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Abstract. In this paper we define a process algebra abstracting relevant
features of the lLinda paradigm to parallel computation and show how to
give it a semantics based on higher-dimensional automata which is more
expressive than interleaving transition systems. In particular, it is a truly
concurrent operational semantics, compositional in nature.

Furthermore this semantics leads us to new kinds of abstract interpretations
useful for the static analysis of concurrency. One of these addresses the cor-
rectness of implementations of Linda programs on real computers (which
have a finite number of processors).

1 Introduction

Parallel languages are difficult to design and implement. On the one hand, the task
of actually using at the same time several processors should be taken care of in a
transparent manner for the user. On the other hand, the multiplicity of architec-
tures and paradigms for parallel machines and languages makes it difficult to find a
unified way of speaking about semantics and about efficiency of implementations. In
this article, we choose a paradigm for concurrency, exemplified by the Linda based
languages, which does not make any assumption on the architecture of the machine
it will be implemented on. It does not assume a shared memory nor a channel based
mechanism for implementing inter-process communication.

As a first step towards the analysis of such languages, we introduce a process algebra
that models their basic features, abstracting the constructs dealing with concurrency
and communication. We then use a classical interleaving operational semantics to
define the process algebra. Unfortunately, interleaving causes a dramatic combinato-
rial increase in complexity and the possible schedulings of actions on a given number
of processors are out of reach. Therefore, we introduce a generalised operational se-
mantics, based on higher-dimensional automata (see [GJ92]) which expresses the
truly concurrent execution of actions, thus enabling us to speak of n actions sched-
uled on m processors (the “mapping problem”). It has also nice properties borrowed
from the denotational world, that is being compositional.

Then we develop two kinds of abstract interpretations (see [CC92]) which link the
semantics to non-standard ones of interest. The first one aims at speaking about
the mapping problem, whereas the second one is more classical, and can be used
for instance for abstracting the actual values of tuples to types. It may also be used



to shrink the domain of the semantics to a finite state one. The article ends by
putting these abstract interpretations to work with two examples, for determining
the possible communications and the “best” schedulings given a few constraints.

2 Overview of Linda

2.1 The Linda paradigm

How to write parallel programs? This is the subject of N. Carriero and D. Gelernter’s
book [CG90] that presents and uses Linda, a language they developed as a way to
coordinate multiple parallel processes to achieve a given common task.

There are three different basic models for coordination:

1. The first one is still in use in most parallel extensions of imperative languages and
is based upon shared memory and variables. To avoid conflicts and race condi-
tions between processes, it usually comprises some basic forms of synchronisation
like Djikstra’s semaphores. It is considered as a difficult model to program in
and debug, and is restricted to shared-memory architectures.

2. The best known one today is message-passing and has been widespread by the
influence of Hoare’s CSP [Hoa78] that inspired the Occam language [May83].
Communication is modelled by synchronous operations in the process of sending
and receiving messages. Remote Procedure Calls and buffered streams are other
instances of this paradigm that is quite simple and powerful, allowing distributed
computing. But it can lead to cumbersome programs when message passing does
not fit well with the concurrent algorithm to implement.

3. Distributed data structures are less frequently encountered, but in some ways
generalise both preceding models. Linda offers the programmer a “tuple space”
model, which is orthogonal to sequential processes: the data were created by a
Linda eval operation and are merely “active” tuples that deposit their results
as “passive” ones when they exit. Another way to create one (passive) tuple is
via the put operation. Processes can only access passive tuples, reading them
with read and also removing them with get. These two atomic operations specify
a pattern that can only match certain kinds of tuples, thus creating potential
non-determinism and possibly blocking until some well-matching object is found.

2.2 C-Linda

In Carriero and Gelernter’s C-Linda realisation, there is one global tuple space.
Pattern matching is usually done by giving some key that denotes a particular
distributed data structure. For instance, pattern (" A”,4,j, ?val) is used to return
element A(%, j) of a distributed matrix A into variable val. This language, while
being well-suited for many kinds of parallel algorithms, does not support processes
(or functions) as values and lacks object hiding.

