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Multiplicity hunting and approximating multiple roots of
polynomials systems*

M. Giusti and J.-C. Yakoubsohn

AsTrACT. The computation of the multiplicity and the approximation of
isolated multiple roots of polynomial systems is a difficult problem. In recent
years, there has been an increase of activity in this area. Our goal is to trans-
late the theoretical background developed in the last century on the theory
of singularities in terms of computation and complexity. This paper presents
several different views that are relevant to address the following issues : pre-
dict the multiplicity of a root and/or determine the number of roots in a ball,
approximate fast a multiple root and give complexity results for such prob-
lems. Finally, we propose a new method to determine a regular system, called
equivalent but deflated, i.e., admitting the same root as the initial singular
one.

1. Introduction

Let € C" and f(z) = (f1(x),..., fm(z)) € C[z]™. We denote by I the ideal
generated by f. A multiple isolated root w of f(x) is by definition the only root w
of f(x) in a certain ball at which its Jacobian matrix D f(w) is not full rank. We
use equally in the text singular root and multiple root. It is well known that the
quadratic convergence of the Newton’s method is lost in the neighbourhood of a
multiple root. From starting points close to such roots, Newton’s method is found to
converge linearly or to diverge. For example the behaviour of the Newton sequence
associated to the system z — y? = 0, 2cy® — 22y = 0 studied by Griewank and
Osborne in [23] close to the root (0,0) of multiplicity 3 depends on the parameter
c. For ¢ = 5/32 there is linear convergence and for ¢ = 29/32 we can observe
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divergence (see Fig. 1 and Fig. 2).
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Fig. 1. Linear convergence of Newton Fig. 2. Divergence of Newton
sequence from (0.1, —0.2) with ¢ = 5/32. sequence from (0.1, —0.2) with ¢ = 29/32.

Our purpose is to recover this quadratic convergence. In the example above, it
is easy to determine a regular system admitting the same root as the initial one
(we say an equivalent system). For that we remark the gradient of 2cy® — 2zy is
zero at (0,0). Hence we can replace the polynomial 2cy® — 22y by the two partial
derivatives : y and 3cy? — x. It turns out that the system (v — y2, y,3cy? — )
is now regular at (0,0). We will develop this idea in section 6 to propose a new
method to compute an equivalent system. More formally, from the initial system
we compute a sequence of systems and stop when appears a regular system. A step
in this iterative method consists of two operations called respectively deflating and
kerneling [42]. The deflating operation replaces the polynomials by their gradient
when the latter vanishes at the root. After the deflating operation we have ensured
that all the rows of the Jacobian matrix evaluated at the root are non-zero. If
this Jacobian matrix is not full rank, the kerneling operation consists to add the
numerators of coefficients of a formal Schur complement of this Jacobian matrix.
The multiplicity of the root obtained after a step decreases in the number of distinct
polynomials added by the deflating and kerneling operations.

The goal of hunting the multiplicity is ambitious. This is a long standing challenge
in many areas as optimization, dynamical systems, computer algebra and numerical
algorithms dealing with polynomial or analytic systems. The univariate case is well
understood : the Taylor series is a useful tool to describe the multiplicity of a root.
For instance two iterations of Newton’s method close to a multiple root are enough
to predict the multiplicity. In fact the Newton sequence converges to the multiple
f(@)
f'(x)
Newton operator associated to a univariate function f, the iterate zx4+1 = Ny(z),
(k > 0), defining the Newton sequence starting from an initial point zg, it is easy
to see that

root following a quasi straight line. More precisely, if Ny(z) = = — is the

k
$k+1—w—<1—%> (xg —w) + O((zo — w)?), k>0.
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Schroder points out in [51] that the quadratic convergence is recovered using the
generalized Newton operator

f(x)

f'@)

This has been hugely studied in the literature see Ostrowski [45], Rall [47], House-
holder [26], Traub [59]. a-theory in the spirit of Smale [55] for multiple roots
in the univariate case has been done by Giusti-Lecerf-Salvy-Yakoubsohn in [18]
and Yakoubsohn in [62], [63] : the links between Rouché’s theorem and Schréder-
Newton’s method for multiple roots are precisely studied. To sum up, the order
of Taylor series at the neighbourhood of the root defines the multiplicity in the
univariate case. But unfortunately, Taylor series are not sufficient to determine
the multiplicity in the multivariate case. In order to recover the quadratic con-
vergence, the behaviour of Newton’s method has been extensively investigated by
Reddien [48], [49], Decker-Keller-Kelley in [12], [13], [11], Griewank in [20], [21],
Griewank-Osborne in [22], [23], Rabier-Reddien [46]. These papers give character-
izations of certain singular points and assumptions to get convergence. Sometimes
the authors propose modifications to accelerate the convergence. In areas other
than numerical analysis, the question of the multiplicity theory has also been in-
tensively studied. There are many different way to introduce the concept of multi-
ple root but, this is a more complicated matter than it is in one dimension : this
requires background from algebra and analysis. The elimination theory provides
algebraic objects like standard bases and the introduction of local rings reduces
the multiplicity to the dimension of a quotient space. From an algebraic point of
view, Fulton [16] chapter 7 gives a more general framework and explain different
approaches. Milnor in Appendix B of [37] defines the multiplicity as the degree
of a certain map. Using a similar approach Arnold, Varchenko, Gusein-Zade [5]
rely the multiplicity to the index of a holomorphic germ. Another presentation is
treated by Aizenberg and Yuzhakov in [1] where the multiplicity is defined via a
perturbation of an analytic map. This last definition is directly linked to homotopy
continuation methods which can be a reliable and an efficient way to numerically
approximate isolated roots. After these theoretical studies on the multiplicity, we
don’t forget the heuristic book of Stetter, Numerical Polynomial Algebra, [57] and
especially the chapter nine including the work of Thallinger.

The paper is organized as follows, first a survey part: in section 2 we present
the algebraic geometric point of view on the multiplicity. Next, via the notion
of duality, we give relationship to linear algebra where the multiplicity appears
as the dimension of the kernel of a Macaulay matrix. In section 3, we explain
how the multiplicity comes numerically from Rouché’s theorem and recall some
results. We also state an open problem concerning an efficient Rouché’s theo-
rem. In section 4, we justify why the homotopy methods work in the regular
case and discuss the complexity of the linear homotopy in the singular case. The
section 5 is devoted to describe the theoretical background of some deflation meth-
ods which are implemented in ApaTools of Zhonggang Zeng (recently upgraded to
NAClab) http://www.neiu.edu/~zzeng/NAClab.html [64] and, PHCpack of Jan
Verschelde http://www.math.uic.edu/” jan/download.html [60].

