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Abstract. We introduce a new numerical abstract domain able to infer
min and max invariants over the program variables, based on max-plus
polyhedra. Our abstraction is more precise than octagons, and allows to
express non-convex properties without any disjunctive representations.
We have defined sound abstract operators, evaluated their complexity,
and implemented them in a static analyzer. It is able to automatically
compute precise properties on numerical and memory manipulating pro-
grams such as algorithms on strings and arrays.

1 Introduction

We present a new abstract domain that generalizes zones [1] and octagons [2]
(i.e. invariants of the form xi − xj ≥ cij and ±xi ± xj ≥ c′ij respectively),
while expressing a certain amount of disjunctive properties. Abstract values
are max-plus polyhedra, and allow to infer relations of the form max(λ0, x1 +
λ1, . . . , xn + λn) ≤ max(µ0, x1 + µ1, . . . , xn + µn) and min(λ′0, x1 + λ′1, . . . , xn +
λ′n) ≤ min(µ′0, x1 +µ′1, . . . , xn +µ′n) over program variables x1, . . . , xn, with con-
stants λi, µi in R ∪ {−∞} and λ′i, µ

′
i in R ∪ {+∞}. For instance, the constraint

max(x, y) = max(−∞, z) = z, which forms a particular max-plus polyhedron,
encodes both x − z ≤ 0 and y − z ≤ 0 (zone information), and “either x or y is
z” (disjunctive information). Intuitively, max-plus polyhedra are the analogues
of “classical” closed convex polyhedra in the max-plus algebra, which is the set
R ∪ {−∞} endowed with max as additive and + as multiplicative laws.

Max-plus polyhedra encode disjunctive information, the worst-case complex-
ity of some abstract operators may be important, although relatively similar to
the case of classical polyhedra (see Theorem 1), but this disjunctive information
is treated entirely semantically, and is thus fairly efficient for notoriously diffi-
cult problems in static analysis, such as proving that sorting algorithms indeed
do sort (see Sect. 4). It is in the best of our knowledge the first domain whose
elements describe connected but non convex sets, without having to resort to
complex heuristics for building (partial) disjunctive completions.

We will use a motivating example throughout this article, which is a possible
implementation of the function memcpy which copies exactly the first n characters
of the string buffer src to dst:



1: int i := 0;
2: unsigned int n, p, q;
3: string dst[p], src[q];
4: assert p >= n && q >= n;

5: while i <= n-1 do
6: dst[i] := src[i];
7: i := i+1;
8: done;

In string analysis, precise invariants over the length of the strings are needed
to ensure the absence of string buffer overflows (see [3, 4]). Without any infor-
mation on n, no non-disjunctive string analysis is able to determine any precise
invariant about the resulting length of the string len dst (for instance, using
classical polyhedra, we only get len dst ≥ 0). Indeed, two cases have to be
distinguished: (i) either n is strictly smaller than the source length len src, so
that only non-null characters are copied into dst, hence len dst ≥ n, (ii) or
n ≥ len src and the null terminal character of src will be copied into dst,
thus len dst = len src. With our non-disjunctive analysis, we are able to
infer automatically the invariant min(len src, n) = min(len dst, n), which ex-
actly encodes the disjunction of the two cases. Besides, even with a disjunctive
analysis (for example using trace partitioning [5]), it would be very complex
to automatically determine the disjunction of the cases (i) and (ii), because it
intrinsically relies on semantic information on strings.

Contents. Max-plus polyhedra are not new (see “Related Work” below) but
have not been used yet in static analysis by abstract interpretation, and have
been introduced for entirely different reasons: Section 2 is an introduction to
the required results in the field. As for classical polyhedra, max-plus polyhedra
can be presented both as a system of inequalities (constraints), or by a set
of vertices and rays (generators), see Sections 2.2 and 2.3. But the underlying
algorithms are quite different because of the structure of the max-plus algebra.
For instance, unlike in classical algebra, systems of equality constraints and of
inequality constraints are equivalent in Rmax. In particular, the resulting abstract
domains (max-plus analogues of Karr’s [6] and Cousot-Halbwachs’ [7]) have the
same complexity. Theorem 1 is new: it gives an upper bound on the complexity
of the resolution of a linear equation in the max-plus algebra, which is the
cornerstone of the algorithm allowing to convert representations by (in)equalities
to system of generators, and vice versa. We then prove in Sect. 2.4 that max-plus
polyhedra subsume intervals and zones.

The abstraction and its semantics for a simple imperative language in terms
of max-plus polyhedra are given in Section 3. It is able to infer both max and
min invariants, and contains the abstract domain of octagons. We discuss lin-
earization methods (in the sense of [2]) in Section 3.3 for abstracting in a precise
manner non-linear max-plus expressions and assignments. We end up by describ-
ing some practical applications of this static analysis on strings and arrays, in
Section 4. We also give a set of benchmarks based on the current implementation
we made of the method.

