Static Analysis-Based Validation of
Floating-Point Computations

Sylvie Putot, Eric Goubault, Matthieu Martel

CEA Saclay, F91191 Gif-sur-Yvette Cedex, France
{sputot,egoubault,mmartel}@cea.fr

Abstract. Finite precision computations can severely affect the accu-
racy of computed solutions. We present a static analysis, and a prototype
implementing this analysis for C codes, for studying the propagation of
rounding errors occurring at every intermediary step in floating-point
computations. The analysis presented relies on abstract interpretation
by interval values and series of interval error terms. Considering all errors
possibly introduced by floating-point numbers, it aims at identifying the
operations responsible for the main losses of accuracy. We believe this ap-
proach is for now specially appropriate for numerically simple programs
which results must be verified, such as critical instrumentation software.

Keywords. Static analysis, floating-point computations, intervals

1 Introduction

The manipulation of real numbers by computers is carried on using floating-
point arithmetic, which relies on a finite representation of numbers. Although
this approximation is accurate enough for most applications, in some cases results
become irrelevant. And in critical software, these cases may not be acceptable.
Some work has already been done towards tools for evaluating the accuracy
of computations in software. The most widely used, Cadna, relies on statistical
methods, and gives most of the time a very sharp estimation of the relevance of
computed results. But some errors can be underestimated, which is not satisfy-
ing for the verification of critical applications, which accuracy must be certified.
Moreover, this method allows to study the result of a particular execution, and
not for infinite sets of input values as is most of the time needed. Alternatively,
most existing interval-based techniques, which are sure and consider sets of exe-
cutions, aim at estimating tight bounds for the result of computations in infinite
precision. This often supposes a rewriting of the code to be analyzed, and more-
over does not address the problem of verifying the accuracy of existing software.
On the contrary, we are not interested in computing bounds for the real result
of a given problem, but for the error committed using finite precision computa-
tions instead of real numbers computations!. Moreover, the origin of the main
losses of precision is most of the time very localized, and we aim at pointing out

! This presentation follows earlier work by the authors, see [3],[6],[4]

which parts of the code are responsible for these losses. For that, we decompose
the error between the results of the same computation achieved respectively with
floating-point and real numbers in a sum of error terms corresponding to the el-
ementary operations of this computation. This modelisation of the propagation
of errors, called concrete semantics, is the topic of section 2.

This semantics can not be used in an analyzer, because the errors are real
numbers, that can not always be represented by floating-point numbers, even
with higher precision. Thus we derive an abstract semantics, which is the imple-
mentable version of the concrete semantics : over-approximations of the values
and errors are computed using intervals. These intervals also allow to consider
sets of input values. Static analysis consists in computing all possible values of
the variables on the nodes of a program without executing it. A considerable
issue is the fixed point computation in loops. This is presented in section 3.

A prototype implements this model, it is intended to cope with real problems.
Special care was attached to the design of a graphic interface, that makes the
large amount of information computed easily exploitable. The user can make
sure that the floating-point computations are accurate enough, and identify the
operations responsible for the main losses of accuracy.

2 Concrete Semantics to Interpret Arithmetic Operations

Let us first examine an introductory example in which we consider a simplified
set I of floating-point numbers composed of a mantissa of four digits written in
base 10. We consider a and b two intermediate computation results that are not
computed exactly, and we note

a = 621.3 4 0.055e,,, b= 1.287 4 0.00055¢,, .

In this definition, a € R and b € R are the values that would be got from an
infinite precision computation. The floating-point execution of the same com-
putation gives ar = 621.3 € F and br = 1.287 € F, and an error of 0.055 was
committed at point ¢; on the computation of a, and an error of 0.00055 was
committed at point ¢ on the computation of b. The symbols e;, and €4, are
formal variables related to the control points ¢; and /5.

