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POINT SEARCHING IN REAL SINGULAR
COMPLETE INTERSECTION VARIETIES —
ALGORITHMS OF INTRINSIC COMPLEXITY!

BERND BANK, MARC GIUSTI, AND JOOS HEINTZ

ABSTRACT. Let X1,..., X, be indeterminates over Q and let X := (X1,..., Xn).
Let F1,..., Fp be a regular sequence of polynomials in Q[X] of degree at most

d such that for each 1 < k < p the ideal (F1,..., F) is radical. Suppose that
the variables X1,..., X, are in generic position with respect to Fi,..., Fp.
Further suppose that the polynomials are given by an essentially division-free
circuit 8 in Q[X] of size L and non-scalar depth £.

We present a family of algorithms II; and invariants d; of Fy,...,Fp, 1 <
i < n — p, such that II; produces on input 5 a smooth algebraic sample point
for each connected component of {z € R™ | Fi(z) = --- = Fp(z) = 0} where

the Jacobian of '} =0, ..., F, = 0 has generically rank p.

The sequential complexity of II; is of order L(nd)®™) (min{(nd)¢™,d;})2
and its non-scalar parallel complexity is of order O(n(¢ + lognd)logd;). Here
¢ > 0 is a suitable universal constant. Thus, the complexity of II; meets
the already known worst case bounds. The particular feature of II; is its
pseudo-polynomial and intrinsic complexity character and this entails the best
runtime behavior one can hope for. The algorithm IT; works in the non-uniform
deterministic as well as in the uniform probabilistic complexity model. We
exhibit also a worst case estimate of order (n™ d)°(™ for the invariant §;. The
reader may notice that this bound overestimates the extrinsic complexity of
II;, which is bounded by (nd)©(™).

1. INTRODUCTION

Before we start to explain the main results of this article and their motivations,
we introduce some basic notions and notations.

Let Q, R and C be the fields of rational, real and complex numbers, respectively,
let X := (Xq,...,X,) be a vector of indeterminates over C and let Fi,...,F, bea
regular sequence of polynomials in Q[X]| defining a closed, Q-definable subvariety
S of the n—dimensional complex affine space A™ := C". Thus S is a non—-empty
equidimensional affine variety of dimension n — p, i.e., each irreducible component
of S is of dimension n — p. Said otherwise, S is a closed subvariety of A™ of pure
codimension p (in A™).
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Let Ag := R" be the n—dimensional real affine space. We denote by Sg :=
S N Ag the real trace of the complex variety S. Moreover, we denote by P™ the
n—dimensional complex projective space and by Py its real counterpart. We shall
use also the following notations:

{F,=0,...,F,=0}:=S and {F, =0,...,F, =0} := Sg.

We call the regular sequence F1, ..., F}, reduced if the ideal (F1,..., F},) generated
in Q[X] is the ideal of definition of the affine variety S, i.e., if (F1,..., F}) is radical.
We call (Fy, ..., F,) strongly reduced if for any index 1 < k < p the ideal (F1,..., F)
is radical. Thus, a strongly reduced regular sequence is always reduced.

A point x of A” is called (F1,...,F,)-regular if the Jacobian J(F1,...,F),) ==
[ AF;

8Xk:| 1<5<p
1<k<n

sequence Fy, ..., F), defining the variety S, the locus of (Fi, ..., F,)-regular points
of S is the same. In this case we call an (Fi,..., F))-regular point of S simply
regular (or smooth) or we say that S is regular (or smooth) at z. The set Sy, of
regular points of S is called the regular locus, whereas Sging := S\ Sreq is called
the singular locus of S. Remark that S,..4 is a non-empty open and Sy;,4 & proper
closed subvariety of S. We say that a connected component C' of Sy is generically
smooth if C' contains a smooth point.

We suppose now that there are natural numbers d, L and ¢ and an essentially
division—free arithmetic circuit 5 in Q[X] with p output nodes such that the fol-
lowing conditions are satisfied.

has maximal rank p at x. Observe, that for each reduced regular

- The degrees deg F1,...,deg F), of the polynomials Fi, ..., F, are bounded
by d.

- The p output nodes of the arithmetic circuit 8 represent the polynomials
Fi,..., F, by evaluation.

- The size and the non—scalar depth of the arithmetic circuit g are bounded
by L and /, respectively.

For the terminology and basic facts concerning arithmetic circuits we refer to [22,
13, 11].

Suppose that the variables X1, ..., X,, are in generic position with respect to the
variety S. Observe that we allow Sk to have singular points.

In this paper we design for each 1 < i < n — p a non-uniform deterministic
or uniform probabilistic procedure II; and an invariant ¢§; satisfying the following
specification.

(i) The invariant ¢; is a positive integer depending on Fi,..., F, and having
asymptotic order not exceeding (n" d)°™). We call §; the degree of the real
interpretation of the equation system Fy =0,...,F, =0.

(#1) The algorithm II; decides on input S whether the variety S contains a
smooth real point and, if it is the case, produces for each generically smooth
connected component of S a suitably encoded real algebraic sample point.

(7i7) In order to achieve this goal, the algorithm II; performs on input 8 a compu-
tation in Q with L(nd)®™M (min{(nd)™, §;})? arithmetic operations (addi-
tions, subtractions, multiplications and divisions) which become organized
in non-scalar depth O(n(¢ + logn d) log ;) with respect to the parameters
of the arithmetic circuit 8 (here ¢ > 0 is a suitable universal constant).
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This is the outcome of our main result, namely Theorem 14 below and the three
remarks following the theorem.

Although we were not able to derive a better worst case bound as (n™ d)°(™ for
the invariant §; (see Propositions 8 and 12 and Observation 11 below) the worst
case complexity of the procedure II; meets the already known extrinsic bound of
(nd)©™ for the elimination problem under consideration (compare the original
papers [24, 12, 35, 30, 31, 32, 36, 9] and the comprehensive book [10]).

The complexity of the procedure II; depends polynomially on the extrinsic pa-
rameters L, £, n and d and on the degree §; of the real interpretation of the equation
system Iy = 0,...,F, = 0 which represents an intrinsic parameter measuring the
input size of our computational task. In this sense we say that the procedure II; is
of intrinsic complezity.

Since the complexity L(nd)°™ (min{(nd)°",§;})? is polynomial in all its pa-
rameters, including the intrinsic parameter §;, we say that the procedure II; is
pseudo-polynomial. In view of the main outcome of [27, 28], intrinsic complexity
and pseudo-polynomiality constitute the best runtime behavior of II; that can be
expected for elimination algorithms implemented by rules of software engineering.

In the case that Sg is smooth and Fi,..., F}, is a strongly reduced regular se-
quence in Q[X] there exist already pseudo-polynomial algorithms of intrinsic com-
plexity which solve the computational task of item (i) above (see [1, 3, 4]). The
same is true for the singular hypersurface case, namely p := 1, where {F; = O}g
contains possibly singular points (see [8, 6, 7]). The methods developed in [1, 2, 4]
cannot be applied directly when Sg is singular. To overcome this difficulty we con-
sider in Section 3.1 two families of smooth incidence varieties which parametrize
the so-called copolar varieties of .S introduced in Section 3.2.

For a given full rank matrix b € A(»=9*" the corresponding copolar variety of
S is the Zariski closure of the set of all points x of S such that there exist p rows of
b which generate the same linear space as the rows of the Jacobian of the equation
system F7 =0,...,F, =0 at x.

The procedure II; is based on a geometrical and computational analysis of the
dual polar varieties of the two families of incidence varieties (see [3, 4, 5] for the
notion of a dual polar variety). These geometric objects are called bipolar varieties
of S. They become introduced in Section 4.1. Important for the worst case com-
plexity of the procedure are the degree estimates for the bipolar varieties developed
in Section 4.2.

O(n

2. PRELIMINARIES ABOUT POLAR VARIETIES

Let notations be as in the Introduction. Let Fi,...,F, € Q[X] be a reduced

regular sequence defining a (non—empty) subvariety S of A™ of pure codimension p.

