
A SEMANTIC VIEW ON DISTRIBUTED COMPUTABILITYAND COMPLEXITYE. GOUBAULTCNRS & Ecole Normale Sup�erieure45 rue d'Ulm, 75005 PARIS, FRANCEAbstractThis paper intends to give a semantical perspective on the recentwork by Herlihy, Shavit and Rajsbaum on computability and complexityresults for t-resilient and wait-free protocols for distributed systems. It isan extended abstracta of a talk given at the Imperial College Workshop,Oxford, Christ Church on the 2nd of April 1996.1 IntroductionIn this article we address some computability and complexity problems whichhave most often arisen in the area of protocols for distributed systems and con-current databases. The essence of these problems is to decide whether we cancompute a certain kind of function in a distributed - yet robust - manner. Letus take our �rst example from the concurrent database theory. Imagine thatwe have a database that can be shared by n concurrent transactions T1; � � � ; Tnasynchronously. We suppose that the network linking the transactions to theshared database is not reliable in the sense that any wire can be cut unexpect-edly, and no transaction can test the failure of a wire - or equivalently, theprocessors supporting each transaction may fail without prior notice to any ofthe others. So we would like our transactions to be managed by a protocol,that is by a program on each processor, which can handle all sorts of failure andstill ensure some basic properties on the transactions which have not failed.This means that we want the transactions to be as loosely coupled as possibleso that a failure of one processor will not prevent others that might wait foran answer from deadlocking. What functions can these transactions computethen? Let us make precise what sort of function we are interested in. Supposeall transactions Ti want to change the value of the same item x to (maybe)di�erent values xi. Can all transactions agree on a common value, taken fromthe set x1; � � � ; xn? A classic result is that as soon as we ask for a certainrobustness to failure, this cannot be computed on ordinary atomic read/writeregister machines4. We will derive a new proof of this result and other similaraMany thanks to Sergio Rajsbaum and Patrick Cousot for useful discussions. I have usedPaul Taylor's macro package for drawing diagrams.1

ones in an entirely semantic framework, giving another perspective on recentwork1;2;10;11;12;13;14;17.In section 2 we de�ne formally the class of functions we are interested incomputing, then de�ne the class of distributed machines that we are consider-ing for the computation. We relate this class to the geometric considerationsof E. Goubault6;8 and in Section 3 and 4 we derive the main decidability (orcomputability) results, giving examples in a toy language. In Section 4 we gen-eralize these questions in order to de�ne the complexity of the computation offunctions allowed on some machines.2 The framework2.1 The functionsWe will actually try to compute relations and not just functions. To accountfor the distributed nature of their computation, we will consider that the inputarguments and output values of the relations are tuples (x1; � � � ; xn) of integers.The idea is that each xi is the local view of the input (or of the output) onprocessor i, on a system which might use at most n processors (that is atmost n independent threads of execution). So the class of relations Rn weare interested in is just the set of binary relations on ZZn. Let us give a fewexamples. The relation considered in the introduction is the relation consensus� de�ned by (x1; � � � ; xn)�(xi; � � � ; xi) for any tuple (x1; � � � ; xn) 2 ZZn andi 2 f1; � � � ; ng. This means that the n processors can elect any of them, andchoose thier local value as the common local view of the result. The binaryconsensus relation �b is de�ned in a similar manner, except its domain isrestricted to f0; 1gn � ZZn. Suppose now that we equip ZZn with the latticestructure induced by the order (x1; � � � ; xn) � (y1; � � � ; yn) if and only if x1 � y1and� � �xn � yn. The ordered consensus relation � represents the fact that theelection takes the greatest input value as the result, (x1; � � � ; xn)�(xi; � � � ; xi)where xi = _1�j�nxj. Notice that the ordered binary consensus is nothingbut the parallel or (on n booleans). Pseudo-consensus is a weak version of theconsensus in the sense that we allow some errors in the agreement between thetransactions: the �rst processor might agree on the the common value plusone (so that the error is at most one on the agreement). Formally, this is therelation 	 such that, (x1; � � � ; xn)	(xi; � � � ; xi), (x1; � � � ; xn)	(xi+1; xi; � � � ; xi)2.2 The machinesSuppose we have a machine with n processors. Then the machine (or a programon the machine) is t-resilient (t � n� 1) if it can terminate any computation2

