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Abstract

This survey covers a decade and a half of joint work with L.
Lehmann, G. M. Mbakop, and L. M. Pardo. We address the prob-
lem of finding a smooth algebraic sample point for each connected
component of a real algebraic variety, being only interested in compo-
nents which are generically smooth locally complete intersections. The
complexity of our algorithms is essentially polynomial in the degree of
suitably defined generalized polar varieties and is therefore intrinsic
to the problem under consideration.

1 Introduction
The modern concept of polar varieties was introduced in the 1930’s by F.
Severi ([34], [33]) and J. A. Todd ([37], [36]), while the intimately related
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notion of a reciprocal curve goes back to the work of J.-V. Poncelet in the
period of 1813–1829. As pointed out by Severi and Todd, generic polar
varieties have to be understood as being organized in certain equivalence
classes which embody relevant geometric properties of the underlying alge-
braic variety S. This view led to the consideration of rational equivalence
classes of the generic polar varieties. For historical details we refer to [29, 35].

About 16 years ago (classic) polar varieties became our fundamental tool
to tackle the task of real equation solving with a new view. We used them
for the design of a pseudo-polynomial computer procedure with an intrinsic
complexity bound which finds for a given complete intersection variety S with
a smooth compact real trace SR algebraic sample points for each connected
component of SR if there are such points ([1, 2]).
Actually the geometric resolution of polar varieties, thanks to the algoritm
Kronecker developed by the TERA-group [16, 18, 19, 24], led directly to a
good pseudo–polynomial complexity.
Then we dropped successively the hypothesis on compactness of SR (leading
to dual polar varieties [3, 4]) and eventually the hypothesis on smoothness
of SR.
The presence of real singularities of SR guided us to the introduction of
copolar incidence and finally to bipolar varieties ([6, 7]).
.

2 Notations and statement of results

2.1 Notations
Let Q, R and C be the fields of rational, real and complex numbers, respec-
tively, let X := (X1, . . . , Xn) be a vector of indeterminates over C and let
F1, . . . , Fp be a regular sequence of polynomials in Q[X] defining a closed, Q–
definable subvariety S of the n–dimensional complex affine space An := Cn.
Thus S is a non–empty equidimensional affine variety of dimension n − p,
i.e., each irreducible component of S is of dimension n − p. Said otherwise,
S is a closed subvariety of An of pure codimension p (in An).
Let An

R
∼= Rn be the n–dimensional real affine space. We denote by SR :=

S ∩ An
R the real trace of the complex variety S. Moreover, we denote by Pn

the n–dimensional complex projective space and by Pn
R its real counterpart.

We shall use also the following notations:

{F1 = 0, . . . , Fp = 0} := S and {F1 = 0, . . . , Fp = 0}R := SR.
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We call the regular sequence F1, . . . , Fp reduced if the ideal (F1, . . . , Fp) gener-
ated in Q[X] is the ideal of definition of the affine variety S, i.e., if (F1, . . . , Fp)
is radical. We call (F1, . . . , Fp) strongly reduced if for any index 1 ≤ k ≤ p
the ideal (F1, . . . , Fk) is radical. Thus, a strongly reduced regular sequence
is always reduced.
A point x of An is called (F1, . . . , Fp)–regular if the Jacobian J(F1, . . . , Fp) :=[

∂Fj

∂Xk

]
1≤j≤p
1≤k≤n

has maximal rank p at x. Observe, that for each reduced regular

sequence F1, . . . , Fp defining the variety S, the locus of (F1, . . . , Fp)–regular
points of S is the same. In this case we call an (F1, . . . , Fp)–regular point
of S simply regular (or smooth) or we say that S is regular (or smooth) at
x. The set Sreg of regular points of S is called the regular locus, whereas
Ssing := S \ Sreg is called the singular locus of S. Remark that Sreg is a
non–empty open and Ssing a proper closed subvariety of S. We say that a
connected component C of SR is generically smooth if C contains a smooth
point.
We are going to use the expression generic according to Thom’s terminology.
A property that depends on parameters belonging to a certain configuration
space Ω is called generic if there exists an Zariski open and dense subset of
Ω, where the parameters are taken from, to insure the property.

We suppose now that there are natural numbers d, L and ` and an essentially
division–free arithmetic circuit β in Q[X] with p output nodes such that the
following conditions are satisfied.

- The degrees deg F1, . . . , deg Fp of the polynomials F1, . . . , Fp are bounded
by d.

- The p output nodes of the arithmetic circuit β represent the polynomi-
als
F1, . . . , Fp by evaluation.

- The size and the non–scalar depth of the arithmetic circuit β are
bounded by L and `, respectively.

For the terminology and basic facts concerning arithmetic circuits we refer
to [10, 12, 18].

2.2 Statement of the results
For the sake of simplicity we suppose that the variables X1, . . . , Xn are in
generic position with respect to the variety S. Observe that we allow SR to
have singular points.
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In this paper we comment a series of complexity results which concern the
computational task to find in each generically smooth connected component
of SR a suitably encoded smooth point.
The most general result we are going to present is the following statement
about the existence of an algorithm with certain properties (see Theorem 6.2
below).
For each 1 ≤ i ≤ n − p there exists a non–uniform deterministic or uni-
form probabilistic procedure Πi and an invariant δi satisfying the following
specification.

