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Abstract

In this article we take a rather different view on models for real-time systems. First of
all, transitions are not instantaneous. They really bear time changes. Secondly, the model
is of geometric inspiration (following the intuitions of [16]). It is intuitively clearer than
other models in that executions can really be pictured as curves (or “trajectories”). Finally
it 1s based on a model of true concurrency which can express scheduling properties. We
present the model in a very progressive way, starting from ordinary transition systems, then
going through some truly concurrent operational models, to end up with a fully formalised
model for real-time systems. The model (timed higher-dimensional automata or timed
HDA in short) is made into a category where morphisms are simulations. It is shown to
have many interesting algebraic (complete, co-complete, cartesian closed, monoidal closed)
and computer-scientific properties (the timing laws are given naturally by the categorical
combinators). A discussion of important matters such as fairness and Zeno is also provided.

1 Introduction

In [11], real-time models were considered good enough if they were refinable, digitizable,
and operational. This means in particular that we should be able to look at a real-time
system at different levels of precision (this rules out formalisms depending on a base of time)
and that its description should be based on systems of transitions. Timed automata ([2]),
generalising finite state machines over infinite strings by adding a finite set of real-valued clocks
verify these requirements. The same holds for timed transition systems ([12]) which extend
the formalism of transition systems by imposing timing constraints on transitions. In the first
model, states are waiting periods for clock constraints to be satisfied and in the second one,
transitions are instantaneous as well but are due to occur within precise time bounds. This
is not a natural view on real-time systems. A transition should really take time in the sense
that it corresponds to an abstraction of some computation. As a matter of fact, we asked for
refinability so we cannot assume actions to be only “elementary” - almost instantaneous - ones.
Unfortunately models for real-time concurrent systems having transitions bearing time changes
can no longer be based on ordinary transition systems since interleaving of two actions a, b will
result in having an execution time equal to the sum of the times a and b take. This obviously
ruins all future reasoning and explains why this natural idea has never been formalised up to
now. A solution is to follow a truly concurrent operational approach. These approaches are
discussed in section 2.1. As more generally scheduling policies of processes onto processors have
a direct impact on the measure of time, it appears that we need more than that. We need to
be able to describe the level of parallelism, i.e. the number of busy processors at a given
time. Some work has been done on this ([10]) and is introduced in section 2.2. The main idea
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is to conceive executions as geometric shapes. Ordinary transition systems can already be
thought of as one-dimensional trajectories. Then the asynchronous execution of n actions is
a trajectory (or transition) of dimension n. It is fully formalised in section 2.2. We carry on by
realising these shapes in some euclidean space IR™ (section 2.4) as a basic step towards having
execution time of transitions measured by their length. This situation is abstracted in section
3.1 where the length depends on a norm associated with every transition. We construct a
category of models (timed HDA) by defining morphisms to be “simulations” (as in recent work
in concurrency, [20]). A correctness criterion with respect to untimed semantics is obtained by
forgetting the geometry and the norms (section 3.3). Fairness (3.2) is also discussed. In section
3.4, Zeno behaviours are shown to be of a topological nature. Similarly to fairness properties,
we propose to give a choice between allowing or not these behaviours. Finally in section 4,
the model is shown to be matural in the sense that parallel composition, non-determistic
choice, ... with suitable timing laws are categorical combinators in the category of timed HDA.
Moreover the model covers different paradigms since synchronised product and function
spaces are again natural constructions. The category of timed HDA is actually a model for
non-commutative intuitionistic linear logic. It has then enough categorical properties for being
used for denotational (or categorical) semantics. A SOS-like metalanguage is defined for
the operational semanticians.

2 Untimed higher-dimensional automata

We begin by presenting a very simple geometric model for true concurrency, based on ideas by

Vaughan Pratt and Rob van Glabbeek ([16], [7]) and formalised in different ways in [10], [9].

2.1 An introduction to HDA

Operational models for concurrency start with (ordinary) transition systems. A transition
system is a structure (S,i,L,Tran) where S is a set of states, ¢ is the initial state, L is the set
of labels and Tran C S x L x S is the transition relation.

