
Stati
 Analysis-Based Validation ofFloating-Point ComputationsSylvie Putot, Eri
 Goubault, Matthieu MartelCEA Sa
lay, F91191 Gif-sur-Yvette Cedex, Fran
efsputot,egoubault,mmartelg�
ea.frAbstra
t. Finite pre
ision
omputations
an severely a�e
t the a

u-ra
y of
omputed solutions. We present a stati
 analysis, and a prototypeimplementing this analysis for C
odes, for studying the propagation ofrounding errors o

urring at every intermediary step in
oating-point
omputations. The analysis presented relies on abstra
t interpretationby interval values and series of interval error terms. Considering all errorspossibly introdu
ed by
oating-point numbers, it aims at identifying theoperations responsible for the main losses of a

ura
y. We believe this ap-proa
h is for now spe
ially appropriate for numeri
ally simple programswhi
h results must be veri�ed, su
h as
riti
al instrumentation software.Keywords. Stati
 analysis,
oating-point
omputations, intervals1 Introdu
tionThe manipulation of real numbers by
omputers is
arried on using
oating-point arithmeti
, whi
h relies on a �nite representation of numbers. Althoughthis approximation is a

urate enough for most appli
ations, in some
ases resultsbe
ome irrelevant. And in
riti
al software, these
ases may not be a

eptable.Some work has already been done towards tools for evaluating the a

ura
yof
omputations in software. The most widely used, Cadna, relies on statisti
almethods, and gives most of the time a very sharp estimation of the relevan
e of
omputed results. But some errors
an be underestimated, whi
h is not satisfy-ing for the veri�
ation of
riti
al appli
ations, whi
h a

ura
y must be
erti�ed.Moreover, this method allows to study the result of a parti
ular exe
ution, andnot for in�nite sets of input values as is most of the time needed. Alternatively,most existing interval-based te
hniques, whi
h are sure and
onsider sets of exe-
utions, aim at estimating tight bounds for the result of
omputations in in�nitepre
ision. This often supposes a rewriting of the
ode to be analyzed, and more-over does not address the problem of verifying the a

ura
y of existing software.On the
ontrary, we are not interested in
omputing bounds for the real resultof a given problem, but for the error
ommitted using �nite pre
ision
omputa-tions instead of real numbers
omputations1. Moreover, the origin of the mainlosses of pre
ision is most of the time very lo
alized, and we aim at pointing out1 This presentation follows earlier work by the authors, see [3℄,[6℄,[4℄

whi
h parts of the
ode are responsible for these losses. For that, we de
omposethe error between the results of the same
omputation a
hieved respe
tively with
oating-point and real numbers in a sum of error terms
orresponding to the el-ementary operations of this
omputation. This modelisation of the propagationof errors,
alled
on
rete semanti
s, is the topi
 of se
tion 2.This semanti
s
an not be used in an analyzer, be
ause the errors are realnumbers, that
an not always be represented by
oating-point numbers, evenwith higher pre
ision. Thus we derive an abstra
t semanti
s, whi
h is the imple-mentable version of the
on
rete semanti
s : over-approximations of the valuesand errors are
omputed using intervals. These intervals also allow to
onsidersets of input values. Stati
 analysis
onsists in
omputing all possible values ofthe variables on the nodes of a program without exe
uting it. A
onsiderableissue is the �xed point
omputation in loops. This is presented in se
tion 3.A prototype implements this model, it is intended to
ope with real problems.Spe
ial
are was atta
hed to the design of a graphi
 interfa
e, that makes thelarge amount of information
omputed easily exploitable. The user
an makesure that the
oating-point
omputations are a