Related Work. The max-plus analogues of convex sets were introduced by K.
Zimmermann [8], who established an analogue of the separation theorem. Max-
plus convex cones have been studied in idempotent analysis, after the work



of Maslov [9]. They also arise in the analysis of discrete event systems [10, 11].
They have appeared recently in relation with tropical geometry and phylogenetic
analysis [12]. See [13, 12, 14–18] for more background and recent developments.

Related work in abstract interpretation [19] include work on zones [1], oc-
tagons [2], (classical) polyhedra [7], disjunctive analysis [5, 20, 21]. An applica-
tion of semirings (such as max-plus) has been made to static analysis by abstract
interpretation in [22], although with different techniques and for different appli-
cations (timing behavior).

2 Max-plus Polyhedra

2.1 The Max-plus Semiring

The max-plus semiring Rmax is defined as the set R ∪ {−∞}, equipped with
the addition x ⊕ y := max(x, y) and the multiplication x ⊗ y := x + y. The
additive law ⊕ is associative, commutative, and has a zero element 0 := −∞.
The multiplicative law ⊗ is associative with a unit element 1 := 0. Besides, the
zero element 0 is absorbing, i.e. for any x ∈ Rmax, 0⊗x = x⊗0 = 0. The semiring
Rmax differs from a ring in that the elements are not necessarily invertible w.r.t
the addition. An order � can be defined on Rmax by x � y ⇔ x ⊕ y = y. It
coincides with the usual order on R ∪ {−∞}.

The n-fold Cartesian product Rn
max may be thought of as a space of vectors,

or as an affine space of points. It can be endowed with the component-wise
addition: if u,v are two vectors in Rn

max, u ⊕ v denotes the vector whose ith
component is the sum ui ⊕ vi of the ith components of u and v. Similarly,
the multiplication λu of the vector u by a scalar λ ∈ Rmax is the vector of
components λ⊗ ui.

Matrix operations are defined as well, by using max-plus addition and mul-
tiplication in the classical operations on matrices. Finally, given two subsets S1

and S2 of Rn
max, the max-plus Minkowski sum S1 ⊕ S2 is defined as the set

{x⊕ y | (x,y) ∈ S1 × S2}.

2.2 Definition of Max-plus Polyhedra using Systems of Generators

Max-plus Convex Sets and Cones. A vector x ∈ Rn
max is a max-plus linear

combination of the vectors v1, . . . ,vp ∈ Rn
max if x = α1v1 ⊕ · · · ⊕ αpvp for some

scalars α1, . . . , αp ∈ Rmax. The point x is a max-plus convex combination of the
points v1, . . . ,vp if it can be written in the previous form, with the additional
requirement that α1 ⊕ · · · ⊕ αp = 1. In the sequel, all max-plus convex or linear
combinations will concern finite families.

A subset of Rn
max is a max-plus cone if it contains all the max-plus linear

combinations of its elements. Such cones may be thought of as the analogues
of vector spaces or modules when the field or ring of scalars is replaced by the
max-plus semiring. Hence, they have been studied under the names of idempotent
spaces in [9] or semimodules in [13]. In the max-plus setting, positivity constraints
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are implicit, since any scalar α ∈ Rmax satisfies α � 0. For this reason, max-plus
cones share many of the properties of classical convex cones.

If W is a subset of Rn
max, we denote by cone(W ) the max-plus cone generated

by W , which consists of the max-plus linear combinations of the elements of W .
A max-plus cone is finitely generated if it can be written as cone(W ) for some
finite subset W of Rn

max. In particular, a max-plus cone generated by a (non-zero)
vector is a ray. Such a vector is a representative of the ray that it generates.

Similarly, a subset of Rn
max is a max-plus convex set if it contains all the

max-plus convex combinations of its elements. In general, max-plus convex sets
are not convex in the classical sense. We denote by co(V ) the max-plus convex
hull of V , which consists of the max-plus convex combinations of the elements
of V . A set of the form co(V ) for some finite set V is a max-plus polytope.

Max-plus Polyhedra. Polyhedra can be classically defined in two ways, either in
terms of constraints (intersections of finitely many affine half-spaces), or in terms
of vertices and rays (Minkowski sums of a polytope and of a finitely generated
cone). The Minkowski-Weyl theorem proves both definitions equivalent. For the
moment, let us adopt the second approach, and define a max-plus polyhedron
to be a set of the form P = co(V ) ⊕ cone(W ), where V,W are finite subsets of
Rn

max. The sets V and W constitute a system of generators of P .
Figure 2 depicts an unbounded max-plus polyhedron in R2

max. The reader
may check on the figure that this is a max-plus convex set, because it contains
any segment joining two of its points (see Fig. 1 for the three kinds of max-plus
segments in R2

max).

