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Abstra
t. The 
omputation of the multipli
ity and the approximation ofisolated multiple roots of polynomial systems is a di�
ult problem. In re
entyears, there has been an in
rease of a
tivity in this area. Our goal is to trans-late the theoreti
al ba
kground developed in the last 
entury on the theoryof singularities in terms of 
omputation and 
omplexity. This paper presentsseveral di�erent views that are relevant to address the following issues : pre-di
t the multipli
ity of a root and/or determine the number of roots in a ball,approximate fast a multiple root and give 
omplexity results for su
h prob-lems. Finally, we propose a new method to determine a regular system, 
alledequivalent but de�ated, i.e., admitting the same root as the initial singularone.
1. Introdu
tionLet x ∈ C

n and f(x) = (f1(x), . . . , fm(x)) ∈ C[x]m. We denote by I the idealgenerated by f . A multiple isolated root w of f(x) is by de�nition the only root wof f(x) in a 
ertain ball at whi
h its Ja
obian matrix Df(w) is not full rank. Weuse equally in the text singular root and multiple root. It is well known that thequadrati
 
onvergen
e of the Newton's method is lost in the neighbourhood of amultiple root. From starting points 
lose to su
h roots, Newton's method is found to
onverge linearly or to diverge. For example the behaviour of the Newton sequen
easso
iated to the system x − y2 = 0, 2cy3 − 2xy = 0 studied by Griewank andOsborne in [23℄ 
lose to the root (0, 0) of multipli
ity 3 depends on the parameter
c. For c = 5/32 there is linear 
onvergen
e and for c = 29/32 we 
an observe
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2 M. GIUSTI AND J.-C. YAKOUBSOHNdivergen
e (see Fig. 1 and Fig. 2).

Fig. 1. Linear 
onvergen
e of Newtonsequen
e from (0.1,−0.2) with c = 5/32. Fig. 2. Divergen
e of Newtonsequen
e from (0.1,−0.2) with c = 29/32.Our purpose is to re
over this quadrati
 
onvergen
e. In the example above, itis easy to determine a regular system admitting the same root as the initial one(we say an equivalent system). For that we remark the gradient of 2cy3 − 2xy iszero at (0, 0). Hen
e we 
an repla
e the polynomial 2cy3 − 2xy by the two partialderivatives : y and 3cy2 − x. It turns out that the system (x − y2, y, 3cy2 − x)is now regular at (0, 0). We will develop this idea in se
tion 6 to propose a newmethod to 
ompute an equivalent system. More formally, from the initial systemwe 
ompute a sequen
e of systems and stop when appears a regular system. A stepin this iterative method 
onsists of two operations 
alled respe
tively de�ating andkerneling [42℄. The de�ating operation repla
es the polynomials by their gradientwhen the latter vanishes at the root. After the de�ating operation we have ensuredthat all the rows of the Ja
obian matrix evaluated at the root are non-zero. Ifthis Ja
obian matrix is not full rank, the kerneling operation 
onsists to add thenumerators of 
oe�
ients of a formal S
hur 
omplement of this Ja
obian matrix.The multipli
ity of the root obtained after a step de
reases in the number of distin
tpolynomials added by the de�ating and kerneling operations.The goal of hunting the multipli
ity is ambitious. This is a long standing 
hallengein many areas as optimization, dynami
al systems, 
omputer algebra and numeri
alalgorithms dealing with polynomial or analyti
 systems. The univariate 
ase is wellunderstood : the Taylor series is a useful tool to des
ribe the multipli
ity of a root.For instan
e two iterations of Newton's method 
lose to a multiple root are enoughto predi
t the multipli
ity. In fa
t the Newton sequen
e 
onverges to the multipleroot following a quasi straight line. More pre
isely, if Nf(x) = x − f(x)

f ′(x)
is theNewton operator asso
iated to a univariate fun
tion f , the iterate xk+1 = Nf(xk),

(k ≥ 0), de�ning the Newton sequen
e starting from an initial point x0, it is easyto see that
xk+1 − w =

(

1− 1

m

)k

(x0 − w) +O((x0 − w)2), k ≥ 0.



MULTIPLICITY HUNTING 3S
hröder points out in [51℄ that the quadrati
 
onvergen
e is re
overed using thegeneralized Newton operator
Sf,m(x) = x−m

f(x)

f ′(x)
.This has been hugely studied in the literature see Ostrowski [45℄, Rall [47℄, House-holder [26℄, Traub [59℄. α-theory in the spirit of Smale [55℄ for multiple rootsin the univariate 
ase has been done by Giusti-Le
erf-Salvy-Yakoubsohn in [18℄and Yakoubsohn in [62℄, [63℄ : the links between Rou
hé's theorem and S
hröder-Newton's method for multiple roots are pre
isely studied. To sum up, the orderof Taylor series at the neighbourhood of the root de�nes the multipli
ity in theunivariate 
ase. But unfortunately, Taylor series are not su�
ient to determinethe multipli
ity in the multivariate 
ase. In order to re
over the quadrati
 
on-vergen
e, the behaviour of Newton's method has been extensively investigated byReddien [48℄, [49℄, De
ker-Keller-Kelley in [12℄, [13℄, [11℄, Griewank in [20℄, [21℄,Griewank-Osborne in [22℄, [23℄, Rabier-Reddien [46℄. These papers give 
hara
ter-izations of 
ertain singular points and assumptions to get 
onvergen
e. Sometimesthe authors propose modi�
ations to a

elerate the 
onvergen
e. In areas otherthan numeri
al analysis, the question of the multipli
ity theory has also been in-tensively studied. There are many di�erent way to introdu
e the 
on
ept of multi-ple root but, this is a more 
ompli
ated matter than it is in one dimension : thisrequires ba
kground from algebra and analysis. The elimination theory providesalgebrai
 obje
ts like standard bases and the introdu
tion of lo
al rings redu
esthe multipli
ity to the dimension of a quotient spa
e. From an algebrai
 point ofview, Fulton [16℄ 
hapter 7 gives a more general framework and explain di�erentapproa
hes. Milnor in Appendix B of [37℄ de�nes the multipli
ity as the degreeof a 
ertain map. Using a similar approa
h Arnold, Var
henko, Gusein-Zade [5℄rely the multipli
ity to the index of a holomorphi
 germ. Another presentation istreated by Aizenberg and Yuzhakov in [1℄ where the multipli
ity is de�ned via aperturbation of an analyti
 map. This last de�nition is dire
tly linked to homotopy
ontinuation methods whi
h 
an be a reliable and an e�
ient way to numeri
allyapproximate isolated roots. After these theoreti
al studies on the multipli
ity, wedon't forget the heuristi
 book of Stetter, Numeri
al Polynomial Algebra, [57℄ andespe
ially the 
hapter nine in
luding the work of Thallinger.The paper is organized as follows, �rst a survey part: in se
tion 2 we presentthe algebrai
 geometri
 point of view on the multipli
ity. Next, via the notionof duality, we give relationship to linear algebra where the multipli
ity appearsas the dimension of the kernel of a Ma
aulay matrix. In se
tion 3, we explainhow the multipli
ity 
omes numeri
ally from Rou
hé's theorem and re
all someresults. We also state an open problem 
on
erning an e�
ient Rou
hé's theo-rem. In se
tion 4, we justify why the homotopy methods work in the regular
ase and dis
uss the 
omplexity of the linear homotopy in the singular 
ase. These
tion 5 is devoted to des
ribe the theoreti
al ba
kground of some de�ation meth-ods whi
h are implemented in ApaTools of Zhonggang Zeng (re
ently upgraded toNAClab) http://www.neiu.edu/�zzeng/NAClab.html [64℄ and, PHCpa
k of JanVers
helde http://www.math.ui
.edu/�jan/download.html [60℄.Se
tion 6 is original. We propose a new way to determine an equivalent regularsystem from an initial singular system. We end by examples to show how this newmethod works.