This definition has already some geometry in it since we are all used to represent them as
arrows (transitions) between states (points or small circles). This does not fulfill the aim we
had at the beginning, i.e. it does not provide us a semantics stable by refinement ([8]) nor it
distinguishes non-determinism from truly concurrent (or asynchronous) execution. This should
be fixed (as said in the introduction) before using it as a basis for real-time modeling.

A possible answer is to decorate the transition systems with some relation prescribing the
independence of some actions (or transitions). This can be done in more than one manner;
just to mention a few: asynchronous transition systems ([3] and [18]), concurrent automata
([19]) and transition systems with independence ([20]). We comment on the former only, since
exhaustivity would be too space consuming.

Asynchronous transition systems are equipped with an irreflexive symmetric binary indepen-
dence relation T verifying a few conditions. The most important ones are conditions (3) and
(4) in the formal definition below. They state that independence of actions means confluence
of the transition relation for the actions involved. Conditions (1) (all events are used) and (2)
(the transition system is deterministic) can be dropped in most cases:

(1) e€ E= 35,8 € 5,(s,e,8) € Tran
(2) (s,e,s") € TranA(s,e,s") € Tran = s = "
(3) exles A(s,e1,81) € Tran A (s, ez,52) € Tran = Ju, (s1,e2,u) € Tran A (sz,e1,u) € Tran

(4) erlea A(s,e1,51) € Tran A (s1,ea,u) € Tran = sa, (5,€2,52) € Tran A (s2,e1,u) € Tran



Figure 1: Non-determinism (i) versus overlap in time (ii) abstracted by a transition of dimension

2 (iii).

() (i) (i)

This decoration on ordinary transition systems (the independence relation I) is enough to make
the distinction between non-determinism and true concurrency. Suitable refinement operators
can be defined as well on these structures.

There 1s a slight problem though. The level of parallelism is not defined in a very precise
manner. This 1s due to the fact that the independence relation is only a binary one. We have
to interpret “alb and blc and cla” once and for all as “a, b and ¢ can be run asynchronously”
(mazimal parallelism assumption) or “no more than two among the three actions a, b and ¢ can
be run asynchronously” (minimal parallelism assumption). We insist on the “once and for all”
in the last sentence, since changing the interpretation of the independence relation for different
transition systems would amount to assuming implicit (external to the model) conventions. Of
course, a straightforward generalisation would be to replace the binary relation I by an n-ary
relation. This could be done (though we do not have any pointers in the literature) but the
generalisation to real-time concurrent systems seems too heavy work (how to measure time for
asynchronous executions 7).

This can be tackled if we get back to our geometric intuition. Things have been made overly
unnatural by adding an object (the independence relation) which is not of the same nature
as transitions and states. Just think of alb as an abstraction of all possible asynchronous
executions of a and b. As in [16], this can be pictured as the filled-in square of the right-hand
side of figure 1, distinguishing it in a striking manner with the interleaving at the left-hand side
of the same figure. Notice that geometrically, the interior of the square consists of the union
of all paths where executions of @ and b overlap “in time” (middle picture of figure 1). Time
already makes its way into the model, though not quantified yet.

As a direct generalisation, asynchronous execution of n transitions give rise to hypercubes of di-
mension n, called n-transitions (ordinary transitions are l-transitions, states are O-transitions).
Interestingly enough, all this has a very neat algebraic formulation.

2.2 Formalisation

We present the geometric shapes we are interested in as unions of points, segments, squares,
..., hypercubes, i.e., as collections of n-transitions (n € IN). We glue them together by means
of boundary relations (see figure 2), given by two boundary operators: d°, the start boundary
operator and d* the end boundary operator. They generalise the source and target functions
for ordinary automata.