even if t among its n processors fail. This means not only that the whole systemwill terminate in case of t failures but also that the \partial result" computed bythe remaining n�t processors will be a partial view of the result that one wouldhave obtained if ever the n processors would have completed their executions.When t = n�1 we say that the machine (or the program) is wait-free. In someway, we are just asking for the processors to be as loosely coupled as possibleso that no one has actually to wait for another. This obviously limits theamount of information one process can have from the others at any momentof the execution. When you look at the possible schedulings of actions, allpermutations of actions are allowed in a wait-free program since there shouldbe no waiting between processors. The amount of permutation allowed fort-resilient programs is less in general. This will motivate the approach using acharacterization of the possible schedulers of the machines (Section 4).These requirements on the machines will also slightly change the formu-lation we had on the relations we wish to compute (Section 2). If we use themost famous symbol ? to denote failure or non-termination, then all relationsR we wish to compute on a t-resilient machine should actually be extended over(ZZ[f?g)n so that they satisfy, (� � � ; xi�1;?; xi+1; � � �)R(� � � ; yi�1;?; yi+1; � � �)and (x1; � � � ; xn)R(y1; � � � ;?; yi1; � � � ;?; yi2; � � �) where there could be at mostt ? in the right-hand side of the last equation.Example of a machineAn interesting case is a shared memorymachine with atomic read/write registers14.The shared memory is formalized by a collection of registers xi in a set V . Eachprocessor Pi has got a local memory composed of registers rij in a set Vi. Allreads and writes are done in an asynchronous manner on the shared memory.There is no con
ict in reads, nor in writes since we ensure that the writes ofdistinct processors are made on distinct parts of the shared memory (Pi is onlyallowed to write on xi). We will use the following syntax for our machine; �rstwe have a grammar for instructions I, and then one for processes P ,I := nil j scan j write(u) j r = f(r1; � � � ; rn)where u is a local register or a value (in ZZ), r; r1; � � � ; rn are the local registersand f is any partial recursive function.P := I j branch(r; I; I) j P ;Pwhere r is any local register. Programs are Prog := (P j Prog).nil is the instruction that writes the local value of processor Pi (i.e. rii)in the shared variable xi. an action). It is used as one of the branches of3

the if statement (called branch here) if we do not need to do anything in thealternative case. scan reads the shared array in one round and stores it intosome of the local registers of the process in which it is executed. If x1; � � � ; xk isthe shared array in the shared memory, and rij is the jth local register of processPi, then scan executed in Pi stores x1; � � � ; xk in ri1; � � � ; rik. We suppose (forconvenience) that it also writes its local value (rii for processor i) in the sharedvariable xi. write(u) executed in Pi writes u in xi. r = f(r1; � � � ; rn) computesthe partial recursive function f with arguments r1; � � � ; rn and stores the resultin r. branch(r; i1; i2) where i1 and i2 are two instructions, tests whether r isstrictly positive or not (it is an \instant decision", see the semantics). If it isstrictly positive then it executes i1 otherwise it executes i2. ; is the sequentialcomposition of processes. j is the parallel composition of processes.Let us step back for a second, and look at a sample program in our lan-guage.Prog = P j QP = scan; Q = scan;branch(r2; write(1);nil) branch(r1;nil; write(0))This program achieves binary pseudo-consensus (look at the formal seman-tics of next section). Remark that there is indeed no waiting (i.e. synchro-nisation) between processes. Therefore, if a processor was shut down in themiddle of the computation, the others could carry on their respective compu-tations. More generally, we can see that in this language, even if t processorsfail (1 � t � n� 1), the remaining processes can carry on their computations.Now, what relations can we compute in that language?The concrete semanticsWe model the concurrent execution of sequential processes by using Higher-Dimensional Automata (HDA16;5). Let us �rst explain informally the geomet-ric ideas underlying the formalization with HDA. If we had a local clock withcontinuous time on each processor7, sequential observations of concurrent exe-cutions of our system could be viewed as 1-dimensional curves, or trajectories,parameterized by the local time of each processor taking part in the execution.In general we associate one coordinate in the Euclidean space Rn, say xi toeach processor pi in the set of available processors p1; p2; � � � ; pn. For instance,in (i) of Figure 1, two processors are �ring actions a, b concurrently, each ofthem with a local time in [0; 1]. So the possible trajectories will be paths insidethe square [0; 1]� [0;1]. As we suppose that our processors \consume" time forcomputation, paths should also be strictly increasing in every coordinate. Inour example, none of the processors interfere in any manner, so the sequential4

