A SEMANTIC VIEW ON DISTRIBUTED COMPUTABILITY
AND COMPLEXITY

E. GOUBAULT
CNRS & Ecole Normale Supérieure
45 rue d’Ulm, 75005 PARIS, FRANCE
Abstract

This paper intends to give a semantical perspective on the recent
work by Herlihy, Shavit and Rajsbaum on computability and complexity
results for ¢-resilient and wait-free protocols for distributed systems. It is
an extended abstract® of a talk given at the Imperial College Workshop,
Oxford, Christ Church on the 2nd of April 1996.

1 Introduction

In this article we address some computability and complexity problems which
have most often arisen in the area of protocols for distributed systems and con-
current databases. The essence of these problems is to decide whether we can
compute a certain kind of function in a distributed - yet robust - manner. Let
us take our first example from the concurrent database theory. Imagine that
we have a database that can be shared by n concurrent transactions 77, ---, T,
asynchronously. We suppose that the network linking the transactions to the
shared database 1s not reliable in the sense that any wire can be cut unexpect-
edly, and no transaction can test the failure of a wire - or equivalently, the
processors supporting each transaction may fail without prior notice to any of
the others. So we would like our transactions to be managed by a protocol,
that is by a program on each processor, which can handle all sorts of failure and
still ensure some basic properties on the transactions which have not failed.
This means that we want the transactions to be as loosely coupled as possible
so that a failure of one processor will not prevent others that might wait for
an answer from deadlocking. What functions can these transactions compute
then? Let us make precise what sort of function we are interested in. Suppose
all transactions T; want to change the value of the same item x to (maybe)
different values z;. Can all transactions agree on a common value, taken from
the set x1,---, 2,7 A classic result 1s that as soon as we ask for a certain
robustness to failure, this cannot be computed on ordinary atomic read/write
register machinest. We will derive a new proof of this result and other similar

“Many thanks to Sergio Rajsbaum and Patrick Cousot for useful discussions. I have used
Paul Taylor’s macro package for drawing diagrams.

1

ones in an entirely semantic framework, giving another perspective on recent
workl:2:10,11,12,13,14,17

In section 2 we define formally the class of functions we are interested in
computing, then define the class of distributed machines that we are consider-
ing for the computation. We relate this class to the geometric considerations
of E. Goubault®® and in Section 3 and 4 we derive the main decidability (or
computability) results, giving examples in a toy language. In Section 4 we gen-
eralize these questions in order to define the complexity of the computation of
functions allowed on some machines.

2 The framework

2.1 The functions

We will actually try to compute relations and not just functions. To account
for the distributed nature of their computation, we will consider that the input
arguments and output values of the relations are tuples (1, - - -,) of integers.
The idea is that each #; is the local view of the input (or of the output) on
processor i, on a system which might use at most n processors (that is at
most n independent threads of execution). So the class of relations R,, we
are interested in is just the set of binary relations on Z™. Let us give a few
examples. The relation considered in the introduction is the relation consensus
I' defined by (1, -, @) (2, -+, 2;) for any tuple (1, ---,2,) € Z" and
i € {1,---,n}. This means that the n processors can elect any of them, and
choose thier local value as the common local view of the result. The binary
consensus relation I'y 1s defined in a similar manner, except its domain is
restricted to {0,1}" C Z"™. Suppose now that we equip Z" with the lattice
structure induced by the order (z1, -, 2,) < (y1, -+, yn) if and only if 1 < 4
and- - -x, < y,. The ordered consensus relation A represents the fact that the
election takes the greatest input value as the result, (zy1, -, 2n)A(2g, -+, 24)
where x; = Vi<j<n&;j. Notice that the ordered binary consensus is nothing
but the parallel or (on n booleans). Pseudo-consensus is a weak version of the
consensus in the sense that we allow some errors in the agreement between the
transactions: the first processor might agree on the the common value plus
one (so that the error is at most one on the agreement). Formally, this is the
relation W such that, (z1, -, 20) (24, -, @), (21, 20) V(2 + 1, 24, -+ 24)