Consider the square, b\L A b/\L . This corresponds to the asynchronous execution of

/
(1,0) == (1 1)
actions @ and b (a’ and b’ are copies of transitions of label a and b respectively). The object
of dimension 2 “interior of the square” A should certainly have two source boundaries, up
to the order on {a,b}, dJ(A) = a and d9(A) = b since from state (0,0) we can fire a and



Figure 2: Glueing of elementary shapes to get a semi-regular HDA.
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b. Similarly, it should have two target boundary operators d§(A4) = «’ and di(A) = b’ since
from the parallel execution of ¢ and b (represented by A) we can end first action a (giving
“residue” &) or action b (giving “residue” a’). We will see that again when speaking about
paths. Notice that with this ordering on vertices, we have, d°(d{(A4)) = (0,0) = d°(d5(A)) and
dY(d9(A)) = (1,0) = d°(d§(A)). We can show that for any hypercube of dimension n, we can
choose an ordering on vertices, squares ... such that the 2 x n boundary operators verify the
commutation rules!, d¥ o d} = d§—1 odf for k = 0,1, = 0,1 and i < j (o is the ordinary
composition of functions).

Now we can glue these elementary shapes in order to get HDA. This is exemplified in figure
2. We verify on the example the commutation rule between the source and target boundary
operators d® and d* respectively.

We can then introduce these formally under the name of unlabelled semi-regular HDA. We
will not develop the full theory of labelled semi-regular HDA (or higher-dimensional transition
systems) in this extended abstract due to lack of space.

Definition 1 An unlabelled semi-regular HDA is a collection of sets My, (n € IN) together with
d°
functions M, j My, _1 foralln € N and 0 < i,j < n—1, such that d*od'. = d._,od¥
7 J J
J
(i< jk,d=0,1) andVn,mn#m, M,NM,=0.

Elements x of M,, (dimz = n) are called n-transitions (or states if n = 0).

In order to be able to study “natural” constructions on HDA, we define a notion of morphism
between them. As customary in recent work in concurrency ([20]), morphisms look like simu-
lations. In geometrical terms, morphisms preserve shapes (every n-transition is mapped onto
a n-transition), time and orientation.

Definition 2 Let M and N be two semi-regular HDA, and f a family f, : M, — N, of
functions. fis a morphism of semi-regular HDA if and only if f, 0d? = d? o foy1 and f,od} =
d} o fny1 for allm € IN.

1very much alike the ones we have for simplicial complexes. Ideas of many constructions of the article actually
come from combinatorial algebraic topology.



Figure 3: A path and its inclusion morphism in a semi-regular HDA.

~

This defines the category T, of semi-regular HDA. We write T7. for the full subcategory of
T, consisting of semi-regular HDA whose elements are transitions of dimension less or equal
than n. There is a truncation functor T, : Y5 — Y7, defined by, T,(M ) = My, if m < n and
To(M)m = 0 if m > n. Tts effect can be interpreted as restricting to behaviour on n processors.

Now, traces of execution are described as sequences of states and transitions satisfying certain
properties. A path is to be understood as a sequence of allocation (case (i) below) of one
action at a time on a new processor or deallocation (case () below) of one action at a time (i.e.
its execution has ended on a given processor). An example of a path in an automaton M is
given in figure 3 together with its inclusion morphism into M (M simulates all of his paths).

Definition 3 A path in a semi-reqgular HDA M is p = (po,...,pn) such that py and p, are
states and Yk, 0 < k <n, 3j, pr = d]l(pk_l) (i) or, pp = d?(pk_H) (ii)

The definition of paths explains why the morphisms are (higher-dimensional) simulations. The
commutation with the start boundary operator d° for example can be seen as asserting: “when-
ever M fires a new action, N fires a similar one”.

Properties of the category of semi-regular HDA will be seen as a special case of those of timed
HDA in section 4.

2.3 From the untimed to the timed world

In the formalisation, we have forgotten the geometry. Let us have it back. As a matter of fact,
in order to introduce time to the model we already have, we are going to represent transitions
as real continuous geometric objects. Continuous geometry is good for measuring time: the
principle here is to have time measured by the length of transitions (or paths). Traces are
then real trajectories as in mechanics. This is close to intuition, contrarily to most approaches
transitions take time. Being interested by program analysis, where transitions are in fact
abstractions of some complex process, this approach is very natural. In particular refinement
comes then for free.

