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Abstract

Let V be a smooth equidimensional quasi-affine variety of dimension r over
C and let F be a (p× s)-matrix of coordinate functions of C[V ], where s ≥ p+ r.
The pair (V, F ) determines a vector bundle E of rank s− p over W := {x ∈ V |
rkF (x) = p}. We associate with (V, F ) a descending chain of degeneracy loci of
E (the generic polar varieties of V represent a typical example of this situation).

The maximal degree of these degeneracy loci constitutes the essential ingre-
dient for the uniform, bounded error probabilistic pseudo-polynomial time algo-
rithm which we are going to design and which solves a series of computational
elimination problems that can be formulated in this framework. We describe ap-
plications to polynomial equation solving over the reals and to the computation
of a generic fiber of a dominant endomorphism of an affine space.
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1 Introduction

Let V be a smooth and equidimensional quasi-affine variety over C of dimension r and
let F be a (p × s)-matrix of coordinate functions of C[V ], where s ≥ p + r. Then F
determines a vector bundle E of rank s− p over W := {x ∈ V | rkF (x) = p}. With E
and a given generic matrix a ∈ C(s−p)×s we associate a descending chain of degeneracy
loci of E. The generic polar varieties constitute a typical example of this situation.

We prove that these degeneracy loci are empty or equidimensional, normal and
Cohen-Macaulay. Moreover, if b is another generic matrix, the degeneracy loci as-
sociated with a and b are rationally equivalent and their equivalence classes can be
expressed in terms of the Chern classes of E. Not the rational equivalence classes,
but the degeneracy loci themselves constitute a useful tool to solve efficiently certain
computational elimination tasks associated with suitable quasi-affine varieties and ma-
trices F . Such elimination tasks are for example real root finding in reduced complete
intersection varieties with a smooth and compact real trace or the problem to describe
efficiently a generic fiber of a given bi-rational endomorphism of an affine space.

In a somewhat different context of effective elimination theory, rational equivalence
classes of degeneracy loci were considered in [8].

1.1 Contributions

The main contribution of this paper is a new algorithm which solves the above men-
tioned and other elimination tasks in uniform, bounded error probabilistic pseudo-
polynomial time. In this sense it belongs to the pattern of elimination procedures
which became introduced in symbolic semi-numeric computation by the already clas-
sical Kronecker algorithm [9, 11, 17–19, 21]. Here we refer to procedures whose inputs
are measured in the usual way by syntactical, extrinsic parameters and, besides of
them, by a semantical, intrinsic parameter which depends on the geometrical meaning
of the input and may become exponential in terms of the syntactical parameters. A
procedure is called pseudo-polynomial if its time complexity is polynomial in both, the
syntactical and semantical parameters. In this sense, the semantical parameter that
controls the complexity of our main algorithm is the maximal degree of the degeneracy
loci which we associate with the given elimination task.

The particular feature of this algorithm is that the input polynomials of the elimi-
nation task under consideration may be given by an essentially division-free arithmetic
circuit (which means that only divisions by scalars are allowed) of size L. The com-
plexity of the algorithm becomes then of order L(snd)O(1)δ2, where n is the number
of indeterminates of the input polynomials, d their maximal degree, s the number of
columns of the given matrix and δ is essentially the maximal degree of the degeneracy
loci involved. In worst case this complexity is of order (s(nd)n)O(1). General degeneracy
loci constitute an important instance where we are able to achieve, as a generalization
of [19], a complexity bound of order square δ. At present no other elimination pro-
cedure reaches such a sharp bound. In particular we do not rely on equidimensional
decomposition whose best known complexity is of order cube δ (see [29, Theorem 8]
for an application to polar varieties). For comparisons with the complexity of Gröbner
basis algorithms we refer to [33]. Without going into the technical details we indicate
also how our algorithm may be realized in the non-uniform deterministic complexity
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model by algebraic computation trees. We implemented our main algorithm within
the C++ library geomsolvex of Mathemagix [23].

In Section 2 we present some of the basic mathematical facts concerning the ge-
ometry of our degeneracy loci which will be used in Section 4 to develop our main
algorithm. The proofs, which are all self-contained except one, require only some
knowledge of classical algebraic geometry and commutative algebra which can be found,
e.g., in [25,26,31], elementary properties of vector bundles over algebraic varieties [32],
the Thom-Porteous formula [16, Chapter 14], and the notion of linear equivalence of
cycles [16, Chapter 1]. The main algorithm requires some familiarity with the classical
version of the Kronecker algorithm [11, 19] and with algebraic complexity [7].

1.2 Notions and notations

We shall use freely standard notions, notations and results of classic algebraic geometry,
commutative algebra and algebraic complexity theory which can be found, e.g., in the
books [7, 25, 26, 31].

Let Q and C be the fields of rational and complex numbers, let X1, . . . , Xn be in-
determinates over C and let be given polynomials G1, . . . , Gq, and H in C[X1, . . . , Xn].
By An we denote the n-dimensional affine space over C. We shall use the following
notations:

{G1 = 0, . . . , Gq = 0} := {x ∈ An | G1(x) = 0, . . . , Gq(x) = 0}

and

{G1 = 0, . . . , Gq = 0}H := {x ∈ An | G1(x) = 0, . . . , Gq(x) = 0, H(x) 6= 0}.

Suppose 1 ≤ q ≤ n and that G1, . . . , Gq form a regular sequence in the localized ring
C[X1, . . . , Xn]H . We call it reduced outside of {H = 0} if for any index 1 ≤ k ≤ q the
ideal (G1, . . . , Gk)H is radical in C[X1, . . . , Xn]H . Let V be the quasi-affine subvariety
of the ambient space An defined by G1 = 0, . . . , Gq = 0 and H 6= 0, i.e.,

V := {G1 = 0, . . . , Gq = 0}H .

By C[V ] we denote the coordinate ring of V whose elements we call the coordinate
functions of V . We adopt the same notations of V as we did for V := An.

Suppose for the moment that V is a closed subvariety of An, i.e., V is of the
form V = {G1 = 0, . . . , Gq = 0}. For V irreducible we define its degree deg V as
the maximal number of points we can obtain by cutting V with finitely many affine
hyperplanes of Cn such that the intersection is finite. Observe that this maximum is
reached when we intersect V with dimension of V many generic affine hyperplanes of
Cn. In case that V is not irreducible let V = C1 ∪ · · · ∪ Cs be the decomposition of
V into irreducible components. We define the degree of V as deg V :=

∑
1≤j≤s degCj.

With this definition we can state the so-called Bézout Inequality : if V and W are closed
subvarieties of Cn, then we have

deg(V ∩W ) ≤ deg V · degW.

If V is a hypersurface of Cn then its degree equals the degree of its minimal equation.
The degree of a point of Cn is just one. For more details we refer to [16, 20, 34].
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2 Degeneracy loci

We present the mathematical tools we need for the design of our main algorithm in
Section 4. Proposition 3 and Theorem 5 below are not new. They can be extracted
from existing results of modern algebraic geometry. Since we use the ingredients of our
argumentation for these statements otherwise, we give new elementary proofs of them.
This makes our exposition self-contained.

Let V be a quasi-affine variety and suppose that V is smooth and equidimensional
of dimension r. The following constructions, statements and proofs generalize basic
arguments of [3–5]. Let p and s be natural numbers with s ≥ p+ r. We suppose that
there is given a (p× s)-matrix of coordinate functions of V , namely

F :=



f1,1 · · · f1,s
...

...
fp,1 · · · fp,s


 ∈ C[V ]p×s.

For x ∈ V we denote by rkF (x) the rank of the complex (p × s)-matrix F (x). Let
W := {x ∈ V | rkF (x) = p} and observe that W is an open, not necessarily affine,
subvariety of V which is covered by canonical affine charts given by the p-minors of F .

Let E := {(x, y) ∈ W × As | F (x) · yT = 0} and π : E → W be the first projection
(here yT denotes the transposed vector of y). One sees easily that π is a vector bundle
of rank s− p. We call π (or E) the vector bundle associated with the pair (V, F ). Let
us fix for the moment a complex ((s− p)× s)-matrix

a :=




a1,1 · · · a1,s
...