4 M. GIUSTI AND J.-C. YAKOUBSOHN2. Multipli
ity. Algebrai
 geometri
 point of viewThis theoreti
al material belongs to folklore. An exposition 
an be found e.g.in Cox, Little, O'Shea in [8℄, among others.2.1. Number of roots and dimension. Let x = (x1, . . . , xn) ∈ C
n and I bethe ideal generated by the polynomials f1(x), . . . fm(x) of C[x]. The �rst question isthe number of isolated roots of a polynomial system. This is given by the followingBézout's Theorem whi
h is the equivalent of the fundamental theorem of algebrafor univariate polynomials:Theorem 1. The number of isolated roots of a polynomial system is less than theprodu
t of degrees of ea
h polynomial.We refer to Heintz [25℄ for a proof using the dimension theory. Evidently thebound of theorem 1 is rea
hed. If V (I) means the variety asso
iated to I then thefollowing theorem gives a ne
essary and su�
ient 
ondition for V (I) to be a setof isolated points. In this 
ase the 
ardinal of V (I) is the dimension of a quotientspa
e. More pre
isely :Theorem 2. Under the previous notations we have :1� The dimension of C[x]/I is �nite if and only if the dimension of V (I) iszero.2� In the �nite dimension 
ase we have :

dimC[x]/I ≥ #V (I)where #V (I) is the number of distin
t points of V (I). This equality holdsif and only if the ideal I is radi
al.In fa
t we will see below that when the ideal I is not radi
al we 
an asso
iatea multipli
ity at ea
h point of V (I) so that the sum of multipli
ities equals thedimension of C[x]/I. A way to determine dimC[x]/I is to 
ompute a Gröbnerbasis of the ideal I.Theorem 3. Let G a Gröbner basis of an ideal I. Let LT (G) the ideal generatedby the leading terms of G. De�ne SM(G) = {monomials /∈ LT (G) }. Then
dimC[x]/I = #SM(G).Example 1.Let f1(x, y) = x2+x3, f2(x, y) = x3+y2. Then V (I) = {(0, 0), (−1, 1), (−1,−1)}.Let us 
hoose the lexi
ographi
 ordering indu
ed by x > y; the leading term isthe Sup. A Gröbner basis of I is {y4 − y2, xy2 + y2, x2 − y2} and SM(G) =

{1, x, y, y2, y3, xy}. We dedu
e dimC[x]/I = 6. We will see that the root (0, 0) hasmultipli
ity 4. ◦Some 
omputer algebra systems 
ompute Gröbner bases, among themMaple, Magma,Singular. For instan
e, most 
lassi
al algorithms are implemented in Maple.2.2. Multipli
ity and dimension. A way to de�ne the multipli
ity at apoint of w = (w1, . . . , wn) ∈ V (I) is to 
onsider the lo
al ring C{x−w} of 
onver-gent series in n variables with the maximal ideal generated by x1−w1, . . .xn−wn.We denote by IC{x−w} the ideal generated by I in C{x−w}. Finally we 
onsiderthe lo
al quotient spa
e Aw = C{x − w}/IC{x − w}. The link between the lo
al



MULTIPLICITY HUNTING 5quotient spa
es asso
iated to points of V (I) and the quotient spa
e C[x]/I is givenby the :Theorem 4. Let V (I) = {w(1), . . . , w(N)}. Then1� C[x]/I ∼ Aw(1) × . . .×Aw(N) .2� dimC[x]/I =

N
∑

i=1

dimAw(i) .We then 
an de�ne the algebrai
 multipli
ity.De�nition 1. Let w ∈ V (I). The dimension of lo
al quotient spa
e Aw is thealgebrai
 multipli
ity of w.To determine the dimension of Aw, a similar way to the a�ne global settingis to 
ompute a standard basis of Aw. We then have an equivalent result to thetheorem 3.Theorem 5. Let S a standard basis of the ideal IC{x− w}. Let LT (S) the idealgenerated by the leading terms of S. De�ne SM(S) = {monomials /∈ LT (S) }.Then
dimAw = #SM(S).Example 2.Let f1(x, y) and f2(x, y) be as the example 1. We are interested �rst in the root

(0, 0). Let us 
hoose an ordering re�ning the valuation; the leading term will be theInf. A standard basis of IC{(x, y)} is S = {x2, y2}. Hen
e SM(S) = {1, x, y, xy}and dimA(0,0) = 4.In the same way a standard basis of IC{(x, y)− (−1, 1)} (respe
tively IC{(x, y)−
(−1,−1)}) is S = {x, y}. Hen
e SM(S) = {1} and dimA(−1,1) = dimA(−1,−1) = 1.The identity dimC[x]/I = dimA(0,0) + dimA(−1,1) + dimA(−1,−1) is satis�ed. ◦The tangent 
one algorithm [38℄ allows to 
ompute standard bases. An improvedversion of this algorithm is implemented in Singular by Greuel and P�ster [19℄.2.3. Multipli
ity and Duality. The link between multipli
ity and dualityis des
ribed �rst by Ma
aulay in [34℄ and perhaps also Gröbner [24℄. A modernexposition is done by Emsalem [15℄. More re
ent developments are given by Mari-nara, Möller, Mora in [36℄, Alonso, Marinari, Mora in [3℄, [4℄. Also improvements
on
erning 
omplexity are proposed by Mantza�aris, Mourrain [35℄, [41℄. For amultiple index α = (α1, . . . , αn) ∈ N

n, we denote by ∂α the di�erential operator
g → ∂αg(x)

∂xα
. The operator ∂α

w is the evaluation operator of ∂α at a point w of Cn.Also, if L =
∑

|α|≤k

Lα∂
α then Lw =

∑

|α|≤k

Lα∂
α
w.It is 
lassi
al that there is an isomorphism between the dual spa
e C[x]∗ of C[x]and the set of formal series in ∂w. Ma
aulay in [34℄ introdu
e the inverse systemof the ideal I

I⊥ = {L ∈ C[x]∗ : ∀g ∈ I, L(g) = 0}The result is that we 
an identify I⊥ and the dual of C[x]/I :Theorem 6. There is a 
anoni
al C-isomorphism between I⊥ and the dual of
C[x]/I.



6 M. GIUSTI AND J.-C. YAKOUBSOHNThe link between the duality and the multipli
ity is explained by the relationbetween the quotient rings Aw and the subspa
es
Dk

w(I) = {L =
∑

|α|≤k

Lα∂
α : ∀g ∈ I, Lw(g) = 0}.We will write Dk

w for Dk
w(I). We have :Theorem 7. A root w of f is isolated if and only if there exists an integer δsatisfying Dδ−1

w = Dδ
w. In this 
ase Dδ

w is the dual spa
e of Aw and the dimensionof Dδ
w is equal to the multipli
ity of w. In other words

dimAw = dimDδ
w.We 
all δ the thi
kness of the multiple root w.Remark 1.We adopt the term thi
kness whi
h is the translation of the fren
h word épais-seur introdu
ed by Ensalem in [15℄ rather than the term depth more re
ently usedby Mourrain, Matza�aris in [35℄ or Dayton, Li, Zeng [10℄, [9℄. ◦To 
ompute the dimension of the ve
tor spa
e Dk
w, let us introdu
e the Ma
aulaymatri
es