Recovering the geometry will be done in the same style as the geometric realisation functor
between simplicial sets and CW-complexes (see for instance [14] or [6]). We associate with every
n-transition  a unit cube of dimension n in R", O, = {(to,...,%,)/¥,0 < #; < 1}. Then,
similarly to the process seen in figure 2, we glue these cubes together according to the values
of the boundary functions. In order to do this, we need to define functions characterising the
boundaries of these unit cubes in IR”. Let 6%, 0 < i < n, be the continuous functions (n > 0)
from O,,_; to O, with 6*(to, ..., th_1) = (to,...,ti—1,k,t;,...,tn_1). They describe how the
boundaries of a cube can be included into it. Then 6 o 6]1» = 6]l»+1 o 6F, (i < j). Consider now,
for a semi-regular HDA M, the set R(M) = Uy, zemr, (2, 0,). Each (2, 0,) inherits a topology
given by the standard one on R"*1  thus R(M) is a topological space with the disjoint sum
topology. Let = be the equivalence relation (the “glueing” relation) induced by the identities:
Vk,i, 2 € Mpy1,t € 0,,n >0, (d5(2),t) = (2,65(t)). Let | M |= R(M)/ =. It has a structure
of topological space induced by R(M). | M | is called the geometric realisation of M. It



is easy to make this construction into a functor from Y, to Top, the category of topological
spaces with continuous maps.

As observed in [6], we can actually work in Ke the full subcategory of Kelley spaces (i.e.
compactly generated topological spaces, [1]) instead of the entire category Top. The geometric
realisation functor has then fairly nice properties. When taken in value in Ke it commutes
(similarly to [6]) with finite inverse limits and all colimits.

All this gives us a hint about how to define timed higher-dimensional automata. A first step
towards a general definition is given in next section.

2.4 Timing a semi-regular HDA

Let M be a semi-regular HDA. The standard way in mathematics to measure the length (time)

of transitions in | M | is to have a norm |.||, on the tangent space at every & € M of the
dy(1)

o ||7(t) for a

shapes we have. Then the length of a transition a is the integral of the speed ||
parametrisation v of a (it does not depend on the parametrisation chosen).

| M | has a well known differential structure. On every transition of dimension n, we put the
norm [[ui, ..., unll,, . = maxz{[ wi [,...,| un [}. The norm chosen corresponds to giving
all 1-transitions the unity duration and to have that when n processes run asynchronously, the
time to complete them is the maximum of the times necessary to complete each of them. This
corresponds to our view of independent processes running asynchronously. For instance, in
figure 3, the geometric realisation of the path is of length 2. The fully synchronous execution
in the automaton at the right-hand side (the diagonal of the square from the starting point to
the end) is of length 1.

This view to timed HDA is not yet satisfactory. We have a very rigid notion of time in the
sense that the norm has to be chosen uniformly for all transitions. We only have to abstract
away from a so concrete representation in order to get what we need.

3 Timed higher-dimensional automata

3.1 Basic definitions

First of all, we need a geometric shape X to define a timed HDA | i.e. we need a topological
space. There are many kinds of topological spaces. We have seen that timing semi-regular
HDA only requires Kelley spaces. Actually, Kelley spaces seem to be a good choice. They
have very good algebraic properties: they form a complete and cocomplete cartesian closed
subcategory of Top ([1]). Then we have to give a differential structure on X to be able
to measure time. This is difficult to do so in full generality. In particular, when i1t comes
to algebraic properties, differential manifolds are difficult to handle?. We therefore choose
to present here a very particular mathematical object, in which the differential structure is
given by the transitions. Thus we have to look at transitions now. Intuitively they should be
sort of deformed cubes. This leads us to define them as almost inclusion functions, 1.e. as
continuous functions x : O,, — X (called singular cubes®). They are required to be continuously
deformed cubes only in their interior since we may want to identify some of their boundaries

to get cyclic shapes. This is formalised by saying that all singular cubes z : O, — X induce