Section 6 is original. We propose a new way to determine an equivalent regular
system from an initial singular system. We end by examples to show how this new
method works.

Stm(r) =2 —m
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2. Multiplicity. Algebraic geometric point of view

This theoretical material belongs to folklore. An exposition can be found e.g.
in Cox, Little, O’Shea in [8], among others.

2.1. Number of roots and dimension. Let x = (z1,...,2,) € C" and I be
the ideal generated by the polynomials f1(x),. .. fim(z) of C[z]. The first question is
the number of isolated roots of a polynomial system. This is given by the following
Bézout’s Theorem which is the equivalent of the fundamental theorem of algebra
for univariate polynomials:

Theorem 1. The number of isolated roots of a polynomial system is less than the
product of degrees of each polynomial.

We refer to Heintz [25] for a proof using the dimension theory. Evidently the
bound of theorem 1 is reached. If V(I) means the variety associated to I then the
following theorem gives a necessary and sufficient condition for V(I) to be a set
of isolated points. In this case the cardinal of V(1) is the dimension of a quotient
space. More precisely :

Theorem 2. Under the previous notations we have :
1- The dimension of Clz]/I is finite if and only if the dimension of V(I) is
zero.
2— In the finite dimension case we have :

dim Clz]/I > #V (I)

where #V (I) is the number of distinct points of V(I). This equality holds
if and only if the ideal I is radical.

In fact we will see below that when the ideal I is not radical we can associate
a multiplicity at each point of V(I) so that the sum of multiplicities equals the
dimension of C[z]/I. A way to determine dim C[z]/I is to compute a Grobner
basis of the ideal I.

Theorem 3. Let G a Gribner basis of an ideal I. Let LT(G) the ideal generated
by the leading terms of G. Define SM(G) = {monomials ¢ LT(G) }. Then

dim Clz]/I = #SM(G).
Example 1.

Let fi(z,y) = 22+23, fo(z,y) = 23+y?. Then V(I) = {(0,0), (—1,1), (=1, -1)}.
Let us choose the lexicographic ordering induced by x > y; the leading term is
the Sup. A Grobner basis of I is {y* — 3%, zy? + v2, 2% — 4%} and SM(G) =
{1,z,y,9% vy3, zy}. We deduce dimCJ[z]/I = 6. We will see that the root (0,0) has
multiplicity 4. o
Some computer algebra systems compute Grobner bases, among them Maple, Magma,
Singular. For instance, most classical algorithms are implemented in Maple.

2.2. Multiplicity and dimension. A way to define the multiplicity at a
point of w = (w1, ..., wy) € V(I) is to consider the local ring C{z — w} of conver-
gent series in n variables with the maximal ideal generated by z1 — w1, ...z, — wy,.
We denote by IC{z —w} the ideal generated by I in C{xz —w}. Finally we consider
the local quotient space A,, = C{x — w}/IC{z — w}. The link between the local
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quotient spaces associated to points of V' (I) and the quotient space C[z]/I is given
by the :

Theorem 4. Let V(I) = {w™,... . wN)}. Then
1- C[LL']/I ~ Aw(l) X ... X Aw(N)-

N
2—- dim Clz]/I = ZdimAw(i).
i=1

We then can define the algebraic multiplicity.

Definition 1. Let w € V(I). The dimension of local quotient space A, is the
algebraic multiplicity of w.

To determine the dimension of A,,, a similar way to the affine global setting
is to compute a standard basis of A,,. We then have an equivalent result to the
theorem 3.

Theorem 5. Let S a standard basis of the ideal IC{x — w}. Let LT(S) the ideal
generated by the leading terms of S. Define SM(S) = {monomials ¢ LT(S) }.
Then

dim A, = #SM(S).

Example 2.

Let f1(z,y) and fa(x,y) be as the example 1. We are interested first in the root
(0,0). Let us choose an ordering refining the valuation; the leading term will be the
Inf. A standard basis of IC{(z,y)} is S = {z%,y?}. Hence SM(S) = {1,,y,zy}
and dim Ay = 4.

In the same way a standard basis of IC{(z,y) — (—=1,1)} (respectively IC{(x,y) —
(=1,-1)})is S = {x,y}. Hence SM(S) = {1} and dim A(_; ;) = dim A, 1) = 1.
The identity dim C[z]|/I = dim Aoy + dim A(_y 1) + dim A(_; _y) is satisfied. o
The tangent cone algorithm [38] allows to compute standard bases. An improved
version of this algorithm is implemented in Singular by Greuel and Pfister [19].

2.3. Multiplicity and Duality. The link between multiplicity and duality
is described first by Macaulay in [34] and perhaps also Grobner [24]. A modern
exposition is done by Emsalem [15]. More recent developments are given by Mari-
nara, Moller, Mora in [36], Alonso, Marinari, Mora in [3], [4]. Also improvements
concerning complexity are proposed by Mantzaflaris, Mourrain [35], [41]. For a
multiple index o = (a1, ..., a,) € N, we denote by 9% the differential operator
g 9g(x)

oz«
Also,if L= )" La0* then Ly, = Y La0g.
o <k lee| <k
It is classical that there is an isomorphism between the dual space C[z]* of Clz]
and the set of formal series in 0,,. Macaulay in [34] introduce the inverse system
of the ideal I

. The operator 9 is the evaluation operator of 0% at a point w of C”".

It ={LeClz]* : VgeI, L(g) =0}
The result is that we can identify I+ and the dual of C[z]/T :

Theorem 6. There is a canonical C-isomorphism between It and the dual of

Clz]/I.
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The link between the duality and the multiplicity is explained by the relation
between the quotient rings A,, and the subspaces

DE(I)={L =Y La0“:Vgel, Ly(g) =0}

la| <k
We will write DX for D¥ (I). We have :

Theorem 7. A root w of f is isolated if and only if there exists an integer ¢
satisfying D1 = DS . In this case D? is the dual space of Ay and the dimension
of DS is equal to the multiplicity of w. In other words

dimA,, = dimD? .
We call 6 the thickness of the multiple root w.
Remark 1.