Sk = ( ∂α[w]((x − w)αfi(x)) ) |α|≤k−1
1≤i≤mTheorem 8. The ve
tor spa
e Dk

w is isomorphi
 to the kernel of Sk.Consequently the multipli
ity µ of w satis�es µ = dimKer(Sδ−1) = dimKer(Sδ).Example 3.Let f1 = x2 + y2 − 2, f2 = xy − 1. w = (1, 1). Let us 
onstru
t the Ma
aulaymatri
es in w = (1, 1) :
∂00 ∂10 ∂01 ∂20 ∂11 ∂02

S0 f1 0 | 2 2 | 2 0 2

S1 f2
0 |
−−

1
−−

1 |
− 0 1 0

(x− 1)f1 0 0 0 4 2 0
S2 (x− 1)f2 0 0 0 2 1 0

(y − 1)f1 0 0 0 0 2 4
(y − 1)f2 0 0 0 0 1 2We have su

essively rank(S0) = 0, rank(S1) = 1, rank(S2) = 4. Hen
e
orank(S1) = 
orank(S2) = 2. It follows the multipli
ity of (1, 1) is 2. ◦We now explain how the knowledge of the stru
ture of the dual spa
e permitsto �nd a regular system at w. Let µ the dimension of Dk

w and Λ = {Λ1, . . . ,Λµ} abasis of Dk
w. We introdu
e the polynomial system of mµ equations and n variables:

Λ(f) = (Λ1(f), . . . ,Λµ(f))with Λk(f) = (Λk(f1), . . . ,Λk(fm)). Mantza�aris and Mourrain state the following:Theorem 9. [35℄ The polynomial system Λ(f) is regular at w.



MULTIPLICITY HUNTING 7Example 4.A basis of the kernel of the Ma
aulaymatrix S2 of the example 3 is {(1, 0, 0, 0, 0, 0), (0, 1,−1, 0, 0, 0)}.Hen
e the set {∂(0,0), ∂(1,0) − ∂(0,1)} is a basis of D2
(1,1). Consequently

Λ(f1, f2) = (x2 + y2 − 2, xy − 1, 2x− 2y, y − x).It is easy to see the Ja
obian of Λ(f1, f2) has rank 2.3. Multipli
ity. Numeri
al point of view3.1. Multipli
ity and perturbation. From a numeri
al point of view anexa
t multiple root makes no sense. We must think of a 
luster of roots whi
h
omes from perturbations of the data. In this way we 
an 
onsider the initialsystem as 
lose to another system whi
h admits an exa
t multiple root.De�nition 2. A root w of f = (f1, . . . , fm) is regular if the Ja
obian matrix Df(w)has full rank (in the opposite 
ase w is a singular root).The link to the algebrai
 multipli
ity is given by the following.Proposition 1. The algebrai
 multipli
ity of a regular root is equal to 1.Proof. We denote by Df(w)∗ the adjoint of Df(w). Let I the ideal generatedby f . Sin
e Df(w) has full rank Df(w)∗Df(w) is invertible. Hen
e the idealgenerated by g(x) = (Df(w)∗Df(w))−1f(x) is equal to I. But
(Df(w)∗Df(w))−1f(x) = x− w +

∑

k≥2

1

k!
(Df(w)∗Df(w))−1Dkf(w)(x − w)k.Consequently LT (g) is generated by x− w. Its follows that dimAw = 1.A very useful result is the Rou
hé's theorem [50℄ whi
h links a perturbation ofanalyti
 fun
tions to the number of roots in a ball, see also Lojasiewi
z for a ver-sion in several variables [33℄.Theorem 10. Let f and g two analyti
 fun
tions de�ned in a real ball B(x, r) ⊂

C
n. If for all z ∈ ∂B(x, r) we have

||f(z)− g(z)|| < ||f(z)||then f and g have the same number of roots in B(x, r) where ea
h root is 
ountedas many times as its multipli
ity.Proposition 2. w is a singular isolated root of f if and only if the multipli
ity of
w is stri
tly greater than 1.Proof. Sin
e w is an isolated root there exists a ball B(w, r) where f admitsonly this root. There exists z0 ∈ ∂B(w, r) su
h that for all z ∈ ∂B(w, r) one has
||f(z)|| ≥ ||f(z0)||. Then the fun
tion g(z) = f(z) + y with ||y|| < ||f(z0)||/2satis�es the inequality of Rou
hé's theorem on ∂B(w, r). Consequently the numberof roots of g in B(w, r) is the multipli
ity, say µ, of w. Moreover for almost every
y, Sard's theorem insures that Dg(z) has full rank at ea
h of the roots. Hen
e theroots of g, say w(1), . . . , w(µ), are regular in the ball B(w, r). Let us 
onsider thehomotopy

h(z, t) = (1 − t)g(z) + tf(z) = f(z)− (1− t)y.



8 M. GIUSTI AND J.-C. YAKOUBSOHNWe have h(w(k), 0) = 0 for every k and h(w, 1) = 0. For almost every y, fromimpli
it fun
tion theorem there exists µ regular 
urves x(k)(t): [0, 1[→ B(w, r) su
hthat f(x(k)(t)) = (1 − t)y and x(k)(t)′ = −Df(x(k)(t))−1y. Hen
e if µ > 1 thequantities x(k)(1)′ make no sense and the root w is singular.The link between Rou
hé's theorem and the lo
al ring theory 
an be summarizedby the identity
dimAf

w =
∑

w̄∈B(w,r)∩g−1(0)

dimAg
w̄where Af

w (respe
tively Ag
w̄) is the lo
al quotient ring asso
iated to f (respe
tively

g). Here we �nd again the 
lassi
al idea from a numeri
al point of view that wedeal with 
lusters of roots rather than exa
t multiple roots.In the 
ase where the system has no root or only one regular root in a ball, it ispossible to give an e�e
tive version of Rou
hé's theorem : this is obtained from theTaylor series of f . It is also valid when the system f is analyti
.Theorem 11. [17℄ Let us 
onsider a ball B(x, r).1� If
||f(x)|| >

∑

k≥1

1

k!
||Dkf(x)||rkthere is no root in B(x, r).2� Let r be a positive real number smaller than the radius of 
onvergen
e of

∑

k≥0

1

k!
||Dkf(x)||rk . If
||Df(x)−1f(x)|| < r −

∑

k≥2

1

k!
||Df(x)−1Dkf(x)||rkthere is only one regular root of f in B(x, r).The 
ase of a simple double root has been studied by Dedieu-Shub [14℄.Theorem 12. Let c = 0.19830 . . . . For v, x ∈ C

n, ||v|| = 1, we de�ne the linearoperator :
A(x, f, v) = Df(x) +

1

2
D2f(x)(v,Πv)where Πv is the proje
tion on the spa
e spanned by v. Let L be the linear operatorde�ned by L(v) = Df(x)v and L(w) = 0 if w is orthogonal at v. Let B(x, f, v) =

A(x, f, v)− L. We introdu
e the quantity
γ2(f, x, v) = max

(

1, sup
k≥2

∣

∣

∣

∣

∣

∣

∣

∣

1

k!
B(f, x, v)−1Dkf(x)

∣

∣

∣

∣

∣

∣

∣

∣

1
k−1

)

.If we have
||f(x)||+ ||Df(x)v|| c

2γ2(f, x, v)2
<

c3

4||B(f, x, v)−1||γ2(f, x, v)4then f has two zeros (
ounting multipli
ities) in the ball of radius c

2γ2(f, x, v)2around x.