(i) The invariant δi is a positive integer depending on F1, . . . , Fp and having
asymptotic order not exceeding (nn d)O(n). We call δi the degree of the
real interpretation of the equation system F1 = 0, . . . , Fp = 0.

(ii) The algorithm Πi decides on input β whether the variety S contains a
smooth real point and, if it is the case, produces for each generically
smooth connected component of S a suitably encoded real algebraic
sample point.

(iii) In order to achieve this goal, the algorithm Πi performs on input β a
computation in Q with

(
n
p

)
L(n d)O(1)(min{(n d)c n, δi})2 arithmetic op-

erations (additions, subtractions, multiplications and divisions) which
become organized in non–scalar depth O(n(` + log n d) log δi) with re-
spect to the parameters of the arithmetic circuit β (here c > 0 is a
suitable universal constant).

Although we were not able to derive a better worst case upper bound as
(nn d)O(n) for the invariant δi (see Propositions 6.1 and 6.3 below) the worst
case complexity of the procedure Πi meets the already known extrinsic bound
of (n d)O(n) for the elimination problem under consideration (compare the
original papers [20, 11, 30, 25, 26, 27, 31, 8] and the comprehensive book
[9]).
The complexity of the procedure Πi depends polynomially on the extrinsic
parameters L, `, n and d and on the degree δi of the real interpretation of the
equation system F1 = 0, . . . , Fp = 0 which represents an intrinsic parameter
measuring the input size of our computational task. In this sense we say that
the procedure Πi is of intrinsic complexity.
Since for fixed p the complexity

(
n
p

)
L(n d)O(1)(min{(n d)c n, δi})2 is polynomial

in all its parameters, including the intrinsic parameter δi, we say that the
procedure Πi is pseudo-polynomial. In view of the main outcome of [22, 23]
intrinsic complexity and pseudo-polynomiality constitute the best runtime
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behavior of Πi that can be expected for elimination algorithms implemented
by rules of software engineering.
The above result is the consequence of a reduction to the case that SR is
smooth, where a similar, but somewhat simpler, complexity statement is
true (see Theorem 4.1 below). For this reduction we considered in [7] a new
type of geometrical objects, called copolar incidence and bipolar varieties.

First complexity results in this direction were obtained for the case that SR
is smooth and compact using classic polar varieties [1, 2]. In order to treat
the smooth unbounded case we introduced in [3, 4] the concept of dual polar
varieties.
In the present paper we put emphasis on the geometrical ideas which together
with the Kronecker algorithm [16, 18, 19, 24], that solves polynomial equa-
tion systems over the complex numbers, lead to our complexity statements.

3 Polar varieties
Let notations be as in Subsection 2.1. Let F1, . . . , Fp ∈ Q[X] be a reduced
regular sequence defining a (non–empty) subvariety S of An of pure codi-
mension p.
Let 1 ≤ i ≤ n−p and let a := [ak,l] 1≤k≤n−p−i+1

0≤l≤n
be a complex ((n−p− i+1)×

(n+1)–matrix and suppose that [ak,l] 1≤k≤n−p−i+1
1≤l≤n

has maximal rank n−p−i+1.
In case (a1,0, . . . , an−p−i+1,0) = 0 we denote by K(a) := Kn−p−i(a) and in case
(a1,0, . . . , an−p−i+1,0) 6= 0 by K(a) := K

n−p−i
(a) the (n− p− i)–dimensional

linear subvarieties of the projective space Pn which for 1 ≤ k ≤ n− p− i + 1
are spanned by the points (ak,0 : ak,1 : · · · : ak,n).
The hyperplane at infinity of Pn is the set of points whose first coordinate is
zero. It determines an embedding of An into Pn. The classic and the dual
ith polar varieties of S associated with the linear varieties K(a) and K(a),
respectively, are geometrically defined as the Zariski closures of the set of
points of S, where the tangent space of S is not transversal to the affine
traces of K(a) and K(a), respectively.
Algebraically, the classic and the dual ith polar varieties of S associated
with the linear varieties K(a) and K(a), respectively, can be described as
the closures of the loci of the smooth points of S where all (n− i+1)–minors
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of the respective polynomial ((n− i + 1)× n)–matrix

∂F1

∂X1
· · ·

∂F1

∂Xn
...

...
...

∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 · · · a1,n

...
...

...
an−p−i+1,1 · · · an−p−i+1,n


and 

∂F1

∂X1
· · ·

∂F1

∂Xn
...

...
...

∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 − a1,0X1 · · · a1,n − a1,0Xn

...
...