2.2 The machines

Suppose we have a machine with n processors. Then the machine (or a program
on the machine) is ¢-resilient (¢t < n — 1) if it can terminate any computation

2

even if £ among its n processors fail. This means not only that the whole system
will terminate in case of ¢ failures but also that the “partial result” computed by
the remaining n—t processors will be a partial view of the result that one would
have obtained if ever the n processors would have completed their executions.
When t = n—1 we say that the machine (or the program) is wait-free. In some
way, we are just asking for the processors to be as loosely coupled as possible
so that no one has actually to wait for another. This obviously limits the
amount of information one process can have from the others at any moment
of the execution. When you look at the possible schedulings of actions, all
permutations of actions are allowed in a wait-free program since there should
be no waiting between processors. The amount of permutation allowed for
t-resilient programs is less in general. This will motivate the approach using a
characterization of the possible schedulers of the machines (Section 4).

These requirements on the machines will also slightly change the formu-
lation we had on the relations we wish to compute (Section 2). If we use the
most famous symbol L to denote failure or non-termination, then all relations
R we wish to compute on a t-resilient machine should actually be extended over
(ZU{L})" so that they satisfy, (-, @;—1, L, 2ip1, - IR(- ¥im1, L, Yig1, -+ 7)
and (z1,- -, 20)R(y1, -, L, ¥y, -+, L, iy, - - -) where there could be at most
t L in the right-hand side of the last equation.

Example of a machine

An interesting case is a shared memory machine with atomic read /write registers 4.
The shared memory is formalized by a collection of registers z; in a set V. Each
processor P; has got a local memory composed of registers 7“;: in aset V;. All
reads and writes are done in an asynchronous manner on the shared memory.
There is no conflict in reads, nor in writes since we ensure that the writes of
distinct processors are made on distinct parts of the shared memory (P; is only
allowed to write on x;). We will use the following syntax for our machine; first
we have a grammar for instructions I, and then one for processes P,

I:=mil | scan | write(u) | r=f(ri, -, 7n)

where u is a local register or a value (in Z), r,rq, - -, 7, are the local registers
and f is any partial recursive function.

P:=1T1 | branch(r,1,I) | P;P

where 7 is any local register. Programs are Prog := (P | Prog).
nil is the instruction that writes the local value of processor P; (i.e. rl)
in the shared variable x;. an action). It is used as one of the branches of

3

the if statement (called branch here) if we do not need to do anything in the
alternative case. scan reads the shared array in one round and stores it into
some of the local registers of the process in which it is executed. If &y, -+, zg 18
the shared array in the shared memory, and 7“;: is the jth local register of process
P;, then scan executed in P; stores xq,---,xp in r, -, r};. We suppose (for
convenience) that it also writes its local value (7 for processor 7) in the shared
variable @;. write(u) executed in P; writes win &;. v = f(r1,- -, ry) computes
the partial recursive function f with arguments r1,-- -, r, and stores the result
in r. branch(r iy, i2) where i1 and iy are two instructions, tests whether r is
strictly positive or not (it is an “instant decision”, see the semantics). If it is
strictly positive then it executes 7; otherwise it executes ¢5. ; is the sequential
composition of processes. | is the parallel composition of processes.

Let us step back for a second, and look at a sample program in our lan-

guage.

Prog = P|Q
P = scan; Q = scan;
branch(rs, write(1), nil) branch(ry, nil, write(0))

This program achieves binary pseudo-consensus (look at the formal seman-
tics of next section). Remark that there is indeed no waiting (i.e. synchro-
nisation) between processes. Therefore, if a processor was shut down in the
middle of the computation, the others could carry on their respective compu-
tations. More generally, we can see that in this language, even if ¢ processors
fail (1 <t < n— 1), the remaining processes can carry on their computations.
Now, what relations can we compute in that language?