2.3 Example

Here we give a merge-sort routine written in ML-Linda, our own combination of the
Linda model and the ML functional language. In ML-Linda, multiple tuple spaces



called “bags” can be created and each bag only contains objects of a particular type
and 1s only accessible through its dynamic scope:

let rec merge_sort 1f rg A =
if 1f < rg then
let wait = new_bag()
and middle = (lf+rg)/2
in eval wait (merge_sort 1f middle A4);
eval wait (merge_sort middle rg A);
get wait () in get wait ()
in << merge classical algorithm >>;
OF S
Notice that:

— the third parameter A i1s a bag containing the array to be sorted; its elements
are of type int x a.

— wait is a bag local to each invocation of merge_sort; its only purpose is syn-
chronisation and it can hold nothing but objects of type unit.

3 A Linda-calculus

In this paper we are solely interested in modelling and analysing coordination through
the tuple space; we shall thus ignore the details of the computation inside of sequen-
tial processes. Similarly, we do not want to take into account the values themselves
carried by a given tuple.

Consequently, we shall use a kind of Linda-calculus, only describing relevant features
of coordination between processes. In that way, we follow [CIJY92] but define and
use an even simpler form of calculus.

3.1 Syntax

Let X denote a variable for defining recursion (we shall use upper-case characters
for them) and ¢ a passive tuple or tuple pattern. Then we define a process as follows:

P =t |out(P).P"|read(t).P | get(t).P | P[P’ | X | rec X.P

‘out’ subsumes both Linda’s eval and put operations, this last one being obtained
by the construct out(?).P. We write £ for the set of terms defined by this grammar.

3.2 Semantics by interleaving and multisets

An operational semantics for the Linda-calculus will be given by an Interleaving
Transition System. It will be based on a pattern-matching relation between tuples:
let us say for instance that tuples a,b,c,... are values (ground objects) while tuples
z,y,z,... are formal variables. Then ¢t matches t' iff t = ¢ or t' € {2,y,z,...}.

For each matching pair ¢,¢’ a substitution ¢ upon tuples must be chosen that satisfies
the property ¢t = ot’ . We shall note the matching relation together with its associated
substitution by: ¢ c-matches t’. Substitutions lift to terms of £ in a straightforward
manner.



3.3 SOS rules

We choose to model the tuple space by a global multiset M. We shall write & for
both multiset construction and union.

(out) M &out(P).PP =M@ Po P
(read) M @®read(p).P Pt — M P o(P)®tift o-matches p
(get) M & get(p). POt — M & o(P) if ¢ o-matches p
eft choice D — D
(left choice) M@P|P —~MaP
right choice D — D
(right choice) M@ PP — Ma P
(rec) M@rec X.P—-Ma@P if M® Plrec X.P/X]— M P

By this semantics, all actions are synchronous even if we can add a rule mimicking
true parallelism?:

M1 — M{ M2 — Mé
This is clearly unrealistic for distributed implementations of the Linda concept.
Furthermore, this interleaving semantics creates a lot of undue non-determinism
that can only complicate the analysis of Linda programs.

3.4 Example

Let us try to “abstract” our merge-sort program to a Linda-calculus term. The
function merge_sort becomes a process variable S that is bound by the rec construct
to a term describing the internal behaviour of the process. We shall call v the tuple
corresponding to ML’s () value:

rec S.(v[out(S).out(S).get(v).get(v).v)

But this term is not really faithful to the original algorithm, because it can lead for
example to the following execution, where instances of process S cannot distinguish
between the return tuples of their own children and other ones:

S5 Sa S get(v).get(v).v
= out(S).out(S).get(v).get(v).0 & v ® get(v).get(v).v
L S® S @ get(v).get(v).v ® get(v).v
L v d v d get(v).get(v).v ® get(v).v
= get(v)v Do

— P

As exemplified, our calculus can only give an approximate view of Linda-based pro-
grams. It can be enriched with a more precise treatment of variables, tuples and
substitution, thus leading to a calculus we call A-linda.

