
Semantics and Analysisof Linda-based languagesR�egis Cridlig & Eric GoubaultLaboratoire d'Informatique de l'Ecole Normale Sup�erieureAddress: Ecole Normale Sup�erieure - 45 rue d'Ulm, 75230 Paris Cedex 05, France.Electronic mail: fcridlig,goubaultg@dmi.ens.frAbstract. In this paper we de�ne a process algebra abstracting relevantfeatures of the Linda paradigm to parallel computation and show how togive it a semantics based on higher-dimensional automata which is moreexpressive than interleaving transition systems. In particular, it is a trulyconcurrent operational semantics, compositional in nature.Furthermore this semantics leads us to new kinds of abstract interpretationsuseful for the static analysis of concurrency. One of these addresses the cor-rectness of implementations of Linda programs on real computers (whichhave a �nite number of processors).1 IntroductionParallel languages are di�cult to design and implement. On the one hand, the taskof actually using at the same time several processors should be taken care of in atransparent manner for the user. On the other hand, the multiplicity of architec-tures and paradigms for parallel machines and languages makes it di�cult to �nd auni�ed way of speaking about semantics and about e�ciency of implementations. Inthis article, we choose a paradigm for concurrency, exempli�ed by the Linda basedlanguages, which does not make any assumption on the architecture of the machineit will be implemented on. It does not assume a shared memory nor a channel basedmechanism for implementing inter-process communication.As a �rst step towards the analysis of such languages, we introduce a process algebrathat models their basic features, abstracting the constructs dealing with concurrencyand communication. We then use a classical interleaving operational semantics tode�ne the process algebra. Unfortunately, interleaving causes a dramatic combinato-rial increase in complexity and the possible schedulings of actions on a given numberof processors are out of reach. Therefore, we introduce a generalised operational se-mantics, based on higher-dimensional automata (see [GJ92]) which expresses thetruly concurrent execution of actions, thus enabling us to speak of n actions sched-uled on m processors (the \mapping problem"). It has also nice properties borrowedfrom the denotational world, that is being compositional.Then we develop two kinds of abstract interpretations (see [CC92]) which link thesemantics to non-standard ones of interest. The �rst one aims at speaking aboutthe mapping problem, whereas the second one is more classical, and can be usedfor instance for abstracting the actual values of tuples to types. It may also be used



to shrink the domain of the semantics to a �nite state one. The article ends byputting these abstract interpretations to work with two examples, for determiningthe possible communications and the \best" schedulings given a few constraints.2 Overview of Linda2.1 The Linda paradigmHow to write parallel programs? This is the subject of N. Carriero and D. Gelernter'sbook [CG90] that presents and uses Linda, a language they developed as a way tocoordinate multiple parallel processes to achieve a given common task.There are three di�erent basic models for coordination:1. The �rst one is still in use in most parallel extensions of imperative languages andis based upon shared memory and variables. To avoid conicts and race condi-tions between processes, it usually comprises some basic forms of synchronisationlike Djikstra's semaphores. It is considered as a di�cult model to program inand debug, and is restricted to shared-memory architectures.2. The best known one today is message-passing and has been widespread by theinuence of Hoare's CSP [Hoa78] that inspired the Occam language [May83].Communication is modelled by synchronous operations in the process of sendingand receiving messages. Remote Procedure Calls and bu�ered streams are otherinstances of this paradigm that is quite simple and powerful, allowing distributedcomputing. But it can lead to cumbersome programs when message passing doesnot �t well with the concurrent algorithm to implement.3. Distributed data structures are less frequently encountered, but in some waysgeneralise both preceding models. Linda o�ers the programmer a \tuple space"model, which is orthogonal to sequential processes: the data were created by aLinda eval operation and are merely \active" tuples that deposit their resultsas \passive" ones when they exit. Another way to create one (passive) tuple isvia the put operation. Processes can only access passive tuples, reading themwith read and also removing them with get. These two atomic operations specifya pattern that can only match certain kinds of tuples, thus