 2 IN.1verymuch alike the ones we have for simplicial complexes. Ideas of many constructionsof the article actuallycome from combinatorial algebraic topology. 4



Figure 3: A path and its inclusion morphism in a semi-regular HDA.
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a’This de�nes the category �sr of semi-regular HDA. We write �nsr for the full subcategory of�sr consisting of semi-regular HDA whose elements are transitions of dimension less or equalthan n. There is a truncation functor Tn : �sr ! �nsr de�ned by, Tn(M )m =Mm if m � n andTn(M )m = ; if m > n. Its e�ect can be interpreted as restricting to behaviour on n processors.Now, traces of execution are described as sequences of states and transitions satisfying certainproperties. A path is to be understood as a sequence of allocation (case (ii) below) of oneaction at a time on a new processor or deallocation (case (i) below) of one action at a time (i.e.its execution has ended on a given processor). An example of a path in an automaton M isgiven in �gure 3 together with its inclusion morphism into M (M simulates all of his paths).De�nition 3 A path in a semi-regular HDA M is p = (p0; : : : ; pn) such that p0 and pn arestates and 8k; 0 < k < n, 9j, pk = d1j (pk�1) (i) or, pk = d0j(pk+1) (ii)The de�nition of paths explains why the morphisms are (higher-dimensional) simulations. Thecommutation with the start boundary operator d0 for example can be seen as asserting: \when-ever M �res a new action, N �res a similar one".Properties of the category of semi-regular HDA will be seen as a special case of those of timedHDA in section 4.2.3 From the untimed to the timed worldIn the formalisation, we have forgotten the geometry. Let us have it back. As a matter of fact,in order to introduce time to the model we already have, we are going to represent transitionsas real continuous geometric objects. Continuous geometry is good for measuring time: theprinciple here is to have time measured by the length of transitions (or paths). Traces arethen real trajectories as in mechanics. This is close to intuition, contrarily to most approachestransitions take time. Being interested by program analysis, where transitions are in factabstractions of some complex process, this approach is very natural. In particular re�nementcomes then for free.Recovering the geometry will be done in the same style as the geometric realisation functorbetween simplicial sets and CW-complexes (see for instance [14] or [6]). We associate with everyn-transition x a unit cube of dimension n in IRn, 2n = f(t0; : : : ; tn)=8i; 0 � ti � 1g. Then,similarly to the process seen in �gure 2, we glue these cubes together according to the valuesof the boundary functions. In order to do this, we need to de�ne functions characterising theboundaries of these unit cubes in IRn. Let �ki , 0 � i � n, be the continuous functions (n > 0)from 2n�1 to 2n with �ki (t0; : : : ; tn�1) = (t0; : : : ; ti�1; k; ti; : : : ; tn�1). They describe how theboundaries of a cube can be included into it. Then �ki � �lj = �lj+1 � �ki , (i � j). Consider now,for a semi-regular HDA M , the set R(M ) = [n;x2Mn(x;2n). Each (x;2n) inherits a topologygiven by the standard one on Rn+1, thus R(M ) is a topological space with the disjoint sumtopology. Let � be the equivalence relation (the \glueing" relation) induced by the identities:8k; i, x 2Mn+1, t 2 2n, n � 0, (dki (x); t) � (x; �ki (t)). Let jM j= R(M )= �. It has a structureof topological space induced by R(M ). j M j is called the geometric realisation of M . It5



is easy to make this construction into a functor from �sr to Top, the category of topologicalspaces with continuous maps.As observed in [6], we can actually work in Ke the full subcategory of Kelley spaces (i.e.compactly generated topological spaces, [1]) instead of the entire category Top. The geometricrealisation functor has then fairly nice properties. When taken in value in Ke it commutes(similarly to [6]) with �nite inverse limits and all colimits.All this gives us a hint about how to de�ne timed higher-dimensional automata. A �rst steptowards a general de�nition is given in next section.2.4 Timing a semi-regular HDALet M be a semi-regular HDA. The standard way in mathematics to measure the length (time)of transitions in j M j is to have a norm k:kx on the tangent space at every x 2 M of theshapes we have. Then the length of a transition a is the integral of the speed kd
(t)dt k
(t) for aparametrisation 