(i) (ii)

F

F is a forbidden region (mutual exclusion)

Px Vx

Vx

Px

a

b

b

a b

a

b

a

Figure 1: Di�erence between non-interfering (i) and interfering (ii) parallel composition.observer might observe any of the trajectories within the square [0; 1]� [0; 1].Notice that we are not knowing the exact computations made by the actionsof the two processors. Thus the fact that they are non-interfering, thereforethe fact that any sequential schedule of the two actions give the same result(terminates in the same global state) is re
ected by the geometric fact that allthe paths from the initial to the �nal state (and in particular the two inter-leavings of the two actions) are homotopic. This means that one can always becontinuously deformed through the surface of the square into the other. Theidea is that any action a is actually made up of many more subactions, which,by commutation transform \a then b" into \b then a" (see (i) of Figure 1).Conversely, if actions a and b interfere (typically because of a mutual exclu-sion on a variable accessed by both a and b as in (ii) of Figure 1), then thereis a hole or forbidden region, in which paths cannot enter, and then throughwhich paths cannot be deformed. This view was �rst introduced by E. W.Dijkstra3, reintroduced in a somewhat di�erent way by V. Pratt16 then usedby J. Gunawardena9 and after by E. Goubault6.Now, let us suppose we can simultaneously observe two processes actingconcurrently. We are observing a surface now and not just a path when wewere just a sequential observer, since now, our path is parameterized by twolocal times (see (i) of Figure 2). In some sense we are observing a scheduleof the allocation of pairs of actions to pairs of processors. The \interleaving"of the three (unordered) pairs of actions (taken from the set fa; b; cg) is theboundary of the cube shown in (ii) of Figure 2, and represents the possibleallocations in time of two of the three actions a, b and c on two processors,i.e. the implementation of a j b j c on two processors, whereas the interiorof the cube represents the purely asynchronous execution of the three actions.5

X

p

p

1

2

α

β

(i) (ii)

X

Y

X=three faces above and behind

Y=three faces in front and below

a

b

cFigure 2: A concurrent execution of two processes (i) and two equivalent surfaces (ii)There again, the two 2-schedules are homotopic if one can be deformed into theother through cubes. This can be generalized to any sequence of hypercubes.Semi-regular HDA are just amalgamated sums of points, segments, cubes andhypercubes glued along their boundaries. Basically they are just collections ofn-transitions (n-cubes, i.e. asynchronous executions of n actions, abstractionof the unit hypercube [0; 1]n) together with two series of boundary operators.One is the series \start boundary operators" d0i (0 � i � n � 1) which toany n transition gives one of the n (n � 1)-transitions which can start itsexecution. The other one is the series of \end boundary operators" d1i , theobvious complement to the start boundary operators. Formally,De�nition 1 An unlabeled semi-regular HDA is a collection of setsMp;q (p; q 2ZZ) together with functions d0i :Mp;q !Mp�1;q and d1j :Mp;q !Mp;q�1 for allp; q 2 ZZ and 0 � i; j � p+q�1 (p+q is the dimension of the transition), suchthat dki �dlj = dlj�1�dki (i < j and k; l = 0; 1) and 8n;m n 6= m; Mn\Mm = ;.2.3 Schedules, input, output and protocol complexesThe main idea is to describe the schedulers6 that a language or a machine canimplement. Then using the detailed semantics of the shared data structuresor the communication network through which the information is exchanged,we determine what amount of information might be di�erent when we go fromone schedule to another. This can then be used to decide whether a decisiontask can be implemented under the constraints of architecture and language.Other considerations (again of a topological nature) will be used for givinglower bounds on the complexity of the computation when shown possible.6