The concrete semantics

We model the concurrent execution of sequential processes by using Higher-
Dimensional Automata (HDA®?). Let us first explain informally the geomet-
ric ideas underlying the formalization with HDA. If we had a local clock with
continuous time on each processor’, sequential observations of concurrent exe-
cutions of our system could be viewed as 1-dimensional curves, or trajectories,
parameterized by the local time of each processor taking part in the execution.
In general we associate one coordinate in the Euclidean space R”, say z; to
each processor p; in the set of available processors p1, ps, - -+, pn. For instance,
in (i) of Figure 1, two processors are firing actions a, b concurrently, each of
them with a local time in [0, 1]. So the possible trajectories will be paths inside
the square [0, 1] x [0, 1]. As we suppose that our processors “consume” time for
computation, paths should also be strictly increasing in every coordinate. In
our example, none of the processors interfere in any manner, so the sequential

4

o
1
o
T
[7’
4 I 7’
.
/‘ ‘/
H ’
.
P .
. .
¢ ,
i A
¢
o

Vx

Do

\ Yool

[N

N | N

N L
a Px Vx
0} i 2

Fisaforbidden region (mutual exclusion)

Figure 1: Difference between non-interfering (i) and interfering (ii) parallel composition.

observer might observe any of the trajectories within the square [0, 1] x [0, 1].
Notice that we are not knowing the exact computations made by the actions
of the two processors. Thus the fact that they are non-interfering, therefore
the fact that any sequential schedule of the two actions give the same result
(terminates in the same global state) is reflected by the geometric fact that all
the paths from the initial to the final state (and in particular the two inter-
leavings of the two actions) are homotopic. This means that one can always be
continuously deformed through the surface of the square into the other. The
idea is that any action a 1s actually made up of many more subactions, which,
by commutation transform “a then §” into “b then a” (see (i) of Figure 1).
Conversely, if actions @ and b interfere (typically because of a mutual exclu-
sion on a variable accessed by both @ and b as in (ii) of Figure 1), then there
is a hole or forbidden region, in which paths cannot enter, and then through
which paths cannot be deformed. This view was first introduced by E. W.
Dijkstra®, reintroduced in a somewhat different way by V. Pratt'® then used
by J. Gunawardena’ and after by E. Goubault’.

Now, let us suppose we can simultaneously observe two processes acting
concurrently. We are observing a surface now and not just a path when we
were just a sequential observer, since now, our path is parameterized by two
local times (see (i) of Figure 2). In some sense we are observing a schedule
of the allocation of pairs of actions to pairs of processors. The “interleaving”
of the three (unordered) pairs of actions (taken from the set {a,b,¢}) is the
boundary of the cube shown in (ii) of Figure 2, and represents the possible
allocations in time of two of the three actions a, b and ¢ on two processors,
i.e. the implementation of a | b | ¢ on two processors, whereas the interior
of the cube represents the purely asynchronous execution of the three actions.

5

[V A

I

I

I

I

I

i

X

)

:

|
I c YA
— --- P, ar "

777777777 s
,,,,,,,,, s

0] (i)
X=three faces above and behind
Y =three faces in front and below

Figure 2: A concurrent execution of two processes (i) and two equivalent surfaces (ii)

There again, the two 2-schedules are homotopic if one can be deformed into the
other through cubes. This can be generalized to any sequence of hypercubes.
Semi-regular HDA are just amalgamated sums of points, segments, cubes and
hypercubes glued along their boundaries. Basically they are just collections of
n-transitions (n-cubes, i.e. asynchronous executions of n actions, abstraction
of the unit hypercube [0, 1]") together with two series of boundary operators.
One is the series “start boundary operators” dY (0 < i < n — 1) which to
any n transition gives one of the n (n — 1)-transitions which can start its
execution. The other one is the series of “end boundary operators” d}, the
obvious complement to the start boundary operators. Formally,

Definition 1 An unlabeled semi-regular HDA is a collection of sets M, 4 (p,q €
Z) together with functions dY : My, g — M,_1 , and djl» My g — Mp g1 forall
p,qEZ and 0<14,j <p+q—1 (p+q is the dimension of the transition), such
that dfod} = d}_lod;C (i<jandk,l=0,1)and¥n,mn#m, M,NM, =0.