5

homeomorphisms from* ﬁn to their images®. Moreover, we want X to be covered by all its

transitions, i.e. we impose {x(ﬁn)/n € IN,2 € X, } to partition X, i.e. X is the disjoint

2Quotients, function spaces are hard work (they need submersion theorems and infinite dimensional differ-
ential geometry respectively).
3by analogy with singular simplices, [14].
o] [e] [e]
*0,, denotes the topological interior of Oy, i.e. Oy, = {0 < t; <1}, 7 > 1 and Qg = {0}.

5Therefore the singular cubes give a structure of manifold to all the w(\%n)



Figure 4: Delay transitions (left) and timeout HDA (right).
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union Uneﬂ\l,xexnl‘(‘%‘n)~ We should be able to take boundaries, i.e. the collection of singular
cubes should be stable by composition with 65 (by section 2.3). Finally, on every tangent

space T X =qcf Txu(ﬁn) (where z € u(l%n)) of X at # € X we have a norm ||.||, such that
F(z,z) = |||, is a continuous function ®. The norm can be seen as an infinitesimal cost for
the computation at some point. To sum up things,

Definition 4 A (unlabelled) timed HDA is a Kelley space X together with a presentation of
X by singular cubes. This means that we have sets X, containing singular cubes v : O, — X
stable by composition with 6;. Moreover we impose the following conditions on X7,

o {x(0,)/n €N,z € X,} partition X,
o all singular cubes x : O, — X induce homeomorphisms from ﬁn to its image.

o X is given a family of norms ||.||, on every tangent space T, X (where & € u(ﬁn)) of X
such that F(z, &) = ||2||, is a continuous function

Example 1 (see figure 4)

o Let Xy (t € R) be the timed HDA generated by the unique I-transition Az.tzx : O; —
t0 = {0 < 2y < t}. tO4 is equipped with the norm (|||, =| & |. We will see that it is a
delay transition of duration t (similar to the & operator of timed CCS).

o Define Ty to be the upper half circle of diameter t centered at coordinates (%,0) wm the
plane IR? (with its standard basis). It is given the structure of a timed HDA with the
norm induced by the euclidean one in IR?, and with the covering of I-transitions (for
0€[0,7/2]) xg : Oy — T3, ze(u) = (tucos?(0),tusin(d)cos(0)). We will see that it allows

us to represent a timeout operator (1 is the mazimum waiting time).

When X is a timed HDA | it is easy to see that the collection of sets X,, defines a semi-regular
HDA. We define in a similar manner morphisms of timed HDA,

Definition 5 Let X and Y be timed HDA. A continuous function f : X — Y is a morphism
of timed HDA 1if and only if,

(1) for all n-transition & € X,,, there exisls a n-transition y €Y, such thal y = fox.

8if F' is at least C® then this defines a Finsler space ([17]). Recall that a norm F verifies the properties,
vk € R, F(z,kz) =| k | F(z,%), F(z,2) > 0 and F(z,2) = 0 if and only if # = 0, and Vz, & and #’,
F(z, 2+ ') < F(z, %) + F(z,2).

which make it into a combinatorial cell complex in the terminology of [13].



(i1) f commules with all the boundary operators.

Actually, since we are in a very special case, (i) implies that f is differentiable on every manifold
x(ﬁn) since f is then the identity function in the local coordinates, thus a C°° diffeomorphism.
(ii) can be seen to be redundant as well. We write T'Y for the category of timed HDA. Notice
that no requirement has been made on the way morphims behave with respect to time. Choices
are not so easy for “computer-scientific” reasons as well as for “technical reasons”®. Neverthe-
less, we will consider as well two subcategories of TY, 7T~ whose objects are timed HDA and
whose morphisms f : X — Y preserve time (are isometries), i.e. ||df(u)u||}/(u) = ||u||uX (where
df is the differential of f), and TY< whose objects are timed HDA and whose morphisms f
contract time, i.e. ||df(u)u||}/(u) < ||u||uX

Timed HDA are in particular semi-regular HDA with boundary operators d;“(x) = xoéf (where
z is a n-transition # : 0, — X). As such we know what a path in it is (we may add in particular
initial and final states to timed HDA). But it is not clear though how to decide how much time
a transition may take. To answer this question we define “virtual paths” in a timed HDA X
as being particular curves on X which paths are in some way abstractions of.