Representing Max-plus Polyhedra by Max-plus Cones. We can represent max-
plus polyhedra of Rn

max as projections of finitely generated max-plus convex
cones of Rn+1

max, by taking “homogeneous coordinates”, as in the classical case.
Formally, if P = co(V ) ⊕ cone(W ), where V,W are finite subsets of Rn

max,
let Z denote the subset of Rn+1

max consisting of the vectors of the form (v,1)
with v ∈ V or (w, 0) with w ∈ W , and consider the max-plus convex cone



C := cone(Z). It is easily seen that P = {x ∈ Rn
max | (x, 1) ∈ C} . Conversely,

let Z ′ denote any finite subset of Rn+1
max such that C = cone(Z ′). After multiplying

(in the max-plus sense) every element of Z ′ by a non-0 scalar, we may assume
that the last coordinate of every element of Z ′ is either 0 or 1. Then, it can
be checked that P = co(V ′) ⊕ cone(W ′) where V ′ = {v | (v, 1) ∈ Z ′} and
W ′ = {v | (v, 0) ∈ Z ′}. This is a special case of the general correspondence
between max-plus convex sets and max-plus cones which is discussed in [18].

Hence, representing max-plus polyhedra reduces to representing finitely gen-
erated max-plus cones. In the sequel, we will suppose that the representation of a
max-plus polyhedron of Rn

max by generators is a finite system G of generators of
the associated max-plus cone of Rn+1

max. This avoids the distinction between ver-
tices and ray representatives which may sometimes complicate the formalism,
without loss of generality.

Membership to a Finitely Generated Max-plus Cone. Let G denote a set of
p vectors of Rn+1

max. Testing whether a vector x is in cone(G) is equivalent to
determine whether the system of equations Gy = x admits a solution. We use
here the same notation, G for the matrix the columns of which are the elements
of the generating set. The equation Gy = x may not have a solution, but the
inequality Gy � x always does. Besides, if it is interpreted in the completion of
the max-plus semiring, it admits a maximal solution, denoted by G\x and given
by the following residuation formula: (G\x)j := min1≤i≤n+1(xi−Gij), with the
convention −∞+∞ = +∞. If G has no column identically −∞, G \ x belongs
to Rp

max for all x ∈ Rn+1
max. It follows that Gy = x has a solution y ∈ Rp

max if
and only if G(G \ x) = x, a test which can be done in O(np) operations. More
details can be found in [17].

Minimal Systems of Generators. The representation of P by a system of gen-
erators is not unique, but as for classical polyhedra, there is a minimal repre-
sentation, involving sets of vectors having certain extremality properties in the
associated cone C. A vector w is an extreme generator of a max-plus cone C
if w ∈ C, and w cannot be written as the max-plus sum of two vectors of C
that are both different from it. Then, the set of scalars multiples of w is an ex-
treme ray of C. It is known that a finitely generated max-plus cone is generated
by its extreme rays. It follows that C has a non redundant generating family,
which is unique up to a normalization of its elements, obtained by selecting one
representative in each extreme ray of C. This family forms a minimal represen-
tation of P by generators. The reader can refer to [18, 17] for recent accounts
and refinements of this result.

To compute the extreme rays of C, we start from any generating system G,
assuming that it contains no proportional vectors, and we eliminate any vector
of the family which is a max-plus linear combination of the other ones (see the
previous paragraph). If G consists of p generators, this can be done in O(n×p2)
operations. Some additional algorithmic information can be found in [17].

As in the classical case, we can find max-plus polyhedra of R2
max with an

arbitrarily large number of extreme points.



2.3 Definition of Max-plus Polyhedra by Systems of Constraints

An important similarity of max-plus polyhedra with classical ones is that they
can be equivalently defined as the solutions of systems of constraints. Each con-
straint consists of an inequality of the form ax ⊕ b � cx ⊕ d, where x ∈ Rn

max,
a, c ∈ R1×n

max and b, d ∈ Rmax.
However, in Rn

max, systems of equality and inequality constraints are equiva-
lent. Indeed, any inequality can be written as an equality since y � z ⇔ y = y⊕z.
As a consequence, systems of inequality and equality constraints have the same
expressiveness, and in particular, inferring invariants involving equality con-
straints is as difficult as inferring inequality invariants. We chose to use here
systems of equality constraints.

Solutions of a System of Constraints. The solutions of a homogeneous system
of equations Ax = Bx, were first studied in [23]. In particular, the following
proposition was proven (see also [10]):

Proposition 1. The solutions of the homogeneous system Ax = Bx of Rn
max,

where A,B ∈ Rs×n
max, form a finitely generated max-plus cone.

More generally, a non-homogeneous system Ax⊕b = Cx⊕d can be associated
to the homogeneous system

(
A b

)
z =

(
C d

)
z of Rn+1

max. Then, the solutions
of the former are given by the first n coordinates of the solutions z verifying
zn+1 = 1 of the latter. Using the equivalence between max-plus polyhedra and
cones established in Sect. 2.2, the following statement holds:

Corollary 1. The solutions of the system of equations Ax⊕b = Cx⊕d, where
A,B ∈ Rs×n

max and b,d ∈ Rs
max, form a max-plus polyhedron of Rn

max.