creating potentialnon-determinism and possibly blocking until some well-matching object is found.2.2 C-LindaIn Carriero and Gelernter's C-Linda realisation, there is one global tuple space.Pattern matching is usually done by giving some key that denotes a particulardistributed data structure. For instance, pattern ("A"; i; j; ?val) is used to returnelement A(i; j) of a distributed matrix A into variable val. This language, whilebeing well-suited for many kinds of parallel algorithms, does not support processes(or functions) as values and lacks object hiding.2.3 ExampleHere we give a merge-sort routine written in ML-Linda, our own combination of theLinda model and the ML functional language. In ML-Linda, multiple tuple spaces



called \bags" can be created and each bag only contains objects of a particular typeand is only accessible through its dynamic scope:let rec merge_sort lf rg A =if lf < rg thenlet wait = new_bag()and middle = (lf+rg)/2in eval wait (merge_sort lf middle A);eval wait (merge_sort middle rg A);get wait () in get wait ()in << merge classical algorithm >>;();;Notice that:{ the third parameter A is a bag containing the array to be sorted; its elementsare of type int� �.{ wait is a bag local to each invocation of merge sort; its only purpose is syn-chronisation and it can hold nothing but objects of type unit.3 A Linda-calculusIn this paper we are solely interested in modelling and analysing coordination throughthe tuple space; we shall thus ignore the details of the computation inside of sequen-tial processes. Similarly, we do not want to take into account the values themselvescarried by a given tuple.Consequently, we shall use a kind of Linda-calculus, only describing relevant featuresof coordination between processes. In that way, we follow [CJY92] but de�ne anduse an even simpler form of calculus.3.1 SyntaxLet X denote a variable for de�ning recursion (we shall use upper-case charactersfor them) and t a passive tuple or tuple pattern. Then we de�ne a process as follows:P ::= t j out(P ):P 0 j read(t):P j get(t):P j P []P 0 j X j rec X:P`out' subsumes both Linda's eval and put operations, this last one being obtainedby the construct out(t):P . We write L for the set of terms de�ned by this grammar.3.2 Semantics by interleaving and multisetsAn operational semantics for the Linda-calculus will be given by an InterleavingTransition System. It will be based on a pattern-matching relation between tuples:let us say for instance that tuples a,b,c,: : : are values (ground objects) while tuplesx,y,z,: : : are formal variables. Then t matches t0 i� t = t0 or t0 2 fx; y; z; : : :g.For each matching pair t; t0 a substitution � upon tuples must be chosen that satis�esthe property t = �t0 . We shall note the matching relation together with its associatedsubstitution by: t �-matches t0. Substitutions lift to terms of L in a straightforwardmanner.



3.3 SOS rulesWe choose to model the tuple space by a global multiset M . We shall write � forboth multiset construction and union.(out) M � out(P ):P 0!M � P � P 0(read) M � read(p):P � t!M � �(P )� t if t �-matches p(get) M � get(p):P � t!M � �(P ) if t �-matches p(left choice) M � P []P 0!M � P(right choice) M � P []P 0!M � P 0(rec) M � rec X:P !M � P 0 if M � P [rec X:P=X]!M � P 0By this semantics, all actions are synchronous even if we can add a rule mimickingtrue parallelism1: M1 !M 01 M2 !M 02M1 �M2 !M 01 �M 02This is clearly unrealistic for distributed implementations of the Linda concept.Furthermore, this interleaving semantics creates a lot of undue non-determinismthat can only complicate the analysis of Linda programs.3.4 ExampleLet us try to \abstract" our merge-sort program to a Linda-calculus term. Thefunction merge sort becomes a process variable S that is bound by the rec constructto a term describing the internal behaviour of the process. We shall call v the tuplecorresponding to ML's () value:rec S:(v[]out(S):out(S):get(v):get(v):v)But this term is not really faithful to the original algorithm, because it can lead forexample to the following execution, where instances of process S cannot distinguishbetween the return tuples of their own children and other ones:S �! S � S � get(v):get(v):v�! out(S):out(S):get(v):get(v):v � v � get(v):get(v):v�! S � S � get(v):get(v):v � get(v):v�! v � v � get(v):get(v):v � get(v):v�! get(v):v � v! vAs exempli�ed, our calculus can only give an approximate view of Linda-based pro-grams. It can be enriched with a more precise treatment of variables, tuples andsubstitution, thus leading to a calculus we call �-linda.1 In the light of next section's formalism we can see this rule as allowing cartesian productof transitions M1 !M 01 and M2 !M 02, which represents their synchronised execution.