MULTIPLICITY HUNTING 9In fa
t the previous 
ase des
ribes double roots of 
orank one : they are 
lus-ters of two roots of embedding dimension one. A quantitative version of Rou
hé'stheorem in the embedding dimension 1 
ase is given by Giusti, Le
erf, Salvy, Yak-oubsohn in [17℄ but, the statement is te
hni
ally too di�
ult to appear here.Open problem 1.Find a qualitative version of Rou
hé's theorem for 
lusters of roots of analyti
systems. ◦Let us remark that the theorem 11 applied to the dual system Λ(f) of theorem 9
an prove the existen
e of a (regular) root of Λ(f).4. Multipli
ity and homotopy methodsHomotopy methods 
onsist to deform smoothly a system with known roots tothe initial system with unknown roots. These methods are 
urrently used to solvesystems of equations : the textbook of Allgower and Georg [2℄ or Morgan [39℄ are
lassi
al referen
es. The homotopy used in this se
tion is the linear homotopy h:[0, 1]×C
n → C

n de�ned by
h(x, t) = (1− t)ga,b(x) + tf(x)where ga,b(x) = (a1x

d1
1 − b1, . . . , anx

dn

n − bn). There are three kinds of 
urves
x(t) solutions of h(t, x(t)) = 0. First, the regular 
urves de�ned on [0, 1] whi
h
orrespond to a regular root of f(x). Next, the 
urves whi
h are only regular on
[0, 1[ due to the existen
e of a multiple root of f(x). Finally, the 
urves whi
h goto in�nity as t → 1 and whi
h 
orrespond to in�nite roots of f(x). In�nite rootsare expli
itly des
ribed using 
omplex proje
tive spa
e CP

n. Wright in [61℄ give aproof of Bézout's theorem using the linear homotopy. More pre
iselyTheorem 13. [61℄ Let F (x0, x) =
(

xd1
0 f1(x/x0), . . . , x

dn

0 fn(x/x0)
), Ga,b(x0, x) =

(a1x
d1
1 − b1x

d1
0 , . . . , anx

dn

n − bnx
dn

0 ) and
Ha,b(t, x0, x) = (1 − t)Ga,b(x0, x) + tF (x0, x).Let Za,b = {(t, x0, x) ∈ [0, 1[×CP

n : Ha,b(t, x0, x) = 0}. For almost (a, b) ∈ C
2nwe have :1� 0 ∈ C

n is a regular value of Ha,b(t, 1, x) = 0, i.e, DxH(t, 1, x) has fullrank of for all (t, x) ∈ [0, 1[×C
n su
h that Ha,b(t, 1, x) = 0.2� Za,b 
onsists of d1 . . . dn disjoint half-open ar
s in CP

n× [0, 1), where theendpoint of ea
h ar
 is a known root of Ga,b(x0, x) in CP
n × {0}, andwhere the limit of the other end of the ar
 is a root of F (x0, x).In fa
t linear homotopy methods are useful to prove Bézout's theorem : seeBlum, Cu
ker, Shub, Smale [7℄ page 199 and referen
es inside.A straightforward 
onsequen
e of this result is the multipli
ity 
an be 
omputedthanks to homotopy methods. More pre
iselyCorollary 1. Let us 
onsider the linear homotopy of the theorem 13. Ea
h isolatedroot (respe
tively root at in�nity) of multipli
ity µ generates µ homotopy paths x(t)
onverging towards it.To �nd one regular root, the 
omplexity and the analysis of this homotopymethod is studied by Shub and Smale in [53℄ and [54℄. A better 
omplexity bound



10 M. GIUSTI AND J.-C. YAKOUBSOHNis given by Shub [52℄. We give a simpli�ed version of this 
omplexity result in thelinear homotopy 
ase.Theorem 14. [52℄, [6℄ The number of numeri
al homotopy steps performed bythe proje
tive Newton's method to yield an approximate zero of the initial system isbounded by
71d3/2Lwhere d is the maximum of degrees of f ′
is and L is the 
ondition length of the linearhomotopy (see the referen
es above for this de�nition).The paper of T.Y Li [32℄ gives a good review on homotopy 
ontinuation meth-ods and their improvement for de�
ient polynomial systems, i.e., for whi
h theisolated solutions are fewer than the Bézout's number.Open problem 2.Estimate the 
omplexity to approximate a multiple root using linear homotopy.

◦In the 
hapter 10 of [56℄, Sommese and Wampler give some numeri
al heuristi
sto deal with singular end games based on power series, Cau
hy integral and tra
etheorem. In the same vein, Huber and Vers
helde in [27℄ explore links betweenpolyhedral end game and power series to give some re�nements. Another interestingway is proposed by Kobayashi, Suzuki and Sakai in [28℄ using Zeuthen's rule butunfortunately without study of 
omplexity.5. Re
overing the quadrati
 
onvergen
eThe idea is to 
ompute from the initial system another one whi
h is regularat the singularity. The theorem 9 gives an augmented system 
omputed fromthe kernel of the Ma
aulay matri
es Sk. But the size of Sk is very huge i.e.,
m
∑k

j=0

(

n+j−1
j

)

×
(

n+k+1
n

). In the sequel, we des
ribe two kinds of what is 
alleda de�ation method.5.1. Le
erf de�ation method. [29℄ The idea is to di�erentiate well 
hosenequations and to sele
t new equations at ea
h step of the method in order to obtaina regular system at the root w. From now we adopt the Matlab notation : xi:j isthe ve
tor (xi, . . . xj).Initial Step : the system f = (f1, . . . , fm) is 
onsidered as a subset of C{x − w}.We set Φ1 = f and R1 = 1.Step k ≥ 1. We 
ompute a new system Φk+1 and a new integer Rk+1 from Φk and
Rk. Let mk be the valuation of Φk and

Φ̃k =
∂mk−1

∂xmk−1
Rk

Φk :=

{

∂j

∂xj
Rk

Φk : 1 ≤ j < mk

}Let rk the rank of Ja
obian of Φ̃k with respe
t to the variables xRk:n evaluated at
wRk:n. Then we set Rk+1 = rk + Rk. Next we extra
t a subset Ωk from Φ̃k su
hthat the gradient of Ωk has rank rk at wRk:n.Finally, thanks to the impli
it fun
tion theorem, there exist rk power series yRk:Rk+1−1in C{xRk+1:n − wRk+1:n} expressing xRk:Rk+1−1 in terms of xRk+1:n su
h that
Ωk(yRk:Rk+1−1, xRk+1:n) = 0. Then

Φk+1(xRk+1:n) = Φk(yRk:Rk+1−1, xRk+1:n).



MULTIPLICITY HUNTING 11Stopping 
riterion. The above 
onstru
tion stops when Rk+1 = n+ 1.Output of the method. Let us suppose that there are ν steps. The output is thesystem Ω = (Ω1(xR1:n, . . . ,Ων(xRν :n)). The properties of this de�ation sequen
eare given byTheorem 15. Without loss of generality we 
an assume that at ea
h step of thede�ation pro
ess the variable xRk
is in Weierstrass position with respe
t to the idealgenerated by Φk ( i.e. there exists an element of this ideal of valuation mk having

xmk

Rk
in its support). The 
onstru
tion above works up to a permutation of thevariables. Moreover :1� 1 ≤ rk ≤ n−Rk + 1.2� 1 ≤ mkdim

(

C{xRk:n − wRk:n}/Φ̃k

)

≤ dim (C{xRk:n − wRk:n}/Φk).3� The system Ω is regular at the root w.4� m1 . . .mµ ≤ dimAw.Example 5.Let f := (f1, f2, f3) = (x2 + x+ y+ z, y2 + y+ x+ z, z2 + z + x+ y). The root
w = (0, 0, 0) has multipli
ity 4.We denote by Ok a generi
 power series ∑

|α|≥k

aα(x− w)α.Let Φ1 = {f1, f2, f3} and R1 = 1. The rank of the Ja
obian matrix of f is r1 = 1at x. We �nd m1 = 1 and Φ̃1 = Φ1 and R2 = 2. We 
hoose Ω1 = {f1}. The powerseries solution of f1(y1, y, z) = 0 is
y1(y, z) = −y − z − y2 − 2 zy − z2 +O3.Substituting x by y1 in Φ1 we �nd