We adopt the term thickness which is the translation of the french word épais-
seur introduced by Ensalem in [15] rather than the term depth more recently used
by Mourrain, Matzaflaris in [35] or Dayton, Li, Zeng [10], [9]. o

To compute the dimension of the vector space D¥ . let us introduce the Macaulay
matrices

Sk = (Galw]((z —w)* fi(2)) ) 1a1r—
1<i<m
Theorem 8. The vector space DY is isomorphic to the kernel of Sy.
Consequently the multiplicity p of w satisfies p = dim Ker(Ss_1) = dim Ker(Ss).
Example 3.
Let fi =22+ y? -2, fo =2y — 1. w = (1,1). Let us construct the Macaulay
matrices in w = (1,1) :

| Qo 0w dor Do O Doz |

So A 0] 2 2] 2 0 2
s f |0 LM g g g
(x—=1)f1| O 0 0 4 2 0
Sa (x—1)fs 0 0 0 2 1 0
(y—1fi] O o 0 0 2 4
(y—Df2] 0 o 0 0 1 2

We have successively rank(Sp) = 0, rank(S1) = 1, rank(S2) = 4. Hence
corank(S1) = corank(S3) = 2. It follows the multiplicity of (1,1) is 2. o

We now explain how the knowledge of the structure of the dual space permits
to find a regular system at w. Let p the dimension of DX and A = {Aq,...,A,} a
basis of D¥ . We introduce the polynomial system of mu equations and n variables

ACf) = (Aa(f), - Aulf)
with Ax(f) = (Ax(f1),- .., Ax(fim)). Mantzaflaris and Mourrain state the following

Theorem 9. [35] The polynomial system A(f) is regular at w.
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Example 4.

A basis of the kernel of the Macaulay matrix S, of the example 3 is {(1, 0,0, 0,0,0), (0,1,—-1,0,0,0)}.
Hence the set {09, 9(1.0) — 9(0:D1 i5 a basis of DY, ). Consequently

A(f1, fo) = (&% + 4> = 2,2y — 1,22 — 2y,y — ).
It is easy to see the Jacobian of A(f1, f2) has rank 2.

3. Multiplicity. Numerical point of view

3.1. Multiplicity and perturbation. From a numerical point of view an
exact multiple root makes no sense. We must think of a cluster of roots which
comes from perturbations of the data. In this way we can consider the initial
system as close to another system which admits an exact multiple root.

Definition 2. A root w of f = (f1,..., fm) is regular if the Jacobian matriz D f(w)
has full rank (in the opposite case w is a singular root).

The link to the algebraic multiplicity is given by the following.
Proposition 1. The algebraic multiplicity of a reqular root is equal to 1.

Proof. We denote by D f(w)* the adjoint of D f(w). Let I the ideal generated
by f. Since Df(w) has full rank Df(w)*Df(w) is invertible. Hence the ideal
generated by g(z) = (Df(w)*Df(w))~ 1 f(x) is equal to I. But

(DF(w)" Df(w)) ™ f(a) = & —w+ 3 (D f(w)" D))~ D* )~ w)"

k>2

Consequently LT (g) is generated by x — w. Its follows that dimA,, = 1. g

A very useful result is the Rouché’s theorem [50] which links a perturbation of
analytic functions to the number of roots in a ball, see also Lojasiewicz for a ver-
sion in several variables [33].

Theorem 10. Let f and g two analytic functions defined in a real ball B(z,r) C
C". If for all z € OB(z,r) we have

1F(2) = g < | £ (2)]]

then f and g have the same number of roots in B(x,r) where each root is counted
as many times as its multiplicity.

Proposition 2. w is a singular isolated root of f if and only if the multiplicity of
w is strictly greater than 1.

Proof. Since w is an isolated root there exists a ball B(w,r) where f admits
only this root. There exists zo € 0B(w,r) such that for all z € 9B(w,r) one has
7)1 = [1f(20)l]. Then the function g(=) = f(z) + y with [lyl| < |If(0)]l/2
satisfies the inequality of Rouché’s theorem on 9B (w,r). Consequently the number
of roots of g in B(w,r) is the multiplicity, say u, of w. Moreover for almost every
y, Sard’s theorem insures that Dg(z) has full rank at each of the roots. Hence the
roots of g, say w™"), ... w® are regular in the ball B(w,r). Let us consider the
homotopy

h(z,t) = (1 =t)g(2) +tf(2) = f(z) = (1 = D)y.
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We have h(w®),0) = 0 for every k and h(w,1) = 0. For almost every y, from
implicit function theorem there exists p regular curves z(®)(t): [0, 1[— B(w,r) such
that f(z™®™(¢)) = (1 — t)y and ¥ (t) = —Df(z®(t))~'y. Hence if p > 1 the
quantities 2(*) (1)’ make no sense and the root w is singular. g

The link between Rouché’s theorem and the local ring theory can be summarized
by the identity

dimAl = Z dimA%
weB(w,r)Ng—1(0)
where AJ (respectively A%) is the local quotient ring associated to f (respectively
g). Here we find again the classical idea from a numerical point of view that we
deal with clusters of roots rather than exact multiple roots.
In the case where the system has no root or only one regular root in a ball, it is
possible to give an effective version of Rouché’s theorem : this is obtained from the
Taylor series of f. It is also valid when the system f is analytic.
Theorem 11. [17] Let us consider a ball B(z,r).
1- If
Lk k
1@l > P f@)llr
E>1
there is no root in B(z,r).
2— Let r be a positive real number smaller than the radius of convergence of

S LDkl It

k>0
_ 1 _
IDf () @) <r = ml1Pf(@) DR f ()|t
k>2
there is only one regular root of f in B(x,r).

The case of a simple double root has been studied by Dedieu-Shub [14].

Theorem 12. Let ¢ = 0.19830... . For v,z € C", ||v|]| = 1, we define the linear
operator :

A(e, £,0) = Df(2) + 5D (2)(v, 1)

where 1L, is the projection on the space spanned by v. Let L be the linear operator
defined by L(v) = Df(z)v and L(w) = 0 if w is orthogonal at v. Let B(z, f,v) =
A(z, f,v) — L. We introduce the quantity
ﬁ)
c c?

2’}/2(f,.’IJ,U)2 = 4||B(f7 x, ’U)_1||’72(f,.’II,U)4

then f has two zeros (counting multiplicities) in the ball of radius

B 0) D ()

’72(f,.’L',’U) = nax 17SU-p
k>2

If we have

LF @) + 1D f(z)vl]

c

272(.][7 x, v)2
around x.
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In fact the previous case describes double roots of corank one : they are clus-
ters of two roots of embedding dimension one. A quantitative version of Rouché’s
theorem in the embedding dimension 1 case is given by Giusti, Lecerf, Salvy, Yak-
oubsohn in [17] but, the statement is technically too difficult to appear here.

Open problem 1.

Find a qualitative version of Rouché’s theorem for clusters of roots of analytic
systems. o
Let us remark that the theorem 11 applied to the dual system A(f) of theorem 9
can prove the existence of a (regular) root of A(f).