! In the light of next section’s formalism we can see this rule as allowing cartesian product
of transitions My — M] and M> — MJ, which represents their synchronised execution.



4 Higher Dimensional Automata

In [Pra91] and [Gla91] Pratt and Glabbeek advocate a model of concurrency based on
geometry and in particular on the notion of a higher dimensional automaton. HDA
are a generalisation of the usual non—deterministic finite automata as described
in e.g. [HUT79]. The basic idea is to use the higher dimensions to represent the
concurrent execution of processes. Thus for two processes, a and b, we model the
mutually exclusive execution of @ and b by the automaton (1):

51V Vlsz slbl/(AV/sz
N N
(1) (

S S0

1 2)

whereas their concurrent execution is modeled by including the two-dimensional
surface delineated by the (one-dimensional) a— and b-transitions as a transition in
the automaton. This is pictured as (2).

HDA are built as sets of states and transitions between states, but also as sets of
2-transitions between transitions, and more generally n-transitions between (n — 1)-
transitions. Transitions (or 1-transitions) are usually depicted as segments, that is
one-dimensional objects, whereas states are just points, i.e. 0-dimensional objects.
It is therefore natural to represent n-transitions as n-dimensional objects, whose
boundaries are the (n — 1)-transitions from which they can be fired, and to which
they end up. n-transitions represent the concurrent execution of n sequential pro-
cesses. For instance, in automaton (2), the 2-dimensional transition A represents the
concurrent execution of a and b. This 2-transition can be fired from a or from b at
any time, thus the beginning of A is in some way a and b. Similarly, the end of A is
a’ and &’. One may want also to add coefficients (like integers) to transitions to keep
track of the number of times we go through them. This motivates the introduction of
vector spaces’ generated by states and transitions and source and target boundary
operators acting on them.

Definition1. A (unlabelled) higher dimensional automaton (HDA) is a vector space
M with two boundary operators dy and 0y, such that:

— there is a decomposition: M = Zp eZ My 4, verifying:

Vpa q, Mp,q N (Zr+s¢p+q Mr,s) = 0

— the two boundary operators are compatible with the decomposition and give M
a structure of bicomplex:

80 . Mp,q — Mp—l,q

81 :Mp,q —>Mp,q—1
6008020, 61081:0, Ogo001+0100,=0

2 or, more generally, free modules.



The dimension of an element of M, , is p 4+ ¢. Such an element is called a (p + ¢)-
transition and we will sometimes write M, , for the sub-vector space of M generated
by the p+ ¢ transitions. For instance, automaton (2) is defined as,

0 0
M= (A) %0 Moy = (a) ) (b) %0 M_11= (50)

61\L 5 61\L N 61\L

o
Mg = (a") @ (V') —=> Moo = (51) D (52) —=> M_10=0

6% , 6% , 6%

Ml,—l = (53) _— MO,—l =0 —> M—l,—l =0

with 80(A) = a4 — b, 81(A) = Cl/ - b/, 80(a) = 80(19) = 8¢ , 81(a) = 80(19’) = 81,
61(19) = 80(0/) = 83 and 81(a’) = 61(19’) = 53.

Let 7 be the category of HDA, whose objects are HDA and whose morphisms are
linear functions f : P — @ such that for all 4,4, k, f(P;;) C Qi; and fo dy =
Jr o f. T is (small-) complete and co-complete, has a tensor product ® and a Hom
object such that Hom(P ® @, R) = Hom(P, Hom(Q, R)) (see [Gou93]). Moreover,
a few properties of the shape of the transition system (branchings, mergings) can
be computed algebraically, and inductively for most of the constructs defined on
HDA. This is done via the application of suitable n-dimensional homology functors
H,(.,0r) defined on objects X as being the quotient of the kernel, in X,,, of J; by
I (Xyg1)-

Now, we have to define what we mean by a HDA semantics. In ordinary denotational
semantics, we just consider the relation between input states and output states of
a given program. Therefore semantic domains are made of sets of states, suitably
ordered. Now, if we want to be able to observe the whole dynamics of a program,
we also need all transitions between these states, and even all higher-dimensional
transitions between these transitions. Then a HDA-domain (or in short, a domain)
is a huge HDA which contains all possible traces and branchings. Elements of such
a domain are just its sub-HDA.

