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Multipliity hunting and approximating multiple roots ofpolynomials systems∗M. Giusti and J.-C. Yakoubsohn

Abstrat. The omputation of the multipliity and the approximation ofisolated multiple roots of polynomial systems is a di�ult problem. In reentyears, there has been an inrease of ativity in this area. Our goal is to trans-late the theoretial bakground developed in the last entury on the theoryof singularities in terms of omputation and omplexity. This paper presentsseveral di�erent views that are relevant to address the following issues : pre-dit the multipliity of a root and/or determine the number of roots in a ball,approximate fast a multiple root and give omplexity results for suh prob-lems. Finally, we propose a new method to determine a regular system, alledequivalent but de�ated, i.e., admitting the same root as the initial singularone.
1. IntrodutionLet x ∈ C

n and f(x) = (f1(x), . . . , fm(x)) ∈ C[x]m. We denote by I the idealgenerated by f . A multiple isolated root w of f(x) is by de�nition the only root wof f(x) in a ertain ball at whih its Jaobian matrix Df(w) is not full rank. Weuse equally in the text singular root and multiple root. It is well known that thequadrati onvergene of the Newton's method is lost in the neighbourhood of amultiple root. From starting points lose to suh roots, Newton's method is found toonverge linearly or to diverge. For example the behaviour of the Newton sequeneassoiated to the system x − y2 = 0, 2cy3 − 2xy = 0 studied by Griewank andOsborne in [23℄ lose to the root (0, 0) of multipliity 3 depends on the parameter
c. For c = 5/32 there is linear onvergene and for c = 29/32 we an observe
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2 M. GIUSTI AND J.-C. YAKOUBSOHNdivergene (see Fig. 1 and Fig. 2).

Fig. 1. Linear onvergene of Newtonsequene from (0.1,−0.2) with c = 5/32. Fig. 2. Divergene of Newtonsequene from (0.1,−0.2) with c = 29/32.Our purpose is to reover this quadrati onvergene. In the example above, itis easy to determine a regular system admitting the same root as the initial one(we say an equivalent system). For that we remark the gradient of 2cy3 − 2xy iszero at (0, 0). Hene we an replae the polynomial 2cy3 − 2xy by the two partialderivatives : y and 3cy2 − x. It turns out that the system (x − y2, y, 3cy2 − x)is now regular at (0, 0). We will develop this idea in setion 6 to propose a newmethod to ompute an equivalent system. More formally, from the initial systemwe ompute a sequene of systems and stop when appears a regular system. A stepin this iterative method onsists of two operations alled respetively de�ating andkerneling [42℄. The de�ating operation replaes the polynomials by their gradientwhen the latter vanishes at the root. After the de�ating operation we have ensuredthat all the rows of the Jaobian matrix evaluated at the root are non-zero. Ifthis Jaobian matrix is not full rank, the kerneling operation onsists to add thenumerators of oe�ients of a formal Shur omplement of this Jaobian matrix.The multipliity of the root obtained after a step dereases in the number of distintpolynomials added by the de�ating and kerneling operations.The goal of hunting the multipliity is ambitious. This is a long standing hallengein many areas as optimization, dynamial systems, omputer algebra and numerialalgorithms dealing with polynomial or analyti systems. The univariate ase is wellunderstood : the Taylor series is a useful tool to desribe the multipliity of a root.For instane two iterations of Newton's method lose to a multiple root are enoughto predit the multipliity. In fat the Newton sequene onverges to the multipleroot following a quasi straight line. More preisely, if Nf(x) = x − f(x)

f ′(x)
is theNewton operator assoiated to a univariate funtion f , the iterate xk+1 = Nf(xk),

(k ≥ 0), de�ning the Newton sequene starting from an initial point x0, it is easyto see that
xk+1 − w =

(

1− 1

m

)k

(x0 − w) +O((x0 − w)2), k ≥ 0.



MULTIPLICITY HUNTING 3Shröder points out in [51℄ that the quadrati onvergene is reovered using thegeneralized Newton operator
Sf,m(x) = x−m

f(x)

f ′(x)
.This has been hugely studied in the literature see Ostrowski [45℄, Rall [47℄, House-holder [26℄, Traub [59℄. α-theory in the spirit of Smale [55℄ for multiple rootsin the univariate ase has been done by Giusti-Leerf-Salvy-Yakoubsohn in [18℄and Yakoubsohn in [62℄, [63℄ : the links between Rouhé's theorem and Shröder-Newton's method for multiple roots are preisely studied. To sum up, the orderof Taylor series at the neighbourhood of the root de�nes the multipliity in theunivariate ase. But unfortunately, Taylor series are not su�ient to determinethe multipliity in the multivariate ase. In order to reover the quadrati on-vergene, the behaviour of Newton's method has been extensively investigated byReddien [48℄, [49℄, Deker-Keller-Kelley in [12℄, [13℄, [11℄, Griewank in [20℄, [21℄,Griewank-Osborne in [22℄, [23℄, Rabier-Reddien [46℄. These papers give harater-izations of ertain singular points and assumptions to get onvergene. Sometimesthe authors propose modi�ations to aelerate the onvergene. In areas otherthan numerial analysis, the question of the multipliity theory has also been in-tensively studied. There are many di�erent way to introdue the onept of multi-ple root but, this is a more ompliated matter than it is in one dimension : thisrequires bakground from algebra and analysis. The elimination theory providesalgebrai objets like standard bases and the introdution of loal rings reduesthe multipliity to the dimension of a quotient spae. From an algebrai point ofview, Fulton [16℄ hapter 7 gives a more general framework and explain di�erentapproahes. Milnor in Appendix B of [37℄ de�nes the multipliity as the degreeof a ertain map. Using a similar approah Arnold, Varhenko, Gusein-Zade [5℄rely the multipliity to the index of a holomorphi germ. Another presentation istreated by Aizenberg and Yuzhakov in [1℄ where the multipliity is de�ned via aperturbation of an analyti map. This last de�nition is diretly linked to homotopyontinuation methods whih an be a reliable and an e�ient way to numeriallyapproximate isolated roots. After these theoretial studies on the multipliity, wedon't forget the heuristi book of Stetter, Numerial Polynomial Algebra, [57℄ andespeially the hapter nine inluding the work of Thallinger.The paper is organized as follows, �rst a survey part: in setion 2 we presentthe algebrai geometri point of view on the multipliity. Next, via the notionof duality, we give relationship to linear algebra where the multipliity appearsas the dimension of the kernel of a Maaulay matrix. In setion 3, we explainhow the multipliity omes numerially from Rouhé's theorem and reall someresults. We also state an open problem onerning an e�ient Rouhé's theo-rem. In setion 4, we justify why the homotopy methods work in the regularase and disuss the omplexity of the linear homotopy in the singular ase. Thesetion 5 is devoted to desribe the theoretial bakground of some de�ation meth-ods whih are implemented in ApaTools of Zhonggang Zeng (reently upgraded toNAClab) http://www.neiu.edu/�zzeng/NAClab.html [64℄ and, PHCpak of JanVershelde http://www.math.ui.edu/�jan/download.html [60℄.Setion 6 is original. We propose a new way to determine an equivalent regularsystem from an initial singular system. We end by examples to show how this newmethod works.