2.8 Schedules, input, output and protocol complezes

The main idea is to describe the schedulers’ that a language or a machine can
implement. Then using the detailed semantics of the shared data structures
or the communication network through which the information is exchanged,
we determine what amount of information might be different when we go from
one schedule to another. This can then be used to decide whether a decision
task can be implemented under the constraints of architecture and language.
Other considerations (again of a topological nature) will be used for giving
lower bounds on the complexity of the computation when shown possible.

6

Initial cut ! h Cut at timet \ Termina cut
““Input Complex’” / . ‘*Output Complex’’

V2
segment equivalent 1-schedules Hole, or mutual exclusion two segments

Figure 3: Geometry of schedules and cuts

The n-schedules are just the sequences of hypercubes of dimension n in an
HDA. If they are homotopic then they define equivalent schedules in the sense
that they will compute the same function. When we want to know whether
we can implement some relation then we just know the cuts at initial time and
terminal time of the HDA semantics. The equivalence of schedules induces
an equivalence (a homotopy) on the different cuts. So if we can character-
ize geometrically the schedulers of our machine, then we will know if we can
implement some relation (see Figure 3).

The problem for implementing some relations will be that the topology of
the cut can never change enough. If we suppose that a relation can be com-
puted then the new question is now, “how much time do we need to compute
1t?”. The basic i1dea here is to determine at which time the topological ob-
struction to computing the relation is no longer here. Therefore, we need to
see from what time on the topology of the cuts match the output complex.

3 Application to our asynchronous machine

We denote both the shared and local stores by p which is a function from
V U (U;V;) to D, the domain of values. We then extend p to denote all the
homotopies® between environments. In order to retain some complexity mea-
sure on computation, we add an ordinal counter to the environment denoted
by p(t) (we suppose t is not the name of a local nor shared variable). Then,
for processor ¢ the standard denotational semantics for instructions is,

[nilla p = plzi—rit—t4+1]

[scan]a p = plry =2 #), w =it —t41]
[write u]a p ‘ = plzi—u,t =1 +1]

[r; = £(riys s lap = plry = frjy, oy, t = t41]

7

This semantics can be extended to a truly-concurrent semantics [.] using HDA
by letting [I] p = [p, [I]ap] to be the higher-dimensional transition from p to
[I]ap. Then for processes the truly-concurrent semantics is given by,

[branch(r, I, I2)] p t*(p(r)A] o+ (£ + L7)(p(r))[12] o
[Pi; P2] o = [N~ »)

The equation for branch® is just the union of the true (¢t), false (ff) and
undefined (L) branches. The sequential composition is just the composition of
the homotopy [P2] with the final states of [P]p, together with those of [P]p.
We refer to E. Goubault® for details of the construction of the sequentialization
(via the operator’). Finally the semantics of the whole system is

[Prog] p = Z [Pyl o [Pyl oo [Pon)lp
gES,

where Prog =Py |---| P, and S, is the group of permutations on {1,--- n}.

3.1 Herlihy/Shavit/Rajsbaum’s approach in a semantic framework

Notice that all equivalent schedules, or homotopic n-paths compute the same
function. In order to compute a relation we need to have one schedule associ-
ated with each possible outcome from a given set of arguments. This implies
that there is a direct relation between the possible schedules that a machine
can express and the relations it can compute. This was used by E. Goubault®
for the automatic verification of protocols for distributed systems. Here we
want to know, given a specification of the relation we need to compute, if
there 1s a program in £ which implements it.

In order to do so, we will use a compact representation (which defines
the simplicial complex of the decision task'") of the relation induced by the
schedules. Actually, this could be shown to be an abstract interpretation of
the concrete semanticd. Let X be a non-cyclic semi-regular HDA where all
1-paths from the initial states (all in Xg o) to the final states are of the same
length k. This implies that Xj _ is the set of final states and Xy g is the set
of initial states. Then the cuts of X at time 0 and at time k are the codomain
and domain of the relation that X computes (called respectively input and
output complexes of X). More formally, if {1 is the labelling morphism which
retains only the name of the process firing the transition and the value of the
local variable at the source of the transition and [p only retains the name
of the process and the value of the shared variable belonging to that process

b1t was showr® that the schedulers in dimension k are an abstract interpretation of the
concrete HDA semantics.

then the input complex of X is the sequence Z = [;(X, o, (d?);),. The output
complex of X is the sequence O = lo(Xj 4, (d})i)s. Notice that Z and O are
semi-simplicial sets.

