
Stati Analysis-Based Validation ofFloating-Point ComputationsSylvie Putot, Eri Goubault, Matthieu MartelCEA Salay, F91191 Gif-sur-Yvette Cedex, Franefsputot,egoubault,mmartelg�ea.frAbstrat. Finite preision omputations an severely a�et the au-ray of omputed solutions. We present a stati analysis, and a prototypeimplementing this analysis for C odes, for studying the propagation ofrounding errors ourring at every intermediary step in oating-pointomputations. The analysis presented relies on abstrat interpretationby interval values and series of interval error terms. Considering all errorspossibly introdued by oating-point numbers, it aims at identifying theoperations responsible for the main losses of auray. We believe this ap-proah is for now speially appropriate for numerially simple programswhih results must be veri�ed, suh as ritial instrumentation software.Keywords. Stati analysis, oating-point omputations, intervals1 IntrodutionThe manipulation of real numbers by omputers is arried on using oating-point arithmeti, whih relies on a �nite representation of numbers. Althoughthis approximation is aurate enough for most appliations, in some ases resultsbeome irrelevant. And in ritial software, these ases may not be aeptable.Some work has already been done towards tools for evaluating the aurayof omputations in software. The most widely used, Cadna, relies on statistialmethods, and gives most of the time a very sharp estimation of the relevane ofomputed results. But some errors an be underestimated, whih is not satisfy-ing for the veri�ation of ritial appliations, whih auray must be erti�ed.Moreover, this method allows to study the result of a partiular exeution, andnot for in�nite sets of input values as is most of the time needed. Alternatively,most existing interval-based tehniques, whih are sure and onsider sets of exe-utions, aim at estimating tight bounds for the result of omputations in in�nitepreision. This often supposes a rewriting of the ode to be analyzed, and more-over does not address the problem of verifying the auray of existing software.On the ontrary, we are not interested in omputing bounds for the real resultof a given problem, but for the error ommitted using �nite preision omputa-tions instead of real numbers omputations1. Moreover, the origin of the mainlosses of preision is most of the time very loalized, and we aim at pointing out1 This presentation follows earlier work by the authors, see [3℄,[6℄,[4℄

whih parts of the ode are responsible for these losses. For that, we deomposethe error between the results of the same omputation ahieved respetively withoating-point and real numbers in a sum of error terms orresponding to the el-ementary operations of this omputation. This modelisation of the propagationof errors, alled onrete semantis, is the topi of setion 2.This semantis an not be used in an analyzer, beause the errors are realnumbers, that an not always be represented by oating-point numbers, evenwith higher preision. Thus we derive an abstrat semantis, whih is the imple-mentable version of the onrete semantis : over-approximations of the valuesand errors are omputed using intervals. These intervals also allow to onsidersets of input values. Stati analysis onsists in omputing all possible values ofthe variables on the nodes of a program without exeuting it. A onsiderableissue is the �xed point omputation in loops. This is presented in setion 3.A prototype implements this model, it is intended to ope with real problems.Speial are was attahed to the design of a graphi interfae, that makes thelarge amount of information omputed easily exploitable. The user an makesure that the oating-point omputations are aurate enough, and identify theoperations responsible for the main losses of auray.2 Conrete Semantis to Interpret Arithmeti OperationsLet us �rst examine an introdutory example in whih we onsider a simpli�edset F of oating-point numbers omposed of a mantissa of four digits written inbase 10. We onsider a and b two intermediate omputation results that are notomputed exatly, and we notea = 621:3+ 0:055"`1 ; b = 1:287+ 0:00055"`2 :In this de�nition, a 2 R and b 2 R are the values that would be got from anin�nite preision omputation. The oating-point exeution of the same om-putation gives aF = 621:3 2 F and bF = 1:287 2 F, and an error of 0:055 wasommitted at point `1 on the omputation of a, and an error of 0:00055 wasommitted at point `2 on the omputation of b. The symbols "`1 and "`2 areformal variables related to the ontrol points `1 and `2.We now onsider the produt = a� b, at point l3. The exat result of theprodut of the oating-point numbers is aF � bF = 799:6131, but the nearestoating-point number, supposing the urrent rounding mode is to the nearest, isF = 799:6. A rounding error, de�ned by aF�bF�F = 0:0131, is thus ommitted.The omputation a� b in real numbers intended by the programmer, is thena�`3b = F+0:0131"`3+0:055�1:287"`1+0:00055�621:3"`2+0:055�0:00055"`1"`2 :We keep only one term gathering the errors of order higher than one, and rewritea�`3 b = F + 0:070785"`1 + 0:341715"`2 + 0:0131"`3 + 0:00003025"hi :The initial errors are ampli�ed or redued by further omputations, thus theerror on is mainly due to the initial error on b. This result is quite obvious