We now consider the product ¢ = a x b, at point /3. The exact result of the
product of the floating-point numbers is ar X bp = 799.6131, but the nearest
floating-point number, supposing the current rounding mode is to the nearest, is
cr = 799.6. A rounding error, defined by ar x bp —crp = 0.0131, is thus committed.
The computation a X b in real numbers intended by the programmer, is then

ax’b = cp+0.0131e4,+0.055x 1.287e, +0.00055 x 621.3€4, +0.055 x0.00055¢¢, £, -
We keep only one term gathering the errors of order higher than one, and rewrite
a x%b=cp+0.070785e;, + 0.341715e4, + 0.0131e,, + 0.00003025¢p; .

The initial errors are amplified or reduced by further computations, thus the
error on c¢ is mainly due to the initial error on b. This result is quite obvious

on this very simple example, but would be much more difficult and tedious to
establish by hand on larger programs. We aim at designing an automatic tool
providing this kind of information.

We now introduce formally this semantics [6], that details the contribution to
the global error of the first order error terms, and globally computes the higher
order errors, which are most of the time negligible. Let F be either the set of
simple or double precision floating-point numbers. Let 1,: R — F be the function
that returns the rounded value of a real number 7, with respect to the rounding
mode o. The function |,: R — F that returns the roundoff error is defined by

VfeER, io(f):f_To(f)' (1)

Assume that the control points of a program are annotated by unique labels
¢ € L, and that £ denotes the union of L and the special word hi used to denote
all terms of order higher or equal to 2. A number z is represented by

e=f"+> wie. (2)
lel
In equation (2), f* is the floating-point number approximating the value of z.
A term wje; denotes the contribution to the global error of the first-order error
introduced by the operation labeled ¢, w; € R being the value of this error term
and g, a formal variable labelling the operation 4.
The result of an arithmetic operation % contains the combination of exist-
ing errors on the operands, plus a new roundoff error term |, (f*¢fY)e,,. For
addition and subtraction, the errors are added or subtracted componentwise :

w4y =t (f7 4+)+ Y (Wi +wheet do (F7 + [Y)ee -
el
The multiplication introduces higher order errors, we write :
exbiy=to (F7f)+) (frwl +flwiect D wiwi, enitdo (F7fY)ee; -
el LEL, €L

The semantics for the division is obtained by a power series development :

(y)_lli . <i>_LZwy6z+i Z(_l)n Zw_%’ " Ehit do <i> €p; .
fv) (fv)? T e ” e

leLl n>2

3 Static Analysis and Abstract Interpretation

Static analysis consists in computing some properties of a program without ex-
ecuting it, and for possibly large or infinite sets of inputs. We want here to
compute all possible values f and errors wy for each variable, valid for any itera-
tion of the loops, on the nodes of the programs to analyze. Interval computations
[8] are used to get computable supersets of these coefficients, in an abstract in-
terpretation framework [2]. They allow on one hand to consider sets of execution,
and on the other hand to include the rounding errors committed by the analysis.

3.1 Abstract Semantics to Interpret Arithmetic Operations

Let us consider again the multiplication introduced in section 2. The errors are
real numbers, they are not always representable by floating-point numbers. Thus
we define the abstract semantics for the operation, that implements the concrete
semantics, using intervals as computable supersets of the real coefficients. We
suppose the numbers used for the analysis have a mantissa of five digits in base
10, then the multiplication of a and b with the abstract semantics writes :

a x' b = [cg, cx] + [0.070785,0.070785]e;, + [0.34171,0.34172]e,,
+[0.0131,0.0131]eg, + [0.00003025, 0.00003025]en; -

The floating-point result is still the result cr of the multiplication ar x by, rounded
to the nearest floating-point number, with the precision of the floating-point
number analyzed. This results simulates the floating-point execution.
The errors are computed using classical interval arithmetic, that is with outward
rounding, to include the errors coming from the analysis which uses itself finite
precision numbers. Using a higher precision for the computation of these error
intervals allows to estimate them more tightly. Here, an extended precision to
six digits would be enough to compute exactly the error, without the use of
intervals. But it would be too costly to extend the precision for each additional
operation. Moreover, some errors can not be represented by extended precision
floating-point numbers, for example in some cases of divisions.