4 M. GIUSTI AND J.-C. YAKOUBSOHN2. Multipliity. Algebrai geometri point of viewThis theoretial material belongs to folklore. An exposition an be found e.g.in Cox, Little, O'Shea in [8℄, among others.2.1. Number of roots and dimension. Let x = (x1, . . . , xn) ∈ C
n and I bethe ideal generated by the polynomials f1(x), . . . fm(x) of C[x]. The �rst question isthe number of isolated roots of a polynomial system. This is given by the followingBézout's Theorem whih is the equivalent of the fundamental theorem of algebrafor univariate polynomials:Theorem 1. The number of isolated roots of a polynomial system is less than theprodut of degrees of eah polynomial.We refer to Heintz [25℄ for a proof using the dimension theory. Evidently thebound of theorem 1 is reahed. If V (I) means the variety assoiated to I then thefollowing theorem gives a neessary and su�ient ondition for V (I) to be a setof isolated points. In this ase the ardinal of V (I) is the dimension of a quotientspae. More preisely :Theorem 2. Under the previous notations we have :1� The dimension of C[x]/I is �nite if and only if the dimension of V (I) iszero.2� In the �nite dimension ase we have :

dimC[x]/I ≥ #V (I)where #V (I) is the number of distint points of V (I). This equality holdsif and only if the ideal I is radial.In fat we will see below that when the ideal I is not radial we an assoiatea multipliity at eah point of V (I) so that the sum of multipliities equals thedimension of C[x]/I. A way to determine dimC[x]/I is to ompute a Gröbnerbasis of the ideal I.Theorem 3. Let G a Gröbner basis of an ideal I. Let LT (G) the ideal generatedby the leading terms of G. De�ne SM(G) = {monomials /∈ LT (G) }. Then
dimC[x]/I = #SM(G).Example 1.Let f1(x, y) = x2+x3, f2(x, y) = x3+y2. Then V (I) = {(0, 0), (−1, 1), (−1,−1)}.Let us hoose the lexiographi ordering indued by x > y; the leading term isthe Sup. A Gröbner basis of I is {y4 − y2, xy2 + y2, x2 − y2} and SM(G) =

{1, x, y, y2, y3, xy}. We dedue dimC[x]/I = 6. We will see that the root (0, 0) hasmultipliity 4. ◦Some omputer algebra systems ompute Gröbner bases, among themMaple, Magma,Singular. For instane, most lassial algorithms are implemented in Maple.2.2. Multipliity and dimension. A way to de�ne the multipliity at apoint of w = (w1, . . . , wn) ∈ V (I) is to onsider the loal ring C{x−w} of onver-gent series in n variables with the maximal ideal generated by x1−w1, . . .xn−wn.We denote by IC{x−w} the ideal generated by I in C{x−w}. Finally we onsiderthe loal quotient spae Aw = C{x − w}/IC{x − w}. The link between the loal



MULTIPLICITY HUNTING 5quotient spaes assoiated to points of V (I) and the quotient spae C[x]/I is givenby the :Theorem 4. Let V (I) = {w(1), . . . , w(N)}. Then1� C[x]/I ∼ Aw(1) × . . .×Aw(N) .2� dimC[x]/I =

N
∑

i=1

dimAw(i) .We then an de�ne the algebrai multipliity.De�nition 1. Let w ∈ V (I). The dimension of loal quotient spae Aw is thealgebrai multipliity of w.To determine the dimension of Aw, a similar way to the a�ne global settingis to ompute a standard basis of Aw. We then have an equivalent result to thetheorem 3.Theorem 5. Let S a standard basis of the ideal IC{x− w}. Let LT (S) the idealgenerated by the leading terms of S. De�ne SM(S) = {monomials /∈ LT (S) }.Then
dimAw = #SM(S).Example 2.Let f1(x, y) and f2(x, y) be as the example 1. We are interested �rst in the root

(0, 0). Let us hoose an ordering re�ning the valuation; the leading term will be theInf. A standard basis of IC{(x, y)} is S = {x2, y2}. Hene SM(S) = {1, x, y, xy}and dimA(0,0) = 4.In the same way a standard basis of IC{(x, y)− (−1, 1)} (respetively IC{(x, y)−
(−1,−1)}) is S = {x, y}. Hene SM(S) = {1} and dimA(−1,1) = dimA(−1,−1) = 1.The identity dimC[x]/I = dimA(0,0) + dimA(−1,1) + dimA(−1,−1) is satis�ed. ◦The tangent one algorithm [38℄ allows to ompute standard bases. An improvedversion of this algorithm is implemented in Singular by Greuel and P�ster [19℄.2.3. Multipliity and Duality. The link between multipliity and dualityis desribed �rst by Maaulay in [34℄ and perhaps also Gröbner [24℄. A modernexposition is done by Emsalem [15℄. More reent developments are given by Mari-nara, Möller, Mora in [36℄, Alonso, Marinari, Mora in [3℄, [4℄. Also improvementsonerning omplexity are proposed by Mantza�aris, Mourrain [35℄, [41℄. For amultiple index α = (α1, . . . , αn) ∈ N

n, we denote by ∂α the di�erential operator
g → ∂αg(x)

∂xα
. The operator ∂α

w is the evaluation operator of ∂α at a point w of Cn.Also, if L =
∑

|α|≤k

Lα∂
α then Lw =

∑

|α|≤k

Lα∂
α
w.It is lassial that there is an isomorphism between the dual spae C[x]∗ of C[x]and the set of formal series in ∂w. Maaulay in [34℄ introdue the inverse systemof the ideal I

I⊥ = {L ∈ C[x]∗ : ∀g ∈ I, L(g) = 0}The result is that we an identify I⊥ and the dual of C[x]/I :Theorem 6. There is a anonial C-isomorphism between I⊥ and the dual of
C[x]/I.



6 M. GIUSTI AND J.-C. YAKOUBSOHNThe link between the duality and the multipliity is explained by the relationbetween the quotient rings Aw and the subspaes
Dk

w(I) = {L =
∑

|α|≤k

Lα∂
α : ∀g ∈ I, Lw(g) = 0}.We will write Dk

w for Dk
w(I). We have :Theorem 7. A root w of f is isolated if and only if there exists an integer δsatisfying Dδ−1

w = Dδ
w. In this ase Dδ

w is the dual spae of Aw and the dimensionof Dδ
w is equal to the multipliity of w. In other words

dimAw = dimDδ
w.We all δ the thikness of the multiple root w.Remark 1.We adopt the term thikness whih is the translation of the frenh word épais-seur introdued by Ensalem in [15℄ rather than the term depth more reently usedby Mourrain, Matza�aris in [35℄ or Dayton, Li, Zeng [10℄, [9℄. ◦To ompute the dimension of the vetor spae Dk
w, let us introdue the Maaulaymatries

Sk = ( ∂α[w]((x − w)αfi(x)) ) |α|≤k−1
1≤i≤mTheorem 8. The vetor spae Dk

w is isomorphi to the kernel of Sk.Consequently the multipliity µ of w satis�es µ = dimKer(Sδ−1) = dimKer(Sδ).Example 3.Let f1 = x2 + y2 − 2, f2 = xy − 1. w = (1, 1). Let us onstrut the Maaulaymatries in w = (1, 1) :
∂00 ∂10 ∂01 ∂20 ∂11 ∂02

S0 f1 0 | 2 2 | 2 0 2

S1 f2
0 |
−−

1
−−

1 |
− 0 1 0

(x− 1)f1 0 0 0 4 2 0
S2 (x− 1)f2 0 0 0 2 1 0

(y − 1)f1 0 0 0 0 2 4
(y − 1)f2 0 0 0 0 1 2We have suessively rank(S0) = 0, rank(S1) = 1, rank(S2) = 4. Heneorank(S1) = orank(S2) = 2. It follows the multipliity of (1, 1) is 2. ◦We now explain how the knowledge of the struture of the dual spae permitsto �nd a regular system at w. Let µ the dimension of Dk

w and Λ = {Λ1, . . . ,Λµ} abasis of Dk
w. We introdue the polynomial system of mµ equations and n variables:

Λ(f) = (Λ1(f), . . . ,Λµ(f))with Λk(f) = (Λk(f1), . . . ,Λk(fm)). Mantza�aris and Mourrain state the following:Theorem 9. [35℄ The polynomial system Λ(f) is regular at w.