4 Higher Dimensional AutomataIn [Pra91] and [Gla91] Pratt and Glabbeek advocate a model of concurrency based ongeometry and in particular on the notion of a higher dimensional automaton. HDAare a generalisation of the usual non{deterministic �nite automata as describedin e.g. [HU79]. The basic idea is to use the higher dimensions to represent theconcurrent execution of processes. Thus for two processes, a and b, we model themutually exclusive execution of a and b by the automaton (1):s3 s3�b0 �� I@ a0@ �b0 �� I@ a0@s1 s2 s1 A s2I@a @ � b�� I@a @ � b��s0 s0(1) (2)whereas their concurrent execution is modeled by including the two{dimensionalsurface delineated by the (one{dimensional) a{ and b{transitions as a transition inthe automaton. This is pictured as (2).HDA are built as sets of states and transitions between states, but also as sets of2-transitions between transitions, and more generally n-transitions between (n� 1)-transitions. Transitions (or 1-transitions) are usually depicted as segments, that isone-dimensional objects, whereas states are just points, i.e. 0-dimensional objects.It is therefore natural to represent n-transitions as n-dimensional objects, whoseboundaries are the (n � 1)-transitions from which they can be �red, and to whichthey end up. n-transitions represent the concurrent execution of n sequential pro-cesses. For instance, in automaton (2), the 2-dimensional transition A represents theconcurrent execution of a and b. This 2-transition can be �red from a or from b atany time, thus the beginning of A is in some way a and b. Similarly, the end of A isa0 and b0. One may want also to add coe�cients (like integers) to transitions to keeptrack of the number of times we go through them. This motivates the introduction ofvector spaces2 generated by states and transitions and source and target boundaryoperators acting on them.De�nition1. A (unlabelled) higher dimensional automaton (HDA) is a vector spaceM with two boundary operators @0 and @1, such that:{ there is a decomposition: M =Pp;q2ZZMp;q, verifying:8p; q, Mp;q \ (Pr+s6=p+q Mr;s) = 0.{ the two boundary operators are compatible with the decomposition and give Ma structure of bicomplex: @0 :Mp;q �!Mp�1;q@1 :Mp;q �!Mp;q�1@0 � @0 = 0; @1 � @1 = 0; @0 � @1 + @1 � @0 = 02 or, more generally, free modules.



The dimension of an element of Mp;q is p + q. Such an element is called a (p + q)-transition and we will sometimes writeMp+q for the sub-vector space ofM generatedby the p+ q transitions. For instance, automaton (2) is de�ned as,M1;1 = (A) @0 > M0;1 = (a) � (b) @0> M�1;1 = (s0)@1_ @1_ @1_M1;0 = (a0) � (b0) @0> M0;0 = (s1)� (s2) @0 > M�1;0 = 0@1_ @1_ @1_M1;�1 = (s3) @0 > M0;�1 = 0 @0 > M�1;�1 = 0with @0(A) = a � b, @1(A) = a0 � b0, @0(a) = @0(b) = s0 , @1(a) = @0(b0) = s1,@1(b) = @0(a0) = s2 and @1(a0) = @1(b0) = s3.Let � be the category of HDA, whose objects are HDA and whose morphisms arelinear functions f : P ! Q such that for all i; j; k; f(Pi;j) � Qi;j and f � @k =@k � f . � is (small-) complete and co-complete, has a tensor product 
 and a Homobject such that Hom(P 