Let pf : X — 7 and po : X — O be the projections onto the initial
and terminal cuts respectively (see Figure 3). The relation induced by the
schedules of a program whose semantics is given by a HDA| X, is the sequence
— >=(—>p€ I, x Oy), with s— > s" if and only if, s € Z,, and s’ € O, for
some n, and there is a n-schedule u such that pr(u) = s and po(u) = ¢'.

4 Some results and examples on asynchronous protocols

All terms P of £ are non-cyclic and all 1-paths from an initial state to a final
state in P are of the same length, so we can use the definitions of the last
section to study L.

In the following, we will consider only protocols written in £ such that
the global store is undefined at the beginning of execution, i.e. such that the
first environment is p(z;) = L, (p(r!)); being the initial tuple, argument of the
program. This means that we are considering X = [Py | --- | P,] p for which
for all s € Iy, s(#;) = L. We now relate executions of the n processes with
the executions of only a subset of these processes (the “solo executions™?).
If S = {ir, --,i;} C {1,---,n} then we write X°, 7% 0% — >° for the
HDA semantics of P; -+ | P, its input complex, its output complex and
its relation respectively. There are obvious inclusions between the 7% and 75
when S C S (by just adding some extra local variables). Equality of states
will then mean the equality on the intersection of the set of variables defined
in each case. We also write — >1% (5), s € Iéi} for the point s’ in (’)éi} such
that s— >1"} §/. By induction on the semantics,

1|'

Lemma 1 For any S C {1,---,n} such that i,j € S, i # j and any s =
{si,s;} € Ii{w}, if {s1,---,s1} is the set of s' such that s— >° s' then s +
sy, ds a 1-simplex from — >} (s;) to — >} (s5).

This 1-simplex is denoted by p(s,s’). The different segments comprising
this 1-simplex are due to the different interactions between the two processes
each corresponding to different 2-schedules. These differences in the interac-
tions can only come from branch instructions in the processes.

Proposition 1 Forany S C {1,---,n} such thatiy, -, i € S, the i; being all
distinct and any s € I, if {s1, -, 55} 1s the set of s’ such that s— >° s then
s1+- - +sg ts a (I—1)-simplex® whose boundaries are the I (I —2)-simplexes
defined by the subsets {iy, - -, 2]», R

9

(PO) ___ QO (P.0) Q0

Q1 (G Q1 (1)

Figure 4: The specification for the binary consensus.

Theorem 1 The image of any k-connected component of T (k < n) is k-
connected *° in O.

4.1 The consensus problems

The binary consensus problem will be our first example. The specification
relation and input, output complexes are shown in Figure 4. An easy in-
pection shows that the image of the l-simplex ((P,0),(@,1)) is a set of two
disconnected 1-simplexes, thus violating Lemma 1. Therefore, binary consen-
sus cannot be implemented in a wait-free manner. The intuition behind this
result is quite simple. Consensus requires that a process can tell whether
it is the first or last to choose, because otherwise there is no way to be
sure that the two processes will agree on any value. This means i1t needs
a synchronisation, a break of the connexity of the cuts of the dynamics.
This is of course impossible in a wait-free language. Similarly, parallel or
(or ordered binary consensus) cannot be implemented in a wait-free manner
if the input is given locally to the processes (though there is a wait-free solu-
tion for parallel or if the input is stored in the shared memory right from the
beginning).

4.2 Boolean binary relations

We first suppose that all relations R we are interested in in this section are such
that (v, L)R(r, L)and (L, s)R(L,s). In fact, we can handle all other situations
by code transformations (implementing the symmetries between processes and
between values). By the theorem of the last section we know that all four
segments of the input complex must be mapped onto 1-paths of the output
complex, between the respective images of the vertices. We also know that the
output complex must be a subcomplex of the binary 2-sphere (which is the
complex left of Figure 4 for instance).