MULTIPLICITY HUNTING 7Example 4.A basis of the kernel of the Maaulaymatrix S2 of the example 3 is {(1, 0, 0, 0, 0, 0), (0, 1,−1, 0, 0, 0)}.Hene the set {∂(0,0), ∂(1,0) − ∂(0,1)} is a basis of D2
(1,1). Consequently

Λ(f1, f2) = (x2 + y2 − 2, xy − 1, 2x− 2y, y − x).It is easy to see the Jaobian of Λ(f1, f2) has rank 2.3. Multipliity. Numerial point of view3.1. Multipliity and perturbation. From a numerial point of view anexat multiple root makes no sense. We must think of a luster of roots whihomes from perturbations of the data. In this way we an onsider the initialsystem as lose to another system whih admits an exat multiple root.De�nition 2. A root w of f = (f1, . . . , fm) is regular if the Jaobian matrix Df(w)has full rank (in the opposite ase w is a singular root).The link to the algebrai multipliity is given by the following.Proposition 1. The algebrai multipliity of a regular root is equal to 1.Proof. We denote by Df(w)∗ the adjoint of Df(w). Let I the ideal generatedby f . Sine Df(w) has full rank Df(w)∗Df(w) is invertible. Hene the idealgenerated by g(x) = (Df(w)∗Df(w))−1f(x) is equal to I. But
(Df(w)∗Df(w))−1f(x) = x− w +

∑

k≥2

1

k!
(Df(w)∗Df(w))−1Dkf(w)(x − w)k.Consequently LT (g) is generated by x− w. Its follows that dimAw = 1.A very useful result is the Rouhé's theorem [50℄ whih links a perturbation ofanalyti funtions to the number of roots in a ball, see also Lojasiewiz for a ver-sion in several variables [33℄.Theorem 10. Let f and g two analyti funtions de�ned in a real ball B(x, r) ⊂

C
n. If for all z ∈ ∂B(x, r) we have

||f(z)− g(z)|| < ||f(z)||then f and g have the same number of roots in B(x, r) where eah root is ountedas many times as its multipliity.Proposition 2. w is a singular isolated root of f if and only if the multipliity of
w is stritly greater than 1.Proof. Sine w is an isolated root there exists a ball B(w, r) where f admitsonly this root. There exists z0 ∈ ∂B(w, r) suh that for all z ∈ ∂B(w, r) one has
||f(z)|| ≥ ||f(z0)||. Then the funtion g(z) = f(z) + y with ||y|| < ||f(z0)||/2satis�es the inequality of Rouhé's theorem on ∂B(w, r). Consequently the numberof roots of g in B(w, r) is the multipliity, say µ, of w. Moreover for almost every
y, Sard's theorem insures that Dg(z) has full rank at eah of the roots. Hene theroots of g, say w(1), . . . , w(µ), are regular in the ball B(w, r). Let us onsider thehomotopy

h(z, t) = (1 − t)g(z) + tf(z) = f(z)− (1− t)y.



8 M. GIUSTI AND J.-C. YAKOUBSOHNWe have h(w(k), 0) = 0 for every k and h(w, 1) = 0. For almost every y, fromimpliit funtion theorem there exists µ regular urves x(k)(t): [0, 1[→ B(w, r) suhthat f(x(k)(t)) = (1 − t)y and x(k)(t)′ = −Df(x(k)(t))−1y. Hene if µ > 1 thequantities x(k)(1)′ make no sense and the root w is singular.The link between Rouhé's theorem and the loal ring theory an be summarizedby the identity
dimAf

w =
∑

w̄∈B(w,r)∩g−1(0)

dimAg
w̄where Af

w (respetively Ag
w̄) is the loal quotient ring assoiated to f (respetively

g). Here we �nd again the lassial idea from a numerial point of view that wedeal with lusters of roots rather than exat multiple roots.In the ase where the system has no root or only one regular root in a ball, it ispossible to give an e�etive version of Rouhé's theorem : this is obtained from theTaylor series of f . It is also valid when the system f is analyti.Theorem 11. [17℄ Let us onsider a ball B(x, r).1� If
||f(x)|| >

∑

k≥1

1

k!
||Dkf(x)||rkthere is no root in B(x, r).2� Let r be a positive real number smaller than the radius of onvergene of

∑

k≥0

1

k!
||Dkf(x)||rk . If
||Df(x)−1f(x)|| < r −

∑

k≥2

1

k!
||Df(x)−1Dkf(x)||rkthere is only one regular root of f in B(x, r).The ase of a simple double root has been studied by Dedieu-Shub [14℄.Theorem 12. Let c = 0.19830 . . . . For v, x ∈ C

n, ||v|| = 1, we de�ne the linearoperator :
A(x, f, v) = Df(x) +

1

2
D2f(x)(v,Πv)where Πv is the projetion on the spae spanned by v. Let L be the linear operatorde�ned by L(v) = Df(x)v and L(w) = 0 if w is orthogonal at v. Let B(x, f, v) =

A(x, f, v)− L. We introdue the quantity
γ2(f, x, v) = max

(

1, sup
k≥2

∣

∣

∣

∣

∣

∣

∣

∣

1

k!
B(f, x, v)−1Dkf(x)

∣

∣

∣

∣

∣

∣

∣

∣

1
k−1

)

.If we have
||f(x)||+ ||Df(x)v|| c

2γ2(f, x, v)2
<

c3

4||B(f, x, v)−1||γ2(f, x, v)4then f has two zeros (ounting multipliities) in the ball of radius c

2γ2(f, x, v)2around x.



MULTIPLICITY HUNTING 9In fat the previous ase desribes double roots of orank one : they are lus-ters of two roots of embedding dimension one. A quantitative version of Rouhé'stheorem in the embedding dimension 1 ase is given by Giusti, Leerf, Salvy, Yak-oubsohn in [17℄ but, the statement is tehnially too di�ult to appear here.Open problem 1.Find a qualitative version of Rouhé's theorem for lusters of roots of analytisystems. ◦Let us remark that the theorem 11 applied to the dual system Λ(f) of theorem 9an prove the existene of a (regular) root of Λ(f).4. Multipliity and homotopy methodsHomotopy methods onsist to deform smoothly a system with known roots tothe initial system with unknown roots. These methods are urrently used to solvesystems of equations : the textbook of Allgower and Georg [2℄ or Morgan [39℄ arelassial referenes. The homotopy used in this setion is the linear homotopy h:[0, 1]×C
n → C

n de�ned by
h(x, t) = (1− t)ga,b(x) + tf(x)where ga,b(x) = (a1x

d1
1 − b1, . . . , anx

dn

n − bn). There are three kinds of urves
x(t) solutions of h(t, x(t)) = 0. First, the regular urves de�ned on [0, 1] whihorrespond to a regular root of f(x). Next, the urves whih are only regular on
[0, 1[ due to the existene of a multiple root of f(x). Finally, the urves whih goto in�nity as t → 1 and whih orrespond to in�nite roots of f(x). In�nite rootsare expliitly desribed using omplex projetive spae CP

n. Wright in [61℄ give aproof of Bézout's theorem using the linear homotopy. More preiselyTheorem 13. [61℄ Let F (x0, x) =
(