...
as−p,1 · · · as−p,s


 ∈ C(s−p)×s

with rk a = s− p. For 1 ≤ i ≤ r + 1, let

ai :=




a1,1 · · · a1,s
...

...
as−p−i+1,1 · · · as−p−i+1,s


 ∈ C(s−p−i+1)×s.

We have rk ai = s− p− i+ 1. Let

T (ai) :=

[
F
ai

]
∈ C[V ](s−i+1)×s and W (ai) := {x ∈ W | rkT (ai)(x) < s− i+ 1}.

Applying [13, Theorem 3] or [25, Theorem 13.10] to each canonical affine chart of W
we conclude that any irreducible component of W (ai) has codimension at most i in W .
For 1 ≤ i ≤ r, the locally closed algebraic varieties W (ai) form a descending chain

W ⊇ W (a1) ⊇ · · · ⊇ W (ar).

We call the algebraic variety W (ai) the i-th degeneracy locus of the pair (V, F ) associ-
ated with a.

The vector bundle E is a subbundle of W × As. Fix 1 ≤ i ≤ r. Then the matrix
ai defines a bundle map W × As → W × As−p−i+1 which associates with each (x, y) ∈
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W × As the point (x, ai · y
T ) ∈ W × As−p−i+1. By restriction we obtain a bundle map

ϕi : E → W ×As−p−i+1 whose critical locus we are going to identify with W (ai). First
we observe that (x, y) ∈ E is a critical point of ϕi if, and only if, any point of the
fiber Ex of E at x is critical for ϕi. Thus the property of being a critical point of ϕi

depends only on the fiber. We say that x ∈ W is critical for ϕi if this map is critical
on Ex. One verifies easily by direct computation that the degeneracy locus W (ai) is
the set of critical points of W for ϕi. In this sense W (ai) is a degeneracy locus of
ϕi [16, Chapter 14].

Example 1. We are going to visualize our setup by a simple example. Consider the
polynomial G := X2

1 + X2
2 + X2

3 − 1 ∈ C[X1, X2, X3]. Then V := {G = 0} is an
irreducible subvariety of A3 which is smooth of dimension r := 2. Let F be the
gradient of G restricted to V , and let p := 1 and s := 3. Thus s = p+ r. For π1, π2, π3

being the coordinate functions of C[V ] induced by X1, X2, X3 and for
[
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

]
∈ C2×3

generic, we have

F =
[
2π1 2π2 2π3

]
, T (a1) =



2π1 2π2 2π3

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3


 , T (a2) =

[
2π1 2π2 2π3

a1,1 a1,2 a1,3

]
.

One verifies easily that W = V , W (a1) = {x ∈ V | det(T (a1)) = 0} and W (a2) = {x ∈
V | x = (x1, x2, x3), a1,2x1 − a1,1x2 = 0, a1,3x1 − a1,1x3 = 0, a1,3x2 − a1,2x3 = 0} holds.
Since the matrix [ai,j]1≤i≤2,1≤j≤3 is generic by assumption, we conclude that W (a1) is
equidimensional of dimension one and that W (a2) is the classical polar variety of the
sphere V , which can be parameterized in the following way:

W (a2) =

{(
a21,1
a21,3

+
a21,2
a21,3

+ 1

)
X2

3 − 1 = 0, X1 −
a1,1
a1,3

X3 = 0, X2 −
a1,2
a1,3

X3 = 0

}
.

2.1 The dimension of a degeneracy locus

We are now going to show that, for a generic matrix a, the degeneracy locus W (ai) is
either empty or of expected pure codimension i in W (see Proposition 3 below). Our
considerations will only be local. Therefore it suffices to consider the items we are
going to introduce now. Let

∆ := det



f1,1 · · · f1,p
...

...
fp,1 · · · fp,p


 .

For 1 ≤ i ≤ r, let

mi := det




f1,1 · · · f1,s−i

...
...

fp,1 · · · fp,s−i

a1,1 · · · a1,s−i

...
...

as−p−i,1 · · · as−p−i,s−i




.
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Thus mi is the upper-left corner (s − i)-minor of the ((s − i + 1) × s)-matrix T (ai).
Further, let

Ms−i+1, . . . ,Ms

be the (s−i+1)-minors of the matrix T (ai) given by the columns numbered 1, . . . , s−i
to which we add, one by one, the columns numbered s− i+ 1, . . . , s. Observe that

W (ai)∆ := {x ∈ W (ai) | ∆(x) 6= 0}

is an affine chart of the degeneracy locus W (ai). The Exchange Lemma in [2] implies

W (ai)∆·mi
= {Ms−i+1 = 0, . . . ,Ms = 0}∆·mi

.

Let Zs−i+1, . . . , Zs be new indeterminates and M̃s−i+1, . . . , M̃s be the (s− i+1)-minors
of the matrix




f1,1 · · · f1,s−i f1,s−i+1 · · · f1,s
...

...
...

...
fp,1 · · · fp,s−i fp,s−i+1 · · · fp,s
a1,1 · · · a1,s−i a1,s−i+1 · · · a1,s
...

...
...

...
as−p−i,1 · · · as−p−i,s−i as−p−i,s−i+1 · · · as−p−i,s

as−p−i+1,1 · · · as−p−i+1,s−i Zs−i+1 · · · Zs




given by the columns numbered 1, . . . , s− i to which we add, one by one, the columns
numbered s − i + 1, . . . , s. We consider now the morphism Φi : Vmi

× Ai −→ Ai of
smooth algebraic varieties defined for x ∈ Vmi

and z ∈ Ai by (x, z) 7→ Φi(x, z) :=

(M̃s−i+1(x, z), . . . , M̃s(x, z)).

Lemma 2. The origin (0, . . . , 0) of Ai is a regular value of Φi.

Proof. Without loss of generality we may assume that Φ−1
i (0, . . . , 0) is nonempty. Let

x ∈ Vmi
and z ∈ Ai with Φi(x, z) = (0, . . . , 0) be arbitrarily chosen. Observe that the

Jacobian of Φi at (x, z) is a matrix with i rows of the following form:



∗ · · · ∗ mi(x) 0 · · · 0

∗ · · · ∗ 0 mi(x)
. . .

...
...

...
...

. . .
. . . 0

∗ · · · ∗ 0 · · · 0 mi(x)


 .

Since x belongs to Vmi
we conclude that (x, z) is a regular point of Φi. The arbitrary

choice of (x, z) in Φ−1
i (0, . . . , 0) implies now Lemma 2.

From theWeak Transversality Theorem of Thom-Sard (see, e.g., [10, Theorem III.7.4])
we deduce now that there exists a nonempty Zariski open set Ω of Ai such that for any
point z ∈ Ω the equations M̃s−i+1(x, z) = 0, . . . , M̃s(x, z) = 0 intersect transversally
at any common zero belonging to Vmi

. From now on we shall choose the complex
((s−p)×s)-matrix a generically proceeding step by step from row numbered one until
row numbered s−p. With this choice in mind we may suppose without loss of generality
that the equations Ms−i+1 = 0, . . . ,Ms = 0 intersect transversally at any of their com-
mon zeros belonging to Vmi

. In particular, W (ai)∆·mi
= {Ms−i+1 = 0, . . . ,Ms = 0}∆·mi

is either empty or of pure codimension i in W∆·mi
.
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Proposition 3 ([27, Transversality Lemma 1.3 (i)]). For 1 ≤ i ≤ r and a generic
matrix a ∈ C(s−p)×s, the i-th degeneracy locus W (ai) is empty or of pure codimension
i in W .

Proof. Let C be an irreducible component ofW (ai) not contained inW (ai+1). Without
loss of generality we may assume that ∆·mi does not vanish identically on C. Therefore
C∆·mi

is an irreducible component of W (ai)∆·mi
. Hence, C∆·mi

is of codimension i in
W∆·mi

. This implies that the codimension of C in W is also i.
Let us consider the case i = r. By induction on 1 ≤ j ≤ s − p− r we conclude in

the same way as in the proof of Lemma 2 and the observations following it that for any
point x of W∆ there exists a (p + j)-minor corresponding to p + j columns, including
those numbered 1, . . . , p, of the matrix




F
a1,1 · · · a1,s
...