Now consider the same multiplication where the floating-point value of a is
no longer a single value, but any possible value in an interval : for example we
take @’ = [610,630] + [0.055,0.055]e,, . We get :

a' x' b= [785.1,810.8] + [0.070785,0.070785]e;, + [0.3355,0.3465]e;,
+[—0.05,0.05]e¢, + [0.00003025, 0.00003025]ep; .

Indeed, 610 x 1.287 = 785.07, rounded to the nearest gives 785.1, and 630 x
1.287 = 810.81, rounded to the nearest gives 810.8. Thus the floating-point part
of the result can be any floating-point value in the interval [785.1,810.8]. The
error coming from point ¢; and the error of order higher than 1 are unchanged.
The error coming from point ¢y belongs to the result of the interval multiplica-
tion (with outward rounding) of ap and the error 0.00055, that is [0.3355, 0.3465].
The roundoff error introduced by the multiplication can only be bounded by the
largest set of values which added to the floating-point result, do not affect its
value in floating-point arithmetic, that is the interval [—0.05,0.05].

In the general case, we get the abstract semantics by interpreting the opera-
tion over error series with interval coefficients, using rounding to the nearest for
the computation of the floating-point part, and outward rounding and possibly
more precision for the propagation of the existing errors. For the division, we
must compute an over-approximation of the sum of the terms of order higher
or equal to two. For that, we note that the error committed by approximating

(1 4+ u)~! by the first-order development 1 — u is g(u) = (1 + u)~tu? And we
can easily bound g(u) for u = (f¥)~' 3 ,c , w/ by studying function g.

Most of the time, the new roundoff error introduced by an operation can only
be bounded. Suppose the floating-point result of an operation is in the interval
[a,b], and note r = maz(|al,|b|). The roundoff error due to this operation is
bounded by [—ulp(r)/2,ulp(r)/2], where ulp(r) is the unit in the last place of
r, that is the smallest number which, added to the floating-point number r,
does affect its value. If the floating-point parts of the operands are intervals
reduced to points (a = b), the error can be bounded more accurately using (1),
by the difference of the floating-point result, and the interval result of the same
operation achieved with outward rounding and the precision of the analysis.

3.2 Computations in Loops

When encountering a loop, the analyzer will try to produce an invariant, i.e. a
property which holds true before or after some instruction in the body of the
loop, regardless of the number of loops already executed. As an example, look
at the program:

int i=1;
while (i<100)
(1) i++;

(2):

suitably annotated with labels (1) (respectively (2)), locating the control point
at the beginning of the body of the loop, just before i++ takes place (respectively,
after the loop). A correct invariant at (1) is i in S = {1,2,...,99}, because
each time the control flow goes through (1), i takes its value in S. Notice that
S' =0,100] is also an invariant, but less precise. The most precise invariant at
(2) is i equals 100.

If we represent the “effect” of one iteration of the loop on variables’ values
by a function f (its “semantics”), then calculating (1) amounts to finding the
least fixed point of f, above some initial set of values Xy. Equivalently (when f
is “continuous”), the invariant i, at (1) - only concerning variable i here - is
given by Kleene’s theorem:

iw =XoU f(Xo) U f*(Xo)U...Uf"(Xo)U...

This gives an immediate algorithm for computing the invariant, called the fized
point iteration sequence, in which we start with %, = Xy = [1,1] and carry on
by defining (it): i =i U f (i")), the limit of which being the least fixed point
in question.