Definition 6 A virtual path v in a timed HDA X is a continuous function v : [0, co[— X such
that,

(i) there exist open intervals Iy =]ag, agi1], ng-transitions x*,

k=0,...,m—1(or co) such
that Uply = [0, 1]\{e;} (disjoint union) and v, : Iy — xk(l%!nk)’

(ii) Nr, 18 a differentiable function (I, has the standard differentiable structure of R),
(iii) («%)7to Mr, (0 < i< ny) are increasing maps.
The set of virtual paths from a point u to a point v is denoted by V(u,v).

To determine the time that a path takes from its initial to its final point we use the metric
generated by the “Finsler metric” on X.

Definition 7 (see [17]) The distance (or time) inf between two points u and v in X is defined
to be® (with value in IR U o),

1
T (1) = infreviun) [ 101,

We have also the distance (or time) sup between two points (with value in IR U o),
b
X
T (0,0 = supeviny [ 15O,

TX defines actually a distance function thus a metric on X.

In TY=, automata are simulated exactly in the same time (i.e. all virtual paths and their
images have the same length). In 7Y<, we allow to simulate by faster automata. This is
the most sensible notion of simulation since programs can only be safely implemented on faster
machines than needed.

8 Categories of metric spaces do not have very good algebraic properties in general. One must be careful
when defining morphisms !
9where the integrals are in fact the sum of the integrals on the open intervals Iy,



Example 2 A simple computation shows now that Xy (example 1) has length t, i.e. has ex-
ecution time t. For Ty, the I-transitions xy have execution time from 0 to t. The transition
xg leads to the escape sequence, all the other ones lead to the normal ending of the program.
Finally, a hypercube of dimension n timed as in section 2.4 has maximal exzecution time n (all
interleavings) and minimal execution time 1 (synchronous execution of the n I-transitions, i.e.
the diagonal of the hypercube).

Similarly to the untimed case, we can defined labelled timed HDA to be unlabelled timed
HDA plus a labeling morphism in 7Y. Timed higher-dimensional transition systems are
labelled timed HDA together with an initial state.

3.2 Fairness

Notice that we can easily define a time local to a processor. We can take for granted that in
| M | the length of the projection of a path v on the ith coordinate is the cpu time of the ith
processor on 7. More generally, we suppose that ii(%)lo is the infinitesimal cost of computation
on processor i. Quantitative strong fairness is expressed as a property of the norm: all
processors must be used for some time on every (fair) paths, i.e. [|(0,.. .,ii(%),o, 0
should be strictly positive function of time. Quantitative weak fairness is a weaker property
on the norm: whenever the global time diverges, the local times of every processor must diverge

as well.

3.3 Correctness Timed/Untimed

Similarly to work in program analysis, we can define a way to go from the timed to the untimed
world and then back to the timed one which has special properties. It is done in general ([4])
by means of Galois connections which ensure that an analysis (or a non-standard semantics)
is correct with respect to a semantics. Being in a completely categorical framework, the right
mathematical tool is then pairs of adjoint functors. We actually have here a right-adjoint to
the functor | . |, ' : TT — Ty, defined by F(X) = (X,)n (F forgets time). Moreover, the
units and counits of the adjunction are isometries. This entails that this adjunction restricts
to adjunctions between I'Y— and T,,, and TT< and T,, respectively. Having simulations as
morphisms in these categories, this shows that simulation properties (and bisimulation ones
in particular) in the timed world are correct with respect to the corresponding ones in the
untimed world.