Let 1 <i<n-—pandleta:= [ag,;]1<k<n—p-i+1 be acomplex (n—p—i+1)x(n+
0<i<n

1)-matrix and suppose that a. = [ax,] 1<k<n—p—i+1 has maximal rank n —p—i+ 1.
1<i<n

In case (a1,0,---,0n—p_i+1,0) = 0 we denote by K(a) := K" 7 "(a) and in case
(@10 -+ Gn_p_it10) #0by K(a) := K" " '(a) the (n—p—1i)-dimensional lincar
subvarieties of the projective space P which for 1 <k <n —p—i+ 1 are spanned
by the points (ag, : ag,1 : -+ : akn). In the first case we shall also use the notations

K(a,) and K" ?"(a,) instead of K(a) and K" 7 "(a).
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The classic and the dual ith polar varieties of S associated with the linear vari-
eties K (a) and K (a) are defined as the closures of the loci of the (F1, ..., F},)-regular
points of S where all (n—i41)-minors of the respective polynomial ((n—i+1)xn)-
matrix

r OF, oF, -
0X1 0Xn
oF, ’ oF,
0X1 0Xn
a1 ai,n
Lan—p—it1,1  **°  Qnop—it1,n
and
- OF, OF T
0X1 0X,
oF, ' oF,
X1 o0X
ai1 —a1,0X1 ail,n —al,OXn
Lan —p—it1,1 —Qn-p—it1,0X1 ** Qn_p—itln — Gn—p—it1,0Xn

vanish. If a is a real ((n —p —i+1) x (n + 1)-matrix, we denote the real traces of
the polar varieties Wi () (5) and Wz, (S) by

Wk (a)(SR) := Win—p-i(a)(Sr) := Wk(a)(S) N Ag

and
Wf(a)(S]R) = W?nfpfi(a) (S]R) = Wf(a) (S) N Aﬁ

and call them the real polar varieties.

Observe that this definition of classic and dual polar varieties may be extended
to the case that there is given a Zariski open subset O of A™ such that the equations
Fiy =0,...,F, = 0 intersect transversally at any of their common solutions in O
and that S is now the locally closed subvariety of A™ given by

S:={F =0,...,F,=0} N0,

which is supposed to be non-empty.

In Section 4 we shall need this extended definition of polar varieties in order to
establish the notion of a bipolar variety of a given complete intersection. For the
moment let us suppose again that S is the closed subvariety of A™ defined by the
reduced regular sequence Iy, ..., F).

In [3] and [4] we have introduced the notion of dual polar varieties of S (and Sg)
and motivated by geometric arguments the calculatory definition of these objects.
Moreover, we have shown that, for a complex ((n —p —i + 1) x (n + 1))-matrix
a = [ak’l}lgkggf<p77¢+1 with [akl]lgk%zl—ép’n—@ﬁ»l generic, the polar varieties Wi (q)(5)
and W?(a)(S f are either empty or of pure codimension i in S. Further, we have
shown that Wi (q)(S) and Wf(a)(S) are normal and Cohen-Macaulay (but non
necessarily smooth) at any of their (F7,. .., F,)-regular points (see [5], Corollary 2
and Section 3.1). This motivates the consideration of the so—called generic polar
varieties Wi (4)(S) and W% (S), associated with complex ((n—p—i+1)x (n+1))-
matrices a which are generic in the above sense, as invariants of the complex variety
S (independently of the given equation system Fy =0,..., F, = 0). However, when
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a generic ((n —p—i+1) x (n+1))-matrix a is real, we cannot consider W (4)(Sr)
and Wf(a)(SR) as invariants of the real variety Sg, since for suitable real generic
((n—=p—1i+1) x (n+1))—matrices these polar varieties may turn out to be empty,
whereas for other real generic matrices they may contain points (see [5], Theorem
1 and Corollary 2 and [8], Theorem 8 and Corollary 9).

For our use of the word “generic” we refer to [5], Definition 1.

In case that Sg is smooth and a is a real ((n —p — i+ 1) X (n + 1))—matrix,
the real dual polar variety Wf(a)(SR) contains at least one point of each connected
component of Sg, whereas the classic (complex or real) polar varieties Wi (4)(S5)
and Wi (q)(Sr) may be empty (see [3] and [4], Proposition 2).

Polar varieties have a long story in algebraic geometry which goes back to Severi
[39] and Todd [43, 44] in the 1930’s. Originally they were used to establish numerical
formulas in order to classify singular algebraic varieties by their intrinsic geometric
character or to formulate a manageable local equisingularity criterion which implies
the Whitney conditions for analytic varieties. About 10 years ago they became also
a fundamental tool for the design of pseudo-polynomial computer procedures with
intrinsic complexity bounds which find for a given complete intersection variety S
with a smooth real trace Sg algebraic sample points for each connected component
of Sg. For details we refer to [42] and [5].

3. COPOLAR INCIDENCE VARIETIES

3.1. Two families of copolar incidence varieties. Let d, n, p and ¢ be nat-
ural numbers with 1 < p <nand 1 <i <n—pandlet X := (Xy,...,X,),
B := [Bg]i<k<n—i, A= [As 4] and O := [O ] 1<k<n—: be matrices of inde-
1<i<n ’ 1<r<p

terminates over C.

We fix for the rest of the paper a strongly reduced regular sequence Fi, ..., F, €
Q[X]. Let d := max{degFs | 1 < s < p}, where deg F denotes the degree of the
polynomial Fy. We denote by F := (F},..., F,) the sequence of these polynomials

and by J(F) := [gfﬁ} \<., the Jacobian of F. Observe that the rank of J(F)
lglg_n

is generically p on any irreducible component of the complex variety S := {F; =
<= F, = 0}. We write J(F)T for the transposed matrix of J(F) and for any
point z € A™ we denote by rk J(F)(z) the rank of the complex matrix J(F)(x).
We are now going to introduce two families of varieties which we shall call copolar
incidence varieties. In order to define the first one we consider in the ambient space

T; := A" x AM=OX1 5 APXP 5 A(n=i)xp
the Q-definable locally closed incidence variety
H; = {(z,b,\9) € Ty| z€ S, tkb=n—1,tkd =p, J(F)(z)'X+ 70 = 0}.

Observe that the isomorphy class of H; does not depend on the choice of the
generators Fy,..., F, of the vanishing ideal of S. The canonical projection of T;
onto A" maps H; into S.

We are now going to state and prove three facts, namely Lemma 1 and Propo-
sitions 2 and 3 below, which will be fundamental in the sequel.

1<r,s<p

Lemma 1. Let (z,b,\,9) be a point of H;. Then x belongs to Syeg and X is a
regular complex (p X p)—matriz. Moreover, the canonical projection of T; onto A™
maps H; onto Syeq and (H;)r onto (Sr)reg -
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Proof
Let (z,b,A\,¥) be a point of H;. Then b and ¥ are complex full rank matrices of
size (n — i) x n and (n — i) X p, respectively. Therefore b7 is a complex full rank
matrix of size n x p. From J(F)(z)"X + b9 = 0 we deduce that the complex
(n x p)-matrix J(F)(z)T\ and the matrix A have rank p. This implies that the
rank of J(F')(x) is p. Since z belongs to S we conclude that S is smooth at 2. Thus
we have € Sieg and X is a regular complex (p X p)-matrix. By the way we have
shown that the canonical projection of T; onto A™ maps H; into Sieg -

Consider now an arbitrary point & € S.es . Without loss of generality we may
assume that the first p columns of J(F)(z) are C-linearly independent. Let A be
the (p x p)-identity matrix I,,. Furthermore, let

—J(F)(x)

I
b:= and 9= P ] ,
O(n*p*i)xp I(n—i—p)xn [O(npi)Xp

where O, _,_i)xp denotes the ((n — p — i) X p)-zero matrix.