urate enough, and identify theoperations responsible for the main losses of a

ura
y.2 Con
rete Semanti
s to Interpret Arithmeti
 OperationsLet us �rst examine an introdu
tory example in whi
h we
onsider a simpli�edset F of
oating-point numbers
omposed of a mantissa of four digits written inbase 10. We
onsider a and b two intermediate
omputation results that are not
omputed exa
tly, and we notea = 621:3+ 0:055"`1 ; b = 1:287+ 0:00055"`2 :In this de�nition, a 2 R and b 2 R are the values that would be got from anin�nite pre
ision
omputation. The
oating-point exe
ution of the same
om-putation gives aF = 621:3 2 F and bF = 1:287 2 F, and an error of 0:055 was
ommitted at point `1 on the
omputation of a, and an error of 0:00055 was
ommitted at point `2 on the
omputation of b. The symbols "`1 and "`2 areformal variables related to the
ontrol points `1 and `2.We now
onsider the produ
t
 = a� b, at point l3. The exa
t result of theprodu
t of the
oating-point numbers is aF � bF = 799:6131, but the nearest
oating-point number, supposing the
urrent rounding mode is to the nearest, is
F = 799:6. A rounding error, de�ned by aF�bF�
F = 0:0131, is thus
ommitted.The
omputation a� b in real numbers intended by the programmer, is thena�`3b =
F+0:0131"`3+0:055�1:287"`1+0:00055�621:3"`2+0:055�0:00055"`1"`2 :We keep only one term gathering the errors of order higher than one, and rewritea�`3 b =
F + 0:070785"`1 + 0:341715"`2 + 0:0131"`3 + 0:00003025"hi :The initial errors are ampli�ed or redu
ed by further
omputations, thus theerror on
 is mainly due to the initial error on b. This result is quite obvious

on this very simple example, but would be mu
h more diÆ
ult and tedious toestablish by hand on larger programs. We aim at designing an automati
 toolproviding this kind of information.We now introdu
e formally this semanti
s [6℄, that details the
ontribution tothe global error of the �rst order error terms, and globally
omputes the higherorder errors, whi
h are most of the time negligible. Let F be either the set ofsimple or double pre
ision
oating-point numbers. Let "Æ: R ! F be the fun
tionthat returns the rounded value of a real number r, with respe
t to the roundingmode Æ. The fun
tion #Æ: R ! F that returns the roundo� error is de�ned by8f 2 R; #Æ (f) = f� "Æ (f) : (1)Assume that the
ontrol points of a program are annotated by unique labels` 2 L, and that L denotes the union of L and the spe
ial word hi used to denoteall terms of order higher or equal to 2. A number x is represented byx = fx + X̀2L!x̀"` : (2)In equation (2), fx is the
oating-point number approximating the value of x.A term !x̀"` denotes the
ontribution to the global error of the �rst-order errorintrodu
ed by the operation labeled `, !x̀ 2 R being the value of this error termand "` a formal variable labelling the operation `.The result of an arithmeti
 operation �`i
ontains the
ombination of exist-ing errors on the operands, plus a new roundo� error term #Æ (fx�fy)"`i . Foraddition and subtra
tion, the errors are added or subtra
ted
omponentwise :x+`i y ="Æ (fx + fy) + X̀2L(!x̀ + !ỳ)"`+ #Æ (fx + fy)"`i :The multipli
ation introdu
es higher order errors, we write :x�`i y ="Æ (fxfy)+X̀2L(fx!ỳ+fy!x̀) "`+ X`12L; `22L!x̀1!ỳ2 "hi+ #Æ (fxfy)"`i :The semanti
s for the division is obtained by a power series development :(y)�1li ="Æ � 1fy�� 1(fy)2 X̀2L!ỳ"`+ 1fy Xn�2(�1)n X̀2L !ỳfy!n "hi+ #Æ � 1fy� "`i :3 Stati
 Analysis and Abstra
t InterpretationStati
 analysis
onsists in
omputing some properties of a program without ex-e
uting it, and for possibly large or in�nite sets of inputs. We want here to
ompute all possible values f and errors !` for ea
h variable, valid for any itera-tion of the loops, on the nodes of the programs to analyze. Interval
omputations[8℄ are used to get
omputable supersets of these
oeÆ
ients, in an abstra
t in-terpretation framework [2℄. They allow on one hand to
onsider sets of exe
ution,and on the other hand to in
lude the rounding errors
ommitted by the analysis.

