
Computing Numerical Invariants using Abstract Interpretation based Static Analysis

Khalil Ghorbal
Laboratory for the Modelling and Analysis of Interacting Systems

khalil.ghorbal@cea.fr

Doctoriales ParisTech 2009
20 - 26 Sep, 2009
Fréjus, FRANCE

. Software Validation and Verification

Software Testing Computer-assisted Proof Model Checking Abstract Interpretation

[Myers 1979] [Clarke, Emerson, and Sifakis 1981] [Cousot and Cousot 1976]

•Widely used (Verification and Qualification)

• derived from the specification, model-based
testing, . . .

• code coverage metrics

• Still Program testing can be used to show
the presence of bugs, but never to show their
absence! (E. Dijkstra (1972))

• Property of interest is seen as a Theorem (logi-
cally valid) using Predicates calculus

• Powerful, Complete formal proof of the 4 colors
theorem (1976)

• Tools: Coq, SMV . . .

• Issue: Decidability, termination, hardly auto-
mated and not scalable

•Derive a formal model from the real program
(temporal logic automaton . . . )

• Prove the needed properties on the model

• Tools: BLAST, SPIN, . . .

• Issue : State explosion problem

• Semantic formalized as a fix-point of a mono-
tonic operator in a partially ordered structure,

• Fully automated,

• Industrial tools exists : Polyspace Verifier
(MathWorks), Astrée (ENS), Fluctuat (CEA),
aIT (ABSINT), . . .

• Issue: find the suitable abstract domain for the
properties of interest.

. Concrete Semantics

#Second order Filter

begin

En = [-1,1]; Ê

Sn1 = 0; Ë

Sn2 = 0; Ì

i = 0; Í

while (i<100) Î do

Sn = h(En, Sn1, Sn2); Ï

Sn2 = Sn1; Ð

Sn1 = Sn; Ñ

En = [-1,1]; Ò

i = i+1; Í

done;

end

begin

Ê

Ë

Ì

Í

end Î

Ï
Ð

Ñ

Ò

Control Flow Graph

En← [−1, 1]Sn−1← 0Sn−2← 0i← 0i ≥ 100 i < 100Sn← h(En, Sn−1, Sn−2)
Sn−2← Sn−1

Sn−1← SnEn← [−1, 1]
i← i + 1

Equations System

X0 = JV → IK, where , I = {N,Q,R}
X1 = JEn← [−1, 1]K(X0)
X2 = JSn−1← 0K(X1)
X3 = JSn−2← 0K(X2)
X4 = Ji← 0K(X3) ∪ Ji← i + 1K(X9)
X5 = Ji < 100K(X4)
X6 = JSn← h(En, Sn−1, Sn−2)K(X5)
X7 = JSn−2← Sn−1K(X6)
X8 = JSn−1← SnK(X7)
X9 = JEn← [−1, 1]K(X8)

•D = (℘(V → I),⊆,∪,∩, ∅, (V → I)) is a
complete lattice

• each operator Xl 7→ F(X ) is monotonic

ú Tarski Theorem ensures the existence of a
least fixpoint for F
• If the transfer functions (J.K) are continuous

ú Kleene Iteration Technique reaches the
least fixpoint

Issues :

j ℘(V → I) is non representable in finite memory,

j J.K are non computable,

j Iterations over the lattice may be transfinite.

. Abstract Interpretation Based Static Analysis

Abstract the concrete semantics to get a
computable over approximation

X5 ⊆ γ ◦ α(X5) X ]5

X6 ⊆ γ(X ]
6) X ]6

αγJSn← h(. . . )K JSn← h(. . . )K]
γ

Abstract Domain

x

y

Non Relational Domain

x ∈ Ix, y ∈ Iy

x

y

Relational Domain

λx + µy ≤ c

. Affine Forms Abstract Domain [Goubault and Putot: 06, 08] . Contributions

[J. L. D. Comba and J. Stolfi: 93] :

x̂ = αx0 +

n∑
i=1

αxi εi

û shared noise symbols express implicit dependencies between
variables

example :(
x̂ = 10 −4ε1 +2ε3 +3ε4
ŷ = 5 −2ε1 +1ε2 −1ε4

)

x̂

ŷ

1 10 19

1

5

9

Ù ATV (Astrium ST) Case Study [DASIA 09]

Ù Use of optimization techniques (SemiDefinite
Programming) in abstract transfer functions,

Ù Development of an abstract domain, Taylor1+ (Licence
GPL), based on affine forms, as a new domain of
APRON Library (http://apron.cri.ensmp.fr)
[CAV 09]

i

Sn

Ongoing work: Design of an abstract domain with sup-
port of constraints over noise symbols in order to improve
the abstraction of the test transfer functions.