Initial cut

‘‘Input Complex’’

Cut at time t Terminal cut

‘‘Output Complex’’

Hole, or mutual exclusionequivalent 1-schedulessegment two segmentsFigure 3: Geometry of schedules and cutsThe n-schedules are just the sequences of hypercubes of dimension n in anHDA. If they are homotopic then they de�ne equivalent schedules in the sensethat they will compute the same function. When we want to know whetherwe can implement some relation then we just know the cuts at initial time andterminal time of the HDA semantics. The equivalence of schedules inducesan equivalence (a homotopy) on the di�erent cuts. So if we can character-ize geometrically the schedulers of our machine, then we will know if we canimplement some relation (see Figure 3).The problem for implementing some relations will be that the topology ofthe cut can never change enough. If we suppose that a relation can be com-puted then the new question is now, \how much time do we need to computeit?". The basic idea here is to determine at which time the topological ob-struction to computing the relation is no longer here. Therefore, we need tosee from what time on the topology of the cuts match the output complex.3 Application to our asynchronous machineWe denote both the shared and local stores by � which is a function fromV [([iVi) to D, the domain of values. We then extend � to denote all thehomotopies5 between environments. In order to retain some complexity mea-sure on computation, we add an ordinal counter to the environment denotedby �(t) (we suppose t is not the name of a local nor shared variable). Then,for processor i the standard denotational semantics for instructions is,[[nil]]d � = �[xi rii ; t t+ 1][[scan]]d � = �[rij xj(j 6= i); xi rii; t t+ 1][[write u]]d � = �[xi u; t t+ 1][[rij = f(rij1 ; : : : ; rijn)]]d � = �[rij f(rij1 ; : : : ; rijn); t t+ 1]7

This semantics can be extended to a truly-concurrent semantics [[:]] using HDAby letting [[I]] � = [�; [[I]]d�] to be the higher-dimensional transition from � to[[I]]d�. Then for processes the truly-concurrent semantics is given by,[[branch(r; I1; I2)]] � = tt�(�(r))[[I1]] �+ (ff� +?�)(�(r))[[I2]] �[[P1;P2]] � = ^[[P2]]([[P1]] �)The equation for branch5 is just the union of the true (tt), false (ff) andunde�ned (?) branches. The sequential composition is just the composition ofthe homotopy [[P2]] with the �nal states of [[P1]]�, together with those of [[P1]]�.We refer to E. Goubault5 for details of the construction of the sequentialization(via the operator)̂. Finally the semantics of the whole system is[[Prog]] � = X�2Sn [[P�(1)]] � [[P�(2)]] � � � � � [[P�(n)]]�where Prog = P1 j � � � j Pn and Sn is the group of permutations on f1; � � � ; ng.3.1 Herlihy/Shavit/Rajsbaum's approach in a semantic frameworkNotice that all equivalent schedules, or homotopic n-paths compute the samefunction. In order to compute a relation we need to have one schedule associ-ated with each possible outcome from a given set of arguments. This impliesthat there is a direct relation between the possible schedules that a machinecan express and the relations it can compute. This was used by E. Goubault6for the automatic veri�cation of protocols for distributed systems. Here wewant to know, given a speci�cation of the relation we need to compute, ifthere is a program in L which implements it.In order to do so, we will use a compact representation (which de�nesthe simplicial complex of the decision task10) of the relation induced by theschedules. Actually, this could be shown to be an abstract interpretation ofthe concrete semanticsb. Let X be a non-cyclic semi-regular HDA where all1-paths from the initial states (all in X0;0) to the �nal states are of the samelength k. This implies that Xk;�k is the set of �nal states and X0;0 is the setof initial states. Then the cuts of X at time 0 and at time k are the codomainand domain of the relation that X computes (called respectively input andoutput complexes of X). More formally, if lI is the labelling morphism whichretains only the name of the process �ring the transition and the value of thelocal variable at the source of the transition and lO only retains the nameof the process and the value of the shared variable belonging to that processbIt was shown6 that the schedulers in dimension k are an abstract interpretation of theconcrete HDA semantics. 8