3.1 Abstra
t Semanti
s to Interpret Arithmeti
 OperationsLet us
onsider again the multipli
ation introdu
ed in se
tion 2. The errors arereal numbers, they are not always representable by
oating-point numbers. Thuswe de�ne the abstra
t semanti
s for the operation, that implements the
on
retesemanti
s, using intervals as
omputable supersets of the real
oeÆ
ients. Wesuppose the numbers used for the analysis have a mantissa of �ve digits in base10, then the multipli
ation of a and b with the abstra
t semanti
s writes :a�`3 b = [
F;
F℄ + [0:070785; 0:070785℄"`1 + [0:34171; 0:34172℄"`2+[0:0131; 0:0131℄"`3 + [0:00003025; 0:00003025℄"hi :The
oating-point result is still the result
F of the multipli
ation aF�bF, roundedto the nearest
oating-point number, with the pre
ision of the
oating-pointnumber analyzed. This results simulates the
oating-point exe
ution.The errors are
omputed using
lassi
al interval arithmeti
, that is with outwardrounding, to in
lude the errors
oming from the analysis whi
h uses itself �nitepre
ision numbers. Using a higher pre
ision for the
omputation of these errorintervals allows to estimate them more tightly. Here, an extended pre
ision tosix digits would be enough to
ompute exa
tly the error, without the use ofintervals. But it would be too
ostly to extend the pre
ision for ea
h additionaloperation. Moreover, some errors
an not be represented by extended pre
ision
oating-point numbers, for example in some
ases of divisions.Now
onsider the same multipli
ation where the
oating-point value of a isno longer a single value, but any possible value in an interval : for example wetake a0 = [610; 630℄ + [0:055; 0:055℄"`1 . We get :a0 �`3 b = [785:1; 810:8℄ + [0:070785; 0:070785℄"`1 + [0:3355; 0:3465℄"`2+[�0:05; 0:05℄"`3 + [0:00003025; 0:00003025℄"hi :Indeed, 610 � 1:287 = 785:07, rounded to the nearest gives 785:1, and 630 �1:287 = 810:81, rounded to the nearest gives 810:8. Thus the
oating-point partof the result
an be any
oating-point value in the interval [785:1; 810:8℄. Theerror
oming from point `1 and the error of order higher than 1 are un
hanged.The error
oming from point `2 belongs to the result of the interval multipli
a-tion (with outward rounding) of a0F and the error 0.00055, that is [0:3355; 0:3465℄.The roundo� error introdu
ed by the multipli
ation
an only be bounded by thelargest set of values whi
h added to the
oating-point result, do not a�e
t itsvalue in
oating-point arithmeti
, that is the interval [�0:05; 0:05℄.In the general
ase, we get the abstra
t semanti
s by interpreting the opera-tion over error series with interval
oeÆ
ients, using rounding to the nearest forthe
omputation of the
oating-point part, and outward rounding and possiblymore pre
ision for the propagation of the existing errors. For the division, wemust
ompute an over-approximation of the sum of the terms of order higheror equal to two. For that, we note that the error
ommitted by approximating

(1 + u)�1 by the �rst-order development 1 � u is g(u) = (1 + u)�1u2. And we
an easily bound g(u) for u = (fy)�1P`2L !ỳ by studying fun
tion g.Most of the time, the new roundo� error introdu
ed by an operation
an onlybe bounded. Suppose the
oating-point result of an operation is in the interval[a; b℄, and note r = max(jaj; jbj). The roundo� error due to this operation isbounded by [�ulp(r)=2; ulp(r)=2℄, where ulp(r) is the unit in the last pla
e ofr, that is the smallest number whi
h, added to the
oating-point number r,does a�e
t its value. If the
oating-point parts of the operands are intervalsredu
ed to points (a = b), the error
an be bounded more a