 of a (it does not depend on the parametrisation chosen).j M j has a well known di�erential structure. On every transition of dimension n, we put thenorm ku1; : : : ; unkx1;:::;xn = maxfj u1 j; : : : ; j un jg. The norm chosen corresponds to givingall 1-transitions the unity duration and to have that when n processes run asynchronously, thetime to complete them is the maximum of the times necessary to complete each of them. Thiscorresponds to our view of independent processes running asynchronously. For instance, in�gure 3, the geometric realisation of the path is of length 2. The fully synchronous executionin the automaton at the right-hand side (the diagonal of the square from the starting point tothe end) is of length 1.This view to timed HDA is not yet satisfactory. We have a very rigid notion of time in thesense that the norm has to be chosen uniformly for all transitions. We only have to abstractaway from a so concrete representation in order to get what we need.3 Timed higher-dimensional automata3.1 Basic de�nitionsFirst of all, we need a geometric shape X to de�ne a timed HDA, i.e. we need a topologicalspace. There are many kinds of topological spaces. We have seen that timing semi-regularHDA only requires Kelley spaces. Actually, Kelley spaces seem to be a good choice. Theyhave very good algebraic properties: they form a complete and cocomplete cartesian closedsubcategory of Top ([1]). Then we have to give a di�erential structure on X to be ableto measure time. This is di�cult to do so in full generality. In particular, when it comesto algebraic properties, di�erential manifolds are di�cult to handle2. We therefore chooseto present here a very particular mathematical object, in which the di�erential structure isgiven by the transitions. Thus we have to look at transitions now. Intuitively they should besort of deformed cubes. This leads us to de�ne them as almost inclusion functions, i.e. ascontinuous functions x : 2n ! X (called singular cubes3). They are required to be continuouslydeformed cubes only in their interior since we may want to identify some of their boundariesto get cyclic shapes. This is formalised by saying that all singular cubes x : 2n ! X inducehomeomorphisms from4 �2n to their images5. Moreover, we want X to be covered by all itstransitions, i.e. we impose fx( �2n)=n 2 IN; x 2 Xng to partition X, i.e. X is the disjoint2Quotients, function spaces are hard work (they need submersion theorems and in�nite dimensional di�er-ential geometry respectively).3by analogy with singular simplices, [14].4 �2n denotes the topological interior of 2n i.e. �2n = f0 < ti < 1g, n � 1 and �20 = f0g.5Therefore the singular cubes give a structure of manifold to all the x( �2n).6



Figure 4: Delay transitions (left) and timeout HDA (right).
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O t xunion [n2IN;x2Xnx( �2n). We should be able to take boundaries, i.e. the collection of singularcubes should be stable by composition with ��j (by section 2.3). Finally, on every tangentspace TxX =def Txu( �2n) (where x 2 u( �2n)) of X at x 2 X we have a norm k:kx such thatF (x; _x) = k _xkx is a continuous function 6. The norm can be seen as an in�nitesimal cost forthe computation at some point. To sum up things,De�nition 4 A (unlabelled) timed HDA is a Kelley space X together with a presentation ofX by singular cubes. This means that we have sets Xn containing singular cubes x : 2n ! Xstable by composition with ��j . Moreover we impose the following conditions on X7,� fx( �2n)=n 2 IN; x 2 Xng partition X,� all singular cubes x : 2n ! X induce homeomorphisms from �2n to its image.� X is given a family of norms k:kx on every tangent space TxX (where x 2 u( �2n)) of Xsuch that F (x; _x) = k _xkx is a continuous functionExample 1 (see �gure 4)� Let Xt (t 2 IR) be the timed HDA generated by the unique 1-transition �x:tx : 21 !t21 = f0 � x1 � tg. t21 is equipped with the norm k _xkx =j _x j. We will see that it is adelay transition of duration t (similar to the �t operator of timed CCS).� De�ne Tt to be the upper half circle of diameter t centered at coordinates ( t2 ; 0) in theplane IR2 (with its standard basis). It is given the structure of a timed HDA with thenorm induced by the euclidean one in IR2, and with the covering of 1-transitions (for� 2 [0; �=2]) x� : 21 ! Tt, x�(u) = (tucos2(�); tusin(�)cos(�)). We will see that it allowsus to represent a timeout operator (t is the maximum waiting time).When X is a timed HDA, it is easy to see that the collection of sets Xn de�nes a semi-regularHDA. We de�ne in a similar manner morphisms of timed HDA,De�nition 5 Let X and Y be timed HDA. A continuous function f : X ! Y is a morphismof timed HDA if and only if,(i) for all n-transition x 2 Xn, there exists a n-transition y 2 Yn such that y = f � x.6 if F is at least C3 then this de�nes a Finsler space ([17]). Recall that a norm F veri�es the properties,8k 2 IR, F (x; k _x) =j k j F (x; _x), F (x; _x) � 0 and F (x; _x) = 0 if and only if _x = 0, and 8x, _x and _x0,F (x; _x+ _x0) � F (x; _x) + F (x; _x0).7which make it into a combinatorial cell complex in the terminology of [13].7