In particular, a representation of the solution polyhedron can be obtained by
computing a minimal system of generators of the cone of solutions of

(
A b

)
z =(

C d
)
z. This is why we only consider homogeneous systems Ez = Fz in Rn+1

max

for the rest of the section.
First, let us consider the case in which the system of constraints is reduced

to one equation ez = fz, where e, f ∈ R1×(n+1)
max . We denote by (εi)1≤i≤n+1 the

max-plus analogue of a canonical basis in Rn+1
max, i.e. εii = 1 and εij = 0 for j 6= i.

It can be shown that the vectors (fjεi)⊕ (eiε
j), where ei � fi and ej � fj , form

a generating system of the solution cone.
The general case of a system of s equations can be solved by induction on s,

following the method by elimination proposed in [23]:

– when s = 0, there is no constraint, so that the family εi form a generating
system of the solution.

– if s ≥ 1, let E′z = F ′z be the system of equations formed by the (s−1) first
equations, and ez = fz the last equation of Ez = Fz. If G′ = (g1, . . . ,gp)
is a system of generators of E′z = F ′z, then we have Ez = Fz if and only
if there exists y ∈ Rp

max such that (eG′)y = (fG′)y and z = G′y (G′ being
seen as a matrix whose columns are the gi). The equation (eG′)y = (fG′)y



of Rp
max can be solved using the method given above. If H = (h1, . . . ,hq) is a

generating system of its solutions, the vectors G′h1, . . . , G′hq form a system
of generators of the solutions of Ez = Fz.

Theorem 1. A minimal system of generators of the solutions of the s equations
Ez = Fz in Rn+1

max can be computed in O(n×s× c4n+1,s) operations, where cn+1,s

is the maximal number of generators of the set of solutions of a system of s
equations in Rn+1

max.

As a consequence, the solving algorithm is polynomial in the maximal number
of the generators which may arise. In comparison, the cost of Chernikova’s al-
gorithm [24], which allows to convert the representation of a classical convex
polyhedron by inequalities into an equivalent representation by generators, is
quadratic in the number of generators, when it is executed on hypercubes of
Rn. However, it seems that the problem of solving max-plus (in)equalities is
intrinsically more complex, as even an inequality ex � fx of Rn

max generates a
quadratic number of generators in n, while this number is linear in the clas-
sical case. Moreover, most implementations of the domain of classical convex
polyhedra now involve efficient tests based on the number of inequalities satu-
rated by the computed generators, in order to eliminate redundant ones (see,
for instance, [25]). In contrast, no such properties relative to the saturation of
max-plus inequalities are yet proven.

Bounding the maximal number of generators cn+1,s is an interesting combi-
natorial problem. An exponential bound is given in [26], where it is shown that
cn+1,s ≤ s×

(
n2/3 + n+ 1

)s, but the optimal bound is not known. Future work
could focus on the comparison of cn+1,s with its classical analogue for convex
polyhedra, which is in O(sn). But for now, all we can say is that the solution of
a system can be computed in O(s2 × n8s+1) operations.

Example 1. With n = 2, let us consider the system of two equations x1⊕1 = x1

and x2 ⊕ 1 = x2. It corresponds to the system x1 ≥ 1 and x2 ≥ 1. The
associated homogeneous system is z1 ⊕ 1z3 = z1 and z2 ⊕ 1z3 = z2. Solv-
ing the first equation yields a generating family G consisting of the vectors
g1 = [1;−∞; 0], g2 = [−∞; 0;−∞], g3 = [0;−∞;−∞]. Multiplying the left
and the right members of the second equation by the matrix G yields the
equation 1y1 ⊕ y2 = y2, whose generating family H consists of the vectors
h1 = [−∞; 0;−∞], h2 = [−∞;−∞; 0], and h3 = [0; 1;−∞]. The vectors Gh1,
Gh2, and Gh3 form the family ([−∞; 0;−∞] , [0;−∞;−∞] , [1; 1; 0]), which is
obviously minimal. It represents a max-plus polyhedron with one vertex [1; 1],
and two rays with representatives [0;−∞] and [−∞; 0].

From Systems of Generators to Systems of Constraints. A system of generators
can be converted to a system of constraints describing the same max-plus poly-
hedron. Given a max-plus polyhedron P provided with a system of generators
G, the set P⊥ of constraints ax⊕ b = cx⊕ d verified by the polyhedron P is a
cone of (R1×n

max × Rmax)2 (each constraint ax⊕ b = cx⊕ d being represented by
the pair ((a, b), (c, d))). Moreover, it can be shown that a constraint is verified



by the polyhedron if and only if it is verified by all its generators. Hence, we
have P⊥ = {((a, b), (c, d)) ∈ (R1×n

max × Rmax)2 | ∀i.
(
a b
)
gi =

(
c d
)
gi}, i.e.