then the input complex of X is the sequence I = lI(Xp;0; (d0i)i)p. The outputcomplex of X is the sequence O = lO(Xk;q; (d1i)i)q. Notice that I and O aresemi-simplicial sets.Let pI : X ! I and pO : X ! O be the projections onto the initialand terminal cuts respectively (see Figure 3). The relation induced by theschedules of a program whose semantics is given by a HDA, X, is the sequence� >= (� >n2 In � On)n with s� > s0 if and only if, s 2 In and s0 2 On forsome n, and there is a n-schedule u such that pI(u) = s and pO(u) = s0.4 Some results and examples on asynchronous protocolsAll terms P of L are non-cyclic and all 1-paths from an initial state to a �nalstate in P are of the same length, so we can use the de�nitions of the lastsection to study L.In the following, we will consider only protocols written in L such thatthe global store is unde�ned at the beginning of execution, i.e. such that the�rst environment is �(xi) = ?, (�(rii))i being the initial tuple, argument of theprogram. This means that we are considering X = [[P1 j � � � j Pn]] � for whichfor all s 2 I0, s(xi) = ?. We now relate executions of the n processes withthe executions of only a subset of these processes (the \solo executions"10).If S = fi1; � � � ; ijg � f1; � � � ; ng then we write XS , IS , OS , � >S for theHDA semantics of Pi1 j � � � j Pij , its input complex, its output complex andits relation respectively. There are obvious inclusions between the IS and IS0when S � S0 (by just adding some extra local variables). Equality of stateswill then mean the equality on the intersection of the set of variables de�nedin each case. We also write � >fig (s), s 2 Ifig0 for the point s0 in Ofig0 suchthat s� >fig s0. By induction on the semantics,Lemma 1 For any S � f1; � � � ; ng such that i; j 2 S, i 6= j and any s =fsi; sjg 2 Ifi;jg1 , if fs1; � � � ; skg is the set of s0 such that s� >S s0 then s1 +� � �+ sk is a 1-simplex from � >fig (si) to � >fjg (sj).This 1-simplex is denoted by p(s; s0). The di�erent segments comprisingthis 1-simplex are due to the di�erent interactions between the two processeseach corresponding to di�erent 2-schedules. These di�erences in the interac-tions can only come from branch instructions in the processes.Proposition 1 For any S � f1; � � � ; ng such that i1; � � � ; il 2 S, the ij being alldistinct and any s 2 ISl , if fs1; � � � ; skg is the set of s0 such that s� >S s0 thens1+ � � �+ sk is a (l�1)-simplex 15 whose boundaries are the l (l�2)-simplexesde�ned by the subsets fi1; � � � ; îj; � � � ; ilg.9

(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆Figure 4: The speci�cation for the binary consensus.Theorem 1 The image of any k-connected component of I (k � n) is k-connected 15 in O.4.1 The consensus problemsThe binary consensus problem will be our �rst example. The speci�cationrelation and input, output complexes are shown in Figure 4. An easy in-pection shows that the image of the 1-simplex ((P; 0); (Q; 1)) is a set of twodisconnected 1-simplexes, thus violating Lemma 1. Therefore, binary consen-sus cannot be implemented in a wait-free manner. The intuition behind thisresult is quite simple. Consensus requires that a process can tell whetherit is the �rst or last to choose, because otherwise there is no way to besure that the two processes will agree on any value. This means it needsa synchronisation, a break of the connexity of the cuts of the dynamics.This is of course impossible in a wait-free language. Similarly, parallel or(or ordered binary consensus) cannot be implemented in a wait-free mannerif the input is given locally to the processes (though there is a wait-free solu-tion for parallel or if the input is stored in the shared memory right from thebeginning).4.2 Boolean binary relationsWe �rst suppose that all relations R we are interested in in this section are suchthat (r;?)R(r;?) and (?; s)R(?; s). In fact, we can handle all other situationsby code transformations (implementing the symmetries between processes andbetween values). By the theorem of the last section we know that all foursegments of the input complex must be mapped onto 1-paths of the outputcomplex, between the respective images of the vertices. We also know that theoutput complex must be a subcomplex of the binary 2-sphere (which is thecomplex left of Figure 4 for instance).10