4, Multiplicity and homotopy methods

Homotopy methods consist to deform smoothly a system with known roots to
the initial system with unknown roots. These methods are currently used to solve
systems of equations : the textbook of Allgower and Georg [2] or Morgan [39] are
classical references. The homotopy used in this section is the linear homotopy h
:[0,1] x C™ — C™ defined by

h(z,t) = (1 —t)gap(x) +tf(2)

where gq(z) = (alel —b1,...,a,x% —b,). There are three kinds of curves
x(t) solutions of h(t,x(t)) = 0. First, the regular curves defined on [0, 1] which
correspond to a regular root of f(z). Next, the curves which are only regular on
[0,1] due to the existence of a multiple root of f(x). Finally, the curves which go
to infinity as ¢ — 1 and which correspond to infinite roots of f(z). Infinite roots
are explicitly described using complex projective space CP™. Wright in [61] give a
proof of Bézout’s theorem using the linear homotopy. More precisely

Theorem 13. [61] Let F(xg,z) = (Iglfl(I/:E()), e ,ajg”fn(x/xo)), Gap(xo, ) =
(alx‘fl — blxgl, ey Qi — bn;vg") and
Hop(t, 0, 2) = (1 — t)Gap(z0,x) + tF (20, ).

Let Zop = {(t,x0,2) € [0,1[xCP™ : H,(t,x0,2) = 0}. For almost (a,b) € C*"
we have :
1- 0 € C™ is a regular value of Hop(t,1,2) = 0, i.e, DyH(t,1,2) has full
rank of for all (t,x) € [0,1[xC"™ such that Hy(t,1,2) = 0.
2— Z,p consists of di ...d,, disjoint half-open arcs in CP™ x [0, 1), where the
endpoint of each arc is a known root of Gy p(xo,x) in CP™ x {0}, and
where the limit of the other end of the arc is a root of F(xo,x).

In fact linear homotopy methods are useful to prove Bézout’s theorem : see
Blum, Cucker, Shub, Smale [7] page 199 and references inside.
A straightforward consequence of this result is the multiplicity can be computed
thanks to homotopy methods. More precisely

Corollary 1. Let us consider the linear homotopy of the theorem 13. Each isolated
root (respectively root at infinity) of multiplicity 1 generates 1 homotopy paths x(t)
converging towards it.

To find one regular root, the complexity and the analysis of this homotopy
method is studied by Shub and Smale in [53] and [54]. A better complexity bound
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is given by Shub [52]. We give a simplified version of this complexity result in the
linear homotopy case.
Theorem 14. [52], [6] The number of numerical homotopy steps performed by
the projective Newton’s method to yield an approximate zero of the initial system is
bounded by

71d%L
where d is the mazimum of degrees of f!s and L is the condition length of the linear
homotopy (see the references above for this definition).

The paper of T.Y Li [32] gives a good review on homotopy continuation meth-
ods and their improvement for deficient polynomial systems, i.e., for which the
isolated solutions are fewer than the Bézout’s number.

Open problem 2.

Estimate the complexity to approximate a multiple root using linear homotopy.
O
In the chapter 10 of [56], Sommese and Wampler give some numerical heuristics
to deal with singular end games based on power series, Cauchy integral and trace
theorem. In the same vein, Huber and Verschelde in [27] explore links between
polyhedral end game and power series to give some refinements. Another interesting
way is proposed by Kobayashi, Suzuki and Sakai in [28] using Zeuthen’s rule but
unfortunately without study of complexity.

5. Recovering the quadratic convergence

The idea is to compute from the initial system another one which is regular
at the singularity. The theorem 9 gives an augmented system computed from
the kernel of the Macaulay matrices Si. But the size of S is very huge i.e.,
m Z?:o ("“71) X ("JFSH). In the sequel, we describe two kinds of what is called

J
a deflation method.

5.1. Lecerf deflation method. [29] The idea is to differentiate well chosen
equations and to select new equations at each step of the method in order to obtain
a regular system at the root w. From now we adopt the Matlab notation : x;; is
the vector (x;,...z;).

Initial Step : the system f = (f1,..., fm) is considered as a subset of C{x — w}.
We set &1 = f and Ry = 1.

Step k > 1. We compute a new system Py1 and a new integer Ry41 from @5 and
Ry.. Let my be the valuation of ®; and

~ amkfl
(I)k = 777%—1(1)]“ = {
:ERk

P 21 <i< mk}

TR,

Let 7, the rank of Jacobian of &)k with respect to the variables g, ., evaluated at
WR,:m- Then we set Ri11 = ri + Ri. Next we extract a subset Q from ®,, such
that the gradient of Q has rank r at wr,.n-

Finally, thanks to the implicit function theorem, there exist r; power series yr,.Rr,,, -1
in C{zRg,,,:;n — WR,,,:m} expressing Tg,.r,,,—1 in terms of zg,, ., such that
Qk(yRkiRkJrl*lv‘TRkJrlin) = 0. Then

Dy (IRk+1:n) = (I)k(yRkﬁRk+1*17 ‘IRk+15n)'
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Stopping criterion. The above construction stops when Rpy; =n + 1.

Output of the method. Let us suppose that there are v steps. The output is the
system Q = (0 (zryin,- .-, QW (@r,m)). The properties of this deflation sequence
are given by

Theorem 15. Without loss of generality we can assume that at each step of the
deflation process the variable x g, is in Weierstrass position with respect to the ideal
generated by @y, ( i.e. there exists an element of this ideal of valuation my, having
xg: in its support). The construction above works up to a permutation of the

variables. Moreover :
1-1<r, <n-—R,+1.
2— 1 < mydim (C{:CRk;n — ka:n}/ék> < dim (C{zRr,.n — Wry,:n}/Pk)-
3— The system 2 is regular at the root w.
4- mq...my, < dimA,.

Example 5.

Let f = (f1,f2, f3) = (2 +a+y+2,9°+y+ax+2,22+2+2+7y). The root
w = (0,0,0) has multiplicity 4.
We denote by Oy a generic power series Z ao(z — w)®.
la| >k
Let ®1 = {f1, fo, f3} and R; = 1. The rank of the Jacobian matrix of f is r1 =1
at z. We find m; = 1 and ®; = &, and R, = 2. We choose Q1 = {f1}. The power
series solution of f1(y1,y,2) =0 is

n(y,2)=—y—z—1y>—2z2y — 2>+ Os.
Substituting = by y; in ®; we find
Oy = {03, 22y — 2° 4+ O3, —y* — 22y + O3}.
For the next step mg = 2 and

~ o0
Py = 8—2 = {(I)g, —224+ 09,2y — 22+ 02}
Yy
The rank of the Jacobian matrix of ®5 is ro = 2. We choose {25 = {22409, —2y—
2z + O3} Since R3 = Ro + ro = 4. The deflation construction stops. The regular
system at w is

Q= {f1,—-22+ Oy, =2y — 22+ Oa}.