A 1-transition between two states # and y is constructed as an homotopy between
x and y. This can be coded by means of two special 1-transitions ¢ and v defined
by du(t) = 1, 91() = 0, dp(v) = 0, 91(v) = 1, where 1 is a 0-dimensional element,
neutral for the tensor product.

Then a 1-transition® going from x to y is £ ~ y =t @ = + v ® y. The same formula
generalises to higher dimensions, and for instance, (z ~ y) ~ (z ~ t) is a filled-in
square whose vertices are x, y, z and .

5 A truly concurrent semantics of the Linda-calculus

Consider a denumerable family of copies of ¢ and v, denoted by (¢;) and (v;). Let W
be the HDA defined by Wy = (term) for term varying in £, Wi = (¢;) @ (v;). We

? Labelling can also be defined (as an element of a slice category ¥/L, see [Gou93]) and
can be useful when performing program analysis.



construct a semantic domain D of HDA by the amalgamated sum (noted +)

D=> we"

neIN
This domain is easily seen to contain as sub-HDA all sub-HDA of W, and to be
stable under the tensor product .

The semantic function [.] € Hom(D, D) takes a term x of the Linda-calculus to-
gether with a context, the HDA describing the evaluation of the other members of
Linda’s tuple space, and constructs the HDA representing the possible transitions
of . The semantics of the Linda-calculus is now given by:

[tlp=t®p
[Xlp=X®p
[read(t).P]p = (read(t).P) @ p ~ rp(p) + Rp(p)
[get(t). Plp = (get(t).P) @ p ~ gp(p) + Gp(p)
[out(ey); ea]p = (out(er);e2) @ p~e1 @ ez @ p+ [er]([e2]p) + [e2]([e1]p)
feilez]p = (erlles) @ p~ e1 @ p+ [e]p + (erle2) @ p~ ea @ p + [e2]p
[rec X.P]p= lEn[[P"(X)]]p

where (15} s, meaning the product of all s; except sg),

(Pl @ ... @ Pp) = Z o(PYO P ®...® Pn
P; o-matching ¢

RL(PL®...® Py) = > [e(P)(PL®...® P,)
P; o-matching ¢

go(PL®...® Py) = Z c(PYOP®..9F®...Q Py,
P; o-matching ¢

GH(PL @ ...Q Pp) = > [ec(P)(Pi®.. @ bo...0 Py)

P; o-matching ¢

First equation states that the action ¢ is to push the value ¢ in the tuple space.
Second one 1s trivially the same. Then the third and fourth ones mean that a read
action (resp. get) is a sum of potential 1-transitions from read(t).P (resp. get(t).P)
to the substitutions of P induced by the matchings of pattern ¢ with elements of
context p, and then carries on by the evaluation of these substitutions in the ap-
propriate context. out first executes a l-transition to represent the spawning and
then concurrently evaluates its first argument in the context of the execution of the
second one, and vice-versa. The choice operator || is just the union operator, that is
the amalgamated sum -+, between 1-transitions to the beginnings of the execution
of its two arguments. Finally recursion is obtained by a direct limit of HDA: the

* From now on, we assume that, by a classical argument, we have abelianised — not
taking the signs into account — the tensor product by quotienting D by {a ® b =
(_1)(d1ma)(d1mb)b ® a}.



colimit is taken on the diagram whose objects are the different steps of unfolding

1d . : .
[P*(X)] — D and whose arrows are the inclusion morphisms between them.

Let us now list a few properties of interest, that one can read from this denotational
semantics. These are called geometric since they are related to the shape of the
transition system. They are extracted by using functors built from the homology

functors (as defined in [Gou93]).