Then b and o are full rank matrices which satisfy the condition J(F)(z)T\ +
bT9 = 0. Since x belongs to S, we conclude that (x,b,\,9) is an element of H;
which becomes mapped onto z under the canonical projection of T; onto A™. In
particular, if x € (Sg)reg then A, b and ¥ are real matrices and (x,b, A, ¥) belongs
to (H;)r. This implies that the canonical projection of T; onto A™ maps H; onto
Sreg and (H;)r onto (Sg)reg - O

Proposition 2. Let D; be the closed subvariety of T; defined by the conditions
rk B <mn—1iorrk® <p. Then the polynomial equations

Fi(X) = - = By(X) =0,
OF,
(1) D Msge ()4 D0 B, =0,
1<s<p ! 1<k<n—i

1<r<p, 1<1<n,

intersect transversally at any of their common solutions in T; \ D;. Moreover, H;
is exactly the set of solutions of the polynomial equation system (1) outside of the
locus D;.

In particular, H; is an equidimensional algebraic variety which is smooth and of
dimension n(n —i+ 1) +plp—i—1) > 0.

Proof

One sees immediately that a point (z,b, A\,9) € T; belongs to H; if and only if it

is a solution of the polynomial equation system (1) outside of the locus D;. The

Jacobian of the system (1) at such a point (x,b, A, ) has the following form
J(F)(w) Opo O;DXP Opx(n*i) Opx(n*i) Opxn(nfz‘)

J(F)(z)T .- Onxp bT o Opx(n—i) D

Onxp J(F)(f)T Onx(n—i) bT D(p)
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where D(")| 1 < r < p, is the complex (n x n(n — i))-matrix

Pir 0 i e O1x(n—4)
D) .—

O1x(n—1) G1,r 0 Fn—ir

From Lemma 1 we conclude that the (p x n)-matrix J(F)(x) has maximal rank p.
Since the matrix ¥ has full rank we infer that the (np x n(n —i))—submatrix of L,
built up by D™, ..., D) has rank np. This implies that the Jacobian £, has full
rank. Therefore, the (n + 1)p equations of the system (1) intersect transversally at
(z,b, \,9) and the algebraic variety H; is smooth and of dimension

n+(n—in+p*+m—i)p—(n+p=nn—i+1)+pp—i-1)

at this point. Thus H; is an equidimensional variety which is empty or smooth
and of dimension n(n —i+ 1)+ p(p — ¢ — 1) (observe that 1 < ¢ < n — p implies
nn—i+1)+p(p—1i—1) >0). From Lemma 1 we deduce that H; is not empty. O

For algorithmic applications Proposition 2 contains too many open conditions,
namely the conditions rk B = n — ¢ and rk © = p. By means of a suitable special-
ization of the matrices B and © we are going to eliminate these open conditions.
However, we have to take care that these specialization process does not exclude to
many smooth points of the variety S. The following result, namely Proposition 3
below seems to represent a fair compromise. We shall need it later for the task of
finding smooth points of S. For the formulation of this proposition we need some
notations.

Let B and © be the following matrices

Bin—it1 -+ Bin Op+11 - Oprip
B .= : : and C= : :
Bp,n—i-i-l T Bp,n en—iJ T en—i@

Let o be a permutation of the set {1,...,n} (in symbols, o € Sym (n)) and apply
o to the columns of the ((n — i) X n)-matrix

[ Ip Opx(n—p—i) B } )
O(n—p—i)xp In—p—i O(n—p—i)xi

In this way we obtain a ((n—1) x n)-matrix which we denote by B; ,. Furthermore,
let

— |y — OF;
O, = [@] and Ay = det {axg(r)

If we specialize in B; , the submatrix B to b € AP*and in ©; the submatix © to
9 € Al=P=DXP then the resulting complex matrices become denoted by bi,» and
¥, respectively.

We consider now in the ambient space

F; .= A" x APXt 5 APXP 5 A(m—p—i)xp

Lgs,rSp'

a copolar incidence variety of more restricted type, namely

Hiq = {(x,b,\,9) €F; |z €S, J(F)(z)" X+ b],9; = 0}.
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Observe that H; , is a Q-definable closed subvariety of F; whose isomorphy class
does not depend on the choice of the polynomials F7, ..., F, of the vanishing ideal
of S.

In the statement of the next result we make use of the Kronecker symbol 6, ;, 1 <
7,1 < p which is defined by 4, ; := 0 for » # [ and ¢, , := 1.

Proposition 3. Let notations and definitions be as before. For the sake of sim-
plicity assume that o is the identity permutation of Sym (n). Then the polynomial
equations

F,
S A 2 (x) 16020, 1<r<p 1<i<p,

7S 0X;
1<s<p
F, .
@) > AT,S%O(HGZ,T:O,1§r§p,p<l§nfz,
l
1<s<p

OF,
E As=—(X)4+ B =0, 1<r<p,n—i<l<n
* 90X, f
1<s<p

intersect transversally at any of their common solutions in F;. Moreover, H; , is
exactly the set of solutions of the equation system (2). In particular, H; , is a closed
equidimensional algebraic variety which is empty or smooth and of dimension n—p.

The image of H; , under the canonical projection of F; onto A™ is the set of
(smooth) points of S where A, does not vanish. For each real point x € S with
Ay (x) # 0 there exists a real point (z,b,\,9) of H; .

Proof
From the matrix identities

1 0
I, OpX(n—p—i) I o 0 o 1
I, p+1,1 p+1,p
Bi,aTGi = O(nfpfi)xp Infpfi 0| = .
© o, . e O,
T T n—i,1 n—i,p
B Oix (n-p-i) B Bin—iv1 -+ DBpn—it1
L Bl,n e Bp,n .

one deduces easily that a point (x,b, A\, ¥) of F; belongs to H; , if and only if it is
a solution of the polynomial equation system (2).
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Let (z,b, A, ) be such a point of H; ,. Then the system (2) implies A, (x) # 0
and its Jacobian may be organized as the matrix

[J(F)(x) Opxp T Opxp Opx(n-p) *** Opx(n-p) |
J(F)(x)T Onxp Z OnX(n—p)
£ =
z *
Onxp J(F)(‘T)T Onx(n—p) Z

with

OpX(n—p—i) Opxi

Z = In,p,i O(n—p—i)xi
Oix(nfpfi) I;

From A,(z) # 0 we deduce that J(F)(z) has rank p. Thus £ has full rank.
Therefore, the (n+1)p equations of the system (2) intersect transversally at (z, b, A, 9)
and the algebraic variety H; , is smooth and of dimension n + pi +p* + (n — p —
i)p— (n+1)p = n — p at this point. Thus H; , is an equidimensional variety which
is empty or smooth of dimension n — p. For any point (z,b, A,9) of H; , we have
A, (z) # 0 and, in particular, S is smooth at x.
On the other hand, for z € S with A,(z) # 0 we may consider
-1 T T
A= [8&(9&)}133,@17 V== [aFS(I)} 1cogp A AN b= [6&@)} 1segp A

3Xl 6Xl ale
p<l<n—i n—i<l<n

Then the corresponding point (x,b, A,9J) belongs to H; ,. Moreover, for = real we
have that b, A, Jare also real and therefore (z,b, A\, ) is a real point of H; ,. O

In the sequel we shall refer to H; and H;, as the copolar incidence varieties
of § .= {F = --- = F, = 0} associated with the indices 1 < ¢ < n — p and
o € Sym (n).

The notion of a copolar incidence variety is inspired by the Room-Kempf desin-
gularization of determinantal varieties [33, 37].