...
aj,1 · · · aj,s




which does not vanish at x. This implies that W (ar+1)∆ is empty. Thus W (ar)∆, and
hence W (ar), is empty or of pure codimension r in W . This shows Proposition 3 in
case i = r.

Suppose now that Proposition 3 is wrong and let 1 ≤ i < r be maximal such that
there exists an irreducible component C of W (ai) with codimension different from i in
W . Then C must be contained in W (ai+1). There exists an irreducible component D
of W (ai+1) with D ⊇ C. From the maximal choice of i we deduce that the codimension
of D in W is i + 1. This implies that the codimension of C in W is at least i + 1.
On the other hand, we have seen that the codimension of C in W is at most i. This
contradiction implies Proposition 3.

By the way we have proved that the variety W (ai)\W (ai+1) is empty or equidimen-
sional and smooth and that it can be defined locally by reduced complete intersections.

Corollary 4 ([16, Theorem 14.4 (c)]). For 1 ≤ i ≤ r and a generic matrix a ∈ C(s−p)×s,
the degeneracy locus W (ai) is empty or equidimensional and Cohen-Macaulay.

Proof. The statement is local. So we may, without loss of generality, restrict our
attention to the affine variety W (ai)∆ and may suppose W (ai)∆ 6= ∅. Observe that
the affine variety W∆ is equidimensional and smooth and therefore Cohen-Macaulay.
Furthermore, W (ai)∆ is a determinantal subvariety of W∆ given by maximal minors
which is by Proposition 3 of pure codimension i in W∆.

Applying now [6, Theorem 2.7 and Proposition 16.19] to this situation we conclude
that W (ai)∆ is Cohen-Macaulay (see also [12,13] and [14, Section 18.5] for the general
context of determinantal varieties). This implies Corollary 4.

Taking into account Corollary 4 we conclude that the (s − i + 1)-minors of T (ai)
induce in the local ring of W at any point of W (ai) a radical ideal. Therefore W (ai)
is as scheme reduced.
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2.2 Normality and rational equivalence of degeneracy loci

Theorem 5. For 1 ≤ i ≤ r and a generic matrix a ∈ C(s−p)×s, the degeneracy locus
W (ai) is empty or equidimensional, Cohen-Macaulay and normal.

Proof. Again, the statement of Theorem 5 being local, we may restrict our attention to
the affine varietyW (ai)∆ which we suppose to be nonempty. By Corollary 4, the variety
W (ai)∆ is equidimensional and Cohen-Macaulay and by Serre’s normality criterion (see,
e.g., [25, Theorem 23.8]) it suffices therefore to prove the following statement.

Claim 6. The singular points of W (ai)∆ form a subvariety of codimension at least
two.

Proof of the claim. We follow the general lines of the argumentation in [5, Section 3].
In case i = r, Proposition 3 implies the claim. Let us therefore suppose that there
exists an index 1 ≤ i < r such that the claim is wrong. Let

υ := det




f1,1 · · · f1,s−i−1
...

...
fp,1 · · · fp,s−i−1

a1,1 · · · a1,s−i−1
...

...
as−p−i−1,1 · · · as−p−i−1,s−i−1




be the (s− i− 1)-minor of the ((s− i− 1)× s)-matrix T (ai+2) =

[
F
ai+2

]
which is given

by the columns numbered 1, . . . , s− i− 1.
For s− p− i ≤ k ≤ s− p− i+ 1 and s− i ≤ l ≤ s let

mk,l := det




f1,1 · · · f1,s−i−1 f1,l
...

...
...

fp,1 · · · fp,s−i−1 fp,l
a1,1 · · · a1,s−i−1 a1,l
...

...
...

as−p−i−1,1 · · · as−p−i−1,s−i−1 as−p−i−1,l

ak,1 · · · ak,s−i−1 ak,l




.

We consider now an arbitrary point x of W (ai)∆·υ. If there exists a pair (k, l) of indices
with s − p − i ≤ k ≤ s − p − i + 1 and s − i ≤ l ≤ s and mk,l(x) 6= 0, then, by the
generic choice of the complex (r × s)-matrix a, the variety W (ai)∆·υ must be smooth
at x (compare to Lemma 2 and the comments following it).

Therefore the singular locus of W (ai)∆·υ is contained in

Z := W∆·υ ∩ {mk,l = 0 | s− p− i ≤ k ≤ s− p− i+ 1, s− i ≤ l ≤ s}.

Again, the generic choice of a implies that Z is empty or has pure codimension 2(i+1)
inW∆·υ. Hence, the singular locus ofW (ai)∆·υ has at least codimension 2(i+1) inW∆·υ

and therefore at least codimension two in W (ai)∆·υ. This argumentation proves that
the singular points of W (ai)∆ \W (ai+2)∆ are contained in a subvariety of W (ai)∆ of
codimension at least two. SinceW (ai+2)∆ is empty or has by Proposition 3 codimension
two in W (ai)∆ the claim follows.
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This ends our proof of Theorem 5. For more details we refer to [5].

Corollary 7. For 1 ≤ i ≤ r, the irreducible components of W (ai) are exactly the
Zariski connected components of W (ai) and hence mutually disjoint.

Proof. Corollary 7 follows immediately from Theorem 5 taking into account [25, Chap-
ter 1, § 9, Remark].

Let a ∈ C(s−p)×s be generic and 1 ≤ i ≤ r. Following the Thom-Porteous formula
we may express the rational equivalence class of W (ai) in terms of the Chern classes
of E (see [16, Theorem 14.4], and, in case that W (ai) is a polar variety, the proof
of [27, Proposition 1.2]). This argumentation yields the following statement.

Theorem 8. Let a, b ∈ C(s−p)×s be generic matrices and let 1 ≤ i ≤ r. Then the
subvarieties W (ai) and W (bi) of W are rationally equivalent.

In the case of generic polar varieties Theorem 8 corresponds to [27, Proposition 1.2].
It is not too hard to prove by elementary techniques the algebraic equivalence of W (ai)
and W (bi). However, the proof of their rational equivalence seems to be out of the
reach of direct arguments.

2.3 Geometric tools

The following two technical statements will be used in Section 4, where we describe
our main algorithm.

For 1 ≤ k1 < · · · < kp ≤ s we denote by ∆k1,...,kp the p-minor of F given by the
columns numbered k1, . . . , kp, and for the columns numbered 1 ≤ l1 < · · · < ls−i ≤ s
that contain k1, . . . , kp, we denote by ml1,...,ls−i

the (s− i)-minor of T (ai+1) given by the
columns numbered l1, . . . , ls−i (in case s = r+ p and i = r we have ml1,...,lp = ∆k1,...,kp).
The following lemma is borrowed from [1, Section 4.3].

Lemma 9. Let 1 ≤ i ≤ r and let C be an irreducible component of W (ai)∆k1,...,kp
.

Then the polynomial ml1,...,ls−i
does not vanish identically on C.

Proof. Fix 1 ≤ i ≤ r. Without loss of generality we may assume k1 := 1, . . . , kp := p
and l1 := 1, . . . , ls−i := s−i and hence, ∆k1,...,kp := ∆ andml1,...,ls−i

:= mi. By induction
on 1 ≤ i ≤ r one deduces from the genericity of the complex matrix a that mi does not
vanish identically on any irreducible component of W∆. Therefore the affine variety
Y := W∆ ∩ {mi = 0} is empty or of pure codimension one in W∆.

Let 1 ≤ l∗1 < · · · < l∗s−i ≤ s be arbitrary and denote the (s − i)-minor ml∗
1
,...,l∗s−i

of
T (ai+1) by m∗

i . Further, let M
∗
s−i+1, . . . ,M

∗
s be the (s− i+1)-minors of T (ai) given by

the columns numbered l∗1, . . . , l
∗
s−i to which we add, one by one, the columns numbered

by the elements of the index set {1, . . . , s} \ {l∗1, . . . , l
∗
s−i}. Again, the genericity of a

implies that the intersection Ym∗

i
∩ {M∗

s−i+1 = 0, . . . ,M∗
s = 0} is empty or of pure

codimension i in Ym∗

i
and hence of pure codimension i+ 1 in W∆·m∗

i
.