xd1
0 f1(x/x0), . . . , x

dn

0 fn(x/x0)
), Ga,b(x0, x) =

(a1x
d1
1 − b1x

d1
0 , . . . , anx

dn

n − bnx
dn

0 ) and
Ha,b(t, x0, x) = (1 − t)Ga,b(x0, x) + tF (x0, x).Let Za,b = {(t, x0, x) ∈ [0, 1[×CP

n : Ha,b(t, x0, x) = 0}. For almost (a, b) ∈ C
2nwe have :1� 0 ∈ C

n is a regular value of Ha,b(t, 1, x) = 0, i.e, DxH(t, 1, x) has fullrank of for all (t, x) ∈ [0, 1[×C
n suh that Ha,b(t, 1, x) = 0.2� Za,b onsists of d1 . . . dn disjoint half-open ars in CP

n× [0, 1), where theendpoint of eah ar is a known root of Ga,b(x0, x) in CP
n × {0}, andwhere the limit of the other end of the ar is a root of F (x0, x).In fat linear homotopy methods are useful to prove Bézout's theorem : seeBlum, Cuker, Shub, Smale [7℄ page 199 and referenes inside.A straightforward onsequene of this result is the multipliity an be omputedthanks to homotopy methods. More preiselyCorollary 1. Let us onsider the linear homotopy of the theorem 13. Eah isolatedroot (respetively root at in�nity) of multipliity µ generates µ homotopy paths x(t)onverging towards it.To �nd one regular root, the omplexity and the analysis of this homotopymethod is studied by Shub and Smale in [53℄ and [54℄. A better omplexity bound



10 M. GIUSTI AND J.-C. YAKOUBSOHNis given by Shub [52℄. We give a simpli�ed version of this omplexity result in thelinear homotopy ase.Theorem 14. [52℄, [6℄ The number of numerial homotopy steps performed bythe projetive Newton's method to yield an approximate zero of the initial system isbounded by
71d3/2Lwhere d is the maximum of degrees of f ′
is and L is the ondition length of the linearhomotopy (see the referenes above for this de�nition).The paper of T.Y Li [32℄ gives a good review on homotopy ontinuation meth-ods and their improvement for de�ient polynomial systems, i.e., for whih theisolated solutions are fewer than the Bézout's number.Open problem 2.Estimate the omplexity to approximate a multiple root using linear homotopy.

◦In the hapter 10 of [56℄, Sommese and Wampler give some numerial heurististo deal with singular end games based on power series, Cauhy integral and traetheorem. In the same vein, Huber and Vershelde in [27℄ explore links betweenpolyhedral end game and power series to give some re�nements. Another interestingway is proposed by Kobayashi, Suzuki and Sakai in [28℄ using Zeuthen's rule butunfortunately without study of omplexity.5. Reovering the quadrati onvergeneThe idea is to ompute from the initial system another one whih is regularat the singularity. The theorem 9 gives an augmented system omputed fromthe kernel of the Maaulay matries Sk. But the size of Sk is very huge i.e.,
m
∑k

j=0

(

n+j−1
j

)

×
(

n+k+1
n

). In the sequel, we desribe two kinds of what is alleda de�ation method.5.1. Leerf de�ation method. [29℄ The idea is to di�erentiate well hosenequations and to selet new equations at eah step of the method in order to obtaina regular system at the root w. From now we adopt the Matlab notation : xi:j isthe vetor (xi, . . . xj).Initial Step : the system f = (f1, . . . , fm) is onsidered as a subset of C{x − w}.We set Φ1 = f and R1 = 1.Step k ≥ 1. We ompute a new system Φk+1 and a new integer Rk+1 from Φk and
Rk. Let mk be the valuation of Φk and

Φ̃k =
∂mk−1

∂xmk−1
Rk

Φk :=

{

∂j

∂xj
Rk

Φk : 1 ≤ j < mk

}Let rk the rank of Jaobian of Φ̃k with respet to the variables xRk:n evaluated at
wRk:n. Then we set Rk+1 = rk + Rk. Next we extrat a subset Ωk from Φ̃k suhthat the gradient of Ωk has rank rk at wRk:n.Finally, thanks to the impliit funtion theorem, there exist rk power series yRk:Rk+1−1in C{xRk+1:n − wRk+1:n} expressing xRk:Rk+1−1 in terms of xRk+1:n suh that
Ωk(yRk:Rk+1−1, xRk+1:n) = 0. Then

Φk+1(xRk+1:n) = Φk(yRk:Rk+1−1, xRk+1:n).



MULTIPLICITY HUNTING 11Stopping riterion. The above onstrution stops when Rk+1 = n+ 1.Output of the method. Let us suppose that there are ν steps. The output is thesystem Ω = (Ω1(xR1:n, . . . ,Ων(xRν :n)). The properties of this de�ation sequeneare given byTheorem 15. Without loss of generality we an assume that at eah step of thede�ation proess the variable xRk
is in Weierstrass position with respet to the idealgenerated by Φk ( i.e. there exists an element of this ideal of valuation mk having

xmk

Rk
in its support). The onstrution above works up to a permutation of thevariables. Moreover :1� 1 ≤ rk ≤ n−Rk + 1.2� 1 ≤ mkdim

(

C{xRk:n − wRk:n}/Φ̃k

)

≤ dim (C{xRk:n − wRk:n}/Φk).3� The system Ω is regular at the root w.4� m1 . . .mµ ≤ dimAw.Example 5.Let f := (f1, f2, f3) = (x2 + x+ y+ z, y2 + y+ x+ z, z2 + z + x+ y). The root
w = (0, 0, 0) has multipliity 4.We denote by Ok a generi power series ∑

|α|≥k

aα(x− w)α.Let Φ1 = {f1, f2, f3} and R1 = 1. The rank of the Jaobian matrix of f is r1 = 1at x. We �nd m1 = 1 and Φ̃1 = Φ1 and R2 = 2. We hoose Ω1 = {f1}. The powerseries solution of f1(y1, y, z) = 0 is
y1(y, z) = −y − z − y2 − 2 zy − z2 +O3.Substituting x by y1 in Φ1 we �nd

Φ2 = {O3,−2zy− z2 +O3,−y2 − 2zy +O3}.For the next step m2 = 2 and
Φ̃2 :=

∂Φ2

∂y
= {Φ2,−2z +O2,−2y − 2z +O2}.The rank of the Jaobian matrix of Φ̃2 is r2 = 2. We hoose Ω2 = {−2z+O2,−2y−

2z + O2} Sine R3 = R2 + r2 = 4. The de�ation onstrution stops. The regularsystem at w is
Ω = {f1,−2z +O2,−2y − 2z +O2}.We refer to [29℄ for the study of the omplexity of this onstrution. Another typeof de�ation method mixing symboli and numerial omputations have been onsid-ered by Ojika, Watanabe, and Mitsui in [44℄, [43℄ : the new equations are generatedby symboli Gaussian eliminations but it remains to perform the numerial analysisand to study the omplexity of this modi�ed de�ation method.5.2. Augmented systems and de�ation methods. From the knowledgeof the struture of the loal quotient algebra, Mantza�aris and Mourrain determinea regular system given in the theorem 9. We sketh now another onstrution ofde�ation sequene based on a augmentation of the number of equations and of thenumber of variables. First, one de�nes a de�ation operator whih assoiates to