3.4 Zeno behaviours

Let v be an infinite virtual path. If y([0, oo[) is compact, then there is a limit point a in the
sequence (y(ay))i. Therefore, even if time always increases by strictly positive steps , there
may be a (sub)path in which time “slows down” up to some point. This is exemplified by the
Zeno paradox (which can be explicitly given a timed HDA representation, figure 5) in which
a door is seen to be closed through observations of the type “it is closed half way from the
end”. The time it needs to be closed is finite, the number of allowed obervations (transitions)
is infinite. No lower bound whatsoever is imposed on the time of transitions. This precisely
creates the paradox.

There are easy ways to prevent Zeno paradoxes to occur in a timed HDA X. As they happen

when there exist some limit points, it suffices to prevent them to crop up. A necessary and
sufficient condition is to have a lower bound on the time transitions take.

Why not put this condition in the model from the very beginning 7 We argue that for hybrid
systems (or even just ordinary real-time systems like in [15]), it may be interesting to consider

10where #; denotes the ith coordinate in the tangent space.



Figure 5: Typical Zeno behaviour and a hybrid system implementing it.
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Zeno paradoxes as well. Suppose we have a system S in which the temperature ¢ diverges in
finite time (grows at an exponential rate in practise). Suppose also that S is equipped with a
measuring apparatus which beeps every time the temperature grows of one degree Farenheit.
We model S by a timed HDA in which the states represent the number of times S has beeped
(i.e. the temperature of S minus its initial value) and the 1-transitions are the delay transitions
from one state to the next. Then it implements a Zeno behaviour: no strictly positive lower
bound can be given to the time of execution of any transition. As we do not know the precision
at which time can be measured, we cannot eliminate this Zeno behaviour when studying the
system 5.

4 Timed higher-dimensional automata as denotational
and operational models

In this section, we show that 7T is a complete and co-complete cartesian closed, monoidal
closed category similarly to T,,. Some constructions will be exemplified in both categories.
TT< is shown to be a complete and co-complete monoidal category. T'T— has only filtered
limits and colimits and a tensor product. As customary since [20], categorical combinators will
be recognised to be timed-process-algebra sort of combinators (as those of [15]). In order
to see this, we introduce a SOS-like metalanguage which gives an operational view to the
constructions.

. . . o, . . a
The 1dea 1s to write n-transitions a of some timed HDA X as arrows s [—>] s’ where s and s’
t1ta

are the beginning state (i.e. the beginning state of a beginning 1-transition of ... a beginning
(n — 1)-transition of a) and end state of a respectively, and ¢; is the minimal execution time,
to the maximum execution time of a ({2 may be oo as we are working in IR U {co}. More
formally, we define an entailment relation = to relate X to its transitions, and we write,

dsd?...dS_jx = s,
% « didi...d_jx = &, . . . .
Es — o o) . Sometimes, we specify the dimension n of the
[t1,13] 1770 (s,8) = 1,
Tf(D")(s, sy = s

n-transition a by adding dima = n.
Let X and Y be two timed HDA. Then their cartesian product is the timed HDA Z de-
[ t
XEFEu——>w X EBEv —
[Cyla Cy?] [Cyaa Cyg]
(t,1)
X x X' E(u,u’) (v,v")

[maz(aq, o)), maz (o, ob)]

scribed operationally by the rule,

and dimt = dimt’ = dim(¢, ')
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Figure 6: Synchronised product (middle) and coproduct (right) of two transitions (left).

X Y synchronised Coproduct
product
y 0 @3 (v.5) Yoo
a b
(ab) al b

a B @p)  (By) a B

This shows that this is really a synchronised product (see figure 6) of the two automata X
and Y.