Let C be an irreducible component of W (ai)∆. From Proposition 3 we deduce that
C is not contained in W (ai+1)∆. This implies that there exists an (s− i)-minor m∗

i of
T (ai+1) with Cm∗

i
6= ∅. The corresponding (s− i+ 1)-minors M∗

s−i+1, . . . ,M
∗
s of T (ai)

define in W∆·m∗

i
a variety which contains Cm∗

i
as irreducible component. Hence, Cm∗

i
is

a subset of {M∗
s−i+1 = 0, . . . ,M∗

s = 0}. Suppose now that mi vanishes identically on

9



C. Then Ym∗

i
contains Cm∗

i
and is in particular nonempty. Since Cm∗

i
is contained in

Ym∗

i
∩ {M∗

s−i+1 = 0, . . . ,M∗
s = 0} we conclude that the codimension of Cm∗

i
in W∆·m∗

i

is at least i+ 1.
On the other hand, Proposition 3 implies that the codimension of Cm∗

i
in W∆·m∗

i

is i. This contradiction proves that mi cannot vanish identically on C.

Suppose that the quasi-affine variety V is embedded in the affine space An and that
the Zariski closure of V in An can be defined by the polynomials of C[X1, . . . , Xn] of
degree at most d. Furthermore suppose that for each 1 ≤ i ≤ p and 1 ≤ j ≤ s there is
given a polynomial Fi,j ∈ C[X1, . . . , Xn] of degree at most d such that the entry fi,j of
the matrix F is the restriction of Fi,j to V .

Let b1, . . . , br+1 ∈ Cs×s be regular matrices. We call (b1, . . . , br+1) a hitting sequence
for V and F if the following property holds: there exist p-minors ∆1, . . . ,∆r+1 of the
matrices F · b1, . . . , F · br+1 ∈ C[V ]p×s respectively, such that for any point x of W at
least one of the minors ∆t (1 ≤ t ≤ r + 1) does not vanish at x. The following lemma
is reminiscent of [22, Theorem 4.4].

Lemma 10. Let κ := (4pd)2n and let K := {1, . . . , κ}. Then the set (Ks×s)r+1 contains
at least κs2(r+1)(1− 4−n) hitting sequences for V and F .

Proof. For 1 ≤ t ≤ r + 1 and 1 ≤ k, l ≤ s let Bt
k,l be new indeterminates over C and

let Bt := (Bt
k,l)1≤k,l≤s. Furthermore, let ∆t ∈ C[V ][Bt] be the p-minor of F ·Bt given

by the first p columns of F ·Bt.
Consider an arbitrary point x of W . Without loss of generality we may suppose

∆(x) 6= 0. Fix for the moment 1 ≤ t ≤ r + 1 and consider the matrix Ct obtained
from Bt by substituting zero for Bt

k,l for any (k, l) with p + 1 ≤ k ≤ s and 1 ≤ l ≤ p,
namely

C t :=




Bt
1,1 · · · Bt

1,p Bt
1,p+1 . . . Bt

1,s
...

...
...

...
Bt

p,1 · · · Bt
p,p Bt

p,p+1 . . . Bt
p,s

0 · · · 0 Bt
p+1,p+1 . . . Bt

p+1,s
...

...
...

...
0 · · · 0 Bt

s,p+1 . . . Bt
s,s




.

It is easy to see that the left p-minor ∆t(x,Ct) of the matrix F · C t is of the form
∆(x) times a nonzero polynomial of C[Bt]. In particular, ∆t(x,Ct) is a polynomial
of positive degree. We conclude now a fortiori that for any x ∈ W the polynomial
∆t(x,Bt) is of positive degree.

We consider now the incidence variety H ⊂ W × (As×s)r+1 defined by the vanishing
of ∆1, . . . ,∆r+1. Let π be the projection of H into (As×s)r+1. It is not difficult to see
that H is equidimensional of dimension s2(r+1)−1. In order to show this, we proceed
recursively. Let W0 be an arbitrary irreducible component of W . Since the polynomial
∆1(x,B1) has positive degree in the variables B1 for any point x ∈ W , the variety(
W0 × (As×s)r+1

)
∩ {∆1 = 0} must be equidimensional of dimension r+ s2(r+ 1)− 1.

Moreover, each irreducible component of this variety has the form W1× (As×s)r, where
W1 is an irreducible component of

(
W0 × As×s

)
∩ {∆1 = 0}. Applying this argument

recursively for each polynomial ∆t we conclude that ∆1, . . . ,∆r+1 constitute a secant
family for the variety W × (As×s)r+1 (recall that ∆1, . . . ,∆r+1 are polynomials in
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disjoint groups of indeterminates). Hence the incidence variety H is equidimensional
of dimension r + s2(r + 1)− (r + 1) = s2(r + 1)− 1.

In particular, we infer that the Zariski closure of π(H) in (As×s)r+1 has dimension
at most s2(r+1)−1 and therefore it is a proper closed subvariety of (As×s)r+1. Observe
that the zero-dimensional variety π(H)∩ (Ks×s)r+1 contains all sequences of (Ks×s)r+1

which are not hitting for V and F .

Claim 11. #
(
π(H) ∩ (Ks×s)r+1

)
≤ (2pd)2nκs2(r+1)−1.

Proof of the Claim. Observe π−1
(
π(H) ∩ (Ks×s)r+1

)
= H ∩

(
An × (Ks×s)r+1

)
. Let

C1, . . . , Cm be the irreducible components of H ∩
(
An × (Ks×s)r+1

)
. As the image

under π of each component Cj of H∩
(
An × (Ks×s)r+1

)
is a point of π(H) ∩ (Ks×s)r+1

we conclude

#
(
π(H) ∩ (Ks×s)r+1

)
≤ m ≤

m∑

i=1

degCi = deg
(
H ∩

(
An × (Ks×s)r+1

))
(1)

(here Ci denotes the Zariski closure of Ci in An × (As×s)r+1). It is easy to see that the
affine variety An × (Ks×s)r+1 can be defined by the vanishing of s2(r + 1) univariate
polynomials of degree κ. Therefore, by [22, Proposition 2.3] it follows that

deg
(
H ∩

(
An × (Ks×s)r+1

))
≤ degH · κs2(r+1)−1 (2)

holds. On the other hand, the Bézout inequality implies

degH ≤ deg V · (p(d+ 1))r+1 ≤ (2pd)2n. (3)

Combining (1), (2) and (3) we easily deduce the statement of the claim.

Following the previous claim the probability to find a nonhitting sequence for V
and F in (Ks×s)r+1 is at most

(2pd)2nκs2(r+1)−1

κs2(r+1)
=

(2pd)2n

κ
=

(2pd)2n

(4pd)2n
=

1

4n
.

This implies Lemma 10.

2.4 Algebraic characterization of degeneracy loci

Let U2, . . . , Us be new indeterminates. For 1 ≤ i ≤ r let U (i) be the (s× (s− i + 1))-
matrix

U (i) :=




1 0 · · · 0

U2 1
. . .

...

U3 U2
. . . 0

... U3
. . . 1

Ui

...
. . . U2

... Ui U3

Us−1
...

. . .
...

Us Us−1 · · · Ui




,

and let U := U (s−p+1). With these notations the following assertion holds.
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Lemma 12. Let 1 ≤ i ≤ r. Any point x ∈ V belongs to W (ai) if and only if the
conditions

det(F (x) · U) 6= 0 and det(T (ai)(x) · U
(i)) = 0

are satisfied identically.

Proof. Let x be any point of V which satisfies the condition det(F (x) · U) 6= 0. Then
F (x) must be of maximal rank p and hence x belongs to W .

Suppose now that x belongs to W . Let K run over all subsets of {1, . . . , s} of
cardinality p. Denote by F (x)K and UK the p-minors of F (x) and U corresponding
to the columns of F (x) and rows U indexed by the elements of K. The Binet-Cauchy
formula yields

det(F (x) · U) =
∑

K⊆{1,...,s}
#K=p

F (x)KUK .