on this very simple example, but would be muh more diÆult and tedious toestablish by hand on larger programs. We aim at designing an automati toolproviding this kind of information.We now introdue formally this semantis [6℄, that details the ontribution tothe global error of the �rst order error terms, and globally omputes the higherorder errors, whih are most of the time negligible. Let F be either the set ofsimple or double preision oating-point numbers. Let "Æ: R ! F be the funtionthat returns the rounded value of a real number r, with respet to the roundingmode Æ. The funtion #Æ: R ! F that returns the roundo� error is de�ned by8f 2 R; #Æ (f) = f� "Æ (f) : (1)Assume that the ontrol points of a program are annotated by unique labels` 2 L, and that L denotes the union of L and the speial word hi used to denoteall terms of order higher or equal to 2. A number x is represented byx = fx + X̀2L!x̀"` : (2)In equation (2), fx is the oating-point number approximating the value of x.A term !x̀"` denotes the ontribution to the global error of the �rst-order errorintrodued by the operation labeled `, !x̀ 2 R being the value of this error termand "` a formal variable labelling the operation `.The result of an arithmeti operation �`i ontains the ombination of exist-ing errors on the operands, plus a new roundo� error term #Æ (fx�fy)"`i . Foraddition and subtration, the errors are added or subtrated omponentwise :x+`i y ="Æ (fx + fy) + X̀2L(!x̀ + !ỳ)"`+ #Æ (fx + fy)"`i :The multipliation introdues higher order errors, we write :x�`i y ="Æ (fxfy)+X̀2L(fx!ỳ+fy!x̀) "`+ X`12L; `22L!x̀1!ỳ2 "hi+ #Æ (fxfy)"`i :The semantis for the division is obtained by a power series development :(y)�1li ="Æ � 1fy�� 1(fy)2 X̀2L!ỳ"`+ 1fy Xn�2(�1)n X̀2L !ỳfy!n "hi+ #Æ � 1fy� "`i :3 Stati Analysis and Abstrat InterpretationStati analysis onsists in omputing some properties of a program without ex-euting it, and for possibly large or in�nite sets of inputs. We want here toompute all possible values f and errors !` for eah variable, valid for any itera-tion of the loops, on the nodes of the programs to analyze. Interval omputations[8℄ are used to get omputable supersets of these oeÆients, in an abstrat in-terpretation framework [2℄. They allow on one hand to onsider sets of exeution,and on the other hand to inlude the rounding errors ommitted by the analysis.

3.1 Abstrat Semantis to Interpret Arithmeti OperationsLet us onsider again the multipliation introdued in setion 2. The errors arereal numbers, they are not always representable by oating-point numbers. Thuswe de�ne the abstrat semantis for the operation, that implements the onretesemantis, using intervals as omputable supersets of the real oeÆients. Wesuppose the numbers used for the analysis have a mantissa of �ve digits in base10, then the multipliation of a and b with the abstrat semantis writes :a�`3 b = [F; F℄ + [0:070785; 0:070785℄"`1 + [0:34171; 0:34172℄"`2+[0:0131; 0:0131℄"`3 + [0:00003025; 0:00003025℄"hi :The oating-point result is still the result F of the multipliation aF�bF, roundedto the nearest oating-point number, with the preision of the oating-pointnumber analyzed. This results simulates the oating-point exeution.The errors are omputed using lassial interval arithmeti, that is with outwardrounding, to inlude the errors oming from the analysis whih uses itself �nitepreision numbers. Using a higher preision for the omputation of these errorintervals allows to estimate them more tightly. Here, an extended preision tosix digits would be enough to ompute exatly the error, without the use ofintervals. But it would be too ostly to extend the preision for eah additionaloperation. Moreover, some errors an not be represented by extended preisionoating-point numbers, for example in some ases of divisions.Now onsider the same multipliation where the oating-point value of a isno longer a single value, but any possible value in an interval : for example wetake a0 = [610; 630℄ + [0:055; 0:055℄"`1 . We get :a0 �`3 b = [785:1; 810:8℄ + [0:070785; 0:070785℄"`1 + [0:3355; 0:3465℄"`2+[�0:05; 0:05℄"`3 + [0:00003025; 0:00003025℄"hi :Indeed, 610 � 1:287 = 785:07, rounded to the nearest gives 785:1, and 630 �1:287 = 810:81, rounded to the nearest gives 810:8. Thus the oating-point partof the result an be any oating-point value in the interval [785:1; 810:8℄. Theerror oming from point `1 and the error of order higher than 1 are unhanged.The error oming from point `2 belongs to the result of the interval multiplia-tion (with outward rounding) of a0F and the error 0.00055, that is [0:3355; 0:3465℄.The roundo� error introdued by the multipliation an only be bounded by thelargest set of values whih added to the oating-point result, do not a�et itsvalue in oating-point arithmeti, that is the interval [�0:05; 0:05℄.In the general ase, we get the abstrat semantis by interpreting the opera-tion over error series with interval oeÆients, using rounding to the nearest forthe omputation of the oating-point part, and outward rounding and possiblymore preision for the propagation of the existing errors. For the division, wemust ompute an over-approximation of the sum of the terms of order higheror equal to two. For that, we note that the error ommitted by approximating