We refer to [29] for the study of the complexity of this construction. Another type
of deflation method mixing symbolic and numerical computations have been consid-
ered by Ojika, Watanabe, and Mitsui in [44], [43] : the new equations are generated
by symbolic Gaussian eliminations but it remains to perform the numerical analysis
and to study the complexity of this modified deflation method.

5.2. Augmented systems and deflation methods. From the knowledge
of the structure of the local quotient algebra, Mantzaflaris and Mourrain determine
a regular system given in the theorem 9. We sketch now another construction of
deflation sequence based on a augmentation of the number of equations and of the
number of variables. First, one defines a deflation operator which associates to
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the initial system f, a new system Defl(f,z,y) where (x,y) € C"™/. Next, one
iterates this operator to obtain the deflation sequence :

Iozxv yO:ya F():fv Ik+1:($kayk)a FkJrl:Defl(fkaIkayk)kaO-

The length of the deflation is the vector (no, ..., nk,...) where ny is the dimension
of the kernel of the Jacobian matrix DF},(z*). The thickness of the deflation is the
number N such that ny+; = 0.

In this way such a type of deflation operator had been proposed by Leykin, Ver-
schelde, Zhao in [30], and extended in [31]. From an original system f = (f1,..., fm)
with rank D f(w) = r they define the following :

f(z)
LVZ(f,z,y) = LVZ(f,B,h,z,y) = Df(x)By
h*y —1

where B is a random n x (r 4+ 1) matrix and h a random r + 1 vector. The matrix
Df(x)B has generically a rank equal to r and the dimension of Kernel D f(w)B is
1. Hence there exists a unique A\ € C™*! such that D f(w)BX =0 and h*A—1 = 0.
Theorem 16. [30], [31] The multiplicity of the root (w, \) of the system LV Z(f,x,y)
is strictly less than the multiplicity of the root w of the system f.

Unfortunately the deflated system LV Z(f, x,y) is not regular at its root (w, A).
In this case the method consists to deflate more until to find a regular system. We
have
Theorem 17. [30], [31] The number of deflation steps to obtain a regular system
is bounded by the multiplicity of w. If N is the number of deflations, the regular
system has n+ N + Zszl . variables and 2N (n 4+ 1) — 1 equations.

Example 6. [11]

Let f(x,y) = (v + y3, 2%y — y*) with (0,0) has multiplicity 3. The number
of deflations steps is 3 and the coranks of the Jacobian matrices of the deflated
systems are equal to 1. The regular system has 16 variables and 23 equations. o

Example 7. [10]

Let f = (z* — yzt,y* — zat, 2* — xyt, t* — 2y2). The root has multiplicity 131.
Two steps of LVZ deflation are needed with length (4,4). The regular system has
7 variables and 19 equations. o
Another way to construct deflated systems by adding variables and equations has
been proposed par Dayton and Zeng in [10] for the polynomial case and Dayton, Li,
Zeng in [9] for the analytic case. The deflation operator proposed by these authors
is

f(x)
DLZ(f,x,y) == DLZ(f, R, e1,2,y) = ¢ Df(x)y
Ry — e
where R is p x n random matrix in order that D‘%w) has full rank and e; =

(1,0,...,1)T with size p is the dimension of the kernel of D f(z).
Theorem 18. [10], [9] The number of steps of the DLZ deflation is bounded by

the thickness § of the root w defined in theorem 7. The last deflated system has 2°
5—1

variables and 2°n + Z 2k where py, is the corank of DLZ system k.
k=0
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Example 8. [10]

Let f = (z* — yzt,y* — zat, 2* — zyt, t* — 2y2). The root has multiplicity 131.
Two steps of DLZ deflation are needed with length (4,4). The regular system has
16 variables and 28 equations. o
The example 6 lies to the class of systems of “breadth one” as defined by Dayton
and Zeng in [10], i.e., the length is (1,...,1). Note that this notation corresponds
to the embedding dimension 1 as introduced by Giusti, Lecerf, Salvy, Yakoubsohn
in [17]. For this class the DLZ deflation can be modified in order to obtain un
variables and pm equations.

6. Deflating and kerneling

We propose a new construction to deflate a system without adding new vari-
ables. It is based on two operations we called deflating and kerneling in the intro-
duction.

6.1. Deflating. This operation consists to replace an equation g(z) = 0 by
the n equations d;g(x) = 0,7 = 1 : n when we have simultaneously g(w) = 0 and
0;g(w) =0, i =1:n. We then can define the following recursive algorithm.
deflating(f, @, ¢)

- Input : f=(f1,..., fm), w a point close to a multiple root w of f, and ¢
a precision.

- Let J:= Df(z) and Jg := Df(w).

- Let m; the number of lines of J.

- fdefiatea =0

-fork=1:my

- if maxi<;j<n |Jw(1€,j)| S € then

- deflating(J(k,:), w, €)

- else

- faefrated = faefiated Y {fu/LT(fx)}

- end if

- end for

- Output faefiated

Remark 2.

The assignment faefigted = faefiatea U {fx/LT(fx)} must be understood in the
following way : the polynomial fi/LT(f}) is added if it is not already an element
of the set fiefiated-©

6.2. Kerneling. Let us consider a system f = (f1,..., fm) such that each
line of D f(w) is non zero and D f(w) has a rank r < n. Without loss of generality

we can write D B A(w) B(w) cmxn
flw) = ( C(w) D(w) ) ©

where A(w) is an invertible matrix of size r x r. Then the Schur complement
D(w) — C(w)A~!B(w) is zero. Hence w is a root of the system

D(z) — C(z)A" ()B(z) = 0.

The kerneling operation consists of adding to the initial system at most the (m —
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r) X (n —r) polynomials given by the non zero numerators of the coefficients of the
Schur complement. We then can define the following algorithm.
kerneling(f, @, ¢)

- Input : f=(f1,-.., fm), W a point close to a multiple root w of f, and ¢

a precision. Each line of D f(w) is non zero.

- Determine r the numerical rank of D f(w).

- Determine an invertible submatrix A(w) of Df(w) of size r x r.

- Compute S(z) = det(A(x))D(z) — det(A(z))C(z) A~ B(z).