...
an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn


vanish.
If a is a real ((n− p− i + 1)× (n + 1)–matrix, we denote the real traces of
the polar varieties WK(a)(S) and WK(a)(S) by

WK(a)(SR) := WKn−p−i(a)(SR) := WK(a)(S) ∩ An
R

and
WK(a)(SR) := W

K
n−p−i

(a)
(SR) := WK(a)(S) ∩ An

R

and call them the real polar varieties.
Observe that this definition of classic and dual polar varieties may be ex-
tended to the case that there is given a Zariski open subset O of An such
that the equations F1 = 0, . . . , Fp = 0 intersect transversally at any of their
common solutions in O and that S is now the locally closed subvariety of An

given by
S := {F1 = 0, . . . , Fp = 0} ∩O,

which is supposed to be non-empty.
In Section 6 we shall need this extended definition of polar varieties in order
to establish the notion of a bipolar variety of a given reduced complete inter-
section. For the moment let us suppose again that S is the closed subvariety
of An defined by the reduced regular sequence F1, . . . , Fp.
In [3] and [4] we have introduced the notion of dual polar varieties of S (and
SR) and motivated by geometric arguments the calculatory definition of these
objects. Moreover, we have shown that, for a complex ((n−p−i+1)×(n+1))–
matrix a = [ak,l] 1≤k≤n−p−i+1

0≤l≤n
with [ak,l] 1≤k≤n−p−i+1

1≤l≤n
generic, the polar vari-

eties WK(a)(S) and WK(a)(S) are either empty or of pure codimension i in

6



S. Further, we have shown that WK(a)(S) and WK(a)(S) are normal and
Cohen–Macaulay (but for 1 < p ≤ n not necessarily smooth) at any of their
(F1, . . . , Fp)–regular points (see [5], Corollary 2 and Section 3.1). This moti-
vates the consideration of the so–called generic polar varieties WK(a)(S) and
WK(a)(S), associated with complex ((n − p − i + 1) × (n + 1))–matrices a
which are generic in the above sense, as invariants of the complex variety S
(independently of the given equation system F1 = 0, . . . , Fp = 0). However,
when a generic ((n − p − i + 1) × (n + 1))–matrix a is real, we cannot con-
sider WK(a)(SR) and WK(a)(SR) as invariants of the real variety SR, since for
suitable real generic ((n− p− i + 1)× (n + 1))–matrices these polar varieties
may turn out to be empty, whereas for other real generic matrices they may
contain points (see [5], Theorem 1 and Corollary 2 and [6], Theorem 8 and
Corollary 9).
In case that SR is smooth and a is a real ((n − p − i + 1) × (n + 1))–
matrix, the real dual polar variety WK(a)(SR) contains at least one point of
each connected component of SR, whereas the classic (complex or real) polar
varieties WK(a)(S) and WK(a)(SR) may be empty (see [3] and [4], Proposition
2).

4 The smooth case
In this section we suppose that SR is smooth. We choose a generic rational
((n − p) × n)–matrix a := [ak,l] 1≤k≤n−p

1≤l≤n
. For 1 ≤ i ≤ n − p we consider

the ((n − p − i + 1) × (n + 1)–matrices a(i) :=
[
a

(i)
k,l

]
1≤k≤n−p−i+1

0≤l≤n

and a(i) :=[
a

(i)
k,l

]
1≤k≤n−p−i+1

0≤l≤n

with a
(i)
k,l = a

(i)
k,l = a

(i)
k,l for 1 ≤ k ≤ n−p− i+1 and 1 ≤ l ≤ n

and a
(i)
1,0 = · · · = a

(i)
n−p−i+1,0 = 0 and a

(i)
1,0 = · · · = a

(i)
n−p−i+1,0 = 1. Then

WK(a(n−p))(S) ⊂ · · · ⊂ WK(a(1))(S) ⊂ S

and
WK(a(n−p))(S) ⊂ · · · ⊂ WK(a(1))(S) ⊂ S

form two flags of generic classic and dual polar varieties of S.
If SR is compact, then, for 1 ≤ i ≤ n − p, the classic real polar variety
WK(ai)(SR) contains a point of each connected component of SR and, in
particular, WK(ai)(S) is of pure codimension i in S. The inclusion relations
in the first flag are therefore strict and WK(a(n−p))(S) is a zero–dimensional
algebraic variety. Mutatis mutandis the same statement is true for the second
flag without the assumption that SR is compact.
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Let

δ := max{max{deg{F1 = 0, . . . , Fs = 0|1 ≤ s ≤ p}},
max{WK(ai)|1 ≤ i ≤ n− p}}}

and

δ := max{max{deg{F1 = 0, . . . , Fs = 0|1 ≤ s ≤ p}},
max{WK(ai)|1 ≤ i ≤ n− p}}}.

We call δ and δ the degrees of the real interpretation of the equation system

F1 = 0, . . . , Fp = 0.

Our most general complexity result for the case that SR is smooth is the
following.