Deadlocks A 1-transition a leads to a deadlock, or simply is a 1-deadlock, if and
only if one cannot fire any other transition b in the sequential composition d
la CSP a;b. This leads to define it in an abstract manner, as a 1-transition a
such that J1(a) = 0, i.e. a transition of which no information whatsoever can
be retrieved as soon as it has been fired. This is typically the case for the ¢;’s.
Therefore, an elementary 1-transition which is also a generator of Kerd; defines
a 1-deadlock. In fact, we just need its representant modulo 9; of 2-transitions.
Then finding the 1-deadlocks amounts to computing the generators of Hy (D, ;)
that are elementary 1-transitions. This generalises to what we call n-deadlocks,
which are n-transitions generators of H,(D,d1). These may be seen as those
n-transitions that deadlock n processors simultaneously.

Serialisation A concurrent program is serialisable if it “gives the same result” as
a sequential execution of it. This is a highly geometric property for HDA: this
means that all paths can be deformed continuously into another. For instance,
branchings of dimension one, given by the computation of the homology group
of dimension one for Jy, are obstructions to such deformations.

Erample 1. In this example, we assume that x is a variable and matches any possible
value, while a and b are constant tuples that can only match themselves. Then,
denoting get(x).a by p and get(a).F by ¢:

[out(get(x).a); get(a). E]b = (out(p); q) @ b~ p @ q@ b+ [pl([a]b) + [l ([p]0)
[plb=p @b~ gz (b) + G5(b) =p@b~a

[adb=q@ b~ g% (b) + GL(b) =q@ b~ 0

[pI(Talb) =(pRgRb~0)~ (¢®a~0)

[41(Tp10) =(p@g@b~q@a)~ (0~ E)

Therefore, in D we have the following HDA for the program considered (where the
symbol o marks 2-transitions) :

out(get(x).a);get(a) EQ b ——=>p®q@b ——=> 0

Lo

a®get(a) E —= 0
\2

In the front square, we have two deadlocks. The only way not to deadlock the system
is to schedule the execution of p with higher priority than the evaluation of ¢, thus
creating the value a that enables the matching in q.

E



6 Static Analyses

6.1 Motivation

The main motivation for static analysis of Linda-based programs is to provide suf-
ficient information for enabling efficient support of fine-grained parallelism on stock
hardware. There are two sides to this goal:

1. Constructing efficient implementations of shared data structures. One could infer
patterns of usage and sharing for concurrent data structures, as is proposed in
[Jag91]. In some cases one can even optimise away Linda tuples (when they only
carry synchronisation information for instance).

2. Managing process threads through process allocation and task scheduling. This
can be done at runtime, with help from static analysis information about process
causality, priority and inter-process communication.

Software validation constitutes another challenge for concurrent programming where
static analysis tools can surely help. We will give a method to calculate the homol-
ogy groups of HDA in a subsequent paper, thus computing relevant branching and
merging properties of the associated Linda-calculus term possible executions. These
properties can be directly used to show that a program is not bisimulation-equivalent
(see [Gou93]) to its specification, for instance.

6.2 Abstract Interpretation

Having given a denotational semantics on a specified domain of transitions, one can
interpret the semantic rules in a non-standard domain, related to the full one by a
pair of adjoint functors. Let us make this a bit more precise. Let D, be the domain
on which we have given our semantics. Let D, be another domain. We will say that
Dy, is an abstraction of D, if and only if there exists a pair of adjoints functors («,7y),
« being left adjoint to v, with « : ¥/D, — ¥/D, and v : ¥/ D, — Y/ D,. The slice
categories ¥/ D, and T/ D, (see [FS90]) have as objects “generalized elements”, that
is, morphisms with value in D, (resp. D). In particular, monomorphisms are just
inclusions (in the geometric sense) of HDA in D, (resp. D), that is, correspond to
sub-HDA. Notice that these adjoint pairs do not always induce a Galois connection
between the lattices of sub-objects (seen as sub-categories of the corresponding slice
categories), for instance the relation with ordinary denotational semantics needs
more morphisms than just the inclusion morphisms defining the ordering on sub-
objects.