From the proof of [24, Theorem 2] we deduce that for K ⊆ {1, . . . , s}, #K = p all the
minors UK are linearly independent over C. Since x belongs to W there exists a subset
K of {1, . . . , s} of cardinality p with F (x)K 6= 0. This implies det(F (x) · U) 6= 0.

Using the same kind of arguments one shows that, for x ∈ V , the condition
det(T (ai)(x) · U

(i)) = 0 is equivalent to rkT (ai)(x) < s − i + 1. Lemma 12 follows
now easily.

We define the point finding problem associated with the pair (V, F ) as the problem to
decide whether W (ar) is empty, and if not to find all the points of the zero-dimensional
degeneracy locus W (ar).

The degree of this problem is the maximal degree of the Zariski closures of all
degeneracy loci W (ai), for 1 ≤ i ≤ r, in the ambient space An of V . Observe that this
degree does not depend of the particular generic choice of the ((s − p) × s)-matrix a
(compare to [5, Section 4]).

3 Examples

3.1 Polar varieties

Let X1, . . . , Xn be indeterminates over C, 1 ≤ p ≤ n, and let G1, . . . , Gp be a re-
duced regular sequence of polynomials in C[X1, . . . , Xn]. We denote the Jacobian of
G1, . . . , Gp by

J(G1, . . . , Gp) :=




∂G1

∂X1
· · · ∂G1

∂Xn

...
...

∂Gp

∂X1
· · · ∂Gp

∂Xn


 .

Fix a p-minor ∆ of J(G1, . . . , Gp) and let

V := {G1 = 0, . . . , Gp = 0}∆.

Then V is a smooth equidimensional quasi-affine subvariety of An of dimension r :=
n − p. Let s := r + p = n and let F ∈ C[V ]p×s be the (p × s)-matrix induced by
J(G1, . . . , Gp) on V .

12



For a given generic complex ((s−p)×s)-matrix a and for 1 ≤ i ≤ r the degeneracy
locus W (ai) is the i-th generic (classic) polar variety of V associated with the complex
((s− p− i+ 1)× s)-matrix ai (see details in [5]).

Proposition 3, Corollary 4 and Theorem 5 above say that the i-th generic (classic)
polar variety of V is empty or a normal Cohen-Macaulay subvariety of V of pure
codimension i (compare to [5, Theorem 2]). From [5, Section 3.1] we deduce that such
a generic polar variety is not necessarily smooth. Hence, smoothness of our degeneracy
loci cannot be expected in general. If the coefficients of G1, . . . , Gp and the entries of
the ((n − p) × n)-matrix a are real, and if the real trace of {G1 = 0, . . . , Gp = 0} is
smooth and compact, then there exists a p-minor ∆ of J(G1, . . . , Gp) such that the polar
varieties associated with a contain real points and are therefore nonempty. The generic
polar varieties form then a strictly descending chain (see [3] and [4, Proposition 1]).

3.2 Composition of polynomial maps

Let 1 ≤ p ≤ n and Q1, . . . , Qn, P1, . . . , Pp be polynomials of C[X1, . . . , Xn] such that
P1, . . . , Pp form a reduced regular sequence. Moreover, let

(G1, . . . , Gp) := (P1, . . . , Pp) ◦ (Q1, . . . , Qn)

be the composition map defined for 1 ≤ k ≤ p by

Gk(X1, . . . , Xn) := Pk(Q1(X1, . . . , Xn), . . .Qn(X1, . . . , Xn)).

Suppose that G1, . . . , Gp constitute a reduced regular sequence in C[X1, . . . , Xn]. Fix
a p-minor ∆ of the Jacobian J(G1, . . . , Gp). Then

V := {G1 = 0, . . . , Gp = 0}∆

is a smooth quasi-affine subvariety of An of dimension r := n − p. The morphism
defined by (Q1, . . . , Qn) maps V into

V := {P1 = 0, . . . , Pp = 0}.

We suppose that this morphism of affine varieties is dominant, i.e.,

(Q1, . . . , Qn)(V ) = V.

Observe that for any point x ∈ V the variety V is smooth at y = (Q1(x), . . . , Qn(x)).
Let s := r + p = n and let F be the (p × s)-matrix induced by J(P1, . . . , Pp) ◦

(Q1, . . . , Qn) on V . Let a ∈ C(s−p)×s be a generic complex matrix and denote by W̃ (ai)
the i-th polar variety of V associated with ai, for 1 ≤ i ≤ r. Then we have W = V ,
and the i-th degeneracy locus W (ai) of W , namely

W (ai) =

{
x ∈ V | rk

[
F (x)
ai

]
< s− i+ 1

}
=

=

{
x ∈ V | rk

[
J(P1, . . . , Pp) ◦ (Q1, . . . , Qn)(x)

ai

]
< s− i+ 1

}
,

is the (Q1, . . . , Qn)-preimage of W̃ (ai).
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3.3 Dominant endomorphisms of affine spaces

Let F1, . . . , Fn ∈ C[X1, . . . , Xn], V := An, p := 1, s := p + r = 1 + n, F :=[
F1, . . . , Fn, 1

]
∈ C1×s and let a ∈ Cn×s be a generic complex matrix. Observe

W = V = An and that, for any 1 ≤ i ≤ n, the degeneracy locus W (ai) is a closed affine
subvariety of An. We are now going to analyze the n-th degeneracy locus W (an).

Lemma 13. The degeneracy locus W (an) is non-empty if, and only if, the endomor-
phism Ψ : An −→ An defined by Ψ(x) := (F1(x), . . . , Fn(x)) is dominant. In this case
the cardinality #W (an) of W (an) equals the cardinality of a generic fiber of Ψ.

Proof. Suppose that W (an) is nonempty and let x be a point of W (an). Then there
exists a λ ∈ C such that (F1(x), . . . , Fn(x), 1) = λ(a1,1, . . . , a1,n, a1,n+1). This im-
plies (F1(x), . . . , Fn(x)) =

1
a1,n+1

(a1,1, . . . , a1,n). The right-hand side of this equation is

therefore a generic point of An with a zero-dimensional (F1, . . . , Fn)-fiber. Hence, the
endomorphism Ψ of An is dominant.

Suppose now that Ψ is dominant. Then we may assume without loss of generality
that there exists a point x ∈ An with (F1(x), . . . , Fn(x)) =

1
a1,n+1

(a1,1, . . . , a1,n). This

implies the equation (F1(x), . . . , Fn(x), 1) = λ(a1,1, . . . , a1,n, a1,n+1) with λ = 1
an+1

.

Hence x belongs to W (an) and thus W (an) is not empty. Moreover, #W (an) equals
the cardinality of the (F1, . . . , Fn)-fiber of

1
a1,n+1

(a1,1, . . . , a1,n).

Suppose now that the morphism Ψ is dominant. Then the degeneracy loci of (An, F )
form a descending chain

An ) W (a1) ) · · · ) W (an) 6= ∅,

where, for 1 ≤ i < n, the (i+1)-th degeneracy locusW (ai+1) is a closed affine subvariety
of W (ai) of pure codimension one in W (ai).

3.4 Homotopy

Let F1, . . . , Fn and G1, . . . , Gn be reduced regular sequences of C[X1, . . . , Xn]. We
consider the algebraic family

{λF1 + µG1 = 0, . . . , λFn + µGn = 0}, (λ, µ) ∈ C2 \ {(0, 0)}

as a homotopy between the zero-dimensional varieties {F1 = 0, . . . , Fn = 0} and {G1 =
0, . . . , Gn = 0}.

We are going to analyze this homotopy. For this purpose let V := An, p := 2,
s := n+ p = n + 2 and

F :=

[
F1 · · · Fn 1 0
G1 · · · Gn 0 1

]
.