 Q;R) � Hom(P;Hom(Q;R)) (see [Gou93]). Moreover,a few properties of the shape of the transition system (branchings, mergings) canbe computed algebraically, and inductively for most of the constructs de�ned onHDA. This is done via the application of suitable n-dimensional homology functorsHn(:; @k) de�ned on objects X as being the quotient of the kernel, in Xn, of @k by@k(Xn+1).Now, we have to de�ne what we mean by a HDA semantics. In ordinary denotationalsemantics, we just consider the relation between input states and output states ofa given program. Therefore semantic domains are made of sets of states, suitablyordered. Now, if we want to be able to observe the whole dynamics of a program,we also need all transitions between these states, and even all higher-dimensionaltransitions between these transitions. Then a HDA-domain (or in short, a domain)is a huge HDA which contains all possible traces and branchings. Elements of sucha domain are just its sub-HDA.A 1-transition between two states x and y is constructed as an homotopy betweenx and y. This can be coded by means of two special 1-transitions t and v de�nedby @0(t) = 1, @1(t) = 0, @0(v) = 0, @1(v) = 1, where 1 is a 0-dimensional element,neutral for the tensor product.Then a 1-transition3 going from x to y is x; y = t
 x+ v 
 y. The same formulageneralises to higher dimensions, and for instance, (x ; y) ; (z ; t) is a �lled-insquare whose vertices are x, y, z and t.5 A truly concurrent semantics of the Linda-calculusConsider a denumerable family of copies of t and v, denoted by (ti) and (vi). Let Wbe the HDA de�ned by W0 = (term) for term varying in L, W1 = (ti) � (vi). We3 Labelling can also be de�ned (as an element of a slice category �=L, see [Gou93]) andcan be useful when performing program analysis.



construct a semantic domain D of HDA by the amalgamated sum (noted +)D = Xn2INW
nThis domain is easily seen to contain as sub-HDA all sub-HDA of W, and to bestable under the tensor product 4.The semantic function [[:]] 2 Hom(D;D) takes a term x of the Linda-calculus to-gether with a context, the HDA describing the evaluation of the other members ofLinda's tuple space, and constructs the HDA representing the possible transitionsof x. The semantics of the Linda-calculus is now given by:[[t]]� = t
 �[[X]]� = X 
 �[[read(t):P ]]� = (read(t):P )
 �; rtP (�) + RtP (�)[[get(t):P ]]� = (get(t):P )
 �; gtP (�) + GtP (�)[[out(e1); e2]]� = (out(e1); e2)
 �; e1 
 e2 
 � + [[e1]]([[e2]]�) + [[e2]]([[e1]]�)[[e1[]e2]]� = (e1[]e2) 
 �; e1 
 � + [[e1]]�+ (e1[]e2)
 �; e2 
 � + [[e2]]�[[rec X:P ]]� = lim! [[Pn(X)]]�where (s1ŝksn meaning the product of all sj except sk),rtP (P1 
 : : :
 Pm) = XPi �-matching t �(P )
 P1 
 : : :
 PmRtP (P1 
 : : :
 Pm) = XPi �-matching t[[�(P )]](P1
 : : :
 Pm)gtP (P1 
 : : :
 Pm) = XPi �-matching t �(P )
 P1 
 : : :
 P̂i 
 : : :
 PmGtP (P1 
 : : :
 Pm) = XPi �-matching t[[�(P )]](P1
 : : :
 P̂i 
 : : :
 Pm)First equation states that the action t is to push the value t in the tuple space.Second one is trivially the same. Then the third and fourth ones mean that a readaction (resp. get) is a sum of potential 1-transitions from read(t):P (resp. get(t):P )to the substitutions of P induced by the matchings of pattern t with elements ofcontext �, and then carries on by the evaluation of these substitutions in the ap-propriate context. out �rst executes a 1-transition to represent the spawning andthen concurrently evaluates its �rst argument in the context of the execution of thesecond one, and vice-versa. The choice operator [] is just the union operator, that isthe amalgamated sum +, between 1-transitions to the beginnings of the executionof its two arguments. Finally recursion is obtained by a direct limit of HDA: the4 From now on, we assume that, by a classical argument, we have abelianised | nottaking the signs into account | the tensor product by quotienting D by fa 
 b =(�1)(dima)(dimb)b
 ag.