Theorem 4.1 ([4]) Let n, p, d, δ, L, ` be natural numbers. Let X1, . . . , Xn

and Z be indeterminates over Q and let X := (X1, . . . , Xn).
There exists an arithmetic network N (or arithmetic–boolean circuit) over
Q, depending on certain parameters and having size(

n

p

)
L (n d)O(1) δ2 = (n d)O(n)

and non–scalar depth

O(n (` + log(n d)) log δ) = O(n2 log(d n) log d),

such that N satisfies for suitable random specializations of its parameters the
following condition:
Let F1, . . . , Fp ∈ Q[X] be polynomials of degree at most d and assume that
F1, . . . , Fp are given by an essentially division–free arithmetic circuit β in
Q[X] of size L and non–scalar depth `. Suppose that F1, . . . , Fp form a
strongly reduced regular sequence in Q[X], that {F1 = 0, . . . , Fp = 0}R is
empty or smooth and that δ ≤ δ holds.
Then the algorithm represented by the arithmetic network N starts from the
circuit β as input and decides whether the variety {F1 = 0, . . . , Fp = 0}
contains a real point. If this is the case, the algorithm produces a circuit
representation of the coefficients of n + 1 polynomials P, G1, . . . , Gn ∈ Q[Z]
satisfying for G := (G1, . . . , Gn) the following conditions:
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- P is monic and separable,

- deg G < deg P ≤ δ,

- the complex affine variety {G(z) | z ∈ A1, P (z) = 0} is zero–dimensional
and contains a smooth real algebraic sample point for each connected
component of {F1 = 0, . . . , Fp = 0}R.

In order to represent these sample points the algorithm returns an encoding
”à la Thom” of the real zeros of the polynomial P .

For the terminology of arithmetic network and boolean–arithmetic circuit we
refer to [38, 39].
This complexity result has an interpretation in the non–uniform deterministic
as well as in the uniform probabilistic computational model. If we add the
condition that {F1 = 0, . . . , Fp = 0}R must be compact the statement of
Theorem 4.1 holds true for δ replaced by δ ([1] and [2]).

Interpretation of Theorem 4.1 for the hypersurface case
We are going to discuss this outcome in the case of a smooth compact real
hypersurface given by a regular polynomial equation. So let p := 1 and
F := F1 ∈ Q[X] be a squarefree polynomial of positive degree d and S :=
{F = 0}. For the sake of simplicity we assume that the variables X1, . . . , Xn

are in generic position with respect to S and that SR is non-empty, smooth
and compact.
Let F be given by an essentially division–free arithmetic circuit β in Q[X]
of size L and depth `. The algebraic version of the Bertini–Sard Theorem
(see [14]) and our assumptions imply that for each 1 ≤ i < n the polyno-
mials F, ∂F

∂X1
, . . . , ∂F

∂Xi
form a strongly reduced regular sequence in the ring of

fractions Q[X] ∂F
∂Xi+1

. It is not hard to see that the set

F = 0,
∂F

∂X1

= 0, . . . ,
∂F

∂Xi

= 0,
∂F

∂Xi+1

6= 0

is the locus of a generic classic polar variety of S where ∂F
∂Xi+1

does not vanish.
Therefore, the degree of the Zariski closure of this set is bounded by δ. For
the same reason{

F = 0,
∂F

∂X1

= 0 , . . . ,
∂F

∂Xn−1

= 0 ,
∂F

∂Xn

6= 0

}
is a finite set that contains a point of each connected component of SR.
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We are now in conditions to apply the Kronecker algorithm to the given
circuit β in order to find the complex solutions of the system

F = 0,
∂F

∂X1

= 0 , . . . ,
∂F

∂Xn−1

= 0 ,
∂F

∂Xn

6= 0

Between these solutions we filter out the real ones. We control the complexity
of the algoritm computing for 1 ≤ i < n at its (i + 1)th step a lifting fiber of
the system F = 0, ∂F

∂X1
= 0 , . . . , ∂F

∂Xi
= 0 , ∂F

∂Xi+1
6= 0. This can be done per-

forming L (n d)O(1) δ2 = (n d)O(n) arithmetic operations in Q which become
organized in non–scalar depth O(n(` + log(nd)) log δ) = O(n2 log(n d) log d).

5 Tools to handle the singular case
In this section we consider the algorithmic problem of finding for each geo-
metrically smooth connected component of SR an (F1, . . . , Fp)–regular point
when SR may be singular. In the next two sections we are going to prepare
the geometrical tools for this task.

5.1 Two families of copolar incidence varieties
Let i be a natural numbers with 1 ≤ i ≤ n − p and let B := [Bk,l] 1≤k≤n−i

1≤l≤n
,

Λ := [Λr,s]1≤r,s≤p and Θ := [Θk,r] 1≤k≤n−i
1≤r≤p

be matrices of indeterminates over
C.
We denote by F := (F1, . . . , Fp) the sequence of the given polynomials
and by J(F ) :=

[
∂Fs

∂Xl

]
1≤s≤p
1≤l≤n

the Jacobian of F . Observe that the rank of

J(F ) is generically p on any irreducible component of the complex variety
S := {F1 = · · · = Fp = 0}. We write J(F )T for the transposed matrix of
J(F ) and for any point x ∈ An we denote by rk J(F )(x) the rank of the
complex matrix J(F )(x).

We are now going to introduce two families of varieties which we shall call
copolar incidence varieties. In order to define the first one we consider in the
ambient space

Ti := An × A(n−i)×n × Ap×p × A(n−i)×p

the Q–definable locally closed incidence variety

Hi := {(x, b, λ, ϑ) ∈ Ti| x ∈ S, rk b = n−i, rk ϑ = p, J(F )(x)T λ+bT ϑ = 0}.
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Observe that the isomorphy class of Hi does not depend on the choice of the
generators F1, . . . , Fp of the vanishing ideal of S. The canonical projection
of Ti onto An maps Hi into S.
Let us state three facts, namely Lemma 5.1 and Propositions 5.1 and 5.2
below, which will be fundamental in the sequel.

