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Abstract Interpretation : Intuitions
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û What about the missed bugs ? are they severe ?
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Abstract Interpretation : Intuitions
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û Over-approximation may lead to false alarms.
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Abstract Interpretation : Intuitions

i

S

û Accurate over-approximation gives a safety proof.
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Famous bugs

Examples

1982, The Vancouver stock exchange: after 22 months the index had
fallen to 524, 811 instead of 1098, 811

1985, Therac 25 (radiation therapy machine) : 5 patients killed
(overdoses of radiation)

1991, The Patriot Missile: 28 soldiers killed

1996, Ariane 5: more than 1 billion $ gone in 40 seconds

E. Dijkstra (1972)

Program testing can be used to show the presence of bugs, but never to
show their absence!
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ESA Project - Automated Transfer Vehicle (ATV)

Jules Verne (Key dates)
9th Mars 2008 launching
3th April 2008 docking to ISS
11th September 2008, undocking
29th September 2008, end of mission

3 Publication in DAta Systems In Aerospace (DASIA) 2009

All existing abstract domains fail to handle precisely normalized
quaternions
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Detailed example

begin

x = [0,10]; Ê

y = x*x - x Ë

if (y >= 0) Ì then

y = x / 10; Í

else Î

y = x*x + 2; Ï

done; Ð

end

Ê

Ë

y = x2 − x

Ì

y ≥ 0

Í

y = x
10

Î

y < 0

Ï

y = x2 + 2

Ð

∪
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Forward Propagation

x=[0,10]

Ë

Ì

Í

Î

Ï

Ð

∪

y=x2−x

y≥0 y<0

y= x
10 y=x2+2
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Forward Propagation
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Forward Propagation
x=[0,10]

x=[0,10]
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Outlines

1 Static Analysis-based Abstract Interpretation

2 Affine Sets Abstract Domain

3 Constrained Affine Sets Abstract Domain

4 Experiments, Taylor1+

5 Appendix
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Formal Verification Approaches

Formal Verification Approaches

Hoare 1969: wrap the code of interest with preconditions and
postconditions, then prove that postconditions are met

Clarke, Emerson et Sifakis 1974: model checking

Cousot(s) 1977: Abstract Interpretation

Properties of Interest

run time errors: overflow, division by zero, square root of negatives,
etc.

robustness and stability of algorithms: linear and non linear recursive
schemes, filters, etc.
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Abstract Interpretation, an overview

Program semantics formalized as a fixpoint of a monotonic operator
in a complete partially ordered set (exemplified later),

Fully automated,

Industrial tools exists : Polyspace Verifier (MathWorks), Astrée
(ENS/ABSINT), Fluctuat (CEA), aIT (ABSINT), F-Soft (Nec Labs)
. . .

Challenge

find the suitable abstract domain for the properties of interest.
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Equations System (collecting semantic)

Ê

Ë

y = x2 − x

Ì

y ≥ 0

Í

y = x
10

Î

y < 0

Ï

y = x2 + 2

Ð

∪



X1 = JV → IK[
X2 = Jy ← x2 − xK[(X1)

X3 = Jy ≥ 0K[(X2)

X4 = Jy ← x
10K[(X3)

X5 = Jy < 0K[(X2)

X6 = Jy ← x2 + 2K[(X5)
X7 = X6 ∪ X4
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Solving the equations system

D = (℘(V → I),⊆,∪,∩, ∅, (V → I)) is a complete lattice

each operator X 7→ F(X ) is monotonic

ú Tarski Theorem ensures the existence of a least fixpoint for F
ú Kleene Iteration Technique reaches the least fixpoint

Issues

j ℘(V → I) is non representable in finite memory,

j J.K[ are non computable,

j Iterations over the lattice may be transfinite.
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Concretisation-Based Abstract Interpretation

X1 ⊆ γ(X ]1) X ]1γ

X2

Jy ← x2 − xK[

⊆ γ(X ]2) X ]2γ

Jy ← x2 − xK]

α

abstract domainconcrete domain

over approximation
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Building an abstract domain

lattice-like structure:
I abstract objects
I order relation (preorder over abstract objects)
I monotonic concretisation function (γ)

Transfer Functions
I evaluation of arithmetic expressions (Jx2 − xK])
I assignment (X2 = Jy ← x2 − xK](X1))
I upper bound (join) (X7 = X6 ∪ X4)
I over-approximation of lower bounds (meet) (X3 = Jy ≥ 0K]X2 =

“X3 = X2 ∩ Jy ≥ 0K]>]”)
Convergence acceleration (widening)
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Outlines

1 Static Analysis-based Abstract Interpretation

2 Affine Sets Abstract Domain

3 Constrained Affine Sets Abstract Domain

4 Experiments, Taylor1+

5 Appendix
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Affine Sets
introduction

X̂ =


x̂1 = αx1

0 +
∑n

i=1 α
x1
i εi

x̂2 = αx2
0 +

∑n
i=1 α

x2
i εi

x̂3 = . . .
, (ε1, . . . , εn) ∈ [−1, 1]n

X̂ =

αx
0 · · · αx

n
...