(ii) f commutes with all the boundary operators.Actually, since we are in a very special case, (i) implies that f is di�erentiable on every manifoldx( �2n) since f is then the identity function in the local coordinates, thus a C1 di�eomorphism.(ii) can be seen to be redundant as well. We write T� for the category of timed HDA. Noticethat no requirement has been made on the way morphims behave with respect to time. Choicesare not so easy for \computer-scienti�c" reasons as well as for \technical reasons"8. Neverthe-less, we will consider as well two subcategories of T�, T�= whose objects are timed HDA andwhose morphisms f : X ! Y preserve time (are isometries), i.e. kdf(u): _ukYf(u) = k _ukXu (wheredf is the di�erential of f), and T�� whose objects are timed HDA and whose morphisms fcontract time, i.e. kdf(u): _ukYf(u) � k _ukXu .Timed HDA are in particular semi-regular HDA with boundary operators dkl (x) = x��kl (wherex is a n-transition x : 2n ! X). As such we know what a path in it is (we may add in particularinitial and �nal states to timed HDA). But it is not clear though how to decide how much timea transition may take. To answer this question we de�ne \virtual paths" in a timed HDA Xas being particular curves on X which paths are in some way abstractions of.De�nition 6 A virtual path 
 in a timed HDA X is a continuous function 
 : [0;1[!X suchthat,(i) there exist open intervals Ik =]�k; �k+1[, nk-transitions xk, k = 0; : : : ;m � 1(or 1) suchthat [kIk = [0; 1]nf�ig (disjoint union) and 
jIk : Ik ! xk( �2nk),(ii) 
jIk is a di�erentiable function (Ik has the standard di�erentiable structure of IR),(iii) (xk)�1i � 
jIk (0 � i � nk) are increasing maps.The set of virtual paths from a point u to a point v is denoted by V(u; v).To determine the time that a path takes from its initial to its �nal point we use the metricgenerated by the \Finsler metric" on X.De�nition 7 (see [17]) The distance (or time) inf between two points u and v in X is de�nedto be9 (with value in IR[1),TXi (u; v) = inf
2V(u;v) Z 10 kd
dt (t)k
(t)dtWe have also the distance (or time) sup between two points (with value in IR [1),TXs (u; v) = sup
2V(u;v) Z 10 kd
dt (t)k
(t)dtTXi de�nes actually a distance function thus a metric on X.In T�=, automata are simulated exactly in the same time (i.e. all virtual paths and theirimages have the same length). In T��, we allow to simulate by faster automata. This isthe most sensible notion of simulation since programs can only be safely implemented on fastermachines than needed.8Categories of metric spaces do not have very good algebraic properties in general. One must be carefulwhen de�ning morphisms !9where the integrals are in fact the sum of the integrals on the open intervals Ik8



Example 2 A simple computation shows now that Xt (example 1) has length t, i.e. has ex-ecution time t. For Tt, the 1-transitions x� have execution time from 0 to t. The transitionx0 leads to the escape sequence, all the other ones lead to the normal ending of the program.Finally, a hypercube of dimension n timed as in section 2.4 has maximal execution time n (allinterleavings) and minimal execution time 1 (synchronous execution of the n 1-transitions, i.e.the diagonal of the hypercube).Similarly to the untimed case, we can de�ned labelled timed HDA to be unlabelled timedHDA plus a labeling morphism in T�. Timed higher-dimensional transition systems arelabelled timed HDA together with an initial state.3.2 FairnessNotice that we can easily de�ne a time local to a processor. We can take for granted that inj M j the length of the projection of a path 
 on the ith coordinate is the cpu time of the ithprocessor on 
. More generally, we suppose that _xi(d
dt )10 is the in�nitesimal cost of computationon processor i. Quantitative strong fairness is expressed as a property of the norm: allprocessors must be used for some time on every (fair) paths, i.e. k(0; : : : ; _xi(d