Lemma 5.1 Let (x, b, λ, ϑ) be a point of Hi. Then x belongs to Sreg and λ
is a regular complex (p×p)–matrix. Moreover, the canonical projection of Ti

onto An maps Hi onto Sreg and (Hi)R onto (SR)reg .

Proposition 5.1 Let Di be the closed subvariety of Ti defined by the condi-
tions rk B < n− i or rk Θ < p. Then the polynomial equations

F1(X) = · · · = Fp(X) = 0,∑
1≤s≤p

Λr,s
∂Fs

∂Xl

(X) +
∑

1≤k≤n−i

Bk,l Θk,r = 0,

1 ≤ r ≤ p, 1 ≤ l ≤ n,

(5.1)

intersect transversally at any of their common solutions in Ti\Di. Moreover,
Hi is exactly the set of solutions of the polynomial equation system (5.1)
outside of the locus Di.
In particular, Hi is an equidimensional algebraic variety which is smooth and
of dimension n(n− i + 1) + p(p− i− 1) ≥ 0.

For algorithmic applications Proposition 5.1 contains too many open condi-
tions, namely the conditions rk B = n − i and rk Θ = p. By means of a
suitable specialization of the matrices B and Θ we are going to eliminate
these open conditions. However, we have to take care that these special-
ization process does not exclude to many smooth points of the variety S.
The following result, namely Proposition 5.2 below seems to represent a fair
compromise. We shall need it later for the task of finding smooth points of
S. For the formulation of this proposition we need some notations.
Let B and Θ be the following matrices

B :=

B1,n−i+1 · · · B1,n
... · · · ...

Bp,n−i+1 · · · Bp,n

 and Θ :=

Θp+1,1 · · · Θp+1,p
... · · · ...

Θn−i,1 · · · Θn−i,p,

 .

Let σ be a permutation of the set {1, . . . , n} (in symbols, σ ∈ Sym (n)) and
apply σ to the columns of the ((n− i)× n)–matrix[

Ip Op×(n−p−i) B
O(n−p−i)×p In−p−i O(n−p−i)×i

]
.
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In this way we obtain a ((n − i) × n)–matrix which we denote by Bi,σ.
Furthermore, let

Θi :=

[
Ip

Θ

]
and ∆σ := det

[
∂Fs

∂Xσ(r)

]
1≤s,r≤p

.

If we specialize in Bi,σ the submatrix B to b ∈ Ap×i and in Θi the submatix
Θ to ϑ ∈ A(n−p−i)×p then the resulting complex matrices become denoted by
bi,σ and ϑi, respectively.

We consider now in the ambient space

Fi := An × Ap×i × Ap×p × A(n−p−i)×p

a copolar incidence variety of more restricted type, namely

Hi,σ := {(x, b, λ, ϑ) ∈ Fi | x ∈ S, J(F )(x)T λ + bT
i,σϑi = 0}.

Observe that Hi,σ is a Q–definable closed subvariety of Fi whose isomorphy
class does not depend on the choice of the polynomials F1, . . . , Fp of the
vanishing ideal of S.
In the statement of the next result we make use of the Kronecker symbol
δr,l, 1 ≤ r, l ≤ p which is defined by δr,l := 0 for r 6= l and δr,r := 1.

Proposition 5.2 Let notations and definitions be as before. For the sake of
simplicity assume that σ is the identity permutation of Sym (n). Then the
polynomial equations

F1 = 0, . . . , Fs = 0,∑
1≤s≤p

Λr,s
∂Fs

∂Xl

(X) + δr,l = 0, 1 ≤ r ≤ p, 1 ≤ l ≤ p,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl

(X) + Θl,r = 0, 1 ≤ r ≤ p, p < l ≤ n− i,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl

(X) + Br,l = 0, 1 ≤ r ≤ p, n− i < l ≤ n

(5.2)

intersect transversally at any of their common solutions in Fi. Moreover, Hi,σ

is exactly the set of solutions of the equation system (5.2). In particular, Hi,σ

is a closed equidimensional algebraic variety which is empty or smooth and
of dimension n− p.
The image of Hi,σ under the canonical projection of Fi onto An is the set of
(smooth) points of S where ∆σ does not vanish. For each real point x ∈ S
with ∆σ(x) 6= 0 there exists a real point (x, b, λ, ϑ) of Hi,σ.
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In the sequel we shall refer to Hi and Hi,σ as the copolar incidence varieties
of S := {F1 = · · · = Fp = 0} associated with the indices 1 ≤ i ≤ n − p and
σ ∈ Sym (n).
The notion of a copolar incidence variety is inspired by the Room-Kempf
canonical desingularization of determinantal varieties [28, 32].