- faefiatea = f U {elements of S(z)}

- Output faefiated

6.3. Equivalent system. Combining deflating and kerneling operations we

compute a equivalent system of n variables and n equations.
equivalent(f, @, €)

- Inputs : f = (f1,-.., fm), @ a point close to a multiple root w of f and ¢

a precision.

- fdeflated = f-

- while D fjeiateqd(®) is not numerically full rank

- fdeflated = deﬂating(fdeflateda w, 6)

- faefratea = kerneling( faefiated, W, €)
- end while

- faefiatea = {n equations of full rank from facfiated}
- Output facfiated

6.4. Example. Let us consider
flxy) = (@°/3+ 2y + 2° + 2zy + °, 2%y + 2% + 22y + y°)

The point (0,0) is a root of f(z,y) = 0 with multiplicity 6. The deflating algorithm
applied with w = (0,0) gives :

o 02 7} 2
22+ y? +22+2y 2yr+22+2y | 2zy+ 22 +2y 2422+ 2y

All these previous quantities vanish at w. An additional step of deflating operation
gives

on 012 021 022 O O12 on O12
20 +2 2y+2|2y+2 22+2||2y+2 224+2|22+2 2

All these quantities are non zero at w. Hence the deflated system is :
fdeflated(x7y) = ($2+y2+2x+2y, $y+$+y7 x2+2x+2y)

Now we can use the kerneling algorithm of this new system.

2 +2 2y+2
D faefiatea(,,y) = y+1 x+1
20 + 2 2

Then D fgefiatea(0,0) has rank one. We can consider A(x) = 2z + 2. The Schur
complement of D fge riated(,y) associated to 2z + 2 is

r+1\ 2y+2( y+1 ) _ 1 22 420 —y% — 2
2 2e+2\ 22+2 ) z+1 —2xy — 2y ’
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Finally from the system
(x2+y2+2x+2y, zy4+z+y, x°+2z+2y, 2°+ 2z -1y — 2y, Y)
we can choose

fdeflated(xv y) = (LL' + Yy + Ty, y)
which is regular at w.

6.5. Why the multiplicity decreases? Let I be the ideal generated by
fi,--., fm and w a multiple isolated root of f; = ... = f,,, = 0. We deal with
C{x — w} the local ring of convergent power series at w and IC{z — w} the ideal
generated by I in C{z—w}. Then the multiplicity of w is the dimension of the local
quotient algebra C{z — w}/IC{x — w}. This dimension is finite if and only if the
root w is isolated. We denote by {g1,...,gp} a local standard basis of IC{z — w}.
Let < LT(IC{xz—w}) > the ideal generated by the leading monomials of TA. Then
the multiplicity is the number of monomial that are not contained in < LT (IC{z —
w}) >. This number is independent of the chosen order on the monomials. We
have the two classical results :

Lemma 1. Let h not in IA and h(w) = 0. Then the multiplicity of w as root
of fi = ... = fin = 0 is strictly greater than the multiplicity of w as root of
h=fi=fo=...=fn=0.

Proof. Since the leading term of h is not in JC{z — w} the lemma follows
easily. g
The result we use to explain why the the multiplicity decreases under the action of
the algorithm deflated is stated by Arnold, Gusein-Zade and Varchenko in [5] page
100 :

Lemma 2. Let g = (g1,...,9n) € Clz]™. Then the Jacobian det(Dg(x)) is not in
the ideal < g1,...,9n >.

The two lemmas below explain why the multiplicity decreases under the oper-
ations of deflating and kerneling.

Lemma 3. Let w a multiple root of a system f1 = ... = f,, = 0 such that
grad f1(w) = 0. Then the multiplicity of w as root of f1 = ... = fm, =0 is strictly
greater than the multiplicity of w as root of 1 fi = ... =0 f1=fo=...= fm =0.

Proof. Let g = (f1,92...,9n), the gls being selected from the fo,..., fi.
Since the jacobian of g is not is the ideal generated by g, see lemma 2, then each
line of the jacobian matrix of g has at least one element which is not in < g >.
In particular at least one of 9;f1’s is not in < g >. Following the lemma 1 we are
done.

Lemma 4. Let w a multiple root of f1 = ... = fm = 0 such that grad f;(w) # 0,
t=1:m. Letr be the rank of Df(w) and

_ ( Alw)  B(w)
pre)=( &) by )
where A(w) is an invertible matriz of size r X r. Let S(z) = det(A(z))D(z) —
C(z)A(x)B(z) where A(z) = det(A(x))A(z)™1. Then the multiplicity of w as

root of f1 = ... = fm = 0 is strictly greater than the multiplicity of w as root of
811:---:Smfr,n77":fl :f2:fm:0
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Proof. It is sufficient to prove that one of S;;’s is not in theideal < fi,..., f; >.
Then, by lemma 1, the multiplicity of w as root of f; = ... = f,, = 0 is strictly
greater than the multiplicity of w as root of S;; = f1 = fo... = fi, =0.

Let F' = (fl, ey fr, hi,..., hn—r) with h; € {fr+1, R ,fm}.

We have det(DF(x)) = det(A(x)det(Sp(x)) where Sp(x) is the Schur comple-
ment of DF(x) associated to A(z). From lemma 2, det(DF(z)) is not in the ideal
< F >. So it is the same for det(A(x) and det(Sp(x)) which divide det(DF(z)).
Hence there exists at least n — r coefficients of the matrix Sp(z) which are not in
the ideal < F' >. Since the coefficients of Sp(z) are also coefficients of the matrix
S(z) the conclusion follows. o

How much the multiplicity drops at each step of the equivalent algorithm 7

Theorem 19. For k > 1, let Fy = f and Fy_, the deflated system obtained at the
step k—1 of equivalent algorithm and my_, the number of polynomials of F,_1. Let
P be the number of polynomials we add by deflating operation at the step k. We
note by Gy, the system Fj, augmented by these pr polynomials. Let ri be the rank
of the jacobian matriz of Gy at w. Then the number N of steps of the algorithm

stops is equal to
N

min{k : 1, =n or Zsk—i—tk < u}
k=1
where max(0, min(1, p)) < s < pg and 1 <t < pp(n — 7).

Proof. From the lemmas 3 and 4 the multiplicity decreases at least by one.
But we can be more precise. Let u; be the multiplicity of w as root of Fy. The
deflating algorithm gives pr polynomials. Then the multiplicity of the root w of
Gy, drops by pr—1 — s where max(0, min(1, px) < sx < px. Next, if the jacobian
matrix of Gy at w has rank r, = n the equivalent algorithm stops. Otherwise, the
multiplicity of w as root of Fy is pr—1 — sk — tg where 1 <t < pgp(n — ri). This
bound is justified because all the polynomials of the Schur complement computed
by the kerneling algorithm can be equal. g

7. Examples

We first treat three examples given in [65]. These examples show it is not
necessary to know the complete structure of the local quotient algebra to determine
a regular equivalent system from the initial one with a multiple root.