3.2. Copolar varieties. Let notations and assumptions be as in previous section
and let b € A("=9*" be a full rank matrix. We observe that the set

Vo(S):={z e S|I(\ V) € AP*P x AP)XP . 1k 9 =p and (z,b,\,0) € H;}
does not depend on the choice of the generators Fi,..., F}, of the vanishing ideal
of S. We call the Zariski closure in A" of ‘N/;,(S) the copolar variety of S associated
with the matrix b and we denote it by V4(S). From the argumentation at the end
of the proof of Lemma 1 we deduce V3(S) = V4(S) N Sreg -

Observe that a point = of S belongs to V,(S) if and only if there exist p rows
of the ((n — i) x n)—matrix b which generate the same affine linear space as the
rows of the Jacobian J(F) at . In case p := 1 and F' := Fj the copolar variety
Vo({F = 0}) coincides with the ith classic polar variety Wn-1-i)({F = 0}) of
the complex hypersurface {F' = 0} (here b denotes the ((n — i) x (n + 1))-matrix
whose column number zero is a null-vector, whereas the columns numbered 1,...,n
are the corresponding columns of b).
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Proposition 4. Ifb € A=D%" 45 g generic matriz, then the copolar variety Vi (S)
is empty or an equidimensional closed subvariety which is smooth at any point of
Vo(S) N Sreg and has (non-negative) dimension n — (i + 1)p.

Proof B
(Sketch) We consider in the ambient space F; := A™ x A(P=9x7 5 A(n=9xP the
Q-definable locally closed incidence variety

H;:={(z,b,0) €F; |z €S, tkb=n—i, tk9d=p, J(F)(x)" +b"9 =0}

Using the same argument as in Proposition 2 we see that IA{Q is nonempty, equidi-
mensional of dimension n(n—i41)—(i4+1)p > 0 and smooth. Let 7 : H; —» A=
be the morphism induced by the canonical projection of IE onto A(P=Dx7_ No-
tice that for any full rank matrix b € A®=9*" the wfiber of b is isomorphic to
V5(S) N Syeg as algebraic variety. Suppose now that 7 is dominating. From Sard’s
Theorem (see [16, 40]) we deduce that for a generic b € A*~9*" the 7—fiber of b
and hence V;,(S)N Syeq , are nonempty, equidimensional of dimension n—(i+1)p > 0
and smooth. If 7 is not dominating, then we see by the same argument that V;(S)
is empty. O

Observe that for a generic b € A»~9*" the emptiness or non-emptiness and in
the latter case also the geometric degree of the copolar variety V,(S) is an invariant
of the variety S.

The incidence varieties H; and H;, may be interpreted as suitable algebraic
families of copolar varieties. In [8] we considered in the case p := 1 three analogous
incidence varieties which turned out to be algebraic families of dual polar varieties.
Here we have a similar situation since in the hypersurface case, namely in the case
p:= 1, the copolar varieties are classic polar varieties.

4. BIPOLAR VARIETIES

4.1. Definition and basic properties of bipolar varieties. In order to mea-
sure the complexity of the real point finding procedures of this paper for complete
intersection varieties, we consider for 1 <p <n,1<i<n—pand o € Sym (n)
the generic dual polar varieties of the copolar incidence varieties H; and H; . In
analogy to the hypersurface case tackled in [8], we call them the large and the small
bipolar varieties of S.

Definition 5. The bipolar varieties B; ;) and B(; 5 j) are defined as follows:
o for1<j<nn—i+1)+plp—i—1)let By, a(nn—i+1)+plp—1i-—
1) — j 4+ 1)th generic dual polar variety of H; and,
o for1<j<n—pandoc Sym(n) let B, ;) a(n—p—j+1)th generic
dual polar variety of H; .
We call B ; jy the large and B; , ;) the small bipolar variety of S, respectively.

The bipolar varieties B(; ;) and B(; , j)are well defined geometric objects which
depend on the equation system Fj(X) = ---F,(X) = 0, although the copolar
incidence varieties H; is not closed (compare the definition of the notion of polar
variety in Section 2, where we have taken care of this situation). Moreover, our
notation is justified because we are only interested in invariants like the dimension
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and the degree of our bipolar varieties and these are independent of the particular
(generic) choice of the linear projective varieties used to define the bipolar varieties.

From Propositions 2 and 3 and [5], Corollary 2 we deduce that B; ;) and B(; »,;)
are empty or equidimensional of dimension j — 1 and Cohen-Macaulay and normal
at any point of B; ;) N H; and B 5 jy N H; ;.

Let 1 < j < n(n—i+1)+p(p—i—1), ag € AJ with ag # 0, a, € AT*((—i+D+p(ntp—1)
generic and a := [al, a.]. Furthermore, let T be the polynomial (((n+ Dp+
j)x (n(n—1i+4+1)+p(n+ p—1i)))-matrix whose first (n + 1)p rows constitute the
Jacobian of the system (1) of Section 3 and whose remaining j rows are built as in
Section 2 in order to define the (n(n —i+ 1)+ p(p —i — 1) — j + 1)th dual polar

variety of H; associated with the linear variety K(a). Then B ;) is the Zariski
closure in T; of the set of all points (z,b, A,d) € H; where Téz’])(a:, b, A,¥) has not
full rank.

By 7. we denote the polynomial ((n+Dp+i—1)x(n(n—i+1)+p(n+p—1)))-
matrix consisting of all rows of Tém ) except the last one.

Observe that the large bipolar varieties of S form a chain of equidimensional
varieties

Hi 2 B (i nn—it1)tpp—i-1) 2 2 By

The variety ®B(; 1) is empty or zero—dimensional. If B(; ;) is nonempty, then the
chain is strictly decreasing. We define B, o) := 0.

For t € N'=1 with ¢ := (t1,...,t;—1) and

m+lp<ti <---<tis1r<nn—i+1)+pn+p—i

we denote by my; ;) the ((n+1)p+j—1)-minor of TS which corresponds to the

first (n 4+ 1)p columns and the columns numbered t1,...,%;_1 of féi’j). Moreover,
for

(n+1D)p <k < < Epeit)tpp—i—1)—j+1 < n(n—i+1) +p(n+p—1i)
different from ¢q,...,t;—1 and 1 < h < nn—i+1)+pp—i—1) —j+1 we
denote by M,Si’j;t) the ((n + 1)p + j)—minor of T"") which corresponds to the first
(n+ 1)p columns of Téi’j) and the columns numbered ¢,,...,t;_1 and kj. Observe
deg M"Y < (n+1)pd + ;.

Finally, for #' € N*~* and ¢ € NP with ¢’ := (¢},...,,_;), t" := (t{,..., /) and

r'n—1
! / 1 1! .
1<ty <---<t,_;, <n and 1§t1<-~-<tp§n—z

let B(; ¢y and ©; 4y be the (n —4)— and p-minors of the matrices B and © which
correspond to the columns #1, ..., _; and rows t{,...,t; of B and ©, respectively.
By induction on n(n —i+1) +p(p—i—1,...,1) one sees easily that for any point
(x,0,A,9) of B; jy N H; \ B; j_1) there exist suitable vectors t € NI—1 ¢ ¢ Nn—°
and t" € NP with M jit) B(@y) @(7;715//)(.%, b, A, ’19) 7é 0.

Now Proposition 2 and Propositions 6 and 8 of [3, 4] imply that the equations
of the system (1) and the equations

7,75t 3,75t
MM =0, MG i1y =0

intersect transversally at (x,b, A\,v). In particular, the corresponding polynomials
form a regular sequence in

Q[X7 B7 A7 G]M(i,_in) B,y 9(7‘,,#’)
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and they define the large bipolar variety B ; ;) outside of the locus given by
m(iyj;t) B(i,t’) G(i,t”) =0.

Finally, observe that there exist ("("_Hlj)jf (p_i_l)), (,,) and (";Z) possible choices

of the vectors t € NV7! # € N"' and t’ € NP, respectively. This yields
("("_1+1J.)ff(p_l_l)) (") (”;1) possible choices of vectors (t,#', ") € N/=1 x N*~% x
NP,

This considerations entail the following statement.