P⊥ =
{

((a, b), (c, d)) ∈ (R1×n
max × Rmax)2 | tG

(
ta
b

)
= tG

(
tc
d

)}
,

where t· is the matrix transposition operator.
As a consequence, a minimal system of generators of the cone P⊥ can be

computed by using the algorithm presented in the previous paragraph, with a
complexity in O(p×n× c42n+2,p). Then, the system of constraints formed by the
generators of the cone P⊥ can be shown to be a representation of the max-plus
polyhedron P under the form of constraints. As for generators, we are interested
in manipulating minimal representations by systems of constraints. Here, the
computed constraints form a minimal generating family of the cone P⊥, which
is a good point. However, it may not be a minimal system of constraints, i.e.
some constraints are possibly redundant. This is basically due to the fact that the
cone P⊥ represents a set of equations closed by symmetry, reflexivity, and transi-
tivity. Extracting a minimal system of constraints would have a major drawback:
it would be very costly since we would have to compare corresponding max-plus
polyhedra, hence to convert many systems of constraints to generators (see the
definition of the abstract partial order in Sect. 3.1). Moreover, in our experimen-
tations (see Sect. 4), the size taken by systems of constraints is negligible, this
is why minimal generating families of the cone P⊥ are satisfactory.

2.4 Max-plus Polyhedra and Zones

Interval and zone constraints are obviously particular forms of max-plus systems
of constraints described in Sect. 2.3.

We next show that a representation by intervals and zones can be extracted
from a system of generators of a max-plus polyhedron. Recall that if A ∈ Rn×p

max ,
the residuated matrix [27] A/A is given by (A/A)ij = min1≤k≤pAik−Ajk (with
−∞+∞ = +∞). Observe that if G is a minimal system of generators of Rn+1

max,
and if G (seen as a matrix) does not have a row consisting only of −∞ entries,
then G/G ∈ R(n+1)×(n+1)

max . Using the fact that cone(G/G) (i.e. the cone gener-
ated by the column of G/G) is the least sublattice containing cone(G) [28], we
deduce the following theorem:

Theorem 2. The cone cone(G/G) coincides with the zone of Rn
max defined by:

∀i, j ∈ {1, . . . , n}, xi − xj ≥ (G/G)ij ,

∀i ∈ {1, . . . , n}, (G/G)i,n+1 ≤ xi ≤ −(G/G)n+1,i .

Moreover, if G has no row consisting only of −∞ entries, then the smallest zone
containing the cone(G) is given by cone(G/G).

During the reduction to zones, the rows of G consisting only of −∞ entries
can be simply not considered, since they correspond to coordinates xi constant
equal to −∞. Hence, Th. 2 provides an effective algorithm to convert max-plus
polyhedra to zones.



3 Abstract semantics

Let us consider a set Var of n distinct variables xi. Our abstraction consists
in representing sets of environments σ : Var → R by max-plus polyhedra P of
R2n

max, i.e. either by minimal systems G of generators of R2n+1
max , or by systems

S of max-plus equality constraints Ax ⊕ b = Cx ⊕ d of R2n
max.4 Intuitively, the

n first dimensions of the polyhedra represent the variables xi, while the n last
ones represent their opposite −xi. The concretization of max-plus polyhedra is
defined equivalently according to their representation:

γ(P ) := {σ | (σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn), 1) ∈ cone(G))} ,

or γ(P ) :=
{
σ |

A(σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn))⊕ b
= C(σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn))⊕ d

}
.

As mentioned in Sect. 1, this allows to infer invariants of the form max(λ0, x1 +
λ1, . . . , xn + λn) ≤ max(µ0, x1 + µ1, . . . , xn + µn) and min(λ′0, x1 + λ′1, . . . , xn +
λ′n) ≤ min(µ′0, x1 + µ′1, . . . , xn + µ′n).5

3.1 Order-theoretic Operators

Partial Order. An abstract partial order can be defined on max-plus polyhedra
by comparing systems of generators. Given two max-plus polyhedra P and Q
represented by the systems of generators G and H respectively, we have P v Q
if and only if for any g ∈ G, g ∈ cone(H) (or equivalently, H(H \ g) = g).
Hence, the concretization γ can be shown to be monotonic. The complexity of the
evaluation of G v H is O(n×p×q), p and q being the cardinality of the families G
andH. Note that we can define equivalentlyv by using a representation ofQ by a
system of constraints Ax⊕b = Cx⊕d, and testing whether

(
A b

)
g =

(
D d

)
g

for any g in G. Then, the operation has a complexity in O(n× p× t), where t is
the number of constraints in the system of Q.