In the following, we build several such abstract interpretations.

The truncation functors The truly concurrent semantics we have given for the Linda-
calculus assumes an infinite number of processors. The mapping problem is concerned
with the possible implementations of such a semantics on a real machine with only
n processors. We introduce first an abstract interpretation whose abstraction maps
a program onto n processors. Any scheduler can then be proven correct with respect
to this abstract interpretation. Questions of efficiency of the scheduling may then be
asked. Notice that as a particular case, we obtain the correctness of the interleaving



operational semantics (given in section 3.2) with respect to the truly concurrent one
by setting n = 1.

Let Dyp =) ocren W'®" where W' = (ti)—i—(vi)—i—zkem(term@k). It is the domain
of processes of dimension at most n. Let now = : X — D, be an element of Y/D.. Let
X' be the sub-HDA of X consisting of transitions up to dimension n (“truncation”
of X of order n). We define T,,(z) to be the induced morphism from X’ to D,. For
f a morphism between # : X — D, and y : Y — D, we define T,,(f) to be the
induced morphism between the truncations of X and Y of order n. This defines the
abstraction functor.

Take Ain ¥/D, . Let Y(A) be the diagram in 7'/ D., whose objects are all elements
z of /D, such that T,(z) is isomorphic to A, and whose arrows are all possible

morphisms in ¥'/D, between these objects. We define a functor G, : ¥/Dypn —
Y/D. to be G, =lim Y(.). Then,

Lemma 2. (T,,,G,) is a pair of adjoint functors.

This pair of adjoint functors induces a Galois connection between the lattices of sub-
HDA of D, and D, ,, (viewed as a sub-category of 1'/D, and ¥/D, , respectively).
We apply this result for n = 1 to prove:

Proposition 3. The interleaving operational semantics is correct with respect to the
HDA semantics.

As a matter of fact, 77 maps any sub-HDA of D to the interleaved 1-transitions on
its boundary. For instance automaton (2) of section 4 is mapped onto automaton
(1). To prove the correctness, we just have to forget all explicitly coded deadlocks
in the HDA semantics. This is also part of an adjunction we will not describe now.

The folding funclors Let = be a given equivalence on terms, and let p: £ — £/ =
be the associated canonical projection. We define an abstract domain by D, =
Y onelN W"®" where W = (t;) + (v;) + (termz=). Now, p extends to a multiplicative
morphism® from D, to Dg, by, p(z @ y) = p(z) @ p(y) and p(t;) = ;, p(v;) = v;.
More generally, we can assume that we are given an epimorphism p from D, to a
domain D,. Then the abstraction functor is:

My(x: X = D,)=pox:X — D,

My(f:(x: X—=D.)—(y:Y—=D.))=f:(Mp(2): X—D,) — (M,(y) : Y —D,)
Let now N, be the functor from ¥'/D, to T/ D, defined by:
— for 2’ © X' — D,, Ny(«') is the pullback of &’ along p, i.e. is the “greatest”

morphism N,(z') : X' xp, D. — D, such that po N(z') = &' o p; where
p1: X' xXp, D. — X' is given by the pullback diagram (see [Mac71]).

® i.e. a morphism which commutes with the tensor product.



—andfor f': (¢ X' = Do) — (¥ :Y' — Dy), Ny(f') : X' xp,D. = Y'xp,D.
is the unique morphism A in the following pullback diagram:

D
\Lh
fom ' b, Dy N(z")

W
Y V

7

~

Then,
Lemmad4. (M,,N,) is a pair of adjoint functors.