12 M. GIUSTI AND J.-C. YAKOUBSOHNthe initial system f , a new system Defl(f, x, y) where (x, y) ∈ C
n+j . Next, oneiterates this operator to obtain the de�ation sequene :

x0 = x, y0 = y, F0 = f, xk+1 = (xk, yk), Fk+1 = Defl(fk, x
k, yk), k ≥ 0.The length of the de�ation is the vetor (n0, . . . , nk, . . .) where nk is the dimensionof the kernel of the Jaobian matrix DFk(x

k). The thikness of the de�ation is thenumber N suh that nN+1 = 0.In this way suh a type of de�ation operator had been proposed by Leykin, Ver-shelde, Zhao in [30℄, and extended in [31℄. From an original system f = (f1, . . . , fm)with rankDf(w) = r they de�ne the following :
LV Z(f, x, y) := LV Z(f,B, h, x, y) =







f(x)
Df(x)By
h∗y − 1where B is a random n× (r + 1) matrix and h a random r + 1 vetor. The matrix

Df(x)B has generially a rank equal to r and the dimension of KernelDf(w)B is
1. Hene there exists a unique λ ∈ C

r+1 suh that Df(w)Bλ = 0 and h∗λ− 1 = 0.Theorem 16. [30℄, [31℄ The multipliity of the root (w, λ) of the system LV Z(f, x, y)is stritly less than the multipliity of the root w of the system f .Unfortunately the de�ated system LV Z(f, x, y) is not regular at its root (w, λ).In this ase the method onsists to de�ate more until to �nd a regular system. WehaveTheorem 17. [30℄, [31℄ The number of de�ation steps to obtain a regular systemis bounded by the multipliity of w. If N is the number of de�ations, the regularsystem has n+N +
∑N

k=1 rk variables and 2N (n+ 1)− 1 equations.Example 6. [11℄Let f(x, y) = (x + y3, x2y − y4) with (0, 0) has multipliity 3. The numberof de�ations steps is 3 and the oranks of the Jaobian matries of the de�atedsystems are equal to 1. The regular system has 16 variables and 23 equations. ◦Example 7. [10℄Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root has multipliity 131.Two steps of LVZ de�ation are needed with length (4, 4). The regular system has
7 variables and 19 equations. ◦Another way to onstrut de�ated systems by adding variables and equations hasbeen proposed par Dayton and Zeng in [10℄ for the polynomial ase and Dayton, Li,Zeng in [9℄ for the analyti ase. The de�ation operator proposed by these authorsis

DLZ(f, x, y) := DLZ(f,R, e1, x, y) =







f(x)
Df(x)y
Ry − e1where R is p× n random matrix in order that [ Df(w)

R

] has full rank and e1 =

(1, 0, . . . , 1)T with size p is the dimension of the kernel of Df(x).Theorem 18. [10℄, [9℄ The number of steps of the DLZ de�ation is bounded bythe thikness δ of the root w de�ned in theorem 7. The last de�ated system has 2δvariables and 2δn+

δ−1
∑

k=0

2kpk where pk is the orank of DLZ system k.



MULTIPLICITY HUNTING 13Example 8. [10℄Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root has multipliity 131.Two steps of DLZ de�ation are needed with length (4, 4). The regular system has
16 variables and 28 equations. ◦The example 6 lies to the lass of systems of �breadth one� as de�ned by Daytonand Zeng in [10℄, i.e., the length is (1, . . . , 1). Note that this notation orrespondsto the embedding dimension 1 as introdued by Giusti, Leerf, Salvy, Yakoubsohnin [17℄. For this lass the DLZ de�ation an be modi�ed in order to obtain µnvariables and µm equations.6. De�ating and kernelingWe propose a new onstrution to de�ate a system without adding new vari-ables. It is based on two operations we alled de�ating and kerneling in the intro-dution.6.1. De�ating. This operation onsists to replae an equation g(x) = 0 bythe n equations ∂ig(x) = 0, i = 1 : n when we have simultaneously g(w) = 0 and
∂ig(w) = 0, i = 1 : n. We then an de�ne the following reursive algorithm.de�ating(f, w̄, ǫ)- Input : f = (f1, . . . , fm), w̄ a point lose to a multiple root w of f , and ǫa preision.- Let J := Df(x) and Jw̄ := Df(w̄).- Let mJ the number of lines of J .- fdeflated = ∅- for k = 1 : mJ- if max1≤j≤n |Jw̄(k, j)| ≤ ǫ then- de�ating(J(k, :), w̄, ǫ)- else- fdeflated = fdeflated ∪ {fk/LT (fk)}- end if- end for- Output fdeflatedRemark 2.The assignment fdeflated = fdeflated ∪ {fk/LT (fk)} must be understood in thefollowing way : the polynomial fk/LT (fk) is added if it is not already an elementof the set fdeflated.◦6.2. Kerneling. Let us onsider a system f = (f1, . . . , fm) suh that eahline of Df(w) is non zero and Df(w) has a rank r < n. Without loss of generalitywe an write

Df(w) =

(

A(w) B(w)
C(w) D(w)

)

∈ C
m×nwhere A(w) is an invertible matrix of size r × r. Then the Shur omplement

D(w)− C(w)A−1B(w) is zero. Hene w is a root of the system
D(x) − C(x)A−1(x)B(x) = 0.The kerneling operation onsists of adding to the initial system at most the (m −
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r)× (n− r) polynomials given by the non zero numerators of the oe�ients of theShur omplement. We then an de�ne the following algorithm.kerneling(f, w̄, ǫ)- Input : f = (f1, . . . , fm), w̄ a point lose to a multiple root w of f , and ǫa preision. Eah line of Df(w̄) is non zero.- Determine r the numerial rank of Df(w̄).- Determine an invertible submatrix A(w̄) of Df(w̄) of size r × r.- Compute S(x) = det(A(x))D(x) − det(A(x))C(x)A−1B(x).- fdeflated = f ∪ {elements of S(x)}- Output fdeflated6.3. Equivalent system. Combining de�ating and kerneling operations weompute a equivalent system of n variables and n equations.equivalent(f, w̄, ǫ)- Inputs : f = (f1, . . . , fm), w̄ a point lose to a multiple root w of f and ǫa preision.- fdeflated = f .- while Dfdelated(w̄) is not numerially full rank- fdeflated = de�ating(fdeflated, w̄, ǫ)- fdeflated = kerneling(fdeflated, w̄, ǫ)- end while- fdeflated = {n equations of full rank from fdeflated}- Output fdeflated6.4. Example. Let us onsider

f(x, y) = (x3/3 + xy2 + x2 + 2xy + y2, x2y + x2 + 2xy + y2)The point (0, 0) is a root of f(x, y) = 0 with multipliity 6. The de�ating algorithmapplied with w = (0, 0) gives :
∂1 ∂2 ∂1 ∂2

x2 + y2 + 2x+ 2y 2yx+ 2x+ 2y 2xy + 2x+ 2y x2 + 2x+ 2yAll these previous quantities vanish at w. An additional step of de�ating operationgives
∂11 ∂12 ∂21 ∂22 ∂11 ∂12 ∂11 ∂12

2x+ 2 2y + 2 2y + 2 2x+ 2 2y + 2 2x+ 2 2x+ 2 2All these quantities are non zero at w. Hene the de�ated system is :
fdeflated(x, y) = (x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y)Now we an use the kerneling algorithm of this new system.

Dfdeflated(x, , y) =





2x+ 2 2y + 2
y + 1 x+ 1
2x+ 2 2



 .Then Dfdeflated(0, 0) has rank one. We an onsider A(x) = 2x + 2. The Shuromplement of Dfdeflated(x, y) assoiated to 2x+ 2 is
(

x+ 1
2

)

− 2y + 2

2x+ 2

(

y + 1
2x+ 2

)

=
1

x+ 1

(

x2 + 2x− y2 − 2y
−2xy − 2y

)

.