urately using (1),by the di�eren
e of the
oating-point result, and the interval result of the sameoperation a
hieved with outward rounding and the pre
ision of the analysis.3.2 Computations in LoopsWhen en
ountering a loop, the analyzer will try to produ
e an invariant, i.e. aproperty whi
h holds true before or after some instru
tion in the body of theloop, regardless of the number of loops already exe
uted. As an example, lookat the program:int i=1;while (i<100)(1): i++;(2):suitably annotated with labels (1) (respe
tively (2)), lo
ating the
ontrol pointat the beginning of the body of the loop, just before i++ takes pla
e (respe
tively,after the loop). A
orre
t invariant at (1) is i in S = f1; 2; : : : ; 99g, be
auseea
h time the
ontrol
ow goes through (1), i takes its value in S. Noti
e thatS0 = [0; 100℄ is also an invariant, but less pre
ise. The most pre
ise invariant at(2) is i equals 100.If we represent the \e�e
t" of one iteration of the loop on variables' valuesby a fun
tion f (its \semanti
s"), then
al
ulating (1) amounts to �nding theleast �xed point of f , above some initial set of values X0. Equivalently (when fis \
ontinuous"), the invariant i(1) at (1) - only
on
erning variable i here - isgiven by Kleene's theorem:i(1) = X0 [f(X0) [f2(X0) [: : : [fn(X0) [: : :This gives an immediate algorithm for
omputing the invariant,
alled the �xedpoint iteration sequen
e, in whi
h we start with i0(1) = X0 = [1; 1℄ and
arry onby de�ning (it): in+1(1) = in(1)[f (in(1)), the limit of whi
h being the least �xed pointin question.In our example, f(S) = ([1; 1℄[(S+[1; 1℄))\℄�1; 99℄. The iteration sequen
eis then i0(1) = [1; 1℄, i1(1) = [1; 2℄, : : :, ij(1) = [1; j + 1℄ and �nally, i99(1) = i98(1) = [1; 99℄(the �xed point). This algorithm is not very eÆ
ient in general. One may like toextrapolate the iteration sequen
e, by repla
ing the union operator in equation(it) by a so-
alled widening operator r. It
an be de�ned axiomati
ally as an

operator whi
h always over-approximates the union, su
h that there is no in�nitein
reasing sequen
e in su
h iterations. This ensures �nite time response of a stati
analyzer in pra
ti
e.A very simple and
lassi
al widening operator on intervals of values is theone for whi
h [a; b℄r[
; d℄ is [e; f ℄ withe = �a if
 � a�1 otherwise f = � b if b � d1 otherwiseThis operator extrapolates the max bound by 1 if the max bound seems toin
rease from one iteration to the other (respe
tively, the min bound by �1if the min bound seems to de
rease from one iteration to the other). In ourexample, applying the widening operator in pla
e of the union after step 1 ofthe iteration sequen
e, we get i2(1) = [1;1[whi
h is a
orre
t invariant, althoughoverapproximated, sin
e f(i2(1)) = [1; 99℄ � [1;1[. One more iteration gets us tothe least �xed point indeed.Stati
 analysis is interesting for
omputing eÆ
iently some properties oversets of exe
utions. Consider the toy examplevoid f(int n) {float x = 2;for (i=0 ; i<n ; i++)(1): x = x/(n+1) + 1; }Stati
 analysis allows to tell in two iterations, that for all possible value ofn 2 [0;1℄, the value of x at point (1) in the loop belongs to [1; 2℄. Indeed,x0 = 2; x1 = 2=(n+ 1) + 1 [2 2 [1; 2℄; x2 2 [1; 2℄, the �xed point is rea
hed.The
ase of numeri
al
omputations in loops requires parti
ular
are : the
lassi
al �xed point iteration
arried out without pre
aution will underline pos-sibly in�nite errors for most stable loops. We have had to design some spe
ial�xed point iteration strategies in order to get tighter estimations, but these arebeyond the s
ope of this paper.3.3 Other Semanti
sThe interpretation of the results for large programs
an be fa
ilitated by
hoos-ing di�erent levels of error points (C lines, blo
ks of lines, fun
tions, et
), andre�ning lo
ally the result in the fun
tions that have the most important errors.Grouping error points
an also be used during the
omputation to redu
e thememory and
omputation time of the analysis [6℄.Other variations lead to \relational" analyses : an idea is to use the linear
orrela-tions between variables in order to redu
e the over-estimation of errors, somehowlike what is done in aÆne interval arithmeti
s [1℄. Suppose there is one "i pernode of the
ontrol
ow graph of the program, a variable x
an be writtenx = fx + X̀2L tx̀:
`"` + !xos"os ; (3)