In our example, f(S) = ([1,1]JU(S+[1,1]))N] — 00, 99]. The iteration sequence
is then i° = [1,1], ¢}, = [1,2], ..., i%, = [1,j + 1] and finally, i?) = 9% = [1,99]
(the fixed point). This algorithm is not very efficient in general. One may like to
extrapolate the iteration sequence, by replacing the union operator in equation

(it) by a so-called widening operator V. It can be defined axiomatically as an

operator which always over-approximates the union, such that there is no infinite
increasing sequence in such iterations. This ensures finite time response of a static
analyzer in practice.

A very simple and classical widening operator on intervals of values is the
one for which [a, b]V]e, d] is [e, f] with

{a ifc>a {b iftb>d
e = f:

—o00 otherwise oo otherwise

This operator extrapolates the max bound by oo if the max bound seems to
increase from one iteration to the other (respectively, the min bound by —oo
if the min bound seems to decrease from one iteration to the other). In our
example, applying the widening operator in place of the union after step 1 of

the iteration sequence, we get i%, = [1, oo[which is a correct invariant, although

[¢3)
overapproximated, since f(i%,) = [1,99] C [1, 0o[. One more iteration gets us to
the least fixed point indeed.
Static analysis is interesting for computing efficiently some properties over

sets of executions. Consider the toy example

void f(int n) {
float x = 2;
for (i=0 ; i<n ; i++)
(1): x =x/(n+1) + 1; }

Static analysis allows to tell in two iterations, that for all possible value of
n € [0,00], the value of z at point (1) in the loop belongs to [1,2]. Indeed,
2o=2;21=2/(n+1)+1U2€[1,2]; 22 € [1,2], the fixed point is reached.

The case of numerical computations in loops requires particular care : the
classical fixed point iteration carried out without precaution will underline pos-
sibly infinite errors for most stable loops. We have had to design some special
fixed point iteration strategies in order to get tighter estimations, but these are
beyond the scope of this paper.

3.3 Other Semantics

The interpretation of the results for large programs can be facilitated by choos-
ing different levels of error points (C lines, blocks of lines, functions, etc), and
refining locally the result in the functions that have the most important errors.
Grouping error points can also be used during the computation to reduce the
memory and computation time of the analysis [6].

Other variations lead to “relational” analyses : an idea is to use the linear correla-
tions between variables in order to reduce the over-estimation of errors, somehow
like what is done in affine interval arithmetics [1]. Suppose there is one g; per
node of the control flow graph of the program, a variable x can be written

z=f"+ Zt?.wez + wl€os , (3)
teL

where f* € F is the computed floating-point value, 7, € R is the error committed
at point £, and tj € R expresses the propagation of this error on variable z. When
abstracting the coefficients -, and ¢7 by intervals, the linear correlations between
variables are expressed in the 7, and allow some error balancing, which was not
possible with only an interval error that lost a part of these correlations. The
error ¢, which value is a priori unknown but can be bounded, is represented by
an interval, but is seen as a formal variable that takes one particular value in
this interval. And we can write for example the addition in the following way :

z=a+ly =t (F+)+ Dt +t])veer + (Wi +wly)eost Lo (f7 + f¥)er, -
el

In this expression, the error 7y, is |o (f* + f¥)ey,, and, at point ¢;, the propa-
gation coefficient is ¢7. = 1. Other variations using correlations between values
and errors, for example by means of relative error, could also be used.

4 The Fluctuat Tool

A prototype [4] implements this abstract interpretation, for the analysis of C
programs. The multi-precision library MPFR [5] (based on GMP) is used to
compute tight bounds on the errors. As shown in Fig. 1, the main window of the
analyzer displays the code of the program being analyzed, the list of variables in
the program, and a graph representation of the error series related to the selected
variable, at the last control point of the program. The operations are identified
with their line number in the program, displayed on the X-axis. The bars indicate
the maximum of the absolute values of the interval bounds. Clicking on an error
bar makes the code frame emphasize the related program line and conversely.