More formally, it is defined as

o Z, = {2 : 0O, Y 0, x 0, 24 X x Y/x € X,y € Y,} where A is the diagonal
A(z) = (z,z),
[ ] Z = Uneﬂ\jyzeznz(‘:‘n) g X X Y,

o 12, 9lly ) = maz(llz]],, [|9]],)-

The projections here are not isometries in general, but they are contracting maps, i.e. T2 (p1(u), p1(v))
< TZ(u,v). Notice that the norm (and then the timing laws above) is given by the categorical
construction and is by no means arbitrary.

The union (or coproduct) of two timed HDA X and Y is described operationally by the two
rules,

[ A [ A
XkEku—>v X Ed—>v Xku——>v X Ed——

[y, o] [o], o] [y, o] [of, &%)
t 1
XUX' Fu—> XUX/':U/%U/
[o1, a2] [of, o]

We recognise a rule for non-deterministic choice (see figure 6) as in timed CCS with the
operator +.

More formally, the union of two timed HDA X and Y to be the timed HDA Z with,
e /=XUY,
o 7n = X, UY, (this is the coproduct in YTy, ),

e forall u € Z, u € X and then |4, is the corresponding norm in X or u € ¥ and then
|||, is the corresponding norm in Y.

Z is then the coproduct of X and Y in I'Y, T'T_ and TT<. Again, the intuitively clear
timing laws are given directly by the structure of the model.

The parallel composition with no interference can be defined operationally by the rule (see
/

[ [
XEFEu——w X Ev —
[ala Oéz] [O/la 0/2]
tot
XX Euod v@ v
[maz(ay, o)), aa + o)

figure 7) and dimt @t = dimt + dimt’

More formally, it is a tensor product 7 = X ® Y defined by,

11



Figure 7: Parallel composition (middle) of two transitions (left) and linear function space

(right).

X Y Tensor product Linear arrow
X-0 XY
0
Y
Ax.bx
a b ap A XX MX.0X
a B y o
e /=X XY,

Zn:{Z:Dnng X Dn—k%Z/$EXkayEYn—k}

12, 9lly ) = maz(l|2]],., [91l,)-

Now Z = X —o Y, the right-adjoint to ®, is,

In={z:0, = (X =Y)/2:0,0X — Y, 2'(u,2) = z(u)(x) is a morphism}, where
0,, is considered as the timed HDA with the unique n-transition Id : O, — O,

¢ 7 =UpeN,ze2,2(0,) C (X —Y) endowed with the compact-open topology,

. LY
for feZ,|Ifll; = SqueX,HJ}HX:lHf(x)x”f(f)'
t / / t/ !
XEu——>v X—oX ko ——>nv
[ala a2] [O/la 0/2]

X' () t(t) V()

[maz(ay, o)), as + o)

We conjecture that operationally'!,

In X —o X' we have functions which fork new actions (dynamically) as Az.b ® z in figure 7.
The argument of these functions may be computed in parallel with the body of the function.

5 Future directions and Conclusion

In this article, we have presented an operational model for real-time truly concurrent
systems. The model has neat algebraic properties. In particular, the category of models
(timed HDA) is complete, co-complete, cartesian closed and monoidal closed. Categorical
combinators are timed process algebra operators. Timed HDA can be used for denotational
as well as operational semantics.

In the future, we would like to use the model for different purposes. The first one is to develop
a theory of complexity for constrained concurrency, i.e. for machines which can use at most
n processors. Mathematically, it would rely on a careful study of the effect of the truncation
functor on geodesics. A second one would be program analysis in the style of [5].

Finally, we would like to extend the model of timed HDA to deal with other aspects of real-
time systems. The first extension is to have only partial boundaries, i.e. a timed HDA may not

1 the untimed part is easy to verify though.
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contain the start or end of some of its transitions. This would enable us to model deadlocks.
An other extension is to get rid of the condition on {x(ﬁn)} to partition a timed HDA X.
Condition: “the set F = {x(ﬁn)} verifies the property Ve, y € B, zNy=0Porx Cyory Cz’
would allow definitions of tangent spaces, norms ... and would authorize better definitions of
the timeout operator (having all partial executions of a transition of execution time ¢ to be
geometrically included in it).
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