Proposition 6. Let notations be as above and let t € N~ ¢/ € N"~% gnd t" € NP
be suitable vectors. Further, let D(; j; 4 1y be the closed variety of T; defined by
the condition m; j.»y B(i,i) © i,y = 0. Then the equations of the system (1) and
the degree (n+ 1)pd + j equations
(i,53t) _ (4,35t) _
My =0, My 1y bp(p—i—1)—j+1) = O

intersect transversally at any of their common solutions in T; \ D j.4 v pry. They
define B jy \ D jseer 0y @ Ti \ D jip e 4y Moreover, for suitably chosen vectors
(t,t',1") € N/71 x N™"=* x NP the union of the sets T; \ Dy; j;p.pr 4y covers B; jy N
H; \%(m,l).. There emjst (”("7i+1}ff(p7i71)) (") (";Z) such choices for the vector
(t,t',¢") € NI71 x Nn=% x NP,

Now let 1 < j < n—p, ap € AJ with ag # 0, a, € AT*@P+1) generic and
a:=[al,a.]. Let 0 € Sym (n). For the sake of simplicity of exposition we suppose
that o is the identity permutation. Furthermore, let T(Si"”j ) be the polynomial
(((n+1)p+j) x n(p+ 1))—matrix whose first (n+ 1)p rows constitute the Jacobian
of the system (2) of Section 3 and whose remaining j rows are built as in Section 2
in order to define the (n—p—j+1)th dual polar variety of H; , associated with the
linear space K (a). Then B(i,s,5) is the Zariski closure in IF; of the set of all points
(z,b,\,9) € H; » where Téi’o’j)(x,b7 A, ) has not full rank.

By T."%7) we denote the polynomial ((m+1p+j—1) x n(p + 1))-matrix
consisting of all rows of Téi’a’j ) except the last one.

Observe again, that the small bipolar varieties B(; o jy of S form a chain of
equidimensional varieties

Hi,a 2 B(i,o‘,nfp) DD B(i,o’,l)-

The variety B(; ,,1) is empty or zero-dimensional. If B(; 1) is nonempty, then the
chain is strictly decreasing. We define B(; ;. 0) := 0.
For t € NI—1 with ¢ := (t1,. .. ,tj_l) and
(n+1)p<t1 < v e <tj,1 §n(p+1)
T73) which corresponds
Tv(iﬁ,j)
o .

we denote by m(; ;) the ((n + 1)p + j — 1)-minor of

to the first (n + 1)p columns and the columns numbered ¢q,...,¢;_1 of
Moreover, for

m+p<ki < - <kpp_jr1 <n(p+1)
different from ¢y,...,¢;_1 and 1 < h < n—p—j+ 1 we denote by M}(:’U’j;t) the
((n+ 1)p + j)—minor of T4 which corresponds to the first (n + 1)p columns of
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799 and the columns numbered t1,...,tj—1 and kj. Observe deg M,(f’o’j;t) <
(n+1)pd.

Observe that there exist (?:f) choices of vectors t € N/~ 1,

In the same way as in case of Proposition 6, now one proves the following state-
ment.

Proposition 7. Let notations be as before and let t € N9=! be a suitable vector.
Denote by D(; o ;1) the closed subvariety of F; defined by the equation m; 5 ;1) = 0.
Then the equations of the system (2) and the degree (n + 1)pd equations

M(i,o—,j;t) 0

(i,0.55t) _ _
My =0 n—p—j+1 =

geeey

intersect transversally at any of their common solutions in F; \ D s 5.y They
define B(; o.5) \ D(i,ojit) ™ Fi \ D(,q44). Moreover, for suitably chosen vectors
t € N7 the union of the sets IF; \ Di 0.ty covers B,y NV Hi o \ B(i,5j-1). There
exist (?:f) possible choices of vectors t € NI—1,

4.2. Degrees of bipolar varieties. We denote by deg®B(; ;) and deg B(; , ;) the
geometric degrees of the respective bipolar varieties in their ambient spaces T; and
F; (see [26] for a definition and properties of the geometric degree of a subvariety
of an affine space).

Observe that degB(; ;) remains invariant under linear transformations of the
coordinates Xy,..., X, by unitary complex matrices.

From [8], Lemma 1 and [5], Theorem 1 and Theorem 3 we deduce that for
1<j<n-—pand (Syg)r #0

(3) deg B(i,o.5) < deg B (i, n(n—i))+pp—i)+)

holds.

Suppose that S contains a regular real point . The there exists a permutation
o € Sym (n) with A,(z) # 0. From Proposition 3 we deduce that (H; ,)r is
nonempty. This implies that H; , is given by a reduced regular sequence of poly-
nomials, namely the polynomials in the equation system (2). Moreover, the real
variety (H; o )r is smooth. Therefore we may apply [3, 4], Proposition 2 to conclude
that B; . j), contains for each connected component of (H;,)r at least one point.
This implies

1 <degBj 1) < deg B i n(n—i))+pp—i)+1)-

For1<r<p, 1<l<nando € Sym (n) we are going to analyze in the following
closed subvarieties S((Ql) and S((:,f)) of the affine subspaces T; and F;, respectively.
For this purpose we consider the lexicographical order < of the set of all pairs (r,1)
with1 <r<p, 1<I<n.

Let S ((Ql) be the Zariski closure of the locally closed subset of T; defined by the
conditions

Fi(X)=-=F,(X)=0
OF,
Z A sm + Z By O, =0,
(4) 1<s<p OXv | e

1<y <p, 1<l <n, (r,I')<(r,]) and
tk B=n—14, tk©®=p and rk J(F) =p.
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Observe that the particular structure of the Jacobian of the equations of system
(4) implies that the corresponding polynomials form a reduced regular sequence at
any of their common zeros outside of the closed locus given by the conditions

tk B<n—1i, tk® <p or rk J(F) < p.
Furthermore, let .S ((:7)) be the locally closed subset of F; defined by the conditions

Fi(X) = - = F(X) =0,

OF
Z Ay g +0p =0, 1< <pr, 1<U'<p, (', 1) < (r,0),
Xy )

1<s<p

OF,
(5) Z AT”San +Op, =0, 1< <r, p<l' <n—i, (0')<(r]l),

1<s<p

an / . / /
Z AT”SaT—i—BT"l,:O’ 1<’ <r, n—i<l<n, (') <(r])
1<s<p v

and A, (X) #£0.

Again the particular structure of the Jacobian of the equations of system (5) implies
that the corresponding polynomials form a reduced regular sequence at any of their
common zeros outside of the closed locus given by the condition A, (X) = 0.

In conclusion, the polynomials of the systems (1) and (2) form strongly reduced
regular sequences at any of their common zeros outside of the corresponding closed
loci.

For the next statement recall that the degree of the polynomials Fi,..., F}, is
bounded by d (see Section 2).

Proposition 8. Let 1 <r <pand1l <[ <n. Then we have the extrinsic estimate
deg S((:)l) < gp(n+1) dO(n2).

Proof

Without loss of generality we may suppose d > 2. Then we deduce from the Bézout
Inequality ([26, 18, 45]) that the closed subvariety of T; defined by the equations
of the system (4) is of degree at most dP("*1) = dom®), O
In fact this bound is too coarse, because refined methods, based on the multi-
homogeneous Bézout Inequality of [34], yield an estimate deg S((Ql) = (n"d)°9™
which is sharper for d > n. This improvement will not be very relevant in Section 5
where the degree of S, ((:?l) plays a key role in complexity estimates. More important
will be the estimate deg S((izf)) = (nd)°™ o € Sym (n), we are going to derive
now.

Lemma 9. Let 1 <r <p, A" = [Ar s]icr<r and A = det[gTF;]lSS’ygp. Then

1<s<p
the Zariski closure of the locally closed subvariety &, of A™ x A™*P defined by the
conditions
Fi(X) =+ = F(X) =0,
(6) ZA/%—#&/Z«:O 1<r'<r, 1<U<p
155, OXr ’

A£0
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is empty or equidimensional of dimension n — p. Its geometric degree is bounded
by (2nd)"™. The polynomials of the system (6) form a reduced regular sequence in
@[X? A(T)]A

Proof
From the equations (6) one deduces easily that for a point (z,\) € &, with A(z) # 0

the matrix [g;s ] 1<s<» has maximal rank. This implies that the Jacobian of (6)
1<l/<p

has full rank at (z, ). Hence the variety &, is smooth and of dimension n — p at
(z,\). Thus &, is empty or equidimensional of dimension n — p. Moreover, the
polynomials of the system (6) form a reduced regular sequence in Q[X, A(")]a

Observe that for z € S with A(x) # 0 there exists exactly one point A € A™*P
such that (z, \) belongs to &,. Thus &, N (Sa x A™*P) is the graph of a rational
map ¢ : S — A"*P which is everywhere defined on San. By Cramer’s rule each
component of this rational map may be described by a rational expression whose
numerator is a polynomial of Q[X] of degree at most pd and whose denominator is
A.