colimit is taken on the diagram whose objects are the di�erent steps of unfolding[[Pn(X)]] Id,! D and whose arrows are the inclusion morphisms between them.Let us now list a few properties of interest, that one can read from this denotationalsemantics. These are called geometric since they are related to the shape of thetransition system. They are extracted by using functors built from the homologyfunctors (as de�ned in [Gou93]).Deadlocks A 1-transition a leads to a deadlock, or simply is a 1-deadlock, if andonly if one cannot �re any other transition b in the sequential composition �ala CSP a;b. This leads to de�ne it in an abstract manner, as a 1-transition asuch that @1(a) = 0, i.e. a transition of which no information whatsoever canbe retrieved as soon as it has been �red. This is typically the case for the ti's.Therefore, an elementary 1-transition which is also a generator of Ker@1 de�nesa 1-deadlock. In fact, we just need its representant modulo @1 of 2-transitions.Then �nding the 1-deadlocks amounts to computing the generators of H1(D; @1)that are elementary 1-transitions. This generalises to what we call n-deadlocks,which are n-transitions generators of Hn(D; @1). These may be seen as thosen-transitions that deadlock n processors simultaneously.Serialisation A concurrent program is serialisable if it \gives the same result" asa sequential execution of it. This is a highly geometric property for HDA: thismeans that all paths can be deformed continuously into another. For instance,branchings of dimension one, given by the computation of the homology groupof dimension one for @0, are obstructions to such deformations.Example 1. In this example, we assume that x is a variable and matches any possiblevalue, while a and b are constant tuples that can only match themselves. Then,denoting get(x):a by p and get(a):E by q:[[out(get(x):a); get(a):E]]b = (out(p); q)
 b; p
 q 
 b+ [[p]]([[q]]b)+ [[q]]([[p]]b)[[p]]b= p
 b; gxa(b) + Gxa(b) = p
 b; a[[q]]b= q 
 b; gaE(b) + GaE(b) = q 
 b; 0[[p]]([[q]]b) = (p
 q 
 b; 0); (q 
 a; 0)[[q]]([[p]]b) = (p
 q 
 b; q 
 a); (0; E)Therefore, in D we have the following HDA for the program considered (where thesymbol � marks 2-transitions) :out(get(x):a); get(a):E
 b > p
 q
 b > 0_ � _AAAAAAUa
 get(a):E > 0PPPPPPPPq� EIn the front square, we have two deadlocks. The only way not to deadlock the systemis to schedule the execution of p with higher priority than the evaluation of q, thuscreating the value a that enables the matching in q.



6 Static Analyses6.1 MotivationThe main motivation for static analysis of Linda-based programs is to provide suf-�cient information for enabling e�cient support of �ne-grained parallelism on stockhardware. There are two sides to this goal:1. Constructing e�cient implementations of shared data structures. One could inferpatterns of usage and sharing for concurrent data structures, as is proposed in[Jag91]. In some cases one can even optimise away Linda tuples (when they onlycarry synchronisation information for instance).2. Managing process threads through process allocation and task scheduling. Thiscan be done at runtime, with help from static analysis information about processcausality, priority and inter-process communication.Software validation constitutes another challenge for concurrent programmingwherestatic analysis tools can surely help. We will give a method to calculate the homol-ogy groups of HDA in a subsequent paper, thus computing relevant branching andmerging properties of the associated Linda-calculus term possible executions. Theseproperties can be directly used to show that a program is not bisimulation-equivalent(see [Gou93]) to its speci�cation, for instance.6.2 Abstract InterpretationHaving given a denotational semantics on a speci�ed domain of transitions, one caninterpret the semantic rules in a non-standard domain, related to the full one by apair of adjoint functors. Let