(1 + u)�1 by the �rst-order development 1 � u is g(u) = (1 + u)�1u2. And wean easily bound g(u) for u = (fy)�1P`2L !ỳ by studying funtion g.Most of the time, the new roundo� error introdued by an operation an onlybe bounded. Suppose the oating-point result of an operation is in the interval[a; b℄, and note r = max(jaj; jbj). The roundo� error due to this operation isbounded by [�ulp(r)=2; ulp(r)=2℄, where ulp(r) is the unit in the last plae ofr, that is the smallest number whih, added to the oating-point number r,does a�et its value. If the oating-point parts of the operands are intervalsredued to points (a = b), the error an be bounded more aurately using (1),by the di�erene of the oating-point result, and the interval result of the sameoperation ahieved with outward rounding and the preision of the analysis.3.2 Computations in LoopsWhen enountering a loop, the analyzer will try to produe an invariant, i.e. aproperty whih holds true before or after some instrution in the body of theloop, regardless of the number of loops already exeuted. As an example, lookat the program:int i=1;while (i<100)(1): i++;(2):suitably annotated with labels (1) (respetively (2)), loating the ontrol pointat the beginning of the body of the loop, just before i++ takes plae (respetively,after the loop). A orret invariant at (1) is i in S = f1; 2; : : : ; 99g, beauseeah time the ontrol ow goes through (1), i takes its value in S. Notie thatS0 = [0; 100℄ is also an invariant, but less preise. The most preise invariant at(2) is i equals 100.If we represent the \e�et" of one iteration of the loop on variables' valuesby a funtion f (its \semantis"), then alulating (1) amounts to �nding theleast �xed point of f , above some initial set of values X0. Equivalently (when fis \ontinuous"), the invariant i(1) at (1) - only onerning variable i here - isgiven by Kleene's theorem:i(1) = X0 [f(X0) [f2(X0) [: : : [fn(X0) [: : :This gives an immediate algorithm for omputing the invariant, alled the �xedpoint iteration sequene, in whih we start with i0(1) = X0 = [1; 1℄ and arry onby de�ning (it): in+1(1) = in(1)[f (in(1)), the limit of whih being the least �xed pointin question.In our example, f(S) = ([1; 1℄[(S+[1; 1℄))\℄�1; 99℄. The iteration sequeneis then i0(1) = [1; 1℄, i1(1) = [1; 2℄, : : :, ij(1) = [1; j + 1℄ and �nally, i99(1) = i98(1) = [1; 99℄(the �xed point). This algorithm is not very eÆient in general. One may like toextrapolate the iteration sequene, by replaing the union operator in equation(it) by a so-alled widening operator r. It an be de�ned axiomatially as an

operator whih always over-approximates the union, suh that there is no in�niteinreasing sequene in suh iterations. This ensures �nite time response of a statianalyzer in pratie.A very simple and lassial widening operator on intervals of values is theone for whih [a; b℄r[; d℄ is [e; f ℄ withe = �a if � a�1 otherwise f = � b if b � d1 otherwiseThis operator extrapolates the max bound by 1 if the max bound seems toinrease from one iteration to the other (respetively, the min bound by �1if the min bound seems to derease from one iteration to the other). In ourexample, applying the widening operator in plae of the union after step 1 ofthe iteration sequene, we get i2(1) = [1;1[whih is a orret invariant, althoughoverapproximated, sine f(i2(1)) = [1; 99℄ � [1;1[. One more iteration gets us tothe least �xed point indeed.Stati analysis is interesting for omputing eÆiently some properties oversets of exeutions. Consider the toy examplevoid f(int n) {float x = 2;for (i=0 ; i<n ; i++)(1): x = x/(n+1) + 1; }Stati analysis allows to tell in two iterations, that for all possible value ofn 2 [0;1℄, the value of x at point (1) in the loop belongs to [1; 2℄. Indeed,x0 = 2; x1 = 2=(n+ 1) + 1 [2 2 [1; 2℄; x2 2 [1; 2℄, the �xed point is reahed.The ase of numerial omputations in loops requires partiular are : thelassial �xed point iteration arried out without preaution will underline pos-sibly in�nite errors for most stable loops. We have had to design some speial�xed point iteration strategies in order to get tighter estimations, but these arebeyond the sope of this paper.3.3 Other SemantisThe interpretation of the results for large programs an be failitated by hoos-ing di�erent levels of error points (C lines, bloks of lines, funtions, et), andre�ning loally the result in the funtions that have the most important errors.Grouping error points an also be used during the omputation to redue thememory and omputation time of the analysis [6℄.Other variations lead to \relational" analyses : an idea is to use the linear orrela-tions between variables in order to redue the over-estimation of errors, somehowlike what is done in aÆne interval arithmetis [1℄. Suppose there is one "i pernode of the ontrol ow graph of the program, a variable x an be writtenx = fx + X̀2L tx̀:`"` + !xos"os ; (3)