dt ); 0; : : : ; 0)kshould be strictly positive function of time. Quantitative weak fairness is a weaker propertyon the norm: whenever the global time diverges, the local times of every processor must divergeas well.3.3 Correctness Timed/UntimedSimilarly to work in program analysis, we can de�ne a way to go from the timed to the untimedworld and then back to the timed one which has special properties. It is done in general ([4])by means of Galois connections which ensure that an analysis (or a non-standard semantics)is correct with respect to a semantics. Being in a completely categorical framework, the rightmathematical tool is then pairs of adjoint functors. We actually have here a right-adjoint tothe functor j : j, F : T� ! �sr de�ned by F (X) = (Xn)n (F forgets time). Moreover, theunits and counits of the adjunction are isometries. This entails that this adjunction restrictsto adjunctions between T�= and �sr, and T�� and �sr respectively. Having simulations asmorphisms in these categories, this shows that simulation properties (and bisimulation onesin particular) in the timed world are correct with respect to the corresponding ones in theuntimed world.3.4 Zeno behavioursLet 
 be an in�nite virtual path. If 
([0;1[) is compact, then there is a limit point a in thesequence (
(�k))k. Therefore, even if time always increases by strictly positive steps , theremay be a (sub)path in which time \slows down" up to some point. This is exempli�ed by theZeno paradox (which can be explicitly given a timed HDA representation, �gure 5) in whicha door is seen to be closed through observations of the type \it is closed half way from theend". The time it needs to be closed is �nite, the number of allowed obervations (transitions)is in�nite. No lower bound whatsoever is imposed on the time of transitions. This preciselycreates the paradox.There are easy ways to prevent Zeno paradoxes to occur in a timed HDA X. As they happenwhen there exist some limit points, it su�ces to prevent them to crop up. A necessary andsu�cient condition is to have a lower bound on the time transitions take.Why not put this condition in the model from the very beginning ? We argue that for hybridsystems (or even just ordinary real-time systems like in [15]), it may be interesting to consider10where _xi denotes the ith coordinate in the tangent space.9



Figure 5: Typical Zeno behaviour and a hybrid system implementing it.
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S beepsZeno paradoxes as well. Suppose we have a system S in which the temperature t diverges in�nite time (grows at an exponential rate in practise). Suppose also that S is equipped with ameasuring apparatus which beeps every time the temperature grows of one degree Farenheit.We model S by a timed HDA in which the states represent the number of times S has beeped(i.e. the temperature of S minus its initial value) and the 1-transitions are the delay transitionsfrom one state to the next. Then it implements a Zeno behaviour: no strictly positive lowerbound can be given to the time of execution of any transition. As we do not know the precisionat which time can be measured, we cannot eliminate this Zeno behaviour when studying thesystem S.4 Timed higher-dimensional automata as denotationaland operational modelsIn this section, we show that T� is a complete and co-complete cartesian closed, monoidalclosed category similarly to �sr. Some constructions will be exempli�ed in both categories.T�� is shown to be a complete and co-complete monoidal category. T�= has only �lteredlimits and colimits and a tensor product. As customary since [20], categorical combinators willbe recognised to be timed-process-algebra sort of combinators (as those of [15]). In orderto see this, we introduce a SOS-like metalanguage which gives an operational view to theconstructions.The idea is to write n-transitions a of some timed HDA X as arrows s a�![t1t2] s0 where s and s0are the beginning state (i.e. the beginning state of a beginning 1-transition of : : : a beginning(n � 1)-transition of a) and end state of a respectively, and t1 is the minimal execution time,t2 the maximum execution time of a (t2 may be 1 as we are working in IR [ f1g. Moreformally, we de�ne an entailment relation j= to relate X to its transitions, and we write,X j= s a�![t1 ;t2] s0 , 8>>>>><>>>>>: d00d01 : : :d0n�1x = s;d10d11 : : :d1n�1x = s0;T x(2n)i (s; s0) = t1;T x(2n)s (s; s0) = t2 . Sometimes, we specify the dimension n of then-transition a by adding dima = n.Let X and Y be two timed HDA. Then their cartesian product is the timed HDA Z de-scribed operationally by the rule, X j= u t[�1; �2]> v X 0 j=u0 t0[�01; �02]> v0X �X 0 j=(u; u0) (t; t0)[max(�1; �01);max(�2; �02)]> (v; v0)and dimt = dimt0 = dim(t; t0) 10



Figure 6: Synchronised product (middle) and coproduct (right) of two transitions (left).