us make this a bit more precise. Let Dc be the domainon which we have given our semantics. Let Da be another domain. We will say thatDa is an abstraction of Dc if and only if there exists a pair of adjoints functors (�,),� being left adjoint to , with � : �=Dc �! �=Da and  : �=Da �! �=Dc. The slicecategories �=Dc and �=Da (see [FS90]) have as objects \generalized elements", thatis, morphisms with value in Dc (resp. Da). In particular, monomorphisms are justinclusions (in the geometric sense) of HDA in Dc (resp. Da), that is, correspond tosub-HDA. Notice that these adjoint pairs do not always induce a Galois connectionbetween the lattices of sub-objects (seen as sub-categories of the corresponding slicecategories), for instance the relation with ordinary denotational semantics needsmore morphisms than just the inclusion morphisms de�ning the ordering on sub-objects.In the following, we build several such abstract interpretations.The truncation functors The truly concurrent semantics we have given for the Linda-calculus assumes an in�nite number of processors. The mapping problem is concernedwith the possible implementations of such a semantics on a real machine with onlyn processors. We introduce �rst an abstract interpretation whose abstraction mapsa program onto n processors. Any scheduler can then be proven correct with respectto this abstract interpretation. Questions of e�ciency of the scheduling may then beasked. Notice that as a particular case, we obtain the correctness of the interleaving



operational semantics (given in section 3.2) with respect to the truly concurrent oneby setting n = 1.Let Da;n =P0�k�nW 0
k where W 0 = (ti)+(vi)+Pk2IN(term
k ). It is the domainof processes of dimension at most n. Let now x : X ! Dc be an element of �=Dc. LetX 0 be the sub-HDA of X consisting of transitions up to dimension n (\truncation"of X of order n). We de�ne Tn(x) to be the induced morphism from X0 to Da. Forf a morphism between x : X ! Dc and y : Y ! Dc, we de�ne Tn(f) to be theinduced morphism between the truncations of X and Y of order n. This de�nes theabstraction functor.Take A in �=Da;n. Let Y (A) be the diagram in �=Dc, whose objects are all elementsx of �=Dc such that Tn(x) is isomorphic to A, and whose arrows are all possiblemorphisms in �=Dc between these objects. We de�ne a functor Gn : �=Da;n �!�=Dc to be Gn =lim! Y (:). Then,Lemma2. (Tn; Gn) is a pair of adjoint functors.This pair of adjoint functors induces a Galois connection between the lattices of sub-HDA of Dc and Da;n (viewed as a sub-category of �=Dc and �=Da;n respectively).We apply this result for n = 1 to prove:Proposition3. The interleaving operational semantics is correct with respect to theHDA semantics.As a matter of fact, T1 maps any sub-HDA of D to the interleaved 1-transitions onits boundary. For instance automaton (2) of section 4 is mapped onto automaton(1). To prove the correctness, we just have to forget all explicitly coded deadlocksin the HDA semantics. This is also part of an adjunction we will not describe now.The folding functors Let � be a given equivalence on terms, and let p : L ! L= �be the associated canonical projection. We de�ne an abstract domain by Da =Pn2INW 00
n where W 00 = (ti) + (vi) + (term�). Now, p extends to a multiplicativemorphism5 from Dc to Da, by, p(x 
 y) = p(x) 
 p(y) and p(ti) = ti, p(vi) = vi.More generally, we can assume that we are given an epimorphism p from Dc to adomain Da. Then the abstraction functor is:Mp(x : X ! Dc) = p � x : X ! DaMp(f : (x : X!Dc)! (y : Y !Dc)) = f : (Mp(x) : X!Da)! (Mp(y) : Y !Da)Let now Np be the functor from �=Da to �=Dc de�ned by:{ for x0 : X 0 ! Da, Np(x0) is the pullback of x0 along p, i.e. is the \greatest"morphism Np(x0) : X 0 �Da Dc ! Dc such that p � N (x0) = x0 � p1 wherep1 : X 0 �Da Dc ! X 0 is given by the pullback diagram (see [Mac71]).5 i.e. a morphism which commutes with the tensor product.