Furthermore, let a ∈ C(s−p)×s be generically chosen. Then we have W = V = An and
for any 1 ≤ i ≤ n the degeneracy locus W (ai) is a closed affine subvariety of An. From
the Exchange Lemma of [2] we deduce

#W (an) = #{a1,n+1F1 + a1,n+2G1 = a1,1, . . . , a1,n+1Fn + a1,n+2Gn = a1,n}.

Thus W (an) may be interpreted as a deformation of

{a1,n+1F1 + a1,n+2G1 = 0, . . . , a1,n+1Fn + a1,n+2Gn = 0}.
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4 Algorithms

We are going to present two procedures, namely our main algorithm that computes
an algebraic description of the set W (ar), and a procedure to check membership to a
degeneracy locus.

4.1 Notations

Let n, d, p, r, q, s, L be integers with r = n− q and s ≥ p+ r and let G1, . . . , Gq, H, Fk,l,
for 1 ≤ k ≤ p and 1 ≤ l ≤ s, be polynomials of Q[X1, . . . , Xn] given as outputs of
an essentially division-free arithmetic circuit β of size L. This means that β contains
divisions only by elements of Q (for details about arithmetic circuits we refer to [7]).

Let d be an upper bound for the degrees of G1, . . . , Gq and Fk,l, for 1 ≤ k ≤ p and
1 ≤ l ≤ s. We suppose that G1, . . . , Gq and H satisfy the following two conditions:

• G1, . . . , Gq form a reduced regular sequence outside of {H = 0},

• V := {G1 = 0, . . . , Gq = 0}H is a smooth quasi-affine variety.

For 1 ≤ k ≤ p and 1 ≤ l ≤ s, let fk,l ∈ C[V ] be the restriction of Fk,l to V and let
F := [fk,l]1≤k≤p,1≤l≤s. Let δ∗ be the degree of the point finding problem associated
with the pair (V, F ), that previously has been introduced as the maximal degree of the
Zariski closures of all degeneracy loci W (ai), 1 ≤ i ≤ r, in the ambient space An of V .
We write

δG := max{deg {G1 = 0, . . . , Gj = 0}H | 1 ≤ j ≤ q},

and δ := max{δG, δ
∗}. We call δ the system degree of G1, . . . , Gq = 0, H 6= 0 and

[Fk,l]1≤k≤p,1≤l≤s.
Fix a generic matrix a ∈ Q(s−p)×s. We are going to design a uniform bounded

error probabilistic procedure which takes β as input and decides whether W (ar) is
empty and, if not, computes a description of W (ar) in terms of a primitive ele-
ment. More precisely, for a new indeterminate T , the procedure outputs the co-
efficients of univariate polynomials P,Q1, . . . , Qn ∈ Q[T ] such that P is separable,
degQ1 < degP, . . . , degQn < degP and such that

W (ar) = {(Q1(t), . . . , Qn(t)) | t ∈ C : P (t) = 0}

holds. Following [19, Section 3.2], such a description is called a geometric resolution of
W (ar).

In the sequel we refer freely to terminology, mathematical results and subroutines
of [19] where the first streamlined version of the classical Kronecker algorithm was
described. In order to simplify the exposition we shall refrain from the presentation of
details which only ensure the appropriate genericity properties for the procedure. The
following account requires some familiarity with technical aspects of the classical Kro-
necker algorithm. A standalone presentation of the algorithm from the mathematical
point of view is contained in [11].
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4.2 The main algorithm

As first task, we compute a description of the variety V . For this purpose, we use
the main tools of [19, Algorithm 12] in the following way. As input we take the
representation of G1, . . . , Gq and H by the circuit β. Although the system G1 =
0, . . . , Gq = 0 contains n ≥ q variables, we may execute just the q first steps of the
main loop of [19, Algorithm 12], to obtain a lifting fiber for V [19, Definition 4]. This
lifting fiber consists of:

• the lifting system G1, . . . , Gq,

• an invertible n × n square matrix M with rational entries such that the new
coordinates Y := M−1X are in Noether position with respect to V ,

• a rational lifting point z = (z1, . . . , zr) for V and the lifting system G1, . . . , Gq,

• rational coefficients λr+1, . . . , λn defining a primitive element u := λr+1Yr+1 +
· · ·+ λnYn of V (z) := V ∩ {Y1 − z1 = 0, . . . , Yr − zr = 0},

• a polynomial Q ∈ Q[T ] of minimal degree such that Q(u) vanishes on V (z),

• n− r polynomials vr+1, . . . , vn of Q[T ], of degree strictly smaller than degQ such
that the equations Y1 − z1 = 0, . . . , Yr − zr = 0, Yr+1 − vr+1(T ) = 0, . . . , Yn −
vn(T ) = 0, Q(T ) = 0 define a parameterization of V (z) by the zeros of Q.

The computation of these items depends on the choice of at most O(n2) parameters in
Q. If the parameters are chosen correctly, the algorithm returns these items. Otherwise
the algorithm fails. The incorrect choices of these parameters are contained in a hy-
persurface whose degree is a priori bounded (see [19]). Therefore the whole procedure
yields a bounded error probabilistic algorithm (compare [30, 35]). The error can be
bounded uniformly with respect to the input parameters, whatever they are (dimen-
sion of the ambient space n, degree and coefficients of the input equations, etc.).
We summarize the outcome in the following statement.

Lemma 14. Let notations and assumptions be as above. There exists a uniform
bounded error probabilistic algorithm over Q which computes a lifting fiber of V in
time L(nd)O(1)δ2G.

Proof. Apply [19, Theorem 1] taking care to perform products of univariate polynomials
in quasi-linear time. The Bézout inequality implies δG = O(dn). The complexity bound
of Lemma 14 follows now from δ2G logO(1)(δG) = (nd)O(1)δ2G.

By Lemma 10 we may choose with high probability of success a hitting sequence
(b1, . . . , br+1) of regular integer (s × s)-matrices and p-minors ∆1, . . . ,∆r+1 of the
matrices F · b1, . . . , F · br+1 such that W = V∆1

∪ · · · ∪ V∆r+1
holds.

Lemma 15. Let notations and assumptions be as above and let be given a lifting fiber of
V . There exists a uniform bounded error probabilistic algorithm over Q which computes
lifting fibers for V∆1

, . . . , V∆r+1
in time L(pnd)O(1)δ2G.
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Proof. Let us fix 1 ≤ j ≤ r+1. The given lifting point of V may be changed by means
of [19, Algorithm 5] in time L(nd)O(1)δ2G. We call [19, Algorithm 10] with input the
lifting fiber of V and the polynomial representing ∆j (observe that this polynomial can
be evaluated using L+O(p4) arithmetic operations). This yields with high probability
of success a lifting fiber of V∆j

in time L(pnd)O(1)δG (compare [19, Lemmas 14 and
15]).

If the varieties V∆1
, . . . , V∆r+1

are empty, then W (ar) is empty and the algorithm
stops. We suppose that this is not the case. We are now going to describe how
we decide whether W (ar)∆j

is empty, and, if not, how we compute a lifting fiber
of W (ar)∆j

. In order to simplify notations, we make without loss of generality the
following assumptions. Let j := 1, b1 be the identity matrix, ∆1 := ∆ and V∆ = W∆ 6=
∅.

Lemma 16. Let notations and assumptions be as before. For a given lifting fiber of
V∆ = W∆ there exists a uniform bounded error probabilistic algorithm over Q which
computes a lifting fiber of W (a1)∆·m1

in time L(snd)O(1)δ2.

Proof. Observe that W (a1) = V∆ ∩ {det(T (a1)) = 0} holds. By Proposition 3 the
polynomial representing det(T (a1)) does not vanish identically on any irreducible com-
ponent of V∆. Thus we may use [19, Algorithms 2, 4, 5, 6 and 11] in order to compute
a lifting fiber of W (a1)∆·m1

. Since the polynomials representing ∆ and m1 have de-
grees bounded by pd and can be evaluated in time L + O(s4), Lemma 16 follows
from [19, Lemmas 6, 14, and 16].

From Lemma 9 we deduce that emptiness of W (a1)∆·m1
implies that of W (a1)∆ and

hence that of W (ar)∆.
Let 1 ≤ i < r and assume that we have computed a lifting fiber of W (ai)∆·mi

.