(a) (b) (c)Figure 5: The three possible output complexes for wait-free binary relationsTherefore we have the three possibilities (a), (b), and (c) of Figure 5 forthe output complexes. There are actually many more possibilities for the al-lowed relations between the input and output complexes. A typical \type(a)" program is the identity for processes P and Q. The relation in thiscase is therefore the identity relation on the binary 2-sphere. Notice thatthere are other kinds of programs of \type (a)". For instance the relationf(P; 0); (Q; 0)gRf(P; 0); (Q;0)g, f(P; 0); (Q; 0)gRf(P;0); (Q;1)g,f(P; 0); (Q; 1)gRf(P; 0); (Q; 1)g, f(P; 0); (Q; 1)gRf(P; 0); (Q;0)g, f(P; 1); (Q; 1)gRf(P;1); (Q;1)gand f(P; 1); (Q; 0)gRf(P;1); (Q;0)g can be implemented as follows,Prog = P j Q Q = scan;P = scan; branch(r1; write(1);nil)A typical \type (b)" program is pseudo-consensus. A typical \type (c)"program is composed of two constant processes in parallel.4.3 Some complexity resultsAs such, we are not interested in the cost of any sequential function in par-ticular, they are all abstracted by a single action in the semantic framework.We are in fact much more interested in the number of successive choices (i.e.branch statements) we have to make before reaching the solution.Let l be the length function of 1-paths in output complexes, i.e. thenumber of 1-simplices which compose the 1-paths. Then we can prove thatlmax = maxs;s02I0 l(p(s; s0)) is the maximum number of branch statements.For instance, in the pseudo-consensus example, we see that the image of the1-simplex ((P; 0); (Q; 1)) is the sum of the three 1-simplexes ((P; 0); (Q; 0)),((Q; 0); (P; 1)) and ((P; 1); (Q; 1)). It results from an interaction of two branchstatements.Now, suppose that the set of possible values that each process (P or Q)can deal with is [0;M] \ ZZ (M 2 ZZ). Then the input complex is the graph(V;E) with vertices V = fPg � [0;M] \ ZZ [fQg � [0;M] \ ZZ and edgesE = f(v1; v2)=v1 = (P; r); v2 = (Q; s)g with the obvious boundaries. Thewait-free binary relations on that domain are actually quite constrained: all11

wait-free relations in [0;M]2 can be computed in at most M2 steps.References[1] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilientasynchronous computations. In Proc. of the 25th STOC. ACM Press, 1993.[2] S. Chaudhuri. Agreement is harder than consensus: set consensus problems intotally asynchronous systems. In Proc. of the 9th Annual ACM Symposium onPrinciples of Distributed Computing, pages 311{334. ACM Press, August 1990.[3] E.W. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.[4] M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commitwith one faulty process. Journal of the ACM, 32(2):374{382, April 1985.[5] E. Goubault. Domains of higher-dimensional automata. In Proc. of CON-CUR'93, Hildesheim, August 1993. Springer-Verlag.[6] E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. ofPEPM'95, La Jolla, June 1995. ACM Press.[7] E. Goubault. Durations for truly-concurrent actions. In Proceedings of ESOP'96,number 1058. Springer-Verlag, 1996.[8] E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole NormaleSup�erieure, to be published, 1996.[9] J. Gunawardena. Homotopy and concurrency. In Bulletin of the EATCS, num-ber 54, pages 184{193, October 1994.[10] M. Herlihy. A tutorial on algebraic topology and distributed computation. Tech-nical report, presented at UCLA, 1994.[11] M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc.of the 13th Annual ACM Symposium on Principles of Distributed Computing.ACM Press, August 1994.[12] M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, aprimer. Technical report, Brown University, 1995.[13] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In Proc. of the 25th STOC. ACM Press, 1993.[14] M. Herlihy and N. Shavit. A simple constructive computability theorem forwait-free computation. In Proceedings of STOC'94. ACM Press, 1994.[15] J. P. May. Simplicial objects in algebraic topology. D. van Nostrand Company,inc, 1967.[16] V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACMSymposium on Principles of Programming Languages. ACM Press, 1991.[17] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topol-ogy of public knowledge. In Proc. of the 25th STOC. ACM Press, 1993.12