10

Figure 5: The three possible output complexes for wait-free binary relations

Therefore we have the three possibilities (a), (b), and (¢) of Figure 5 for
the output complexes. There are actually many more possibilities for the al-
lowed relations between the input and output complexes. A typical “type
(a)” program is the identity for processes P and). The relation in this
case is therefore the identity relation on the binary 2-sphere. Notice that

there are other kinds of programs of “type (a)”. For instance the relation

{(P,0),(Q, 0)LRI(P,0), (Q.0)}, {(P.0), (Q. 0} R{(P,0), (@, 1} {(P,0), (@)}
R{(P.0).(Q. D}, ((P,0), (Q. D}R{(P,0), (@0}, {(P.1),(@ DIR{(P1), (@, 1)}
and {(P,1),(@,0)}R{(P,1),(Q,0)} can be implemented as follows,
Prog = P|Q Q = scan;
P = scan; branch(ry, write(1), nil)
A typical “type (b)” program is pseudo-consensus. A typical “type (¢)”
program is composed of two constant processes in parallel.

4.8 Some complezxity results

As such, we are not interested in the cost of any sequential function in par-
ticular, they are all abstracted by a single action in the semantic framework.
We are in fact much more interested in the number of successive choices (i.e.
branch statements) we have to make before reaching the solution.

Let { be the length function of 1-paths in output complexes, i.e. the
number of 1-simplices which compose the 1-paths. Then we can prove that
lmaz = maz, sez,l(p(s,s')) is the maximum number of branch statements.
For instance, in the pseudo-consensus example, we see that the image of the
1-simplex ((P,0), (@, 1)) is the sum of the three l-simplexes ((P,0),(Q,0)),
((Q,0),(P, 1)) and ((P,1),(Q,1)). It results from an interaction of two branch
statements.

Now, suppose that the set of possible values that each process (P or @)
can deal with is [0, M]NZ (M € Z). Then the input complex is the graph
(V, E) with vertices V. = {P} x [0, M]NZ U{Q} x [0, M] N Z and edges
E = {(v1,v2)/v1 = (P,r),va = (Q,s)} with the obvious boundaries. The
wait-free binary relations on that domain are actually quite constrained: all

11

wait-free relations in [0, M]? can be computed in at most M? steps.

References

(1]
(2]

[12]
[13]
[14]
[15]
[16]

[17]

E. Borowsky and E. Gafni. Generalized FLP impossibility result for ¢-resilient
asynchronous computations. In Proc. of the 25th STOC. ACM Press, 1993.

S. Chaudhuri. Agreement is harder than consensus: set consensus problems in
totally asynchronous systems. In Proc. of the 9th Annual ACM Symposium on
Principles of Distributed Computing, pages 311-334. ACM Press, August 1990.
E.W. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.

M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commit
with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

E. Goubault. Domains of higher-dimensional automata. In Proc. of CON-
CUR’93, Hildesheim, August 1993. Springer-Verlag.

E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of
PEPM’95, La Jolla, June 1995. ACM Press.

E. Goubault. Durations for truly-concurrent actions. In Proceedings of ESOP’96,
number 1058. Springer-Verlag, 1996.

E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale
Supérieure, to be published, 1996.

J. Gunawardena. Homotopy and concurrency. In Bulletin of the FATCS, num-
ber 54, pages 184-193, October 1994.

M. Herlihy. A tutorial on algebraic topology and distributed computation. Tech-
nical report, presented at UCLA, 1994.

M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc.
of the 13th Annual ACM Symposium on Principles of Distributed Computing.
ACM Press, August 1994.

M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, a
primer. Technical report, Brown University, 1995.

M. Herlihy and N. Shavit. The asynchronous computability theorem for t-
resilient tasks. In Proc. of the 25th STOC. ACM Press, 1993.

M. Herlihy and N. Shavit. A simple constructive computability theorem for
wait-free computation. In Proceedings of STOC’94. ACM Press, 1994.

J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company,
inc, 1967.

V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM
Symposium on Principles of Programming Languages. ACM Press, 1991.

M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topol-
ogy of public knowledge. In Proc. of the 25th STOC. ACM Press, 1993.

12