Φ2 = {O3,−2zy− z2 +O3,−y2 − 2zy +O3}.For the next step m2 = 2 and
Φ̃2 :=

∂Φ2

∂y
= {Φ2,−2z +O2,−2y − 2z +O2}.The rank of the Ja
obian matrix of Φ̃2 is r2 = 2. We 
hoose Ω2 = {−2z+O2,−2y−

2z + O2} Sin
e R3 = R2 + r2 = 4. The de�ation 
onstru
tion stops. The regularsystem at w is
Ω = {f1,−2z +O2,−2y − 2z +O2}.We refer to [29℄ for the study of the 
omplexity of this 
onstru
tion. Another typeof de�ation method mixing symboli
 and numeri
al 
omputations have been 
onsid-ered by Ojika, Watanabe, and Mitsui in [44℄, [43℄ : the new equations are generatedby symboli
 Gaussian eliminations but it remains to perform the numeri
al analysisand to study the 
omplexity of this modi�ed de�ation method.5.2. Augmented systems and de�ation methods. From the knowledgeof the stru
ture of the lo
al quotient algebra, Mantza�aris and Mourrain determinea regular system given in the theorem 9. We sket
h now another 
onstru
tion ofde�ation sequen
e based on a augmentation of the number of equations and of thenumber of variables. First, one de�nes a de�ation operator whi
h asso
iates to



12 M. GIUSTI AND J.-C. YAKOUBSOHNthe initial system f , a new system Defl(f, x, y) where (x, y) ∈ C
n+j . Next, oneiterates this operator to obtain the de�ation sequen
e :

x0 = x, y0 = y, F0 = f, xk+1 = (xk, yk), Fk+1 = Defl(fk, x
k, yk), k ≥ 0.The length of the de�ation is the ve
tor (n0, . . . , nk, . . .) where nk is the dimensionof the kernel of the Ja
obian matrix DFk(x

k). The thi
kness of the de�ation is thenumber N su
h that nN+1 = 0.In this way su
h a type of de�ation operator had been proposed by Leykin, Ver-s
helde, Zhao in [30℄, and extended in [31℄. From an original system f = (f1, . . . , fm)with rankDf(w) = r they de�ne the following :
LV Z(f, x, y) := LV Z(f,B, h, x, y) =







f(x)
Df(x)By
h∗y − 1where B is a random n× (r + 1) matrix and h a random r + 1 ve
tor. The matrix

Df(x)B has generi
ally a rank equal to r and the dimension of KernelDf(w)B is
1. Hen
e there exists a unique λ ∈ C

r+1 su
h that Df(w)Bλ = 0 and h∗λ− 1 = 0.Theorem 16. [30℄, [31℄ The multipli
ity of the root (w, λ) of the system LV Z(f, x, y)is stri
tly less than the multipli
ity of the root w of the system f .Unfortunately the de�ated system LV Z(f, x, y) is not regular at its root (w, λ).In this 
ase the method 
onsists to de�ate more until to �nd a regular system. WehaveTheorem 17. [30℄, [31℄ The number of de�ation steps to obtain a regular systemis bounded by the multipli
ity of w. If N is the number of de�ations, the regularsystem has n+N +
∑N

k=1 rk variables and 2N (n+ 1)− 1 equations.Example 6. [11℄Let f(x, y) = (x + y3, x2y − y4) with (0, 0) has multipli
ity 3. The numberof de�ations steps is 3 and the 
oranks of the Ja
obian matri
es of the de�atedsystems are equal to 1. The regular system has 16 variables and 23 equations. ◦Example 7. [10℄Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root has multipli
ity 131.Two steps of LVZ de�ation are needed with length (4, 4). The regular system has
7 variables and 19 equations. ◦Another way to 
onstru
t de�ated systems by adding variables and equations hasbeen proposed par Dayton and Zeng in [10℄ for the polynomial 
ase and Dayton, Li,Zeng in [9℄ for the analyti
 
ase. The de�ation operator proposed by these authorsis

DLZ(f, x, y) := DLZ(f,R, e1, x, y) =







f(x)
Df(x)y
Ry − e1where R is p× n random matrix in order that [ Df(w)

R

] has full rank and e1 =

(1, 0, . . . , 1)T with size p is the dimension of the kernel of Df(x).Theorem 18. [10℄, [9℄ The number of steps of the DLZ de�ation is bounded bythe thi
kness δ of the root w de�ned in theorem 7. The last de�ated system has 2δvariables and 2δn+

δ−1
∑

k=0

2kpk where pk is the 
orank of DLZ system k.



MULTIPLICITY HUNTING 13Example 8. [10℄Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root has multipli
ity 131.Two steps of DLZ de�ation are needed with length (4, 4). The regular system has
16 variables and 28 equations. ◦The example 6 lies to the 
lass of systems of �breadth one� as de�ned by Daytonand Zeng in [10℄, i.e., the length is (1, . . . , 1). Note that this notation 
orrespondsto the embedding dimension 1 as introdu
ed by Giusti, Le
erf, Salvy, Yakoubsohnin [17℄. For this 
lass the DLZ de�ation 
an be modi�ed in order to obtain µnvariables and µm equations.6. De�ating and kernelingWe propose a new 
onstru
tion to de�ate a system without adding new vari-ables. It is based on two operations we 
alled de�ating and kerneling in the intro-du
tion.6.1. De�ating. This operation 
onsists to repla
e an equation g(x) = 0 bythe n equations ∂ig(x) = 0, i = 1 : n when we have simultaneously g(w) = 0 and
∂ig(w) = 0, i = 1 : n. We then 
an de�ne the following re
ursive algorithm.de�ating(f, w̄, ǫ)- Input : f = (f1, . . . , fm), w̄ a point 
lose to a multiple root w of f , and ǫa pre
ision.- Let J := Df(x) and Jw̄ := Df(w̄).- Let mJ the number of lines of J .- fdeflated = ∅- for k = 1 : mJ- if max1≤j≤n |Jw̄(k, j)| ≤ ǫ then- de�ating(J(k, :), w̄, ǫ)- else- fdeflated = fdeflated ∪ {fk/LT (fk)}- end if- end for- Output fdeflatedRemark 2.The assignment fdeflated = fdeflated ∪ {fk/LT (fk)} must be understood in thefollowing way : the polynomial fk/LT (fk) is added if it is not already an elementof the set fdeflated.◦6.2. Kerneling. Let us 
onsider a system f = (f1, . . . , fm) su
h that ea
hline of Df(w) is non zero and Df(w) has a rank r < n. Without loss of generalitywe 
an write

Df(w) =

(

A(w) B(w)
C(w) D(w)

)

∈ C
m×nwhere A(w) is an invertible matrix of size r × r. Then the S
hur 
omplement