MULTIPLICITY HUNTING 15Finally from the system
(x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y, x2 + 2x− y2 − 2y, y)we an hoose

fdeflated(x, y) = (x+ y + xy, y)whih is regular at w.6.5. Why the multipliity dereases? Let I be the ideal generated by
f1, . . . , fm and w a multiple isolated root of f1 = . . . = fm = 0. We deal with
C{x− w} the loal ring of onvergent power series at w and IC{x− w} the idealgenerated by I in C{x−w}. Then the multipliity of w is the dimension of the loalquotient algebra C{x− w}/IC{x− w}. This dimension is �nite if and only if theroot w is isolated. We denote by {g1, . . . , gp} a loal standard basis of IC{x−w}.Let < LT (IC{x−w}) > the ideal generated by the leading monomials of IA. Thenthe multipliity is the number of monomial that are not ontained in < LT (IC{x−
w}) >. This number is independent of the hosen order on the monomials. Wehave the two lassial results :Lemma 1. Let h not in IA and h(w) = 0. Then the multipliity of w as rootof f1 = . . . = fm = 0 is stritly greater than the multipliity of w as root of
h = f1 = f2 = . . . = fm = 0.Proof. Sine the leading term of h is not in IC{x − w} the lemma followseasily.The result we use to explain why the the multipliity dereases under the ation ofthe algorithm de�ated is stated by Arnold, Gusein-Zade and Varhenko in [5℄ page100 :Lemma 2. Let g = (g1, . . . , gn) ∈ C[x]n. Then the Jaobian det(Dg(x)) is not inthe ideal < g1, . . . , gn >.The two lemmas below explain why the multipliity dereases under the oper-ations of de�ating and kerneling.Lemma 3. Let w a multiple root of a system f1 = . . . = fm = 0 suh that
gradf1(w) = 0. Then the multipliity of w as root of f1 = . . . = fm = 0 is stritlygreater than the multipliity of w as root of ∂1f1 = . . . = ∂nf1 = f2 = . . . = fm = 0.Proof. Let g = (f1, g2 . . . , gn), the g′is being seleted from the f2, . . . , fm.Sine the jaobian of g is not is the ideal generated by g, see lemma 2, then eahline of the jaobian matrix of g has at least one element whih is not in < g >.In partiular at least one of ∂if1's is not in < g >. Following the lemma 1 we aredone.Lemma 4. Let w a multiple root of f1 = . . . = fm = 0 suh that gradfi(w) 6= 0,
i = 1 : m. Let r be the rank of Df(w) and

Df(w) =

(

A(w) B(w)
C(w) D(w)

)where A(w) is an invertible matrix of size r × r. Let S(x) = det(A(x))D(x) −
C(x)∆(x)B(x) where ∆(x) = det(A(x))A(x)−1. Then the multipliity of w asroot of f1 = . . . = fm = 0 is stritly greater than the multipliity of w as root of
S11 = . . . = Sm−r,n−r = f1 = f2 . . . = fm = 0.



16 M. GIUSTI AND J.-C. YAKOUBSOHNProof. It is su�ient to prove that one of Sij 's is not in the ideal< f1, . . . , fm >.Then, by lemma 1, the multipliity of w as root of f1 = . . . = fm = 0 is stritlygreater than the multipliity of w as root of Sij = f1 = f2 . . . = fm = 0.Let F = (f1, . . . , fr, h1, . . . , hn−r) with hi ∈ {fr+1, . . . , fm}.We have det(DF (x)) = det(A(x) det(SF (x)) where SF (x) is the Shur omple-ment of DF (x) assoiated to A(x). From lemma 2, det(DF (x)) is not in the ideal
< F >. So it is the same for det(A(x) and det(SF (x)) whih divide det(DF (x)).Hene there exists at least n− r oe�ients of the matrix SF (x) whih are not inthe ideal < F >. Sine the oe�ients of SF (x) are also oe�ients of the matrix
S(x) the onlusion follows.How muh the multipliity drops at eah step of the equivalent algorithm ?Theorem 19. For k ≥ 1, let F0 = f and Fk−1 the de�ated system obtained at thestep k−1 of equivalent algorithm and mk−1 the number of polynomials of Fk−1. Let
pk be the number of polynomials we add by de�ating operation at the step k. Wenote by Gk the system Fk augmented by these pk polynomials. Let rk be the rankof the jaobian matrix of Gk at w. Then the number N of steps of the algorithmstops is equal to

min{k : rk = n or N
∑

k=1

sk + tk ≤ µ}where max(0,min(1, pk)) ≤ sk ≤ pk and 1 ≤ tk ≤ pk(n− rk).Proof. From the lemmas 3 and 4 the multipliity dereases at least by one.But we an be more preise. Let µk be the multipliity of w as root of Fk. Thede�ating algorithm gives pk polynomials. Then the multipliity of the root w of
Gk drops by µk−1 − sk where max(0,min(1, pk) ≤ sk ≤ pk. Next, if the jaobianmatrix of Gk at w has rank rk = n the equivalent algorithm stops. Otherwise, themultipliity of w as root of Fk is µk−1 − sk − tk where 1 ≤ tk ≤ pk(n − rk). Thisbound is justi�ed beause all the polynomials of the Shur omplement omputedby the kerneling algorithm an be equal.7. ExamplesWe �rst treat three examples given in [65℄. These examples show it is notneessary to know the omplete struture of the loal quotient algebra to determinea regular equivalent system from the initial one with a multiple root.Example 9. [65℄

fk(x1, . . . , xn) = x1 + . . .+ xn + x2
k, k = 1 : n.The jaobian matrix Df(x) =











2x1 + 1 1 . . . 1
1 2x2 + 1 . . . 1...
1 1 . . . 2xn + 1











has rankone at (0, . . . , 0). The Shur omplement assoiated to 2x1 + 1 gives the equations:
x1 = 0

(2x1 + 1)(2xk + 1)− 1 = 0, k ≥ 2.



MULTIPLICITY HUNTING 17Example 10. [65℄
fk(x1, . . . , xn) = x3

k − xk+1xk+2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x3
n−1 − xnx1

fn(x1, . . . , xn) = x3
n − x1x2A multiple root is (0, . . . , 0). In the �rst de�ation step we replae the fk's bytheir gradients. We obtain the equations :

x1 = . . . = xn = 0.Example 11. [65℄
fk(x1, . . . , xn) = xk + . . .+ xn−2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x1 + . . .+ xn−2 + x5
n−1 + x2

n

fn(x1, . . . , xn) = x1 + . . .+ xn−2 + x2
nAmultiple zero is (0, . . . , 0). The Jaobian matrixDf(x) =





In−2 0 0
1 . . . 1 5x4

n−1 2xn

1 . . . 1 0 2xn



has rank n − 2 at the multiple root (0, . . . , 0). The Shur omplement assoiatedto In−2 furnishes the equations
5x4

n−1 = 2xn = 0.After one step of de�ation we obtain the system
f1 = . . . = fn−2 = xn−1 = xn = 0.Example 12. mbs1 [58℄

f(x, y, z) = (x3 − yz, y3 − xz, z3 − xy).A multiple root is (0, 0, 0). A �rst of de�ation gives the equations x = y = z =
0.Example 13. mbs2 [58℄

f(x, y, z) =(x3 − 3x2y + 3xy2 − y3 − z2,

z3 − 3z2x+ 3zx2 − x3 − y2,

y3 − 3y2z + 3yz2 − z3 − x2).A multiple root is (0, 0, 0). A �rst step of de�ation gives the equations x = y =
z = x− y = x− z = y − z = 0.Example 14. aprasse [40℄

f(x, y, z, t) =(−x3z + 4 xy2z + 4 x2yt+ 2 y3t+ 4 x2 − 10 y2 + 4 xz − 10 yt+ 2,

− xz3 + 4 yz2t+ 4 xzt2 + 2 yt3 + 4 xz + 4 z2 − 10 yt− 10 t2 + 2

y2z + 2 xyt− 2 x− z,

2 yzt+ xt2 − x− 2 z).