Lemma 17. Let notations and assumptions be as before. There exists a uniform
bounded error probabilistic algorithm over Q which decides whether W (ai+1)∆ is empty
and, if not, computes a lifting fiber of W (ai+1)∆·mi+1

in time L(snd)O(1)δ2.

Proof. In Section 2.1 we have seen that the equations Ms−i+1 = 0, . . . ,Ms = 0 intersect
transversally at any of their common zeros belonging to Vmi

. Therefore G1, . . . , Gq and
the polynomials representing Ms−i+1, . . . ,Ms form a reduced regular sequence outside
of {∆ ·mi = 0}. From Lemma 9 we deduce that mi does not vanish identically on any
irreducible component of W (ai)∆. Hence the given lifting fiber of W (ai)∆·mi

is also a
lifting fiber of W (ai)∆, and G1, . . . , Gq,Ms−i+1, . . . ,Ms can be used as a lifting system

of the lifting fiber of W (ai)∆·mi
.

Applying successively [19, Algorithms 4, 5, and 6] we produce a Kronecker parame-
terization of a suitable curve C inW (ai)∆·mi

on which ∆·mi does not vanish identically.
Then we apply [19, Algorithm 2] to C, mi and H · ∆ · mi+1 in order to obtain a

lifting fiber of (C ∩ {mi = 0})∆·mi+1
.

Let Ns−i, . . . , Ns be the polynomials representing the (s−i)-minors of T (ai+1), given
by the columns numbered 1, . . . , s − i − 1 to which we add, one by one, the columns
s − i, . . . , s. In a way very similar to [19, Algorithm 10] we can remove the points of
the given lifting fiber (C ∩{mi = 0})∆·mi+1

which are not zeros of Ns−i, . . . , Ns in order

to obtain a lifting fiber of W (ai+1)∆·mi+1
. The time cost of the whole procedure is a

consequence of [19, Lemmas 3, 6, 14, and 16]
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Applying Lemma 16 and Lemma 17 iteratively we obtain a lifting fiber of the zero-
dimensional variety W (ar)∆·mr

and hence, by Lemma 9, of W (ar)∆. Combining all
previously described procedures we obtain the announced main algorithm.

Theorem 18. Let n, d, p, r, q, s, L, δ ∈ N with r = n− q and s ≥ p+ r be arbitrary and
let G1, . . . , Gq, H and Fk,l, for 1 ≤ k ≤ p, 1 ≤ l ≤ s, be polynomials of Q[X1, . . . , Xn]
of degree at most d. Suppose that G1, . . . , Gq form a reduced regular sequence outside
of {H = 0}, the variety V := {G1 = 0, . . . , Gq = 0}H is smooth, and the system degree
of G1 = 0, . . . , Gq = 0, H 6= 0 and [Fk,l]1≤k≤p,1≤l≤s is at most δ.

Furthermore, suppose that these polynomials are given as outputs of an essentially
division-free arithmetic circuit β in Q[X1, . . . , Xn] of size at most L. Let a ∈ Q(s−p)×s

be a generic matrix. Then there exists a uniform bounded error probabilistic algorithm
over Q which decides from the input β in time L(snd)O(1)δ2 = (s(nd)n)O(1) whether
W (ar) is empty and, if this is not the case, computes a geometric resolution of W (ar)
(here arithmetic operations and comparisons in Q are taken into account at unit costs.)

Proof. This result is essentially a consequence of Lemmas 14, 15, 16, 17. In fact, first
we obtain for all 1 ≤ j ≤ r + 1 lifting fibers of W (ar)∆j

. Then we change back the
variables of the lifting fibers and find a primitive element common to all the fibers by
means of [19, Algorithm 6] at a total cost of O((snd)O(1)δ2).

By means of classical greatest common divisor computations, we remove the points
of W (ar)∆2

that belong already to W (ar)∆1
. Then we remove the points of W (ar)∆3

that belong already to W (ar)∆1
and W (ar)∆2

. Recursively we remove the points of
W (ar)∆j

that belong already to W (ar)∆k
for k < j. The total cost of these operations

remains bounded by O((nd)O(1)δ).

Remark 19. For any n, d, p, r, q, s, L, δ ∈ N with r = n − q and s ≥ p + r the prob-
abilistic algorithm of Theorem 18 may be realized by an algebraic computation tree of
depth L(snd)O(1)δ2 = (s(nd)n)O(1) that depends on parameters which may be chosen
randomly. The proof of this statement requires a suitable refinement of Lemma 10
above in the spirit of [22, Theorem 4.4], which exceeds the scope of this paper.

4.3 Checking membership to a degeneracy locus

Finally, we are going to consider the computational task to decide for any x ∈ An and
any 1 ≤ i ≤ r whether x belongs to W (ai).

Proposition 20. Let notations and assumptions be as before, let 1 ≤ i ≤ r, and let
Q[α] be an algebraic extension of Q of degree e, given by the minimal polynomial of
α. Then, there exists a bounded error probabilistic algorithm B which, for any point
x ∈ Q[α]n, decides in sequential time O(e(L+ sO(1)) logO(1) e) = (esdn)O(1) whether x
belongs to W (ai).

For any n, d, p, r, q, s, L ∈ N with r = n−q and s ≥ p+ r the probabilistic algorithm
B may be realized by an essentially division-free arithmetic circuit of size O(e(L+sO(1)+
n)2 logO(1) e) = (esdn)O(1) that depends on parameters which may be chosen randomly.

Proof. Checking membership of x to V takes O(L) operations in Q[α]. Each field
operation in Q[α] can be performed by e logO(1) e operations in Q. Lemma 12 justifies
now the following probabilistic test whether x ∈ V belongs to W (ai). With a high
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probability of success we can choose values ui for the variables Ui, so that if we write
u(i) (resp. u) for the corresponding specialization of U (i) (resp. of U), the test becomes
the verification of the conditions

det(F (x) · u) 6= 0 and det(T (ai)(x) · u
(i)) = 0. (4)

This leads to an additional cost of e(L+ sO(1)) logO(1) e.
The second part of Proposition 20 is a direct consequence of [22, Theorem 4.4].

4.4 Example

We are going to exemplify how our main algorithm runs on the following example. Let
n := 3, q := 1, G1 := X2

1 + X2
2 + X2

3 , H := X1X2X3, p := 1, s := 3, F1,1 := X1,

F1,2 := X1X2 +X2
2 , F1,3 := X1X3 and a :=

[
1 2 3
2 1 3

]
. The variety V = {G1 = 0}H is

smooth of dimension r := 2. The algorithm starts representing a lifting fiber for V in
the following way:

• G1 as lifting system,

• Y1 := X1 −X2, Y2 := X2, Y3 := X3 as new coordinates,

• (−1,−1) as lifting point,

• u := Y3 as primitive element,

• Q := T 2 + 5 as the minimal polynomial of u,

• v3 := T as parameterization.

For the sake of simplicity, all the random choices made by the Kronecker routines are
kept simple throughout this example. We took care to verify that they are generic
enough to ensure the correctness of the computations.

As hitting sequence b1, b2, and b3, we choose the identity matrix and take ∆1 = X1,
∆2 = X1X2 +X2

2 , ∆3 = X1X3. Since V∆1
= V∆3

= V holds, it is sufficient to carry
out the computations for V∆, where ∆ := ∆1. Hence our lifting fiber is also a lifting
fiber for V∆.

The lifting curve V∆ ∩ {Y1 = −1} is described by the following equations: T 2 +
2Y 2

2 − 2Y2 + 1 = 0, Y3 = T , Y1 = 1. The intersection of this curve with det(T (a1)) =
3X1 + 3X1X2 + 3X2

2 − 3X1X3 = 3(Y1 + Y2)(1 + Y2 − Y3) + 3Y 2
2 leads to the following

lifting fiber for W (a1):

• G1, det(T (a1)) as lifting system,

• Y1 := X1 −X2, Y2 := X2, Y3 := X3 as new coordinates,

• (−1) as lifting point,

• u := Y2 as primitive element,

• Q := 6T 4 − 6T 3 + 3T 2 − 4T + 2 as the minimal polynomial,

• v2 := T , v3 := −6T 3 − T + 3 as parameterization.
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We verify that none of the points of this fiber annihilates H , ∆ or m1 := 2X1−X1X2−
X2

2 . Hence this lifting fiber is also a lifting fiber for W (a1)∆·m1
.