D(w)− C(w)A−1B(w) is zero. Hen
e w is a root of the system
D(x) − C(x)A−1(x)B(x) = 0.The kerneling operation 
onsists of adding to the initial system at most the (m −
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r)× (n− r) polynomials given by the non zero numerators of the 
oe�
ients of theS
hur 
omplement. We then 
an de�ne the following algorithm.kerneling(f, w̄, ǫ)- Input : f = (f1, . . . , fm), w̄ a point 
lose to a multiple root w of f , and ǫa pre
ision. Ea
h line of Df(w̄) is non zero.- Determine r the numeri
al rank of Df(w̄).- Determine an invertible submatrix A(w̄) of Df(w̄) of size r × r.- Compute S(x) = det(A(x))D(x) − det(A(x))C(x)A−1B(x).- fdeflated = f ∪ {elements of S(x)}- Output fdeflated6.3. Equivalent system. Combining de�ating and kerneling operations we
ompute a equivalent system of n variables and n equations.equivalent(f, w̄, ǫ)- Inputs : f = (f1, . . . , fm), w̄ a point 
lose to a multiple root w of f and ǫa pre
ision.- fdeflated = f .- while Dfdelated(w̄) is not numeri
ally full rank- fdeflated = de�ating(fdeflated, w̄, ǫ)- fdeflated = kerneling(fdeflated, w̄, ǫ)- end while- fdeflated = {n equations of full rank from fdeflated}- Output fdeflated6.4. Example. Let us 
onsider

f(x, y) = (x3/3 + xy2 + x2 + 2xy + y2, x2y + x2 + 2xy + y2)The point (0, 0) is a root of f(x, y) = 0 with multipli
ity 6. The de�ating algorithmapplied with w = (0, 0) gives :
∂1 ∂2 ∂1 ∂2

x2 + y2 + 2x+ 2y 2yx+ 2x+ 2y 2xy + 2x+ 2y x2 + 2x+ 2yAll these previous quantities vanish at w. An additional step of de�ating operationgives
∂11 ∂12 ∂21 ∂22 ∂11 ∂12 ∂11 ∂12

2x+ 2 2y + 2 2y + 2 2x+ 2 2y + 2 2x+ 2 2x+ 2 2All these quantities are non zero at w. Hen
e the de�ated system is :
fdeflated(x, y) = (x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y)Now we 
an use the kerneling algorithm of this new system.

Dfdeflated(x, , y) =





2x+ 2 2y + 2
y + 1 x+ 1
2x+ 2 2



 .Then Dfdeflated(0, 0) has rank one. We 
an 
onsider A(x) = 2x + 2. The S
hur
omplement of Dfdeflated(x, y) asso
iated to 2x+ 2 is
(

x+ 1
2

)

− 2y + 2

2x+ 2

(

y + 1
2x+ 2

)

=
1

x+ 1

(

x2 + 2x− y2 − 2y
−2xy − 2y

)

.



MULTIPLICITY HUNTING 15Finally from the system
(x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y, x2 + 2x− y2 − 2y, y)we 
an 
hoose

fdeflated(x, y) = (x+ y + xy, y)whi
h is regular at w.6.5. Why the multipli
ity de
reases? Let I be the ideal generated by
f1, . . . , fm and w a multiple isolated root of f1 = . . . = fm = 0. We deal with
C{x− w} the lo
al ring of 
onvergent power series at w and IC{x− w} the idealgenerated by I in C{x−w}. Then the multipli
ity of w is the dimension of the lo
alquotient algebra C{x− w}/IC{x− w}. This dimension is �nite if and only if theroot w is isolated. We denote by {g1, . . . , gp} a lo
al standard basis of IC{x−w}.Let < LT (IC{x−w}) > the ideal generated by the leading monomials of IA. Thenthe multipli
ity is the number of monomial that are not 
ontained in < LT (IC{x−
w}) >. This number is independent of the 
hosen order on the monomials. Wehave the two 
lassi
al results :Lemma 1. Let h not in IA and h(w) = 0. Then the multipli
ity of w as rootof f1 = . . . = fm = 0 is stri
tly greater than the multipli
ity of w as root of
h = f1 = f2 = . . . = fm = 0.Proof. Sin
e the leading term of h is not in IC{x − w} the lemma followseasily.The result we use to explain why the the multipli
ity de
reases under the a
tion ofthe algorithm de�ated is stated by Arnold, Gusein-Zade and Var
henko in [5℄ page100 :Lemma 2. Let g = (g1, . . . , gn) ∈ C[x]n. Then the Ja
obian det(Dg(x)) is not inthe ideal < g1, . . . , gn >.The two lemmas below explain why the multipli
ity de
reases under the oper-ations of de�ating and kerneling.Lemma 3. Let w a multiple root of a system f1 = . . . = fm = 0 su
h that
gradf1(w) = 0. Then the multipli
ity of w as root of f1 = . . . = fm = 0 is stri
tlygreater than the multipli
ity of w as root of ∂1f1 = . . . = ∂nf1 = f2 = . . . = fm = 0.Proof. Let g = (f1, g2 . . . , gn), the g′is being sele
ted from the f2, . . . , fm.Sin
e the ja
obian of g is not is the ideal generated by g, see lemma 2, then ea
hline of the ja
obian matrix of g has at least one element whi
h is not in < g >.In parti
ular at least one of ∂if1's is not in < g >. Following the lemma 1 we aredone.Lemma 4. Let w a multiple root of f1 = . . . = fm = 0 su
h that gradfi(w) 6= 0,
i = 1 : m. Let r be the rank of Df(w) and

Df(w) =

(

A(w) B(w)
C(w) D(w)

)where A(w) is an invertible matrix of size r × r. Let S(x) = det(A(x))D(x) −
C(x)∆(x)B(x) where ∆(x) = det(A(x))A(x)−1. Then the multipli
ity of w asroot of f1 = . . . = fm = 0 is stri
tly greater than the multipli
ity of w as root of
S11 = . . . = Sm−r,n−r = f1 = f2 . . . = fm = 0.



16 M. GIUSTI AND J.-C. YAKOUBSOHNProof. It is su�
ient to prove that one of Sij 's is not in the ideal< f1, . . . , fm >.Then, by lemma 1, the multipli
ity of w as root of f1 = . . . = fm = 0 is stri
tlygreater than the multipli
ity of w as root of Sij = f1 = f2 . . . = fm = 0.Let F = (f1, . . . , fr, h1, . . . , hn−r) with hi ∈ {fr+1, . . . , fm}.We have det(DF (x)) = det(A(x) det(SF (x)) where SF (x) is the S
hur 
omple-ment of DF (x) asso
iated to A(x). From lemma 2, det(DF (x)) is not in the ideal
< F >. So it is the same for det(A(x) and det(SF (x)) whi
h divide det(DF (x)).Hen
e there exists at least n− r 
oe�
ients of the matrix SF (x) whi
h are not inthe ideal < F >. Sin
e the 
oe�
ients of SF (x) are also 
oe�
ients of the matrix
S(x) the 
on
lusion follows.How mu
h the multipli
ity drops at ea
h step of the equivalent algorithm ?Theorem 19. For k ≥ 1, let F0 = f and Fk−1 the de�ated system obtained at thestep k−1 of equivalent algorithm and mk−1 the number of polynomials of Fk−1. Let
pk be the number of polynomials we add by de�ating operation at the step k. Wenote by Gk the system Fk augmented by these pk polynomials. Let rk be the rankof the ja
obian matrix of Gk at w. Then the number N of steps of the algorithmstops is equal to

min{k : rk = n or N
∑

k=1

sk + tk ≤ µ}where max(0,min(1, pk)) ≤ sk ≤ pk and 1 ≤ tk ≤ pk(n− rk).Proof. From the lemmas 3 and 4 the multipli
ity de
reases at least by one.But we 
an be more pre
ise. Let µk be the multipli
ity of w as root of Fk. Thede�ating algorithm gives pk polynomials. Then the multipli
ity of the root w of
Gk drops by µk−1 − sk where max(0,min(1, pk) ≤ sk ≤ pk. Next, if the ja
obianmatrix of Gk at w has rank rk = n the equivalent algorithm stops. Otherwise, themultipli
ity of w as root of Fk is µk−1 − sk − tk where 1 ≤ tk ≤ pk(n − rk). Thisbound is justi�ed be
ause all the polynomials of the S
hur 
omplement 
omputedby the kerneling algorithm 
an be equal.7. ExamplesWe �rst treat three examples given in [65℄. These examples show it is notne
essary to know the 
omplete stru
ture of the lo
al quotient algebra to determinea regular equivalent system from the initial one with a multiple root.Example 9. [65℄

fk(x1, . . . , xn) = x1 + . . .+ xn + x2
k, k = 1 : n.The ja
obian matrix Df(x) =











2x1 + 1 1 . . . 1
1 2x2 + 1 . . . 1...
1 1 . . . 2xn + 1











has rankone at (0, . . . , 0). The S
hur 
omplement asso
iated to 2x1 + 1 gives the equations:
x1 = 0

(2x1 + 1)(2xk + 1)− 1 = 0, k ≥ 2.