18 M. GIUSTI AND J.-C. YAKOUBSOHNThe multiple root is (2,−i
√
3, 2, i

√
3). The gradient of eah fk is non zero at

w and the jaobian matrix Df(w) has rank 2. The step of kerneling adds the fourpolynomials before we get a regular system at w.
−10xt−5xy−5 zt+ 17

4 xyt2z2−7/2 yt2x2z3+11/4 yt4x2z+ 17
4 yt2x2z−2 y2txz4+ 47

8 y2txz2+ 49
8 xt3z2y2−7x2z3t−3/4x2zt3

+ 31
4 x2zt+ 37

4 y2z3t−5 y2zt3−25 y2zt+5xyt4+ 103
8 xz2t+xyz4+ 15

4 xyz2+15 yzt2−xt3+ 19
4 z3t+11 zt3−5/2 yz3+5/4 y3t2z3

−y3t4z+11 y3t2z−3 y2t5x+7 y2t3x+ 13
4 yt2z3−yt4z−1/2 x3t3z2− 7

8 xt3z2−3/2x3tz2+4xty2+x3tz4−xtz4−3/2x2yz3+2x2yz

− 9
8 x3t5+3xt5+3/4 x3t3+3/8 x3t,

5/2xy2z+ 25
2 xzt2+5/4 y3t− 25

4 y2− 25
4 t2− 25

2 yt+ 55
4 yt3+15 yzxt+1/2 yz4x2t−5/4 yz2x2t3−4 yz2x2t−19/2 y2zxt2−5/4 yz3xt

+3 yzxt3− 13
8 xt2y2z3+ 25

4 t4− 23
4 t2z2x2+15/2 t2z2y2+1/4 y3z4t−3/2 y3z2t3−3/2 y3z2t+1/2 y2z5x−3 y2z3x−yz2t3+x3t2z3

−3/8x3t4z−1/8x3t2z+3/2x2t5y−11/2x2t3y− 13
8 xt2z3+1/2xt4z+5 t2z2−3/2 t4x2−15/2 t4y2−5/2 t2x2+ 55

4 t2y2+15/2 z2y2

−5/4 z4y2+y3t5−5/4 yt5−9/4 y3t3,

−5xt−10xy−15 yz−10 zt+9/4 xyt2z2+24 yt2x2z+ 25
4 y2txz2−7/2 y2x2z3t+ 43

8 y2x2zt3− 7
8 y2x2zt+ 33

4 y3t2xz2−6 yt2x3z2

−3/2x2z3t− 11
8 x2zt3+ 103

8 x2zt+5 y2z3t+6 y2zt3+2 y2zt+7 xyt4−15 xyt2+ 31
4 xz2t−1/2xyz4+ 43

2 xyz2+5 yzt2−5 xt3

+3/8 z3t+3 zt3+11/4 yz3+15 y3t2z+11 y2t3x−7x3tz2+23xty2−9x2yz3+8x2yz+ 21
8 y4z3t−5 y4zt3+4 y4zt−3 y3xt4

−3 y3xt2−3/2 y3xz4+2 y3xz2−yz2x3+ 25
4 x3t3+ 19

4 x3t−5 y3z+ 21
4 y3z3+ 13

4 yt2x3−x4tz+7/4 yt4x3+yz4x3+x4z3t−zx4t3,

10xy2z+10/3 yz2t+ 20
3 xzt2+10 y3t− 25

3 y2− 25
3 t2− 50

3 yt+10 yt3+20 yzxt− 47
6 yz2x2t−6 y2zxt2−4/3 yz3xt−4 yzxt3+x3yz3t

−5/6x3yzt3−7/6 xy3z3t+2/3 xy3zt3−2/3 xy3zt−5/4 y2t2x2z2−4/3 t2z2x2−8/3 t2z2y2−2/3 y3z2t−7/2 y2z3x−13/2 x3t2z

+4/3x2t3y−5/3 t4y2+10 t2x2+ 80
3 t2y2+10/3 z2y2−1/4 z4y2− 34

3 y3t3−5/3 y4t2+2 y4z2+4/3 y4t4−3/4 y4z4−2/3x2y2t4

+2/3x2y2z4− 23
12 x2y2z2+x4t2z2Example 15. deker2 [11℄

f(x, y) =(x + y3, x2y − y4).A multiple root is (0, 0, 0). A �rst step of de�ation gives the equations x+y3 =
x = y = 0.Example 16. mth191 [30℄

f(x, y) =(x3 + y2 + z2 − 1, x2 + y3 + z2 − 1, x2 + y2 + z3 − 1).A multiple root is w = (0, 1, 0). The gradients of eah polynomials are nonzero at w. The jaobian matrix has rank 1. The step of kerneling adds the fourpolynomials :
x (9 xy − 4)

z (3 y − 2)

x (3 y − 2)

z (9 zy− 4)The system f1 = x (9 xy − 4) = z (3 y − 2) = 0 is regular at w.Example 17. DZ1 [10℄
f(x, y, z, t) =(x4 − yzt, y4 − xzt, z4 − xyt, t4 − xyz).A multiple root is w = (0, 0, 0, 0). A step of de�ation gives x = y = z = t = 0.
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f(x, y, z) =(x4, x2y + y4, z + z2 − 7x3 − 8x2).A multiple root is w = (0, 0,−1). A step of de�ation adds the equation x =

y = 0.Example 19. DZ3 [10℄
f(x, y) =(14 x+33 y−3

√
5(x2+4xy+4 y2+2)+

√
7+x3+6 x2y+12xy2+8 y3

41
8 x−9/4 y−1/8

√
5+x3−3/2x2y+3/4 xy2−1/8 y3+3/8

√
7(4 xy−4x2−y2−2).A multiple root is w = ((2

√
7 +

√
5)/5, (2

√
5−

√
7)/5). The gradients of eahpolynomials are non zero. The step of kerneling adds the polynomial

−360x2
√
5y+630xy2

√
5+240xy−180

√
7x3+360

√
7y3+1260 x2+1440 y2−360x3

√
5+540x3y+45x2y2−540 xy3−180 y3

√
5

+540
√
7x

√
5y+180x4+180 y4+1605−960

√
7x+480

√
7y−600

√
5x−1200

√
5y+360

√
7
√
5x2−630

√
7x2y−360

√
7xy2

−360
√
7
√
5y2Its gradient is zero at w. The step of de�ation replaes it by the two followingpolynomials :

1/3 y+7/2x+x3+3/4
√
7
√
5y−4/3

√
7−5/6

√
5−3/4

√
7x2−3/2x2

√
5+9/4x2y+1/8xy2−3/4 y3−x

√
5y+ 7

8 y2
√
5+

√
7
√
5x

−7/4
√
7xy−1/2

√
7y2

4/9x+16/3 y+4/3 y3+
√
7
√
5x+ 8

9

√
7− 20

9

√
5+2

√
7y2+x3+1/6 x2y−3xy2−y2

√
5−2/3 x2

√
5+7/3x

√
5y−7/6

√
7x2

−4/3
√
7xy−4/3

√
7
√
5yThe system build from f1, f2 and from the two previous polynomials is regular at

w.Example 20. Ojika2 [43℄
f(x, y, z) =(x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1).A multiple root is w = (1, 0, 0). The rank of Df(w) is 2. The step of kernelingadds the equation 4xyz − x− y − z + 1 = 0.Example 21. Ojika3 [43℄

f(x, y, z) =(x + y + z − 1, 2x3 + 5y2 − 10z + 5z3 + 5, 2x+ 2y + z2 − 1).A multiple root is w = (−5/2, 5/2, 1). The rank of Df(w) is 2. The step ofkerneling adds the equation 3x2z − 5yz + 5y − 3x2 = 0.Example 22. Leerf [29℄
f(x, y, z) =( 2 x+ 2 x2 + 2 y + 2 y2 + z2 − 1,

(x+ y − z − 1)
3 − x3,

(

2 x3 + 2 y2 + 10 z + 5 z2 + 5
)3 − 1000 x5 ).