Joining Max-plus Polyhedra. Given two systems of generators G and H, an
abstract join operator t can be defined as the minimal system G of generators
extracted from the family G ∪H. If p and q are the cardinality of the families
G and H, the union can be performed in O(n× (p+ q)2). It can be shown to be
a sound join operator, and even the best possible one.

Intersection. By duality, an abstract intersection operator can be naturally de-
fined on two polyhedra by concatenating the systems of constraints representing
the polyhedra. Equivalently, we can define the intersection operator when one

4 Each system S is represented by a minimal generating family of the cone P⊥.
5 The latter are computed under the form max(−λ′0,−x1 − λ′1, . . . ,−xn − λ′n) ≥

max(−µ′0,−x1−µ′1, . . . ,−xn−µ′n). In fact, the abstract domain is able to infer more
general invariants of the form max(λ0, x1 +λ1, . . . , xn +λn,−x1−λ′1, . . . ,−xn−λ′n) ≤
max(µ0, x1 + µ1, . . . , xn + µn,−x1 − µ′1, . . . ,−xn − µ′n).



polyhedron is represented by a minimal system G of generators while the other is
represented by a system of constraints Ax⊕b = Cx⊕d. Indeed, it can be shown
that solving the homogeneous system of constraints

((
A b

)
G
)
z =

((
C d

)
G
)
z

by replacing the family εi by the gi in the initial step, exactly yields a minimal
system of generators of the intersection. In that case, the complexity of the in-
tersection is O(t× p× c4p,t), where p is the cardinality of G and t the number of
constraints of the system Ax⊕ b = Cx⊕ d.

The intersection operator allows to handle conditional program statements
of the form ±x ≤ k or ±x ≤ ±y + k. Other conditions can be either ignored
(which is sound), or handled using a linearization (see Sect. 3.3).

Widening. If n ≥ 2, infinite ascending chains of max-plus polyhedra of Rn
max can

be built. As a result, a widening operator is defined to enforce convergence. It
follows the initial definition of the widening over classical convex polyhedra [7].
Formally, if two max-plus polyhedra P and Q are respectively represented by a
system of constraints and a minimal system G of generators, the max-plus poly-
hedron P ∇Q is defined as the system of constraints formed by the constraints
ax⊕b = cx⊕d of P which are also verified by Q, i.e. ∀g ∈ G.

(
a b
)
g =

(
c d
)
g.

As for the widening defined in [7], the result of the widening depends on
the system of constraints chosen to represent the max-plus polyhedra. In [29],
the definition of the widening over classical convex polyhedra was improved to
overcome this problem, by adding to the result the constraints of Q which are
equivalent to some constraints of P . They can be discovered either by checking
whether they can replace a constraint of P without changing the represented
polyhedron, or by considerations on the saturation of some linear inequalities
by generators [30]. In max-plus algebra, the former method is particularly costly
since it requires to convert some systems of constraints to generators. More-
over, we do not have yet any proof that the latter approach could be applied,
because the equivalence between inequalities and equalities in the max-plus al-
gebra makes the problem harder. For that reason, the actual definition of the
widening operator is not fully satisfactory. Nevertheless, the experimentations
are very encouraging since the widening allows to exactly infer the expected
invariant for each of our examples (see Sect. 4).

Reduction. A system of octagonal constraints (i.e. of the form ±xi ± xj ≥ cij)
can be extracted from any representation by generators using Sect. 2.4. These
constraints can be then refined using the closure algorithm of octagons [2]. The
resulting octagon can be seen as a max-plus polyhedron over the variables ±xi.
Intersecting it with the initial max-plus polyhedron yields a smaller abstract
element w.r.t v, but which represents the same set of concrete states. This
defines a reduction operator, which allows our representation to be more precise
than the abstract domain of octagons. Intuitively, the reduction operator enables
a communication between the variables xi and −xi. Note that, as for octagons,
the convergence property of the widening operator may not hold if the reduction
operator is applied to widened max-plus polyhedra.



3.2 Assignments

Max-plus Assignments. A max-plus assignment is an assignment of the form
xi ←

(
⊕n

j=1mjxj

)
⊕mn+1, for some 1 ≤ i ≤ n, and m1, . . . ,mn,mn+1 ∈ Rmax.

In particular, max-plus assignments include operations xi ← mn+1 and xi ←
xj +mj (where + is the classical addition). The abstract operator for max-plus
assignments consists in multiplying a minimal system of generators by a matrix
M corresponding to the assignment: M coincides with the max-plus identity
matrix, except that its ith row is replaced by m1 . . . mn+1 . It then remains to
extract a minimal system of generators from the result. This operator can be
shown to be sound. Its cost is O(n × (n2 + p2)). It can be easily generalized to
handle parallel max-plus assignments, without changing the complexity. Thus,
program assignments of the form x ← k and x ← ±y + k are implemented as
parallel max-plus assignments on the dimensions of variables x and −x.