where fx 2 F is the omputed oating-point value, ` 2 R is the error ommittedat point `, and tx̀ 2 R expresses the propagation of this error on variable x. Whenabstrating the oeÆients ` and tx̀ by intervals, the linear orrelations betweenvariables are expressed in the tx̀, and allow some error balaning, whih was notpossible with only an interval error that lost a part of these orrelations. Theerror `, whih value is a priori unknown but an be bounded, is represented byan interval, but is seen as a formal variable that takes one partiular value inthis interval. And we an write for example the addition in the following way :z = x+`i y ="Æ (fx+ fy)+X̀2L(tx̀+ tỳ):`"`+(!xos+!yos)"os+ #Æ (fx+ fy)"`i :In this expression, the error `i is #Æ (fx + fy)"`i , and, at point `i, the propa-gation oeÆient is tz̀i = 1. Other variations using orrelations between valuesand errors, for example by means of relative error, ould also be used.4 The Flutuat ToolA prototype [4℄ implements this abstrat interpretation, for the analysis of Cprograms. The multi-preision library MPFR [5℄ (based on GMP) is used toompute tight bounds on the errors. As shown in Fig. 1, the main window of theanalyzer displays the ode of the program being analyzed, the list of variables inthe program, and a graph representation of the error series related to the seletedvariable, at the last ontrol point of the program. The operations are identi�edwith their line number in the program, displayed on the X-axis. The bars indiatethe maximum of the absolute values of the interval bounds. Cliking on an errorbar makes the ode frame emphasize the related program line and onversely.In the example of Fig. 1, a program typial of an instrumentation software isbeing analyzed. It onsists basially in an interpolation funtion with thresholds.One an see from the graph that the soures of impreision for the return resultof the funtion are (variable main seleted): the oating-point approximation ofonstant B2 = 2.999982, the 2nd return, and the 3rd return, the last two beingthe more important. Using the assertion BUILTIN DAED FBETWEEN, we imposedthat E1 is between -100 and 100. Then the ontrol ow an go through all return.But in the �rst and last return, there is no impreision ommitted. Thus, toimprove the result, we an improve the omputation of the 2nd and 3rd return.One way is to use double E1 to improve the auray of the subtrations.5 Conlusion and Future WorkWe have presented some ideas about what stati analysis an do for programsusing oating-point numbers. A part of the work onsists in modeling the resultsand the losses of auray using �nite preision omputations. The model used,looks like aÆne interval arithmetis, but is used with a very di�erent intention :the oeÆients have a meaning (oating-point value, inuene of a part of the

Fig. 1. Main window of the analyzer.program on the global error), and are not used only to improve the preision likein aÆne arithmetis. Some work an still be done to improve the auray of thismodelisation. But a onsequent and diÆult part is related to stati analysis :eÆient algorithms for �xed point omputations in loops must be designed, andimplementing a stati analyzer for real problems is a heavy work. Our �rstonern is the analysis of instrumentation software, but we hope to be able togo slowly towards numerially more omplex programs.Referenes1. J. L. D. Comba and J. Stol�. AÆne arithmeti and its appliations to omputergraphis. In SIBGRAPI'93, Reife, PE (Brazil), Otober 20-22, 1993.2. P. Cousot and R. Cousot. Abstrat interpretation frameworks. Journal of Logiand Symboli Computation, 2(4):511{547, 1992.3. E. Goubault. Stati analyses of the preision of oating-point operations. In StatiAnalysis Symposium, SAS'01, number 2126 in LNCS, Springer-Verlag, 2001.4. E. Goubault, M. Martel, and S. Putot. Asserting the preision of oating-pointomputations : a simple abstrat interpreter. In ESOP'02, LNCS, Springer 2002.5. G. Hanrot, V. Lefevre, F. Rouillier, P. Zimmermann. MPFR library. INRIA, 2001.6. M. Martel. Propagation of roundo� errors in �nite preision omputations : asemantis approah. In ESOP'02, number 2305 in LNCS, Springer-Verlag, 2002.7. M. Martel. Stati Analysis of the Numerial Stability of Loops. In SAS'02, number2477 in LNCS, Springer-Verlag, 2002.8. R. E. Moore. Interval Analysis. Prentie-Hall, Englewood Cli�s, NJ, 1963.