{ and for f 0 : (x0 : X 0 ! Da) �! (y0 : Y 0 ! Da), Np(f 0) : X0�DaDc ! Y 0�DaDcis the unique morphism h in the following pullback diagram:X 0 �Da Dc����f 0 � p1 ��� _hAAA N (x0)AAAUY 0 �Da Dc	�� p01�� @@N (y0) @@RY 0 Dc@@ y0@@R 	��p ��DaThen,Lemma4. (Mp; Np) is a pair of adjoint functors.We need in the following to compute the abstract operators, i.e. the abstract coun-terparts of +, 
 and lim! . This will not be possible in general, and we may haveto use safe approximations of them. For H any endofunctor on �=Dc, we say thatG, endofunctor on �=Da, is a safe approximation of H if and only if there existsa natural transformation from �H to G. Notice that it reduces to the usual def-inition when (�; ) is a Galois connection. The fact that (�; ) is a pair of adjointfunctors implies that colimits in �=Da are safe approximations of colimits in �=Dc.For instance, we can take as abstraction of + and lim! , + and lim! respectively. Thisdoes not hold for 
 and its abstract version 
a. But we can prove the following:{ For the adjunction (Tn; Gn), there is an \expansion law", x
a y = x
 T0(y) +T0(x)
 y +�0<k<nTk(x)
 Tn�k(y).{ For the adjunction (Mp; Np), if p is a multiplicativemorphism then x
ay = x
y.6.3 Example: communication analysisWe would like to trace the communications occurring during the execution of Lindaprograms by collecting input operations (read and get) and tuples at each point ofexecution.Annotated syntax In order to distinguish operations up to their syntactic context,we must add \control points" to Linda programs. A control point is essentially atoken annotating each syntactical construct, for instance integers which are given inthe textual order. As an example, out(a); read(x):E becomes out1(a2); read3(x4):E5.We will not de�ne this operation formally, but assume from now on that the concretedomain is changed into Dc =PkW
k with W = (ti) + (vi) + (annotated-term).



Adjunction For our abstract domain Dm, we take the domain of HDA generated byall terms readk(t), getk(t) and all tuples sk with the restriction that there will be atmost m > 0 copies of the same annotated tuple sk in each state. Each 0-transitionof these HDA describes the state of the tuple space during the evaluation of theprogram and the possible synchronisations occurring after it.Let us de�ne an abstraction morphism um : Da;0 ! Dm by induction on the follow-ing equations: um(
m+ksj) = 
msjum(
nsj) = 
nsj if n < mum(readk(t):P ) = readk(t)um(getk(t):P ) = getk(t)um(term) = 1 otherwiseIt is clear that um is the canonical projection of an equivalence relation on annotatedterms. So, by the result of the last section, um de�nes a pair of adjoint functors(Mum ; Num).Abstract semantics The non-standard semantic equations are thence given by thesame equations as in the truncation domain Da;0. These equations can be furthersimpli�ed when one remembers that the tensor product works in the abstract domainhere, thus calculating in the equivalence classes:[[t]]� = t
 �[[X]]� = �[[read(t):P ]]� = read(t) 
 � +RtP (�)[[get(t):P ]]� = get(t)
 � +GtP (�)[[out(e1); e2]]� = �+ [[e1]]([[e2]]�) + [[e2]]([[e1]]�)[[e1[]e2]]� = �+ [[e1]]�+ [[e2]]�[[rec X:P ]]� = lim![[Pn(X)]]�The law for RtP remains the same, while the one for GtP becomes:GtP (P
k11 
 : : :
 (P
kll = XPi �-matching t[[�(P )]](P1
 : : :
 ^P
kii 
 : : :
 Pl)where ^P
mi = P
mi + P
m�1iand ^P
n<mi = P
n�1i



Example Let m = 1: an abstract tuple represents any number of concrete ones. Wecan calculate the abstract semantics of the program of the �rst example:[[out(get(x):a); get(a):E]]b = b+ [[p]]([[q]]b)+ [[q]]([[p]]b)[[p]]b = u(p)
 b+ Gxa(b) = u(p)
 b+ a
 b+ a[[q]]b = u(q)
 b+Ga1(b) = u(q)
 b[[p]]([[q]]b) = u(p)
 u(q) 
 b+ u(q)
 a+ u(q) 
 a
 b[[q]]([[p]]b) = u(q)
 (u(p)
 b+ a
 b+ a) + a
 b+ b+ aSo, [[out(p); q]]b = a+ b+ a 
 b+ u(q)
 u(p) 
 b+ u(q)
 a 
 b+ u(q)