5.2 Copolar varieties
Let notations and assumptions be as in previous section and let b ∈ A(n−i)×n

be a full rank matrix. We observe that the set

Ṽb(S) := {x ∈ S | ∃ (λ, ϑ) ∈ Ap×p×A(n−p)×p : rk ϑ = p and (x, b, λ, ϑ) ∈ Hi}

does not depend on the choice of the generators F1, . . . , Fp of the vanishing
ideal of S. We call the Zariski closure in An of Ṽb(S) the copolar variety of S
associated with the matrix b and we denote it by Vb(S). Obviously we have
Ṽb(S) = Vb(S) ∩ Sreg .
Observe that a point x of S belongs to Ṽb(S) if and only if there exist p
rows of the ((n − i) × n)–matrix b which generate the same affine linear
space as the rows of the Jacobian J(F ) at x. In case p := 1 and F := F1

the copolar variety Vb({F = 0}) coincides with the ith classic polar variety
WKn−1−i(b)({F = 0}) of the complex hypersurface {F = 0} (here b denotes
the ((n − i) × (n + 1))–matrix whose column number zero is a null-vector,
whereas the columns numbered 1, . . . , n are the corresponding columns of b).

Proposition 5.3 If b ∈ A(n−i)×n is a generic matrix, then the copolar variety
Vb(S) is empty or an equidimensional closed subvariety which is smooth at
any point of Vb(S) ∩ Sreg and has (non-negative) dimension n− (i + 1)p.

Observe that for a generic b ∈ A(n−i)×n the emptiness or non-emptiness
and in the latter case also the geometric degree of the copolar variety Vb(S)
is an invariant of the variety S. The incidence varieties Hi and Hi,σ may
be interpreted as suitable algebraic families of copolar varieties. In [6] we
considered in the case p := 1 three analogous incidence varieties which turned
out to be algebraic families of dual polar varieties. Here we have a similar
situation since in the hypersurface case, namely in the case p := 1, the copolar
varieties are classic polar varieties.

6 Bipolar varieties and real point finding in
the singular case
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In order to measure the complexity of the real point finding procedures of
this paper for complete intersection varieties, we consider for 1 ≤ p ≤ n,
1 ≤ i ≤ n−p and σ ∈ Sym (n) the generic dual polar varieties of the copolar
incidence varieties Hi and Hi,σ. In analogy to the hypersurface case tackled
in [6], we call them the large and the small bipolar varieties of S.

Definition 6.1 The bipolar varieties B(i,j) and B(i,σ,j) are defined as follows:

• for 1 ≤ j ≤ n(n− i + 1) + p(p− i− 1) let B(i,j) a (n(n− i + 1) + p(p−
i− 1)− j + 1)th generic dual polar variety of Hi and,

• for 1 ≤ j ≤ n−p and σ ∈ Sym (n) let B(i,σ,j) a (n−p− j +1)th generic
dual polar variety of Hi,σ.

We call B(i,j) the large and B(i,σ,j) the small bipolar variety of S, respectively.

The bipolar varieties B(i,j) and B(i,σ,j)are well defined geometric objects which
depend on the equation system F1(X) = · · ·Fp(X) = 0, although the copo-
lar incidence variety Hi is not closed (compare the definition of the notion of
polar variety in Section 3, where we have taken care of this situation). More-
over, our notation is justified because we are only interested in invariants like
the dimension and the degree of our bipolar varieties and these are indepen-
dent of the particular (generic) choice of the linear projective varieties used
to define the bipolar varieties.
Observe that the large bipolar varieties of S form a chain of equidimensional
varieties

Hi % B(i,n(n−i+1)+p(p−i−1)) ⊃ · · · ⊃ B(i,1).

The variety B(i,1) is empty or zero–dimensional. If B(i,1) is nonempty, then
the chain is strictly decreasing.
Similarly the small bipolar varieties B(i,σ,j) of S form also a chain of equidi-
mensional varieties

Hi,σ % B(i,σ,n−p) ⊃ · · · ⊃ B(i,σ,1).

The variety B(i,σ,1) is empty or zero–dimensional. If B(i,σ,1) is nonempty, then
the chain is strictly decreasing.
We denote by deg B(i,j) and degB(i,σ,j) the geometric degrees of the respective
bipolar varieties in their ambient spaces Ti and Fi (see [21] for a definition
and properties of the geometric degree of a subvariety of an affine space).
Observe that deg B(i,j) remains invariant under linear transformations of the
coordinates X1, . . . , Xn by unitary complex matrices.
From [6], Lemma 1 and [5], Theorem 3 we deduce that for 1 ≤ j ≤ n− p

degB(i,σ,j) ≤ deg B(i,n(n−i))+p(p−i)+j) (6.1)
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holds.
Suppose that S contains a regular real point x. The there exists a permu-
tation σ ∈ Sym (n) with ∆σ(x) 6= 0. From Proposition 5.2 we deduce that
(Hi,σ)R is nonempty. This implies that Hi,σ is given by a reduced regular
sequence of polynomials, namely the polynomials in the equation system
(5.2). Moreover, the real variety (Hi,σ)R is smooth. Therefore we may apply
[3, 4], Proposition 2 to conclude that (B(i,σ,j))R contains for each connected
component of (Hi,σ)R at least one point. This implies

1 ≤ degB(i,σ,1) ≤ deg B(i,n(n−i))+p(p−i)+1).