Let Ki,...,K,_, be generic affine linear polynomials of Q[X,A(T)]. Then we
have
degS, = #(6, Nn{K; = 0,...,K,_, = 0}), where # denotes the cardinal-
ity of the corresponding set. Without loss of cardinality we may suppose that
G, N{K1=0,...,K,_ p = 0} is contained in A} x A™*" (see [26], Remark 2). Re-
placing in K; = 0 K, _, =0 each 1ndeterm1nate Apg, 1< <r, 1<s<p
by the given ratlonal expressmn for the corresponding coordinate of ¢ and cleaning
the denominator A we obtain together with F1, ..., F}, a system of n polynomials of
Q[X] having degree at most 2 pd which in A} defines a set of the same cardinality
as 6, N{K; =0,...,K,_, =0}. From the Bezout Inequality we deduce therefore

deg S, < (2pd)" < (2nd)™.

Proposition 10. Let 1 <r <p and 1 <1 <n. Then we have the estimate
deg S((;f)) < (2nd®)".

Proof
Without loss of generality we may suppose that o € Sym (n) is the identity per-
mutation. Then we have with the notation of the previous lemma A = A,.

We consider &,._1 X AP and &,. as closed subvarieties of A™ x A"*P with the con-
vention &g := Sa. Let Vi) be the Zariski closure of the locally closed subvariety
of A™ x A"*P defined by the conditions

Fi(X) == Fy(X) =0,

ZAT,S —|—(5,«/l/—0 1<y <r, 1<V <p, (r,I') < (r,])
1<s<p

and A#0
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Observe that Virgy is the intersection of &,._; x AP with the subvariety of A™ x A"*P
defined by the equations

> Am S+ o =0, 1<T < mindl,p}.

1<s<p
From the Bézout Inequality and Lemma 9 we infer
deg Vi) < dP deg &, < (2nd®)™.

By Lemma 9 the variety &,_;1 is empty or of dimension n — p. Since G,_; x AP
contains V{,;y we conclude dim V{,.;y < n. Observe now that the system (5) de-
scribes the graph of a polynomial map with domain (V,;)a. The polynomials
which constitute this map have degree at most d. In the same way as in the
proof of Lemma 9, the Bézout Inequality implies that the system (5) describes a
locally closed algebraic subvariety of F; whose Zariski closure is of degree at most

d*deg Vi, < (nd®)™. Since the irreducible components of S((i’zf)) are irreducible

components of this variety we conclude that deg S ((i ?) < (2nd?)™ holds. O

Observation 11. Let 1 <r <p and 1 <1 <n. Then the estimate of Proposition
8 can be improved to deg S((r)l) (n™ d)Om,

Proof
(Sketch) Let us first suppose p <1 <n and let Y := [V, s]1<, s<p be a matrix of
new indeterminates. Consider again A := det[g—fé]lg&lgp. We show deg (Sfr pla =

(nd)®™). For this purpose we add to the equations of (4) the equations

OF
Y// —_—= 57“” // ]_ < " l” <
(7) Z SOX, 1 r p

1<s<p

In this way we obtain a closed subvariety W of T; x AP*P. Taking into account
the assumption p < I < n, one sees easily that the Jacobian of the system com-
posed by (4) and (7) has at any point of W full rank. Therefore, W is empty or
an equidimensional, smooth variety. The system composed by (4) and (7) contains
five types of variables, namely the ones contained in B, A, © and Y (which occur
linearly) and the variables X7, ..., X,, (which occur in degree at most d). Intersect-
ing W with dim W many affine hyperplanes of T; x AP*P given by generic affine
linear polynomials of Q[X, B, A, ©,Y], we deduce from the dehomogenized version
of the multi-homogeneous Bézout Inequality of [34] or from [15], Corollary 1.12 the
estimate deg W = (n™ d)°™).

Let m : T; x AP*P — T, be the canonical projection from T; x AP*P onto T;
and observe that (W) is birationally equivalent to W and hence empty or an

equidimensional subvariety of T;. Since the irreducible components of (S, ((:)l)) A are

irreducible components of w(W) we infer from [26], Lemma 2 and its proof the
estimate

deg (S{)))a < deg W = (n" d)°").
In a similar way one sees deg (S((;)l))Au = (n*d)°™ for any permutation o €

Sym (n). Since there exist (Z) many p-minors of J(F) we conclude deg S((:;)l) =
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(Z)(n” d)° = (n"d)°™. Finally, we consider S((Z?l) for 1 < r < p and ar-
bitrary 1 < I < n. From (4) we conclude that the irreducible components of
S((i?l) are irreducible components of the intersection of S((:)q,n) with [ < n hy-
persurfaces of T; of degree at most max{2,d}. Since we have by our previous
argumentation deg S((i)_u) = (n"d)°™ we deduce from the Bézout Inequality

deg S{))) = (n" d)°™. O

Let 1 < i < n—p. We proceed now to derive two extrinsic estimates for the
degrees of the bipolar varieties B; jy, 1 < j < n(n —i+ 1)+ p(p — i+ 1), and
B(isj),0 € Sym (n), 1 <j<n-—p.

Proposition 12. For 1 < j < n(n—i+ 1)+ p(p—i— 1) one has the extrinsic
estimate degB(; j) = (nd)°™®) . In particular, for n(n — i)+ p(p —i) < j <
n(n —i+1)+p(p —i—1) one has the estimate degB; ;) = (n"™ d)°™

Proof

From Proposition 8 we deduce that the degree of H; in T; is bounded by dP(*+1) =
dO™*) . Observation 11 yields the estimate deg H; = (n™ d)°™. On the other hand
we deduce from Proposition 6 and the Bézout Inequality that deg B, ;) is bounded

by degE (n(n—i-&-lj)i—f(]’—i—l)) (nﬁz) (n;z) ((Tl+ 1) pd+j)n(n7i+1)+p(p7i71)7j+1, This
implies for 1 < j < n(n —i+ 1)+ p(p —i — 1) the general estimate degB; j) =
(n d)o(ng) and for n(n—14)+p(p—1) <j <n(n—i+1)+p(p—1i—1) the particular
estimate degB(; ;) = (n" d)°m, 0

Proposition 13. The extrinsic estimate degB(; ;) = (nd)o(") is valid for any
c€Sym(n) and1 <j<n-—p.

Proof
From Proposition 10 we deduce that the degree of H; , is bounded by (n d*)". More-
over, Proposition 7 and the Bézout Inequality imply that deg B(; , ;) is bounded by

deg H; o ("-7)((n+ 1)pd + j)"~P=I%1 = (nd)°™). O
We associate now with 1 < i <n—p, o € Sym (n) and the polynomial equation
system F) = --- = F,, = 0 the following discrete parameters, namely
9; := max{max{deg{Fy =0---=F, =0} | 1 < s < p},

max{degS((f,?l) |[1<r<p, 1<I<n},
max{deg By n(n—i)+p(p—i)+j | 1 <J < n—pt}
and
i, := max{max{deg{F; =0---=F, =0} | 1 < s < p},
max{degS((f,:?)) [1<r<p, 1<I<n},
max{deg B(; »jy | 1 <j <n—p}}.

Adapting the terminology of [8], Section 4.2 and taking into account that for
1 < j < n — p the degree of B(; n(n_i)+p(p—i)+j) remains invariant under linear
transformations of the coordinates Xi,..., X, by unitary complex matrices, we
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call §; and 0;, the unitary-independent and the unitary-dependent degree of the
real interpretation of the equation system Fy = --- = F,, = 0 associated with ¢ and
0.