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(α,δ)This shows that this is really a synchronised product (see �gure 6) of the two automata Xand Y .More formally, it is de�ned as� Zn = fz : 2n �! 2n � 2n x�y�! X � Y=x 2 Xn; y 2 Yng where � is the diagonal�(x) = (x; x),� Z = [n2IN;z2Znz(2n) � X � Y ,� k _x; _yk(x;y) = max(k _xkx; k _yky).The projections here are not isometries in general, but they are contracting maps, i.e. TXi (p1(u); p1(v))� TZi (u; v). Notice that the norm (and then the timing laws above) is given by the categoricalconstruction and is by no means arbitrary.The union (or coproduct) of two timed HDA X and Y is described operationally by the tworules, X j= u t[�1; �2]> v X 0 j=u0 t0[�01; �02]> v0X [X 0 j=u t[�1; �2]> v X j= u t[�1; �2]> v X 0 j=u0 t0[�01; �02]> v0X [X0 j=u0 t0[�01; �02]> v0We recognise a rule for non-deterministic choice (see �gure 6) as in timed CCS with theoperator +.More formally, the union of two timed HDA X and Y to be the timed HDA Z with,� Z = X [ Y ,� Zn = Xn [ Yn (this is the coproduct in �sr),� for all u 2 Z, u 2 X and then k _uku is the corresponding norm in X or u 2 Y and thenk _uku is the corresponding norm in Y .Z is then the coproduct of X and Y in T�, T�= and T��. Again, the intuitively cleartiming laws are given directly by the structure of the model.The parallel compositionwith no interference can be de�ned operationally by the rule (see�gure 7) X j= u t[�1; �2]> v X 0 j=u0 t0[�01; �02]> v0X 
X0 j=u
 u0 t
 t0[max(�1; �01); �2 + �02]> v 
 v0 and dimt
 t0 = dimt+dimt0More formally, it is a tensor product Z = X 
 Y de�ned by,11



Figure 7: Parallel composition (middle) of two transitions (left) and linear function space(right).
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 X ! Y; z0(u; x) = z(u)(x) is a morphismg, where2n is considered as the timed HDA with the unique n-transition Id : 2n ! 2n,� Z = [n2IN;z2Znz(2n) � (X ! Y ) endowed with the compact-open topology,� for f 2 Z, k _fkf = supx2X;k _xkXx =1k _f(x) _xkYf(x).We conjecture that operationally11, X j= u t[�1; �2]> v X |� X 0 j=u0 t0[�01; �02]> v0X 0 j=u0(u) t0(t)[max(�1; �01); �2 + �02]> v0(v) .In X |� X 0 we have functions which fork new actions (dynamically) as �x:b
 x in �gure 7.The argument of these functions may be computed in parallel with the body of the function.5 Future directions and ConclusionIn this article, we have presented an operational model for real-time truly concurrentsystems. The model has neat algebraic properties. In particular, the category of models(timed HDA) is complete, co-complete, cartesian closed and monoidal closed. Categoricalcombinators are timed process algebra operators. TimedHDA can be used for denotationalas well as operational semantics.In the future, we would like to use the model for di�erent purposes. The �rst one is to developa theory of complexity for constrained concurrency, i.e. for machines which can use at mostn processors. Mathematically, it would rely on a careful study of the e�ect of the truncationfunctor on geodesics. A second one would be program analysis in the style of [5].Finally, we would like to extend the model of timed HDA to deal with other aspects of real-time systems. The �rst extension is to have only partial boundaries, i.e. a timed HDA may not11the untimed part is easy to verify though. 12
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