Non-deterministic Assignments. A non-deterministic assignment xi ← ? can be
handled by adding a representative h of the ray formed by the ith axis (e.g.
hi = 1 and hj = 0) to a minimal system of generators, and then extracting a
new minimal system from the resulting family. This defines a sound operator,
whose cost is in O(n× p2) (p being the size of the initial system of generators).

Some assignments which do not belong to the classes previously discussed can
be linearized (see Sect. 3.3). Other can be soundly treated as non-deterministic.

3.3 Linearization

In this section, we indicate how to interpret general linear assignments (as in
classical linear algebra), i.e. non-linear max-plus expressions. For sake of sim-
plicity, the description is restricted to max-plus polyhedra of Rn

max, which infer
information on the positive variables x1, . . . , xn. A generalization to the full ab-
straction including the opposites −x1, . . . ,−xn is straightforward.

Suppose the variables x1, . . . , xn, at some control point of a program, belong
to a max-plus polyhedron P = co(V )⊕ cone(W ). If V = (vi)i and W = (wj)j ,

then for any k, xk =
(⊕p

i=1 αivi
k

)
⊕
(⊕q

j=1 βjw
j
k

)
, with

⊕p
i=1 αi = 1. In par-

ticular, αi � 1 for i ∈ {1, . . . , p}. More than that, we have αi = 1 for some
i ∈ {1, . . . , p}, hence

⊕p
i=1 αivi

k � minp
i=1 vi

k. Hence, we can write equivalently:
xk = v0

k ⊕
⊕p

i=1 αivi
k ⊕

⊕q
j=1 βjw

j
k, with

⊕p
i=1 αi = 1 and v0

j = minp
i=1 vi

j .

Sum. Consider now the assignment xn+1 ← xk + xl (+ is here the standard
addition, i.e. the multiplication in the max-plus algebra), where xn+1 is a newly
introduced variable (up to assigning xn+1 to a variable xm later, and removing
the (n+ 1)-th dimension). We then have:

xn+1 = v0
kv0

l ⊕
p⊕

i=1

αi

(
vi

kv0
l ⊕ v0

kvi
l

)
⊕

q⊕
j=1

βj

(
wj

kv0
l ⊕ v0

kwj
l

)
⊕N ,



which can be recognized as the sum of the first-order Taylor expansion (or lin-
earization) of the function (x, y) 7→ xy (in the max-plus algebra), and a non-
linear residual term N .

Let us define some new generators: v′0 =
(
v0,v0

kv0
l

)
, v′i = (vi,vi

kv0
l ⊕v0

kvi
l)

for i = 1, . . . , p, and w′i = (wi,wi
kv0

l ⊕ v0
kwi

l) for i = 1, . . . , q. Besides, we
add up a vertex, abstracting the first part of the non-linear term N : vp+1 =
[0; . . . ; 0;

⊕p
i,j=1 vi

kvj
l ], and if q > 0, a ray abstracting the second part of the

non-linear term N : wq+1 = [0; . . . ; 0; 1]. The returned system of generators
represents a sound approximation of the assignment on the initial polyhedron.6

Multiplication by a Constant. We interpret now the assignment xn+1 ← a × xk

where a is a constant. We suppose a ≥ 0.7 Then we have xn+1 = a × v0
k ⊕⊕p

i=1(a×αi)(a×vi
k)⊕

⊕q
j=1(a×βj)(a×wj

k),. Except in the trivial case a = 1,
we cannot abstract very precisely this expression. Our only choice is to introduce
a new vertex vp+1 = [0; . . . ; 0;

⊕p
i=1 a× vi

k ⊕
⊕q

j=1 a×wj
k].

Comparison with Linearization in Octagons. Ordinarily, only x ← ±y + [a, b],
x ← [a, b], or x ← ±x + [a, b] are interpreted exactly on octagons [2]. We claim
that given z← [a, b] encoded as a max-plus polyhedron, x← ±y + z, x← z, and
x← ±x+z are interpreted with our linearization, exactly as an octagon would do.
We also claim that linearization of assignments in the style of [31] for octagons
encoded as max-plus polyhedra is in general as precise or less precise than our
linearization on these max-plus polyhedra. This will be developed elsewhere.

4 Examples and Benchmarks

The abstraction defined in Sect. 3 has been implemented in an analyzer of 3 500
lines of OCaml. Our prototype only manipulates systems of generators, except in
the widening steps for which conversions to constraints are needed. It has been
evaluated on various programs described below.8 Table 1 indicates the number
of lines and variables of each program, the time the analyzer needs to compute
invariants, and the number of generators the resulting invariants have. For each
example, the memory consumption is negligible (at worst 9 Mb for oddeven9).

String and Array Manipulation. Our analyzer is able to infer precise invariants
on the advanced string manipulating functions memcpy and strncpy. The latter
copies at most n characters from src into dst. In particular, if the length of
src is smaller that n, the remainder of dst is filled with null characters. For
both programs, the expected final invariant min(len src, n) = min(len dst, n)
is successfully discovered by our analyzer.