We need in the following to compute the abstract operators, i.e. the abstract coun-
terparts of +, ® and lim. This will not be possible in general, and we may have

to use safe approximations of them. For H any endofunctor on 7'/D., we say that
G, endofunctor on ¥/D,, is a safe approximation of H if and only if there exists
a natural transformation from aHvy to G. Notice that it reduces to the usual def-
inition when («, ) is a Galois connection. The fact that («,7) is a pair of adjoint
functors implies that colimits in ¥’/ D, are safe approximations of colimits in 7'/ D,.
For instance, we can take as abstraction of + and lim, + and lim respectively. This

does not hold for ® and its abstract version ®,. But we can prove the following:

— For the adjunction (T},,G,), there is an “expansion law”, ¢ ®, y = = ® Tp(y) +
To(x) @ y+ Lock<nTh(z) @ Thk(y).
— For the adjunction (M, N,), if p is a multiplicative morphism then @,y = z®y.

6.3 Example: communication analysis

We would like to trace the communications occurring during the execution of Linda
programs by collecting input operations (read and get) and tuples at each point of
execution.

Annotated syntaz In order to distinguish operations up to their syntactic context,
we must add “control points” to Linda programs. A control point is essentially a
token annotating each syntactical construct, for instance integers which are given in
the textual order. As an example, out(a);read(z).F becomes outy(az);reads(x4). Es.
We will not define this operation formally, but assume from now on that the concrete

domain is changed into D, = ", We* with W = (t;) + (vi) + (annotated-term).



Adjunction For our abstract domain D,,, we take the domain of HDA generated by
all terms ready(?), get, (¢) and all tuples si, with the restriction that there will be at
most m > 0 coptes of the same annotated tuple sy wn each state. Each 0-transition
of these HDA describes the state of the tuple space during the evaluation of the
program and the possible synchronisations occurring after it.

Let us define an abstraction morphism 4y, : Dy 0 — Dy, by induction on the follow-
ing equations:

term) = otherwise

It is clear that u,, is the canonical projection of an equivalence relation on annotated
terms. So, by the result of the last section, w,, defines a pair of adjoint functors

(MumaNum)'

Abstract semantics The non-standard semantic equations are thence given by the
same equations as in the truncation domain D, . These equations can be further
simplified when one remembers that the tensor product works in the abstract domain
here, thus calculating in the equivalence classes:

[tlp=t®p
[Xlp=r
[read(t).P]p = read(t) @ p + R%(p)
[get(t).Plp = get(t) @ p + Gp(p)
Tout(er); eslp = p+ [ex](Teslo) + [ea(Teal)
[erle=lp = p+ [elp + [e2]p
[rec X.P]p = lim_[P™(X)]p

The law for R% remains the same, while the one for G% becomes:

Go(PE" @ .. o (PP = > [¢(P)I(Pi®...© P @ ... P)
P; o-matching ¢

where PZ@m = PZ@m 4 PZ@m_l

ngm n—1
and Pf<> < :PZ»®



FEzample Let m = 1: an abstract tuple represents any number of concrete ones. We
can calculate the abstract semantics of the program of the first example:

[out(get(x).a); get(a). E]b = b+ [p]([qlb) + [¢]([p1b)

[plb = u(p) @ b+ GE=(b) = ()®b—|—a®b—|—a

[a]b = u(q) @b+ G(b) =wu(g)®

[p1([e]b) =u(p) @ ()®b+U(Q)®a+U(Q)®a®b

[a1([plb) —ul@® (ulp)@b+a@bta)+a®@b+b+a
So, [out(p)iqlb=a+b+a@b+u(g) @u(p) @b+ u(g) ®a@b+u(q)©a

The result shows an upper approximation of the potential matchings between the
tuples @ and b and the two syntactic get operations; with m = 2, we would have
obtained an exact result.

6.4 Example: the scheduling of constrained Linda programs

When we want to compile Linda programs, we have to keep in mind that there exists
a number of different constraints due to the target machine. In this article, we will
focus on two such constraints. The first one 1s that the machine has only n processors.
The second one is that the machine has a limited amount of memory. We wish to give
the compiler static information about which scheduling of the different actions is the
“best” given these constraints. In the limited model we consider, “best” means that
we do not want to create too many resources of some type A; (as it may overflow
the capacity of some distributed memory) but sufficiently many ones of type A;
(since they are output data we do not want to wait for). It means also that we want
sufficiently many resources of type Ay for not blocking read and get operations, and
not making the program deadlock, since we have only a limited number of processors
that could all be waiting for a resource.