Example 9. [65]

frlxy,..,zn) =21+ ... fa,+ 2k, k=1:n.

2x1 + 1 1 .. 1
1 200 +1 ... 1
The jacobian matrix D f(z) = } has rank
1 1 e 2x, 41
one at (0,...,0). The Schur complement associated to 2x1 4+ 1 gives the equations

$1:0
(221 +1) (22, +1) —1=0, k>2.
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Example 10. [65]

fe(@, . an) =25 — Tpp1Tpge, k=1:n—2
fac1(@1, o @) =20 — Tpm
fo(x1, .. ) = xi — 2122

A multiple root is (0,...,0). In the first deflation step we replace the fi’s by
their gradients. We obtain the equations :

Ty =...=x, =0.
Example 11. [65]

fe(@i, .. ) =ap+...+xp2, k=1:n-2
fn,1($1,...,In):I1+---+In72+$§171+‘r%

fo(1, ... xn) =21+ ...+ 2y o+ a2

Lo 0 0

A multiple zero is (0, ..., 0). The Jacobian matrix Df(z) = [ 1...1 5al | 2z,
1...1 0 22,
has rank n — 2 at the multiple root (0,...,0). The Schur complement associated

to I,_o furnishes the equations

After one step of deflation we obtain the system
flz...:fn,QZInflzInzo.

Example 12. cmbsl [58]
f(xayvz) = (IB — Yz, y3 — Tz, 23 - ‘Iy)

A multiple root is (0,0,0). A first of deflation gives the equations z =y = 2z =
0.

Example 13. cmbs2 [58|

f(z,y,2) =(2° — 32y + 3ay” — y* — 2%,

23 =322 + 3222 — 23 — o2,
v — 3yPz 4 3y2? — 23 — 2?).
A multiple root is (0,0,0). A first step of deflation gives the equations x = y =
z=x—y=cz—z=y—2=0.
Example 14. caprasse [40]
flz,y,2,t) =(—2°z + day®z + 42yt + 2%t + 42% —109* + 4oz — 10yt + 2,
— a2 Ayt daat? F 2yt F4az +42° — 10yt — 1042 4+ 2
vz +2ayt —2x — 2,
Qyzt 4+ at? —x —22).
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The multiple root is (2, —iv/3,2,iv/3). The gradient of each f) is non zero at
w and the jacobian matrix D f(w) has rank 2. The step of kerneling adds the four
polynomials before we get a regular system at w.

—10xt—5ay—>5zt+ 1T xyt? 22 —7/2 yt?x?234+11/4 yt412z+% yt?x?z—2 y2t1z4+% y2t1z2+% xt322y? =7 2223t -3 /4 22 2>
+% mzthr% y2z3t75 yzzt3725 yzzt+5 myt4+% mz2t+myz4+% xyz2+15 yzt271t3+% z3t+11 zt375/2 yz3+5/4 y3t2z3
—y3 2411953223 y2t5w+7y2t3w+% yt2z3—yt4z—1/2 w3t322—% wt3z2—3/2 23tz% 44 wty2+w3tz4—wtz4—3/2 22yz4+223%yz

— 8 2®tP 43 2t°+3/4 233 +3/8 3¢,

5/2 wy2z+% wzt2+5/4 y?’t—% yz—% tz—% yt—i—% yt>+15 yzxt+1/2 yz4w2t—5/4 yz2z?t3—4 yzzmzt—19/2 yzzmt2—5/4 yz>wt
+3 yzmtg—% wt2y2z3+% t4—% t2z2w2+15/2 t2z2y2+1/4 y3z4t—3/2 y3z2t3—3/2 ygz2t+1/2 y22%2—3y? 23 w—y22t3+a3t22°
—3/82%t*2—1/8 2% 2+3/22%t°y—11/22%t3y— 12 0t?2° +1/2 xt*2+5 1227 —3/2 t*2% —15/2t*y? —5/2 t* 2%+ 35 1292 +15/2 22>

—5/4 2 y? 4435 — to— 3,
5/4 242 41y3t5 5 /4 yt5—9/4y3¢3
—5zxt—10xy—15yz—10 2t+9 4wyt2z2+24 yt2w2z+§ y2tmz2—7 2 y2w2z3t+£ (1;212,2153—Z y2w2zt—i-ﬁ y3t2wz2—6 yt2w3z2
4 8 8 4
73/2 xzz?’tf% m2zt3+% xzzt+5 y2z3t+6 yzzt3+2 yzzt+7 :cyt4715 :cyt2+% xz2t71/2 xyz4+% myz2+5 yzt275 zt3
+3/8 23t+3 2t3+11 4yz3+15y3t22+11 y2t31—713tz2+23wty2—9w2y23+8w2yz+ﬂy4z?’t—5y4zt3+4y4zt—3y3wt4
8

-3 ygwt2—3/2 y3mz4+2 yng2—yz2m3+% w3t3+% z3t—5 y3z+% y323+% yt2m3—w4tz+7/4 yt4w3+yz4m3+w4z3t—zw4t3,

10 xy2z+10/3 yz2t+% zzt?+10 y3t7% yzf% t275—3? yt+10 yt3+20 yzxt74—67 yz2m2t76 y2z1t274/3 yz3mt74 yz:ct3+x?’yz3t
—5/6 x3y2t>—7/6 vy 23t4+2/3 xyP 2> —2/3 P2t —5/4 y2 3222 —4/3 122222 -8 /312 2%y? —2/3 y3 22t —7/2 y? 232 —13/2 23132
+4/32%t3y—5/3t*y*+10 %2>+ 82 12y +10/3 2%y —1/4 2*y® — 32 343 —5/3y > +2y? 22 +4/3 y*t* -3 /4y 2* —2/3 2%y ¢!
12/3 mzyzzz;i% 22y222 pate? 2
Example 15. decker2 [11]
— 3 ,.2 4
fl@y) = +y° 27y — 7).

A multiple root is (0,0,0). A first step of deflation gives the equations z +y3 =
z=y=0.

Example 16. mth191 [30]
flay) =@+ +2° - 1,0° +° + 22 - 1L, 2° +y* +2° - 1).