The program partd is a decrementing initialization program which fills an
array with a value c, from the index q to p+1. Some array analyzes [32, 33] allow
6 Albeit not detailed here, the case p = 1 can be handled in a more precise manner.
7 The case xn+1 ← a× xk with a ≤ 0 rewrites into −xn+1 = (−a)× xk with −a ≥ 0.
8 Source codes are available at http://www.lix.polytechnique.fr/~allamige.



Table 1. Analysis benchmarks on a 3 GHz Pentium with 4 Gb RAM

Program # lines # var. # time (s) # gen.
memcpy 9 6 2.37 7
strncpy 19 7 9.82 8
parti 8 3 0.008 3
partd 7 3 0.008 3
partd2 10 4 0.084 4
partd3 14 5 0.272 5
partd4 17 6 0.73 6
partd5 20 7 2.15 7
partd6 22 8 6.98 8
partd7 25 9 10.98 9
partd8 28 10 28.35 10
partd9 31 11 40.95 11
partd10 34 12 68.94 12

Program # lines # var. # time (s) # gen.
partd11 37 13 129.86 13
partd12 40 14 196.32 14
partd13 43 15 335.62 15
partd14 46 16 420.03 16
partd15 49 17 672.49 17
bubble3 21 7 0.016 6
oddeven3 28 7 0.012 8
oddeven4 39 9 0.06 16
oddeven5 70 11 1.13 32
oddeven6 86 13 7.76 64
oddeven7 102 15 34.42 116
oddeven8 118 17 178.42 196
oddeven9 214 19 25939.76 512

to infer the loop invariant c(i+ 1, q), which means that the array t contains the
value c between the indexes i+1 and q (both included). However, without prior
information on the order of p and q, the final invariant on i with classical convex
polyhedra is only i ≤ p∧i ≤ q. Our analyzer is able to discover the relations i =
min(p, q), which is the most precise invariant. Similarly, each program partdk
corresponds to a sequence of k partial initializations. For each, our analyzer infers
the expected invariant expressing that i is the minimum of the k + 1 indexes.
An incrementing version of partd, parti, is also successfully analyzed.

For these examples, the widening steps (which require conversions from gen-
erators to constraints) are by far the more time consuming steps.

Sorting Algorithms. Consider now an implementation of bubble sort. We com-
pletely unfold the loop and specialize it to an array of three elements [x, y, z].
The resulting sorted array is supposed to be [i, j, k]. Our analyzer proves in
particular that i and k are respectively the smallest and biggest elements of the
three initial ones, without resorting to a heavy disjunctive analysis. In order to
prove more, i.e. about j (we “only” get j ≥ i and j ≤ k, and j is less than
the maximum of any pair of entries in the input array), we would need mixed
constraints with min and max (see Section 5).

Last but not least, consider the odd-even sort [34] on 2k elements. Here we
start with an array of four elements [i, j, k, l], the resulting sorted array should
be [x, y, z, t]. We find automatically in particular that x and t are the mini-
mum and the maximum of i, j, k, and l. In fact, the max-plus constraints that
are generated are quite dense. This sorting algorithm is probably of worst-case
complexity for our analysis. Programs oddeveni (for i = 3 to 9) are odd-even
sorting algorithms for i elements. The analyzer proves that the last (resp. first)
element of the resulting array is the maximum (resp. minimum) of the inputs.
The exponentially growing complexity of the analysis is mainly due to the inter-
section operations (corresponding to the conditional statements). Nevertheless,
one should realize that the returned invariant could only be proven before our
domain by a disjunctive version of at least a zone analyzer; but for oddeven9
for instance, which consists of a sequence of 40 independent if blocks, a full
partition into the potential 240 ∼ 1012 paths would have to be used to discover
the same invariant, which is intractable both in time and memory.



5 Conclusion and Future Work

In this article, we described the first few applications of max-plus algebra to
static analysis. Many improvements are yet to be discovered. Among these are
improvements of the widening operator, to be applicable directly on a repre-
sentation with generators and not on a constraint form, which would allow to
compute invariants only by using the generator form for the whole analysis.

Existing memory manipulation analyzes could take advantage of our ab-
straction. For instance, it could be directly integrated in non-disjunctive array
predicate abstractions (e.g. [33]), and help to automatically discover precondi-
tions on C library functions [35] without disjunction. Moreover, when analyzing
sorting algorithms, in order to prove that the resulting array is correctly ordered
(and not infer information over its first and last elements only), one would need
min-max-plus [36] invariants, generalizing our max-plus and min-plus invariants.

Last but not least, in order to deal with the intrinsic complexity of the full
max-plus polyhedra, it is natural to think of generalizations of templates [37] to
max-plus algebra. This is left for future work.
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