Now, we show how to abstract the semantics to have just the authorised transitions,
given that we are constrained to n processors and that we do not want to have more
than §; and less than «; tuples A;. Let us define a morphism p from D. to D. by:

p(AP) =4 ifai <)<
p(A]) ifj<a;orfB;<j
plt) =1

p(vi) =i

p(term) = term

Let then D!, = p(Dg ). It is the domain of traces of execution on an n-processor
machine, deadlocking (thus measuring in a very definite way the ineffectiveness of
the implementation) if it uses more or less resources than specified. Then we know
that (M, o T, N, o G,) is a pair of adjoint functors between /D, and 7/ D/,.

Finally, we want to collect the set of states which lead to deadlocks, as well as the
deadlocking transitions. This is the information we need to tell the scheduler, “when
you are in such and such states, try to delay such and such transitions”.



Let D, = D /(v;);. It is an abstract domain where transitions are deadlocks. The
abstraction functor is essentially the homology functor for 9; which computes dead-
locks. But we do not want in the first place to bother with equivalence classes.
Therefore, we set for any HDA M, F(M) = @;>1(Ker|pr,01) (the HDA in D, gen-
erated by the kernel of d; on objects of dimension greater or equal than one). If
f: M — N is a morphism in 7, then f induces a morphism f* : F(M) — F(N),
since f commutes with d; (and dp). Tt therefore defines a functor from /D, to

Y/D, by:

Let G be the functor G(z) =lim Z(x), where Z(z) is, for € /D, the diagram
in /D!, whose objects are the y such that F(y) = z and whose morphisms are all

a?
possible morphisms between them. It is easy to see that (F, () is a pair of adjoint

functors.

Therefore, (F o M, o T,,G o N, o (G,) 1is a pair of adjoint functors. Representing
objects #* : F(X) — Dy by *(F (X)), we get the abstract semantic equations for
n=1 a;, =0 and §; = oc:

[tlp=t®p
[Xlp=X®p
[read(t).P]p = (read(t).P) @ To(p) ~ 0 +read(t).P@p if riu(To(p)) =0
[read(t).P]p = read(t).P ® p 4+ Rb%(p) otherwise
[get(t).Plp = (get(t).P) © To(p) ~ 0 + get(t).P © p if 95(To(p)) = 0
[get(t).Plp = get(t).P @ p + G%(p) otherwise

[out(er); e2]p = (out(er); e2) @ p+ [exl([e2lp) + [e21([ealp)
[exlealp = (erle2) @ p+ [erlp+ [e2lp
[rec X.P]p = lim_[P™(X)]p

Frample 2. We get back again to our first example.

[qlb=q@b~0
[plb=p@b+a
Pldle)=p@q¢@b~0+a®qg~0
[ql([p]b) =E+poqob+adq
[out(p); ¢]b = out(p); ¢ @ b+ [p]([4]) + [g]([r]b)
=out(p);g@b+pRq@b~0+a@q~0+E

Using the labelling, the result is to be interpreted as follows: the scheduler must try
to delay the execution of ¢ in favor of p.



7 Conclusion

In this article, we have presented a process algebra which is the core of the Linda
based languages. Using higher dimensional automata for giving its semantics, we
have been able to introduce new kinds of abstract interpretations. In particular, we
have been able to formalise the link between the idealistic truly concurrent semantics,
assuming an infinite number of processors, and more realistic ones, constrained to
use a finite number of processors only. It is noteworthy that the approach promoted
here is not restricted to Linda-based languages. Future work will have to combine
our abstractions with more classical analyses like numerical ones (see [Mas92]). They
could in particular be used for abstracting states or relations between states in our
semantic domains.
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