MULTIPLICITY HUNTING 17Example 10. [65℄
fk(x1, . . . , xn) = x3

k − xk+1xk+2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x3
n−1 − xnx1

fn(x1, . . . , xn) = x3
n − x1x2A multiple root is (0, . . . , 0). In the �rst de�ation step we repla
e the fk's bytheir gradients. We obtain the equations :

x1 = . . . = xn = 0.Example 11. [65℄
fk(x1, . . . , xn) = xk + . . .+ xn−2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x1 + . . .+ xn−2 + x5
n−1 + x2

n

fn(x1, . . . , xn) = x1 + . . .+ xn−2 + x2
nAmultiple zero is (0, . . . , 0). The Ja
obian matrixDf(x) =





In−2 0 0
1 . . . 1 5x4

n−1 2xn

1 . . . 1 0 2xn



has rank n − 2 at the multiple root (0, . . . , 0). The S
hur 
omplement asso
iatedto In−2 furnishes the equations
5x4

n−1 = 2xn = 0.After one step of de�ation we obtain the system
f1 = . . . = fn−2 = xn−1 = xn = 0.Example 12. 
mbs1 [58℄

f(x, y, z) = (x3 − yz, y3 − xz, z3 − xy).A multiple root is (0, 0, 0). A �rst of de�ation gives the equations x = y = z =
0.Example 13. 
mbs2 [58℄

f(x, y, z) =(x3 − 3x2y + 3xy2 − y3 − z2,

z3 − 3z2x+ 3zx2 − x3 − y2,

y3 − 3y2z + 3yz2 − z3 − x2).A multiple root is (0, 0, 0). A �rst step of de�ation gives the equations x = y =
z = x− y = x− z = y − z = 0.Example 14. 
aprasse [40℄

f(x, y, z, t) =(−x3z + 4 xy2z + 4 x2yt+ 2 y3t+ 4 x2 − 10 y2 + 4 xz − 10 yt+ 2,

− xz3 + 4 yz2t+ 4 xzt2 + 2 yt3 + 4 xz + 4 z2 − 10 yt− 10 t2 + 2

y2z + 2 xyt− 2 x− z,

2 yzt+ xt2 − x− 2 z).



18 M. GIUSTI AND J.-C. YAKOUBSOHNThe multiple root is (2,−i
√
3, 2, i

√
3). The gradient of ea
h fk is non zero at

w and the ja
obian matrix Df(w) has rank 2. The step of kerneling adds the fourpolynomials before we get a regular system at w.
−10xt−5xy−5 zt+ 17

4 xyt2z2−7/2 yt2x2z3+11/4 yt4x2z+ 17
4 yt2x2z−2 y2txz4+ 47

8 y2txz2+ 49
8 xt3z2y2−7x2z3t−3/4x2zt3

+ 31
4 x2zt+ 37

4 y2z3t−5 y2zt3−25 y2zt+5xyt4+ 103
8 xz2t+xyz4+ 15

4 xyz2+15 yzt2−xt3+ 19
4 z3t+11 zt3−5/2 yz3+5/4 y3t2z3

−y3t4z+11 y3t2z−3 y2t5x+7 y2t3x+ 13
4 yt2z3−yt4z−1/2 x3t3z2− 7

8 xt3z2−3/2x3tz2+4xty2+x3tz4−xtz4−3/2x2yz3+2x2yz

− 9
8 x3t5+3xt5+3/4 x3t3+3/8 x3t,

5/2xy2z+ 25
2 xzt2+5/4 y3t− 25

4 y2− 25
4 t2− 25

2 yt+ 55
4 yt3+15 yzxt+1/2 yz4x2t−5/4 yz2x2t3−4 yz2x2t−19/2 y2zxt2−5/4 yz3xt

+3 yzxt3− 13
8 xt2y2z3+ 25

4 t4− 23
4 t2z2x2+15/2 t2z2y2+1/4 y3z4t−3/2 y3z2t3−3/2 y3z2t+1/2 y2z5x−3 y2z3x−yz2t3+x3t2z3

−3/8x3t4z−1/8x3t2z+3/2x2t5y−11/2x2t3y− 13
8 xt2z3+1/2xt4z+5 t2z2−3/2 t4x2−15/2 t4y2−5/2 t2x2+ 55

4 t2y2+15/2 z2y2

−5/4 z4y2+y3t5−5/4 yt5−9/4 y3t3,

−5xt−10xy−15 yz−10 zt+9/4 xyt2z2+24 yt2x2z+ 25
4 y2txz2−7/2 y2x2z3t+ 43

8 y2x2zt3− 7
8 y2x2zt+ 33

4 y3t2xz2−6 yt2x3z2

−3/2x2z3t− 11
8 x2zt3+ 103

8 x2zt+5 y2z3t+6 y2zt3+2 y2zt+7 xyt4−15 xyt2+ 31
4 xz2t−1/2xyz4+ 43

2 xyz2+5 yzt2−5 xt3

+3/8 z3t+3 zt3+11/4 yz3+15 y3t2z+11 y2t3x−7x3tz2+23xty2−9x2yz3+8x2yz+ 21
8 y4z3t−5 y4zt3+4 y4zt−3 y3xt4

−3 y3xt2−3/2 y3xz4+2 y3xz2−yz2x3+ 25
4 x3t3+ 19

4 x3t−5 y3z+ 21
4 y3z3+ 13

4 yt2x3−x4tz+7/4 yt4x3+yz4x3+x4z3t−zx4t3,

10xy2z+10/3 yz2t+ 20
3 xzt2+10 y3t− 25

3 y2− 25
3 t2− 50

3 yt+10 yt3+20 yzxt− 47
6 yz2x2t−6 y2zxt2−4/3 yz3xt−4 yzxt3+x3yz3t

−5/6x3yzt3−7/6 xy3z3t+2/3 xy3zt3−2/3 xy3zt−5/4 y2t2x2z2−4/3 t2z2x2−8/3 t2z2y2−2/3 y3z2t−7/2 y2z3x−13/2 x3t2z