For 1 ≤ r ≤ p, 1 ≤ l ≤ n and σ ∈ Sym (n) we are going to analyze in the
following closed subvarieties S

(i)
(r,l) and S

(i,σ)
(r,l) of the affine subspaces Ti and

Fi, respectively. For this purpose we consider the lexicographical order < of
the set of all pairs (r, l) with 1 ≤ r ≤ p, 1 ≤ l ≤ n.
Let S

(i)
(r,l) be the Zariski closure of the locally closed subset of Ti defined by

the conditions

F1(X) = · · · = Fp(X) = 0∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+

∑
1≤k≤n−i

Bk,l′Θk,r = 0,

1 ≤ r′ ≤ p, 1 ≤ l′ ≤ n, (r′, l′) ≤ (r, l) and
rk B = n− i, rk Θ = p and rk J(F ) = p.

(6.2)

Observe that the particular structure of the Jacobian of the equations of sys-
tem (6.2) implies that the corresponding polynomials form a reduced regular
sequence at any of their common zeros outside of the closed locus given by
the conditions

rk B < n− i, rk Θ < p or rk J(F ) < p.

Furthermore, let S
(i,σ)
(r,l) be the locally closed subset of Fi defined by the con-

ditions
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F1(X) = · · · = Fp(X) = 0,∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ δr′,l′ = 0, 1 ≤ r′ ≤ r, 1 ≤ l′ ≤ p, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Θl′,r′ = 0, 1 ≤ r′ ≤ r, p < l′ ≤ n− i, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Br′,l′ = 0, 1 ≤ r′ ≤ r, n− i < l ≤ n, (r′, l′) ≤ (r, l)

and ∆σ(X) 6= 0.

(6.3)

Again the particular structure of the Jacobian of the equations of system (6.3)
implies that the corresponding polynomials form a reduced regular sequence
at any of their common zeros outside of the closed locus given by the condition
∆σ(X) = 0.
In conclusion, the polynomials of the systems (5.1) and (5.2) form strongly
reduced regular sequences at any of their common zeros outside of the corre-
sponding closed loci.
For the next statement recall that the degree of the polynomials F1, . . . , Fp

is bounded by d (see Section 2.1).

Proposition 6.1 Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the extrinsic
estimate

deg S
(i)
(r,l) = (nn d)O(n).

This bound is probably too coarse but this will not be relevant in Theorem
6.2 below which relies on the following result.

Proposition 6.2 Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the estimate

deg S
(i,σ)
(r,l) = (nd)O(n).

Let 1 ≤ i ≤ n− p. We proceed now to derive two extrinsic estimates for the
degrees of the bipolar varieties B(i,j), 1 ≤ j ≤ n(n − i + 1) + p(p − i + 1),
and B(i,σ,j), σ ∈ Sym (n), 1 ≤ j ≤ n− p.

Proposition 6.3 For 1 ≤ j ≤ n(n−i+1)+p(p−i−1) one has the extrinsic
estimate deg B(i,j) = (n d)O(n2). In particular, for n(n− i) + p(p− i) < j ≤
n(n− i + 1) + p(p− i− 1) one has the estimate deg B(i,j) = (nn d)O(n).
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Proposition 6.4 The extrinsic estimate degB(i,σ,j) = (nd)O(n) is valid for
any σ ∈ Sym (n) and 1 ≤ j ≤ n− p.

We associate now with 1 ≤ i ≤ n − p, σ ∈ Sym (n) and the polynomial
equation system F1 = · · · = Fp = 0 the following discrete parameters, namely

δi := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},
max{deg S

(i)
(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},

max{deg Bi,n(n−i)+p(p−i)+j | 1 ≤ j ≤ n− p}}

and

δi,σ := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},
max{deg S

(i,σ)
(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},

max{degB(i,σ,j) | 1 ≤ j ≤ n− p}}.

Adapting the terminology of [6], Section 4.2 and taking into account that for
1 ≤ j ≤ n− p the degree of B(i,n(n−i)+p(p−i)+j) remains invariant under linear
transformations of the coordinates X1, . . . , Xn by unitary complex matrices,
we call δi and δi,σ the unitary-independent and the unitary-dependent degree
of the real interpretation of the equation system F1 = · · · = Fp = 0 associated
with i and σ.
Observe that (6.1) and the Bézout Inequality imply

δi,σ ≤ δi for any σ ∈ Sym (n). (6.4)

From Propositions 6.2, 6.3 and 6.4 and the Bézout Inequality we deduce the
following extrinsic estimates

δi = (nn d)O(n) (6.5)

and
δi,σ = (n d)O(n) (6.6)

(compare for the case p := 1 the estimates (16) and (17) given in [6], Section
4.2).
For the rest of the paper we fix a family {σ1, . . . , σ(n

p)
} of permutations from

Sym (n) such that for any choice 1 ≤ k1 < · · · < kp ≤ n there exists an index
1 ≤ k ≤

(
n
p

)
with σk(1) = k1, . . . , σk(p) = kp.