20 M. GIUSTI AND J.-C. YAKOUBSOHNA multiple root is w = (0, 0,−1). The rank of Df(w) is one. There is only onestep of de�ation to obtain the regular system
x+ x2 + y + y2 + 1/2 z2 − 1/2,

y − z − 1,

x+ y − z − 1,

9

14
x5 +

5

28

(

2 x3 + 2 y2 + 10 z + 5 z2 + 5
)

x2 − 625

126
x,

y,

x,

1 + z. 8. Conlusion and future workWe have shown how to derive an equivalent regular system from a singularinitial one, when we know the root. The stability of this proess will be done in afuture work and we desribe brie�y how to proeed. But from a numerial point ofview a multiple root makes no sense and it is more realisti to speak of a luster ofroots : a m�luster of roots is a open ball whih ontains m isolated regular rootsof the system. Moreover we would hope for results with a �small� size of the luster.The operation of de�ating is based on the evaluation of the gradient of a funtion,say g(x), at given point w̄. To deide whether there exists a root (or a luster ofroots) of this gradient losed to w̄ we need to know if there exists x̄1 suh that
(x̄1, w̄2, . . . , w̄n) is losed to w̄ and anels the gradient of g. This an be donewith the theoretial bakground developed in [18℄ where the words �losed to� and�small� are quanti�ed.The operation of kerneling requires more attention sine we must disover the nu-merial rank of a jaobian matrix at a point w̄ �losed to� the multiple root or theluster of roots. The di�ulty is that the rank drops only at the multiple root orin the luster of roots. We propose to �x a oordinate, say x1, and to perform aLU deomposition of the jaobian evaluated at (x1, w̄2, . . . , w̄n). Eah element ofthe diagonal of the matrix U of the LU deomposition is a polynomial in x1. Thenumerial rank of the jaobian matrix is the number of these polynomials having aroot �losed to� w̄1.We illustrate these priniples on Leerf's example 22 [29℄. We �rst show how to nu-merially disover that there is probably a point w near (x0, y0, z0) = (0.1, 0.09,−1.1+
0.1i) where the jaobian matrix has a rank one. For that we determine the matrix
U of the LU deomposition at (x0, y0, z). The diagonal of U is given by
2.4

2.28 + 4.51 z + 2.28 z2,

3633.58 + 25322.98 z + 75771.82 z2 + 126177.32 z3 + 126276.08 z4 + 75944.48 z5 + 25413.69 z6 + 3650.4 z7.The Newton iteration (or more generally the Shröder iteration) initialized to z0and applied respetively to the polynomials U22(z) and U33(z) onverges respe-tively to −0.99 + 0.14i and −0.98 + 0.05i. The initial point z0 is an approximatedzero of U22(z) and U33(z). This is the meaning given to the word �losed to�. Wewill dedue that the numerial rank of the jaobian is one.In this example we an numerially prove that there exists a point w where the twolast lines of the jaobian matrix are zero. In fat the evaluation of the gradients of
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f2 and f3 at (x0, y0, z) gives
∇f2(x0, y0, z) =(2.91 + 5.94 z + 3.0 z2, 0.0003 (99 + 100 z)2 , −0.0003 (99 + 100 z)2),

∇f3(x0, y0, z) =(4.03 + 18.06 z + 27.03 z2 + 18.0 z3 + 4.5 z4,

− 0.0000000432
(

25091 + 50000 z + 25000 z2
)2

,

0.0000012
(

25091 + 50000 z + 25000. z2
)2

(1 + z)).Thanks to Newton iteration initialized at z0 and applied suessively to eah poly-nomial oordinate of these two gradients we �nd a root losed to z0. From thiswe an prove the existene of a perturbed system of the initial one with the twolast lines of the jaobian matrix are zero. With this information we de�ate thetwo orresponding equations of the initial system. This heuristi approah will beompletely justi�ed in a future work.Referenes[1℄ Aizenberg, I.A. and Yuzhakov, A.P. Integral Representations and Residues in Multidi-mensional Complex Analysis, vol. 58. Providene,AMS, 1983.[2℄ Allgower, E.L. and Georg, K. Numerial ontinuation methods, vol. 33. Springer-VerlagBerlin, 1990.[3℄ Alonso, M., Marinari, M., and Mora, T. The big mother of all dualities: Möller algo-rithm. Communiations in Algebra 31, 2 (2003), 783�818.[4℄ Alonso, M.E. and Marinari, M.G. and Mora, T. The big mother of all dualities 2:Maaulay bases. Appliable Algebra in Engineering, Communiation and Computing 17, 6(2006), 409�451.[5℄ Arnold, V.I. and Gusein-Zade, S.M. and Varhenko, A.N. . Singularities of Di�eren-tiable Maps: The Classi�ation of Critial Points Caustis, Wave Fronts, vol. 1. BirkhäuserBoston, 1985.[6℄ Beltrán, C., and Leykin, A. Certi�ed numerial homotopy traking. Experimental Math-ematis 21, 1 (2012), 69�83.[7℄ Blum, L., Cuker, F., Shub, M., and Smale, S. Complexity and Real Computation.Springer-Verlag, New York-Berlin, 1998.[8℄ Cox, D.A. and Little, J. and O'shea, D. Using algebrai geometry, vol. 185. Springer,2005.[9℄ Dayton, B. and Li, T.Y. and Zeng, Z. Multiple zeros of nonlinear systems. Mathematisof Computation 80 (2011), 2143�2168.[10℄ Dayton, B.H. and Zeng, Z. Computing the multipliity struture in solving polynomialsystems. In Proeedings of the 2005 international symposium on Symboli and algebraiomputation (2005), ACM, pp. 116�123.[11℄ Deker, D.W. and Keller, H.B. and Kelley, C.T. Convergene rates for Newton'smethod at singular points. SIAM Journal on Numerial Analysis 20, 2 (1983), 296�314.[12℄ Deker, D.W and Kelley, C.T. Newton's method at singular points. i. SIAM Journ.alon Numerial Analysis 17, 1 (1980), 66�70.[13℄ Deker, D.W. and Kelley, C.T. Newton's method at singular points. ii. SIAM Journalon Numerial Analysis 17, 3 (1980), 465�471.[14℄ Dedieu, J.-P. and Shub, M. On simple double zeros and badly onditioned zeros of analytifuntions of n variables. Mathematis of omputation (2001), 319�327.[15℄ Emsalem, J. Géométrie des points épais. Bull. So. math. Frane 106 (1978), 399�416.[16℄ Fulton, W. Intersetion theory, vol. 1998. Springer-Verlag Berlin, 1984.[17℄ Giusti, M. and Leerf, G. and Salvy, B. and Yakoubsohn, J.-C. On loation andapproximation of lusters of zeros: Case of embedding dimension one. Foundations of Com-putational Mathematis 7, 1 (2007), 1�58.[18℄ Giusti, M. and Leerf, G. and Salvy, B. and Yakoubsohn, J.C. On loation andapproximation of lusters of zeros of analyti funtions. Foundations of Computational Math-ematis 5, 3 (2005), 257�311.
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