 aThe result shows an upper approximation of the potential matchings between thetuples a and b and the two syntactic get operations; with m = 2, we would haveobtained an exact result.6.4 Example: the scheduling of constrained Linda programsWhen we want to compile Linda programs, we have to keep in mind that there existsa number of di�erent constraints due to the target machine. In this article, we willfocus on two such constraints. The �rst one is that the machine has only n processors.The second one is that the machine has a limited amount of memory.We wish to givethe compiler static information about which scheduling of the di�erent actions is the\best" given these constraints. In the limited model we consider, \best" means thatwe do not want to create too many resources of some type Ai (as it may overowthe capacity of some distributed memory) but su�ciently many ones of type Aj(since they are output data we do not want to wait for). It means also that we wantsu�ciently many resources of type Ak for not blocking read and get operations, andnot making the program deadlock, since we have only a limited number of processorsthat could all be waiting for a resource.Now, we show how to abstract the semantics to have just the authorised transitions,given that we are constrained to n processors and that we do not want to have morethan �i and less than �i tuples Ai. Let us de�ne a morphism p from Dc to Dc by:p(A
ji ) = A
ji if �i � j � �ip(A
ji ) = 0 if j < �i or �i < jp(ti) = tip(vi) = vip(term) = termLet then D0a = p(Da;n). It is the domain of traces of execution on an n-processormachine, deadlocking (thus measuring in a very de�nite way the ine�ectiveness ofthe implementation) if it uses more or less resources than speci�ed. Then we knowthat (Mp � Tn; Np �Gn) is a pair of adjoint functors between �=Dc and �=D0a.Finally, we want to collect the set of states which lead to deadlocks, as well as thedeadlocking transitions. This is the information we need to tell the scheduler, \whenyou are in such and such states, try to delay such and such transitions".



Let Da = D0a=(vi)i. It is an abstract domain where transitions are deadlocks. Theabstraction functor is essentially the homology functor for @1 which computes dead-locks. But we do not want in the �rst place to bother with equivalence classes.Therefore, we set for any HDA M , F (M ) = �i�1(KerjMi@1) (the HDA in Da gen-erated by the kernel of @1 on objects of dimension greater or equal than one). Iff : M ! N is a morphism in � , then f induces a morphism f� : F (M ) ! F (N ),since f commutes with @1 (and @0). It therefore de�nes a functor from �=D0a to�=Da by: F (X x! D0a) = F (X) x�! DaF (f : (X x! D0a) �! (Y y! D0a)) = f� : F (x)! F (y)Let G be the functor G(x) =lim! Z(x), where Z(x) is, for x 2 �=Da, the diagramin �=D0a, whose objects are the y such that F (y) = x and whose morphisms are allpossible morphisms between them. It is easy to see that (F;G) is a pair of adjointfunctors.Therefore, (F �Mp � Tn,G � Np � Gn) is a pair of adjoint functors. Representingobjects x� : F (X) ! Da by x�(F (X)), we get the abstract semantic equations forn = 1, �i = 0 and �i =1:[[t]]� = t
 �[[X]]� = X 
 �[[read(t):P ]]� = (read(t):P )
 T0(�) ; 0 + read(t):P 
 � if rtP (T0(�)) = 0[[read(t):P ]]� = read(t):P 
 � +RtP (�) otherwise[[get(t):P ]]� = (get(t):P )
 T0(�); 0 + get(t):P 
 � if gtP (T0(�)) = 0[[get(t):P ]]� = get(t):P 
 � +GtP (�) otherwise[[out(e1); e2]]� = (out(e1); e2) 
 � + [[e1]]([[e2]]�) + [[e2]]([[e1]]�)[[e1[]e2]]� = (e1[]e2)
 �+ [[e1]]�+ [[e2]]�[[rec X:P ]]� = lim![[Pn(X)]]�Example 2. We get back again to our �rst example.[[q]]b = q 
 b; 0[[p]]b = p 
 b+ a[[p]]([[q]]b) = p 
 q 
 b; 0 + a
 q ; 0[[q]]([[p]]b) = E + p
 q 
 b+ a
 q[[out(p); q]]b = out(p); q 
 b+ [[p]]([[q]]b)+ [[q]]([[p]]b)= out(p); q 
 b+ p
 q 
 b; 0 + a
 q ; 0 +EUsing the labelling, the result is to be interpreted as follows: the scheduler must tryto delay the execution of q in favor of p.
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