Observe that (3) and the Bézout Inequality imply

0io <0; forany o€ Sym (n).

From Propositions 10, 12 and 13, Observation 11 and the Bézout Inequality we
deduce the following extrinsic estimates

(8) 6i — (nn d)O(n)
and
(9) 810 = (nd)°™

(compare for the case p := 1 the estimates (16) and (17) given in [8], Section 4.2).
For the rest of the paper we fix a family {oq,... ,a(;,)} of permutations from
Sym (n) such that for any choice 1 < k; < --- < k, < n there exists an index
1<k< (:) with o%(1) = k1,...,05(p) = kyp.
Let &; := Zlgkg(
(10) & = (nd)°™.

Observe finally that

~ n
11 0; < 0;
() <p>
holds.

) di,0,- From (9) we deduce

n
P

5. REAL ROOT FINDING FOR F; =0,...,F, =0

We are going to present a discrete family of efficient non-uniform (or alternatively
uniform probabilistic) procedures II;, 1 < i < n — p, which satisfy the following
specifications. Let Z be a new indeterminate.

Input:

An essentially division-free arithmetic circuit 8 in Q[X] of size L and non-scalar
depth ¢ having p output nodes.

Input specification:

The circuit § represents by its output nodes p polynomials Fi, ..., F, € Q[X] of
maximal degree d. These polynomials form a strongly reduced regular sequence in
Qlx].

Output:
The procedure II; accepts the input 8 if S := {F} = 0,...,F, = 0} contains a
smooth real point. If this is the case, the procedure returns a circuit representation
of the coeflicients of n 4+ 1 polynomials P, Gy,...,G, € Q[Z] satisfying for G :=
(Gy,...,Gy) the following

Output specification:

- P is monic and separable,
- deg G < deg P < §;, where deg G := max{deg Gy, ...,deg G, },
- the zero-dimensional affine variety

{G(2) | z € A', P(2) = 0}
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contains a smooth real point of each generically smooth connected compo-
nent of Sg. In order to represent these sample points, an encoding “a la
Thom” of the real zeros of the polynomial P is returned (see e.g. [14] for
this kind of encoding).

We say that II; solves the real root finding problem for Fy =0,...,F, =0.

We fix now 1 < i <n—pand o € Sym (n). Without loss of generality we may
suppose that o is the identity permutation. From Proposition 3 we deduce that
the equations of the system (2) intersect transversally at any of their real solutions.
Moreover, the polynomials of (2) form in Q[X, B, A, ©] a strongly reduced regular
sequence (see Section 4.2).

Denote by V7 := H; , the closed algebraic subvariety of I; consisting of the
common complex solutions of the polynomial equation system (2) and let Vg :=
VN (F;)r be the real trace of V7 in ;. Thus Vi{ consists of all real solutions of
(2) and is therefore closed in the Euclidean topology. Moreover, from Proposition
3 we conclude that V7 and Vi are empty or smooth of dimension n — p and that
the real variety V¥ is non-empty if and only if S contains a real point z with
A, (z) # 0. More precisely, for any connected component C of Sg, where A, do
not vanish identically, there exists a point (x,b, A,9) of Vi with z € C, A,(z) # 0
and (b, A, 9) € ARX" x ADXP x plnTPixP,

Therefore, a set of algebraic sample points for the connected components of Vi
gives rise to a set of algebraic sample points for the connected components of Sy
where A, does not vanish identically.

Suppose now that S contains a real point x with A,(z) # 0. Then the real
variety Vi is smooth and equidimensional of dimension n—p. For 1 < j <n—p we
infer from [4], Proposition 2 that the real bipolar variety (B; , ;))r (and hence the
complex variety B; , ;) contains at least one point of each connected component
of V. Thus B(; ;) and (B(; + ;))r are equidimensional of dimension j — 1. From
Proposition 7 we conclude that for 1 < j < n — p the algebraic variety B(; 4;) \
B(i,0,j—1) is locally definable by reduced regular sequences. In particular, B(; 1)
is zero-dimensional and contains for each connected component of Vg an algebraic
sample point. The algorithm II; proceeds now by deciding for each 1 < k < (Z)
whether B(; 5, 1) contains real algebraic points, and, if it is the case, by computing
them. The algorithm infers from these data whether S contains smooth real points.
If the answer is positive, the set of data furnish also a finite set of smooth real
algebraic sample points for the generically smooth connected components of Sg.

At the beginning, the procedure II; generates for each 1 < k < (Z) from the
input circuit § a new division-free circuit f,, of size O(L + np) and non-scalar
depth £+ O(1) that represents by its output nodes the polynomials of Q[ X, B, A, ©]
which define as in Section 3 the variety H;,,. For the sake of simplicity we fix
o := oy and suppose that o is the identity permutation of Sym (n). Taking the
circuit S, as input, the procedure II; follows now the pattern of the (non-uniform
or probabilistic) procedure described in in [3], Theorem 11 and [4], Theorem 13 in
order to decide whether V is empty.

If Vg is empty then the procedure II; returns the answer that A, vanishes
identically on any connected component of Sg.

Suppose that Vg is not empty. Then the procedure II; returns the coefficients of
n(p + 1) + 1 polynomials P?,G?,...,G3,G7 . q,..., Grpin) € Q[Z] satisfying for

G7:=(GY,...,G} 1)) the following conditions:
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- P? is monic and separable,

- deg G7 < deg P? < degB(; 0.1y,

- B(i,a,l) = {GU(Z) | S A17 PU(Z) = 0}
From this representation of the variety B(; 1) we deduce that for G, := (GY,...,GY)
the zero-dimensional variety {G,(z) | 2 € A, P?(z) = 0} contains a real alge-
braic sample point for each connected component of Sg where A, does not vanish
identically. The procedure II; collects now this information for any permutation
ok, 1 <k < (;), in order to construct n + 1 polynomials P,Gy,...,G, € Q[Z]
which satisfy the output specifications above.

This is done in the following way. The polynomial P is obtained by taking the

product of all polynomials P7* with Vg* # 0, 1 <k < (2) and making the result

squarefree. Then we have deg P < §;. From P the polynomials Gy,...,G, are
easily obtained applying a standard algorithm which goes back to Kronecker (see
[23] for details). In this way the procedure II; produces a set of real algebraic
sample points for the generically smooth connected components of Sg from G and
the encoding “a la Thom” of the real zeros of P.

The procedure II; is based on the original paradigm [21, 20] of a procedure
with intrinsic complexity that solves polynomial equation systems over the complex
numbers (see also [19, 23, 17]).

We are now going to describe succinctly the procedure II; (Propositions 7 and
10 will play here a key role). For this purpose we shall freely refer to terminol-
ogy, mathematical results and subroutines of [23], where the first streamlined ver-
sion of the polynomial equation solver [21, 20] was presented and implemented as
"Kronecker-algorithm” (compare also [29]).

In order to simplify the exposition we shall refrain from the presentation of
details which ensure only appropriate genericity conditions for the procedure. The
following description requires that the reader is acquainted with the details of the
Kronecker-algorithm. Although this description may look at first glance intricate,
no substantially new idea, which was not explained before, becomes introduced.

As before, we consider the identity permutation o € Sym (n). Recall that the
polynomials of (2) generate the trivial ideal or form a strongly reduced regular
sequence in Q[X,B,A,®]a_. In this situation the procedure II; applies to the
system (2) the algorithm “Geometric Solve” of [23] to decide whether V7 = H, ,, is
empty. In this case the information that Vi does not contain any smooth point is
returned. Suppose that this is not the case. Then the algorithm “Geometric Solve”
returns a lifting fiber of the variety V7.

Next, beginning with j := n — p, the procedure II; decides for any index 1 < j <
n — p whether the variety B(; , ;) is empty or returns a lifting fiber of it. In case
that there exists an index 1 < j < n —p with B(; 5 ;) = 0, the procedure II; returns
the information that Vi does not contain any smooth point. Suppose that this is
not the case.