For each 1 ≤ k ≤
(

n
p

)
the varieties {F1 = 0, . . . , Fr = 0}, 1 ≤ r ≤

p, S
(i,σk)
(r,l) , 1 ≤ r ≤ p, 1 ≤ l ≤ n and B(i,σk,j), 1 ≤ j ≤ n − p form a de-

scending chain which is strict in case that there exists a real point x of S
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with ∆σk
(x) 6= 0. We may now apply a suitably adapted version of the

Kronecker algorithm (see [7], Section 5) to this chain in order to determine
the points of the complex variety B(i,σk,1) which is empty or zero-dimensional.
Observe that B(i,σk,1) contains a point of each connected component of SR
where ∆σk

does not vanish identically. Therefore we obtain for each such
component at least one point.

All this can be done using L (n d)O(1)δ2
i,σk

arithmetic operations in Q orga-
nized in non–scalar depth O(n (` + log(nd)) log δi,σk

). Repeating this proce-
dure for each 1 ≤ k ≤

(
n
p

)
and taking into account the estimate 6.4 and 6.6

we obtain the following result.

Theorem 6.2 Let n, p, d, i, δ, L, ` be natural numbers with d ≥ 1, 1 ≤
i ≤ n − p. Let X1, . . . , Xn and Z be indeterminates over Q and let X :=
(X1, . . . , Xn).
There exists an arithmetic network N (or arithmetic–boolean circuit) over
Q, depending on certain parameters and having size(

n

p

)
L (n d)O(1) δ2 = (n d)O(n)

and non–scalar depth

O(n (` + log(n d)) log δ) = O(n2 log(d n) log d),

such that N satisfies for suitable random specializations of its parameters the
following condition:
Let F1, . . . , Fp ∈ Q[X] be polynomials of degree at most d and assume that
F1, . . . , Fp are given by an essentially division–free arithmetic circuit β in
Q[X] of size L and non–scalar depth `. Suppose that F1, . . . , Fp form a
strongly reduced regular sequence in Q[X] and that min{(n d)c n, δi} ≤ δ holds
for a suitable constant c > 0.

Then the algorithm represented by the arithmetic network N starts from the
circuit β as input and decides whether the variety {F1 = 0, . . . , Fp = 0}
contains a smooth real point. If this is the case, the algorithm produces a
circuit representation of the coefficients of n+1 polynomials P, G1, . . . , Gn ∈
Q[Z] satisfying for G := (G1, . . . , Gn) the following conditions:

- P is monic and separable,

- deg G < deg P ≤ δ,
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- the complex affine variety {G(z) | z ∈ A1, P (z) = 0} is zero–dimensional
and contains a smooth real algebraic sample point for each generically
smooth connected component of {F1 = 0, . . . , Fp = 0}R.

In order to represent these sample points the algorithm returns an encoding
”à la Thom” of the real zeros of the polynomial P .

With respect to the encoding ”à la Thom” we refer the reader to [13].

Interpretation of Theorem 6.2 in the hypersurface case
We are going to discuss the geometric aspects of the method which leads to
Theorem 6.2 in the case of a hypersurface. Let p := 1 and F := F1 ∈ Q[X]
be a squarefree polynomial of degree d and S := {F = 0}. Suppose that F
is given by an essentially division–free arithmetic circuit β in Q[X] and, for
the sake of simplicity, that the variables X1, . . . , Xn are in generic position
with respect to S. For each generically smooth connected component of SR
we wish to find a representative point.

Let 1 ≤ i ≤ n− 1, B := [Bk,l] 1≤k≤n−i
1≤l≤n

be a matrix and (Bn−i+1, , . . . , Bn) and
Θ = (Θ1, . . . , Θn−i) row vectors of indeterminates over C. Furthermore let
Λ be a single indeterminate over C and let J(F ) = ( ∂F

∂X1
, . . . , ∂F

∂Xn
) be the

gradient (i.e., the Jacobian) of F . Let Ti := An × A(n−i)×n × A1 × An−i and
Fi := An × Ai × A1 × An−i−1.
The equations

F (X) = 0,

Λ
∂F

∂Xl

(X) +
∑

1≤k≤n−i

Bk,l Θk = 0, 1 ≤ l ≤ n,

define outside of the locus given by the condition rk B < n − i or Θ = 0 in
Ti the copolar incidence variety Hi of S and intersect transversally at any
point of Hi. In particular, Hi is smooth and of dimension (n− i)(n + 1).

Since the variables X1, . . . , Xn are in generic position with respect to S, the
partial derivative ∂F

∂X1
does not vanish identically on any generically smooth

connected component of SR. It suffices therefore to consider Hi,σ only for the
identity permutation σ of {1, . . . , n}.
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The equations

F (X) = 0,

Λ
∂F

∂X1

(X) + 1 = 0,

Λ
∂F

∂Xl

(X) + Θl = 0, 2 ≤ l ≤ n− i,

Λ
∂F

∂Xl

(X) + BlΘ1 = 0, n− i < l ≤ n

define in Fi the copolar incidence variety Hi,σ. In particular Hi,σ is smooth
and of dimension n − 1. For δi and δi,σ we obtain the estimates δi,σ ≤ δi =
(n d)O(n).

The algorithmic considerations are now similar as in the general complete
intersection case and yield the statement of Theorem 6.2 for p := 1 and
δi ≤ δ.
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