+4/3x2t3y−5/3 t4y2+10 t2x2+ 80
3 t2y2+10/3 z2y2−1/4 z4y2− 34

3 y3t3−5/3 y4t2+2 y4z2+4/3 y4t4−3/4 y4z4−2/3x2y2t4

+2/3x2y2z4− 23
12 x2y2z2+x4t2z2Example 15. de
ker2 [11℄

f(x, y) =(x + y3, x2y − y4).A multiple root is (0, 0, 0). A �rst step of de�ation gives the equations x+y3 =
x = y = 0.Example 16. mth191 [30℄

f(x, y) =(x3 + y2 + z2 − 1, x2 + y3 + z2 − 1, x2 + y2 + z3 − 1).A multiple root is w = (0, 1, 0). The gradients of ea
h polynomials are nonzero at w. The ja
obian matrix has rank 1. The step of kerneling adds the fourpolynomials :
x (9 xy − 4)

z (3 y − 2)

x (3 y − 2)

z (9 zy− 4)The system f1 = x (9 xy − 4) = z (3 y − 2) = 0 is regular at w.Example 17. DZ1 [10℄
f(x, y, z, t) =(x4 − yzt, y4 − xzt, z4 − xyt, t4 − xyz).A multiple root is w = (0, 0, 0, 0). A step of de�ation gives x = y = z = t = 0.
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f(x, y, z) =(x4, x2y + y4, z + z2 − 7x3 − 8x2).A multiple root is w = (0, 0,−1). A step of de�ation adds the equation x =

y = 0.Example 19. DZ3 [10℄
f(x, y) =(14 x+33 y−3

√
5(x2+4xy+4 y2+2)+

√
7+x3+6 x2y+12xy2+8 y3

41
8 x−9/4 y−1/8

√
5+x3−3/2x2y+3/4 xy2−1/8 y3+3/8

√
7(4 xy−4x2−y2−2).A multiple root is w = ((2

√
7 +

√
5)/5, (2

√
5−

√
7)/5). The gradients of ea
hpolynomials are non zero. The step of kerneling adds the polynomial

−360x2
√
5y+630xy2

√
5+240xy−180

√
7x3+360

√
7y3+1260 x2+1440 y2−360x3

√
5+540x3y+45x2y2−540 xy3−180 y3

√
5

+540
√
7x

√
5y+180x4+180 y4+1605−960

√
7x+480

√
7y−600

√
5x−1200

√
5y+360

√
7
√
5x2−630

√
7x2y−360

√
7xy2

−360
√
7
√
5y2Its gradient is zero at w. The step of de�ation repla
es it by the two followingpolynomials :

1/3 y+7/2x+x3+3/4
√
7
√
5y−4/3

√
7−5/6

√
5−3/4

√
7x2−3/2x2

√
5+9/4x2y+1/8xy2−3/4 y3−x

√
5y+ 7

8 y2
√
5+

√
7
√
5x

−7/4
√
7xy−1/2

√
7y2

4/9x+16/3 y+4/3 y3+
√
7
√
5x+ 8

9

√
7− 20

9

√
5+2

√
7y2+x3+1/6 x2y−3xy2−y2

√
5−2/3 x2

√
5+7/3x

√
5y−7/6

√
7x2

−4/3
√
7xy−4/3

√
7
√
5yThe system build from f1, f2 and from the two previous polynomials is regular at

w.Example 20. Ojika2 [43℄
f(x, y, z) =(x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1).A multiple root is w = (1, 0, 0). The rank of Df(w) is 2. The step of kernelingadds the equation 4xyz − x− y − z + 1 = 0.Example 21. Ojika3 [43℄

f(x, y, z) =(x + y + z − 1, 2x3 + 5y2 − 10z + 5z3 + 5, 2x+ 2y + z2 − 1).A multiple root is w = (−5/2, 5/2, 1). The rank of Df(w) is 2. The step ofkerneling adds the equation 3x2z − 5yz + 5y − 3x2 = 0.Example 22. Le
erf [29℄
f(x, y, z) =( 2 x+ 2 x2 + 2 y + 2 y2 + z2 − 1,

(x+ y − z − 1)
3 − x3,

(

2 x3 + 2 y2 + 10 z + 5 z2 + 5
)3 − 1000 x5 ).



20 M. GIUSTI AND J.-C. YAKOUBSOHNA multiple root is w = (0, 0,−1). The rank of Df(w) is one. There is only onestep of de�ation to obtain the regular system
x+ x2 + y + y2 + 1/2 z2 − 1/2,

y − z − 1,

x+ y − z − 1,

9

14
x5 +

5

28

(

2 x3 + 2 y2 + 10 z + 5 z2 + 5
)

x2 − 625

126
x,

y,

x,

1 + z. 8. Con
lusion and future workWe have shown how to derive an equivalent regular system from a singularinitial one, when we know the root. The stability of this pro
ess will be done in afuture work and we des
ribe brie�y how to pro
eed. But from a numeri
al point ofview a multiple root makes no sense and it is more realisti
 to speak of a 
luster ofroots : a m�
luster of roots is a open ball whi
h 
ontains m isolated regular rootsof the system. Moreover we would hope for results with a �small� size of the 
luster.The operation of de�ating is based on the evaluation of the gradient of a fun
tion,say g(x), at given point w̄. To de
ide whether there exists a root (or a 
luster ofroots) of this gradient 
losed to w̄ we need to know if there exists x̄1 su
h that
(x̄1, w̄2, . . . , w̄n) is 
losed to w̄ and 
an
els the gradient of g. This 
an be donewith the theoreti
al ba
kground developed in [18℄ where the words �
losed to� and�small� are quanti�ed.The operation of kerneling requires more attention sin
e we must dis
over the nu-meri
al rank of a ja
obian matrix at a point w̄ �
losed to� the multiple root or the
luster of roots. The di�
ulty is that the rank drops only at the multiple root orin the 
luster of roots. We propose to �x a 
oordinate, say x1, and to perform aLU de
omposition of the ja
obian evaluated at (x1, w̄2, . . . , w̄n). Ea
h element ofthe diagonal of the matrix U of the LU de
omposition is a polynomial in x1. Thenumeri
al rank of the ja
obian matrix is the number of these polynomials having aroot �
losed to� w̄1.We illustrate these prin
iples on Le
erf's example 22 [29℄. We �rst show how to nu-meri
ally dis
over that there is probably a point w near (x0, y0, z0) = (0.1, 0.09,−1.1+
0.1i) where the ja
obian matrix has a rank one. For that we determine the matrix
U of the LU de
omposition at (x0, y0, z). The diagonal of U is given by
2.4

2.28 + 4.51 z + 2.28 z2,

3633.58 + 25322.98 z + 75771.82 z2 + 126177.32 z3 + 126276.08 z4 + 75944.48 z5 + 25413.69 z6 + 3650.4 z7.The Newton iteration (or more generally the S
hröder iteration) initialized to z0and applied respe
tively to the polynomials U22(z) and U33(z) 
onverges respe
-tively to −0.99 + 0.14i and −0.98 + 0.05i. The initial point z0 is an approximatedzero of U22(z) and U33(z). This is the meaning given to the word �
losed to�. Wewill dedu
e that the numeri
al rank of the ja
obian is one.In this example we 
an numeri
ally prove that there exists a point w where the twolast lines of the ja
obian matrix are zero. In fa
t the evaluation of the gradients of
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f2 and f3 at (x0, y0, z) gives
∇f2(x0, y0, z) =(2.91 + 5.94 z + 3.0 z2, 0.0003 (99 + 100 z)2 , −0.0003 (99 + 100 z)2),

∇f3(x0, y0, z) =(4.03 + 18.06 z + 27.03 z2 + 18.0 z3 + 4.5 z4,

− 0.0000000432
(

25091 + 50000 z + 25000 z2
)2

,

0.0000012
(

25091 + 50000 z + 25000. z2
)2

(1 + z)).Thanks to Newton iteration initialized at z0 and applied su

essively to ea
h poly-nomial 
oordinate of these two gradients we �nd a root 
losed to z0. From thiswe 
an prove the existen
e of a perturbed system of the initial one with the twolast lines of the ja
obian matrix are zero. With this information we de�ate thetwo 
orresponding equations of the initial system. This heuristi
 approa
h will be
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