For 1 < j < n—p we fix a vector t¥) € NI—1 with tU) := (t(j), . ,t§j21) and

(n+1)p < tgj) < < tg.j_)l < n(p +1). In the same way as in [8], Section 4.3
one sees that the minor m; , ;.;;)) does not vanish identically on any irreducible
component of B(; 4 jy.

Following Proposition 7 the equations of the system (2) and the equations

,t(j))

=0,..., MBIt — g

(3,05 _
Ml n—p—j+1 =
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define the variety (B(; o.5)) outside of the locus of IF; given by m; , ;.,0)) =

M 0,550
0. Our assumptions imply tﬁat ichis )variety is not empty. Therefore, the polynomials
of the equations above form a reduced regular sequence in Q[X, B, A, G}m(i,a‘j;t(j))
and hence a lifting system in the sense of [23] for the variety B(; , ;). Inductively
we suppose that there is given a lifting fiber of B; , ;) on which m; , ;) vanishes
nowhere.

In this situation II; combines the algorithms “Lifting Curve”, “Change Free Vari-
ables”, “Change Lifting Point” and “Change Primitive Element” of [23] in order to
produce a Kronecker-parameterization of a suitable curve C(; ¢ ;) in (B(iﬁ,j))m(i it
which lifts the fiber of a sufficiently generic lifting point with respect to the 1if’ti,ng
system and a sufficiently generic Noether position of B; , ).

Next the procedure II; applies for 1 < k < n —p — j + 1 the algorithm “One
Dimensional Intersect” of [23] to the given Kronecker-parameterization of C(; 4,5

o141
and the polynomials M,gl’o’] L) and M0 j—1,66-1y and computes the greatest

common divisor of the resulting univariate elimination polynomials. This greatest
common divisor is not one since by assumption the variety B; ,;_1) is not empty.
In this way II; produces a lifting fiber of B(; ;1) on which m; , ;1 4;-1) vanishes
nowhere.

Finally II; produces a geometric solution of the zero-dimensional algebraic variety
B(i,s,1)- More precisely, the procedure II; produces a circuit representation of the
coefficients of n(p + 1) + 1 polynomials P?,GY,..., GZ(p-s-l) € Q[Z] as above.

Running the previous routine for each oy, 1 < k < (Z), we deduce from the
complexity estimates of [23] that II; uses

max{deg{F; =0,...,F; =0} |1 <i < p}, 2
Z Lnd)°® | max { max{deg S((if)’“)ﬂ <r<p,1<1<n}, —
1<k<(3) max{deg B(; o, ;|1 < j <n—p}

=L (na)°" (5)?

arithmetical operations organized, with respect to the parameters of the arithmetic
circuit 3, in non—scalar depth

O(n (£ +log(dn))logd;).

The procedure can easily be translated to the bit model. Let n be the logarithmic
height of the polynomials Fi,...,F),. In order to estimate the bit complexity of
the procedure we consider the maximal logarithmic height, say s; = O((nd)™n), of
the bipolar varieties B(; 5, 1), 1 <k < (Z) It is now straightforward to see that a
representation of P as primitive polynomial of Z[Z] and hence a minimal arithmetic
expression of the real zeros of P can be found using O(L2(ndn)®M(5; 3)?) bit
operations (see [25] for the relationship between arithmetic and bit representation
of integers).

Let us finally observe that an alternative procedure to II; may be obtained
applying for j := 1 the algorithm “Geometric Solve ” of [23] to the equation system
of Proposition 7. The complexity estimates for this procedure, which are the same
as for II;, follow from arguments in [5], Section 4 and especially from Theorem 3
and Example 2.
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We have therefore proven the following complexity statement (compare [3], The-
orem 11, [4], Theorem 13 and [8], Theorem 14).

Theorem 14. Let n, p, d, i, d, L, £ be natural numbers with d > 1,1 <i<n—p.
Let X4,...,X, and Z be indeterminates over Q and let X := (Xq,...,X,).

There exists an arithmetic network N (or arithmetic-boolean circuit) over Q,
depending on certain parameters and having size

O(L (nd)°W §?) = (nd)°™
and non—scalar depth
O(n (¢ +log(nd))log§) = O(n?log(dn) logd),

such that N satisfies for suitable random specializations of its parameters the fol-
lowing condition:

Let Fy,...,F, € Q[X] be polynomials of degree at most d and assume that
Fi,...,F, are given by an essentially division—free arithmetic circuit § in Q[X]
of size L and non—scalar depth £. Suppose that Fi,...,F, form a strongly reduced
reqular sequence in Q[X] and that 6; < & holds.

Then the algorithm represented by the arithmetic network N starts from the
circuit 8 as input and decides whether the variety {Fy =0,...,F, = 0} contains a
smooth real point. If this is the case, the algorithm produces a circuit representation
of the coefficients of n + 1 polynomials P,G1,...,G, € Q|[Z] satisfying for G :=
(Gy,...,Gy) the following conditions:

- P is monic and separable,

- degG < deg P < ¢,

- the complex affine variety {G(z) | z € A', P(2) = 0} is zero—dimensional
and contains a smooth real algebraic sample point for each generically smooth
connected component of {F; =0,...,F, = 0}r.

In order to represent these sample points the algorithm returns an encoding ”a la
Thom” of the real zeros of the polynomial P.

For the terminology of arithmetic network and boolean—arithmetic circuit we
refer to [46, 47].

Three remarks on the formulation of Theorem 14 are at order.

The statement of Theorem 14 remains true if we replace §; by (Z)éi. This is
a direct consequence of the estimate (11). Hence the combinatorial factor (Z)
occurs hidden in the invariant gz In terms of extrinsic complexity, our bounds
therefore are comparable with those of [9]. An improvement can be obtained in
case that the variables X1, ..., X,, are in generic position with respect to the variety
{F1 =--- = F, = 0}. In this case the factor (Z) in this complexity estimate may be
dropped. In order to see this, observe that for the identity permutation o € Sym (n)
the variety H;, contains for each generically smooth connected component C' of
{Fi =--- = F, = 0}r a point (z,b, A\,?¥) such that = belongs to C. Hence the
same is true for B(; ,1). It suffices therefore to apply the subroutine of II; which
corresponds to ¢ in order to find real algebraic sample points for the generically
smooth connected components of {F; = --- = F, = 0}g.

Next we remark that by (9) the condition 5 < 6 is always satisfied for § :=
min{(nd)°™,d;}, where ¢ > 0 is a suitable universal constant (independent of n and
d). This illustrates that the estimates of Proposition 8 and Observation 11 implying
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the estimate (8) (i.e., &; = (n™d)°™) are not very relevant in this context. The
worst case bound of Theorem 14 is only (nd)°™.
Our third remark is the following statement.

Observation 15. Theorem 14 asserts only the existence of a computation that,
for given n-variate input polynomials Fi,...,F, of degree at most d and circuit
size and non—scalar depth L and £, solves the real root finding problem for Fy =
0,...,F, = 0 in sequential and non-scalar parallel time O(L (nd)°M (6:)2) and
O(n(f + log(nd))log &;), respectively.

Theorem 14 refers therefore to the non—uniform complexity model. In order to
realize such a computation in terms of the uniform complexity model within the
same order of sequential and parallel time, probabilistic methods have to be used
(see [29] and [23]). This is achieved by choosing randomly the parameters of the
arithmetic network N of Theorem 14.

In [8], Section 5 we developed a common view for the procedures IT;, 1 < i <
n — p, solving the task of finding smooth points in possibly singular, real compact
hypersurfaces, and for the algorithm of [1] which solves the same task in the smooth
case.

When we have to solve a concrete polynomial equation system Fy =0,..., F, =
0, sometimes the procedures II;;, 1 < i < n — p and algorithms of [2, 3, 4] may
be combined in order to improve the complexity. However, such improvements
depend on ad hoc methods and do not lead to a general algorithm. Moreover,
the hypersurface case treated in [8] does not differ substantially from that of an
arbitrary complete intersection. Therefore, we do not enter into details here and
refer the reader to the mentioned paper.
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