In the example of Fig. 1, a program typical of an instrumentation software is
being analyzed. It consists basically in an interpolation function with thresholds.
One can see from the graph that the sources of imprecision for the return result
of the function are (variable main selected): the floating-point approximation of
constant B2 = 2.999982, the 2nd return, and the 3rd return, the last two being
the more important. Using the assertion __ BUILTIN _DAED_FBETWEEN, we imposed
that E1 is between -100 and 100. Then the control flow can go through all return.
But in the first and last return, there is no imprecision committed. Thus, to
improve the result, we can improve the computation of the 2nd and 3rd return.
One way is to use double E1 to improve the accuracy of the subtractions.

5 Conclusion and Future Work

We have presented some ideas about what static analysis can do for programs
using floating-point numbers. A part of the work consists in modeling the results
and the losses of accuracy using finite precision computations. The model used,
looks like affine interval arithmetics, but is used with a very different intention :
the coefficients have a meaning (floating-point value, influence of a part of the

File Graph-Mode Error-hMode Analysis

=)

| — Program

#include <daed_buitinsh>
float main(float E1)

int
ﬂnat AXD AYDARTAYT,AKZAYZAKS,AYSAXAAV4B0B1,82,8
R3=0;

AXD=—1.000000E+01;

AY0=-3.000000E+071;

AX1=-1.000000E+01;

AY1=-3.000000E+01;

AXZ=0.000000E+00;

AYZ=0.000000E+00;

AX3=5666700E+00;

AY3=1700000E+01;

AX4=5666700E+00;

AY4=1700000E+07;

B0=0;

B1=3.000000E+00;

B2=2.999982E+00;

B3=0;

E1=_ BUILTIN_DAED_FBETWEEN(-100.0,100.0)

if (E1=AX1)

il © 2D)

= | =
8|F

< §

Frame

Graph Frame

Error Grain

Error Mode

return((E 1-AX0)*BO+AYD); {— Variable
if (E1<AX2) List
retum((E1-AX1)"B1+AY1);
if (E1<AX3) o s
return((E1-AX2)"BZ+AYZ); {— File List
return((E1-AXE)"B3+AY3); Variable Interval
: L -3.00000000000000e1 | 1.70000000000000e 1
Global Emor —————————————————; Global
’7 —-6.63257e~06 596045606 Information
on Selected
Higher Order Error Variable
(l -z&z7ge—14 | 2.8278e-14

Current Point (26)

] ’7 -3.33786-06 3.33786e-06 | =

G-GirHC-C

Fig. 1. Main window of the analyzer.

program on the global error), and are not used only to improve the precision like
in affine arithmetics. Some work can still be done to improve the accuracy of this
modelisation. But a consequent and difficult part is related to static analysis :
efficient algorithms for fixed point computations in loops must be designed, and
implementing a static analyzer for real problems is a heavy work. Our first
concern is the analysis of instrumentation software, but we hope to be able to
go slowly towards numerically more complex programs.

References

1.

. P. Cousot and R. Cousot. Abstract interpretation frameworks.

. E. Goubault, M. Martel, and S. Putot.

J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics. In SIBGRAPI’93, Recife, PE (Brazil), October 20-22, 1993.

Journal of Logic
and Symbolic Computation, 2(4):511-547, 1992.

E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, number 2126 in LNCS, Springer-Verlag, 2001.
Asserting the precision of floating-point
computations : a simple abstract interpreter. In ESOP’02, LNCS, Springer 2002.
G. Hanrot, V. Lefevre, F. Rouillier, P. Zimmermann. MPFR library. INRIA, 2001.
M. Martel. Propagation of roundoff errors in finite precision computations : a
semantics approach. In ESOP’02, number 2305 in LNCS, Springer-Verlag, 2002.
M. Martel. Static Analysis of the Numerical Stability of Loops. In SAS’02, number
2477 in LNCS, Springer-Verlag, 2002.

R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1963.