where fx 2 F is the
omputed
oating-point value,
` 2 R is the error
ommittedat point `, and tx̀ 2 R expresses the propagation of this error on variable x. Whenabstra
ting the
oeÆ
ients
` and tx̀ by intervals, the linear
orrelations betweenvariables are expressed in the tx̀, and allow some error balan
ing, whi
h was notpossible with only an interval error that lost a part of these
orrelations. Theerror
`, whi
h value is a priori unknown but
an be bounded, is represented byan interval, but is seen as a formal variable that takes one parti
ular value inthis interval. And we
an write for example the addition in the following way :z = x+`i y ="Æ (fx+ fy)+X̀2L(tx̀+ tỳ):
`"`+(!xos+!yos)"os+ #Æ (fx+ fy)"`i :In this expression, the error
`i is #Æ (fx + fy)"`i , and, at point `i, the propa-gation
oeÆ
ient is tz̀i = 1. Other variations using
orrelations between valuesand errors, for example by means of relative error,
ould also be used.4 The Flu
tuat ToolA prototype [4℄ implements this abstra
t interpretation, for the analysis of Cprograms. The multi-pre
ision library MPFR [5℄ (based on GMP) is used to
ompute tight bounds on the errors. As shown in Fig. 1, the main window of theanalyzer displays the
ode of the program being analyzed, the list of variables inthe program, and a graph representation of the error series related to the sele
tedvariable, at the last
ontrol point of the program. The operations are identi�edwith their line number in the program, displayed on the X-axis. The bars indi
atethe maximum of the absolute values of the interval bounds. Cli
king on an errorbar makes the
ode frame emphasize the related program line and
onversely.In the example of Fig. 1, a program typi
al of an instrumentation software isbeing analyzed. It
onsists basi
ally in an interpolation fun
tion with thresholds.One
an see from the graph that the sour
es of impre
ision for the return resultof the fun
tion are (variable main sele
ted): the
oating-point approximation of
onstant B2 = 2.999982, the 2nd return, and the 3rd return, the last two beingthe more important. Using the assertion BUILTIN DAED FBETWEEN, we imposedthat E1 is between -100 and 100. Then the
ontrol
ow
an go through all return.But in the �rst and last return, there is no impre
ision
ommitted. Thus, toimprove the result, we
an improve the
omputation of the 2nd and 3rd return.One way is to use double E1 to improve the a

ura
y of the subtra
tions.5 Con
lusion and Future WorkWe have presented some ideas about what stati
 analysis
an do for programsusing
oating-point numbers. A part of the work
onsists in modeling the resultsand the losses of a

ura
y using �nite pre
ision
omputations. The model used,looks like aÆne interval arithmeti
s, but is used with a very di�erent intention :the
oeÆ
ients have a meaning (
oating-point value, in
uen
e of a part of the

Fig. 1. Main window of the analyzer.program on the global error), and are not used only to improve the pre
ision likein aÆne arithmeti
s. Some work
an still be done to improve the a

ura
y of thismodelisation. But a
onsequent and diÆ
ult part is related to stati
 analysis :eÆ
ient algorithms for �xed point
omputations in loops must be designed, andimplementing a stati
 analyzer for real problems is a heavy work. Our �rst
on
ern is the analysis of instrumentation software, but we hope to be able togo slowly towards numeri
ally more
omplex programs.Referen
es1. J. L. D. Comba and J. Stol�. AÆne arithmeti
 and its appli
ations to
omputergraphi
s. In SIBGRAPI'93, Re
ife, PE (Brazil), O
tober 20-22, 1993.2. P. Cousot and R. Cousot. Abstra
t interpretation frameworks. Journal of Logi
and Symboli
 Computation, 2(4):511{547, 1992.3. E. Goubault. Stati
 analyses of the pre
ision of
oating-point operations. In Stati
Analysis Symposium, SAS'01, number 2126 in LNCS, Springer-Verlag, 2001.4. E. Goubault, M. Martel, and S. Putot. Asserting the pre
ision of
oating-point
omputations : a simple abstra
t interpreter. In ESOP'02, LNCS, Springer 2002.5. G. Hanrot, V. Lefevre, F. Rouillier, P. Zimmermann. MPFR library. INRIA, 2001.6. M. Martel. Propagation of roundo� errors in �nite pre
ision
omputations : asemanti
s approa
h. In ESOP'02, number 2305 in LNCS, Springer-Verlag, 2002.7. M. Martel. Stati
 Analysis of the Numeri
al Stability of Loops. In SAS'02, number2477 in LNCS, Springer-Verlag, 2002.8. R. E. Moore. Interval Analysis. Prenti
e-Hall, Englewood Cli�s, NJ, 1963.