The lifting curve for W (a1)∆·m1
is described by the equations: P (T ) := 6T 4 +

(10Y1 + 4)T 3 + (8Y 2
1 + 6Y1 + 1)T 2 + (4Y 3

1 + 2Y 2
1 + 2Y1)T + Y 4

1 + Y 2
1 = 0, Y2 = T ,

P ′(T )Y3 = (−8Y1 + 4)T 3 + (−14Y 2
1 + 10Y1)T

2 + (−10Y 3
1 + 8Y 2

1 )T − 2Y 4
1 + 2Y 3

1 . The
intersection of this curve with the hypersurface {m1 = 0} yields the following set of
points:

{Y 5
1 + 4Y 4

1 + 31Y 3
1 + 72Y 2

1 + 198Y1 = 0,

Y2 =
−1

198
Y 4
1 +

7

198
Y 3
1 −

1

22
Y 2
1 +

3

22
Y1,

Y3 =
−1

66
Y 4
1 −

2

33
Y 3
1 −

31

66
Y 2
1 −

12

11
Y1}.

We observe that (0, 0, 0) is the only point of this set that annihilates ∆ or H . Therefore
the lifting fiber for W (a2)∆·m2

we find is represented by:

• G1, det(T (a1)), m1 as lifting system,

• Y1 := X1 −X2, Y2 := X2, Y3 := X3 as new coordinates,

• u := Y1 as primitive element,

• Q := T 4 + 4T 3 + 31T 2 + 72T + 198 as the minimal polynomial,

• v1 := T , v2 :=
1
18
T 3 + 1

9
T 2 + 1

2
T + 1, v3 := 3 as parameterization.

We have implemented our main algorithm within the C++ library geomsolvex of
Mathemagix [23]. In fact this implementation uses the strategy described in [19,
Section 7.3]: we first choose a suitable prime number p that fits a machine word,
compute the degeneracy locus modulo p and then lift the geometric resolution in order
to recover the solutions over the rational numbers.

5 Applications

In this section we complete the examples of Subsections 3.1 and 3.4. The two other
examples of Section 3 may be adapted in a straightforward way to the context of
Theorem 18. We refrain from presenting details.

5.1 Polar varieties

We consider first a somewhat modified version of the example of Subsection 3.1. Let
n ∈ N, 1 ≤ p ≤ n and r := n − p and let G1, . . . , Gp be a reduced regular sequence
of polynomials of Q[X1, . . . , Xn]. We suppose that these polynomials are given by an
essentially division-free arithmetic circuit in Q[X1, . . . , Xn] of size L. From Lemma 10
we deduce that we may choose a hitting sequence (b1, . . . , br+1) of regular matrices of
Zn×n for {G1 = 0, . . . , Gp = 0} and the restriction of the Jacobian J(G1, . . . , Gp) to this
variety. This yields p-minors∆1, . . . ,∆r+1 of J(G1, . . . , Gp)·b1, . . . , J(G1, . . . , Gp)·br+1

such that ⋃

1≤j≤r+1

{G1 = 0, . . . , Gp = 0}∆j
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is the regular locus of {G1 = 0, . . . , Gp = 0}.
Let H :=

∑
1≤j≤r+1∆

2
j and assume that

Γ := {G1 = 0, . . . , Gp = 0} ∩ Rn

is nonempty, smooth and compact. Let V := {G1 = 0, . . . , Gp = 0}H and let F be the
restriction of J(G1, . . . , Gp) to V . Then V is nonempty, equidimensional of dimension
r, smooth and contains Γ. From [3, Proposition 1] or [4, Proposition 1], we conclude
that, for a ∈ Qr×n generic, W (ar) contains for each connected component of Γ a real
point. Let δ be the system degree of G1 = 0, . . . , Gp = 0, H 6= 0 and J(G1, . . . , Gp).
Then Theorem 18 implies that we can compute a sample point for any connected
component of Γ in time L(nd)O(1)δ2 = (nd)O(n). This result improves the complexity
bound of [3, Theorem 11] and [4, Theorem 13] by a factor of

(
n

p

)
.

5.2 Dominant endomorphisms of affine spaces

We treat now the example of Subsection 3.3 in the spirit of Theorem 18. Let F1, . . . , Fn

be in Q[X1, . . . , Xn] such that (F1, . . . , Fn) defines a bi-rational endomorphism of An.
Suppose that F1, . . . , Fn are given by an essentially division-free arithmetic circuit in
Q[X1, . . . , Xn] of size L. Let α = (α1, . . . , αn) ∈ Qn be generic. Then Theorem 18 can
be used to compute a geometric solution of the polynomial equation system F1 −α1 =
0, . . . , Fn − αn = 0 in time L(nd)O(1)δ2 = (nd)O(n), where δ is the degree of the point
finding problem associated with (An, [F1, . . . , Fn, 1]). The main outcome of this result
is that we may consider this degree as a natural invariant of the endomorphism of An

defined by (F1, . . . , Fn).

5.3 Timings

In this final subsection we report on timings obtained with our software geomsolvex.
For n := 3, we consider the following infinite family of examples, which are parametrized
by an integer N ≥ 1. For any 1 ≤ j ≤ N , let Sj := (X1 − 4j)2 +X2

2 +X2
3 − 1, p := 1,

and G1 := S1 · · ·SN − ǫ, where ǫ := 1/1000000. It is clear that Γ := {G1 = 0} ∩ Rn is
compact. On the other hand, the gradient of G1 is given by

∂G1

∂X1
= 2(G1 + ǫ)

(
X1 − 4

S1
+

X1 − 8

S2
+ · · ·+

X1 − 4N

SN

)
,

∂G1

∂X2
= 2X2(G1 + ǫ)

(
1

S1
+

1

S2
+ · · ·+

1

SN

)
,

∂G1

∂X3

= 2X3(G1 + ǫ)

(
1

S1

+
1

S2

+ · · ·+
1

SN

)
.

We observe that 1
S1

+ 1
S2

+ · · · + 1
SN

does not vanish on Γ. In fact the terms of this
sum are necessarily positive on Γ since the open balls defined by Sj < 0, 1 ≤ j ≤ N ,
are all disjoint and S1S2 · · ·SN is positive on Γ. Hence Γ is smooth at any point
(x1, x2, x3) ∈ Γ with x2 6= 0 or x3 6= 0. Thus on singular points of Γ the discriminant
of the univariate polynomial G1(X1, 0, 0) vanishes. Taking this in mind we verified by
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N 3 4 5 6 7 8 9
Mathemagix 30 79 174 383 729 1380 2250
RAGLib 1.2 3.1 19 126 748 3202 13021

Table 1: Timings for polar varieties, in seconds

a simple computation that Γ has no singular point for the values of N considered in
our timings.

In order to make dependent the equation G1 = 0 from generic coordinates, we
replaced the variables X1, X2 and X3 by 3X1 + 5X2 + 7X3, X1 − X2 + X3, and

−X1 + 2X2 + 5X3 respectively. Finally for a we took

(
1 17 7
11 23 13

)
. We used our

software geomsolvex described in Section 5.1 and computed at least one point per
connected component of Γ. Timings are reported in Table 1. We used the SVN revi-
sion number 8738 of Mathemagix and compared with version 3.21 of the RAGLib

library developed in Maple (TM) by M. Safey El Din [28], which in its turn relies on
the FGb version 1.58 of J.-C. Faugère [15]. Our platform uses one core of an Intel(R)
Xeon(R) CPU X5650 at 2.67 GHz and disposes of 48 GB. We observed that RAGLib

is much faster in small input sizes. Nevertheless its cost increases faster than the one
of our probabilistic algorithm.

Acknowledgment. The authors wish to thank Antonio Campillo (Valladolid, Spain)
for stimulating conversations on the subject of this paper.
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