A multiple root is w = (0,1,0). The gradients of each polynomials are non
zero at w. The jacobian matrix has rank 1. The step of kerneling adds the four
polynomials :

The system f1; =2 (9ay —4) = z(3y — 2) = 0 is regular at w.
Example 17. DZ1 [10]
flz,y, z,t) =(a* — yzt, y* — x2t, 2* — ayt, t* — 2y2).
A multiple root is w = (0,0,0,0). A step of deflation gives z =y =2z=1t=0.
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Example 18. DZ2 [10]
flzy, 2) =(a*, 2Py +y*, 2+ 2° — 72° — 827).

A multiple root is w = (0,0, —1). A step of deflation adds the equation x =
y=0.

Example 19. DZ3 [10]

f(x,y) =(42+33y—3V5(a®+4zy+4y°+2)+VT+2’+6 22y +12 2y +8 ¢

N 2-9/4y—1/8V5+a®—3/22y+3/42y*—1/8y*+3/8 VT (4ay—42>—y>—2).

A multiple root is w = ((2v/7 +v/5)/5, (2v/5 — v/7)/5). The gradients of each
polynomials are non zero. The step of kerneling adds the polynomial

—360 22 v/5y+630 zy2 /54240 zy—180 v/7z>+360 v/Ty> +1260 22 +1440 y? —360 23 /54540 3 y+45 22y —540 zy> — 180 y> /5
+540 VT2v/5y+180 44180 y*+1605—960 /724480 v/7y—600 /52 —1200 v/5y+360 /7522 —630 V72> y—360 v/ Txy>
—360 /75y

Its gradient is zero at w. The step of deflation replaces it by the two following
polynomials :

1/3y+7/2x+a®+3/4 VTVBy—4/3VT—5/6 V5—3/4VT2®—3/22°V/5+9/4 x°y+1/8 2y*>—3 /4 y® —av5y+ L y>VE+VTVbx
—7/4VTey—1/2VTy?

4/92+16/3 y+4/3 y* +V7Vbx+ 8 VT— 2 V542 V7Y +a®+1/6 2’y—3 2y® —y*v5-2/3 2°V5+7/3 5Vby—T7/6 /7>
—4/3Tzy—4/3V7V5y

The system build from f;, f2 and from the two previous polynomials is regular at
w.

Example 20. Ojika2 [43]
flr,y,2) =z +y+z—1az+y*+2—1, z+y+22—1).

A multiple root is w = (1,0,0). The rank of D f(w) is 2. The step of kerneling
adds the equation 4zyz —z —y —2+1=0.

Example 21. Ojika3 [43]
flz,y,2) =(x +y+2z—1,22° + 59> =102 + 52 + 5, 20 + 2y + 2> — 1).

A multiple root is w = (=5/2,5/2,1). The rank of Df(w) is 2. The step of
kerneling adds the equation 322z — 5yz + 5y — 322 = 0.

Example 22. Lecerf [29]
flz,y,2) =( 27 +22% +2y+2y2 + 22— 1,
(z+y—z—1)° -2
(2I3+2y2+102’—|—5z2+5)3_1000I5 )



20 M. GIUSTI AND J.-C. YAKOUBSOHN

A multiple root is w = (0,0, —1). The rank of D f(w) is one. There is only one
step of deflation to obtain the regular system

r4+2? +y+yt+1/222 - 1/2,

y—z—1,

r+y—z-—1,

%x5+2—58 (2x3+2y2+102+522+5)x2—?—;Z:c,
Y,

z,

1+ 2.

8. Conclusion and future work

We have shown how to derive an equivalent regular system from a singular
initial one, when we know the root. The stability of this process will be done in a
future work and we describe briefly how to proceed. But from a numerical point of
view a multiple root makes no sense and it is more realistic to speak of a cluster of
roots : a m—cluster of roots is a open ball which contains m isolated regular roots
of the system. Moreover we would hope for results with a “small” size of the cluster.
The operation of deflating is based on the evaluation of the gradient of a function,
say g(z), at given point @w. To decide whether there exists a root (or a cluster of
roots) of this gradient closed to w we need to know if there exists z; such that
(Z1,wa, ..., Wy,) is closed to w and cancels the gradient of g. This can be done
with the theoretical background developed in [18] where the words "closed to” and
“small” are quantified.

The operation of kerneling requires more attention since we must discover the nu-
merical rank of a jacobian matrix at a point w “closed to” the multiple root or the
cluster of roots. The difficulty is that the rank drops only at the multiple root or
in the cluster of roots. We propose to fix a coordinate, say =1, and to perform a
LU decomposition of the jacobian evaluated at (z1,ws,...,w,). Each element of
the diagonal of the matrix U of the LU decomposition is a polynomial in ;. The
numerical rank of the jacobian matrix is the number of these polynomials having a
root “closed to” ws.

We illustrate these principles on Lecerf’s example 22 [29]. We first show how to nu-
merically discover that there is probably a point w near (zg, yo, 20) = (0.1,0.09, —1.1+
0.1¢) where the jacobian matrix has a rank one. For that we determine the matrix
U of the LU decomposition at (xo,yo,2). The diagonal of U is given by

2.4
2.28 + 4.51 7 + 2.28 2%,
3633.58 + 25322.98 z + 75771.82 2% + 126177.32 2° + 126276.08 2* + 75944.48 z° + 25413.69 2° + 3650.4 2".

The Newton iteration (or more generally the Schroder iteration) initialized to zg
and applied respectively to the polynomials Usz(z) and Uss(z) converges respec-
tively to —0.99 + 0.147 and —0.98 4 0.05¢. The initial point 2y is an approximated
zero of Usa(z) and Uss(z). This is the meaning given to the word “closed to”. We
will deduce that the numerical rank of the jacobian is one.

In this example we can numerically prove that there exists a point w where the two
last lines of the jacobian matrix are zero. In fact the evaluation of the gradients of
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f2 and f3 at (zo,yo,2) gives

V f2(z0, 90, 2) =(2.91 +5.942 + 3.02°,  0.0003 (99 +1002)*, —0.0003 (99 4 100 2)?),
V f3(z0, 40, z) =(4.03 + 18.06 z + 27.03 2° 4+ 18.0 2° + 4.5 2%,

— 0.0000000432 (25091 + 50000 z + 25000 2)* ,
0.0000012 (25091 + 50000 = + 25000. 22)* (1 + 2)).

Thanks to Newton iteration initialized at zp and applied successively to each poly-

nomial coordinate of these two gradients we find a root closed to zy. From this
we can prove the existence of a perturbed system of the initial one with the two
last lines of the jacobian matrix are zero. With this information we deflate the
two corresponding equations of the initial system. This heuristic approach will be
completely justified in a future work.
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