...
α
xp
0 · · · α

xp
n


︸ ︷︷ ︸

CX

×


ε0

ε1
...
εn


︸ ︷︷ ︸
ε∗

, ε ∈ 1× [−1, 1]n
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Geometric Concretisation: Zonotope
Minkowski sum of a set of segments

x̂ = 10− 4ε1 + 2ε3 + 3ε4

ŷ = 5 − 2ε1 + 1ε2 − 1ε4
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ŷ = 5 − 2ε1 + 1ε2 − 1ε4

x ∈ [1, 19]
y ∈ [1, 9]

x

y

1 10 19

1

5

9

K. Ghorbal (CMU) NASA Ames 17 Invited Talk 17 / 74



Geometric Concretisation: Zonotope
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Perturbed Affine Sets

The Affine Sets are extended with Perturbation terms to handle the non
linear operations: multiplication, join, etc.

X̂ =


x̂ = αx

0 +
∑n

i=1 α
x
i εi +

∑m
j=1 β

x
j η

X
j

ŷ = αy
0 +

∑n
i=1 α

y
i εi +

∑m
j=1 β

y
j η

X
j

ẑ = . . .

X̂ = CX ε+ PXηX ,
ε = (ε0, . . . , εn) ∈ 1× [−1, 1]n

ηX = (ηX1 , . . . , η
X
m) ∈ [−1, 1]m

p numerical variables

n input noise symbols

m perturbation noise symbols
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Functional Order Relation over Perturbed Affine Sets

Intuition

Geometrical inclusion of the concretisation of the vector X̂ augmented by
the input noise symbols ε.

X̂ ≤1 Ŷ

∆⇐⇒

{
γ(X̂ , ε) | X̂ = CX ε+ PXηX

} ⊆ {
γ(Ŷ , ε) | Ŷ = CY ε+ PY ηY

}
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Functional Order Relation, Equivalent Formulations

Inclusion of sets of functions

∀ε ∈ 1× [−1, 1]n, ∀ηX ∈ [−1, 1]m, ∃ηY ∈ [−1, 1]m :

CX ε+ PXηX = CY ε+ PY ηY .

Sets Inclusion

(CX − CY )Φε + PXΦX
η ⊆ PY ΦY

η ,

{
Φε = 1× [−1, 1]n

ΦX
η = ΦY

η = [−1, 1]m

Support Function Inequality

∀t ∈ Rp, sup
ε∈Φε

|〈(CX − CY )ε, t〉| ≤ sup
ηY∈ΦY

η

|〈PY ηY , t〉| − sup
ηX∈ΦX

η

|〈PXηX , t〉|

K. Ghorbal (CMU) NASA Ames 20 Invited Talk 20 / 74



From Sets Inclusion to Functions Inequality

The support function

Let C be a non empty convex set of Rp, then

δ(t | C )
def
= sup

{
〈t, x〉 | x ∈ C

}
,

where 〈·, ·〉 denotes the usual scalar product over Rp.

Proposition

Let, C1 and C2 be non empty convex sets, then

C1 ⊆ C2 ⇐⇒ ∀t ∈ Rp, δ(t | C1) ≤ δ(t | C2)
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Support Function Inequality: Perturbed Affine Sets

Perturbed Affine Sets

∀t ∈ Rp, sup
ε∈Φε

|〈(CX − CY )ε, t〉| ≤ sup
ηY∈ΦY

η

|〈PY ηY , t〉| − sup
ηX∈ΦX

η

|〈PXηX , t〉|

Norm L1 Formulation

∀t ∈ Rp, ‖(CX − CY )∗t‖1 ≤ ‖PY ∗t‖1 − ‖PX ∗t‖1

where x ∈ Rn, ‖x‖1
def
=
∑n

i=1|xi |.
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Arithmetic Operations on Perturbed Affine Forms
Linear Operations

Closed under affine transformations

x̂ ± ŷ
def
=

n∑
i=0

(αx
i ± α

y
i )εi +

m∑
j=1

(βxj ± β
y
j )ηj

λ.x̂
def
=

n∑
i=0

(λαx
i )εi +

m∑
j=1

(λβxj )ηj

Proposition

The assignment of linear expression is monotonic.
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Arithmetic Operations on Perturbed Affine Forms
Non Linear Unary Operations

For non linear (unary) operations (3 steps)

1 linearize using first order Taylor development

2 bound the non linear term

3 rewrite the interval as an affine form using a fresh noise symbol

Square root example

x ∈ [3, 5] : x̂ = 4 + ε1

ŷ =
√
x̂ = 2 + 0.25ε1 + 0.024εf

γ(ŷ) = [1.726, 2.274] ⊇ [1.732, 2.236]
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Arithmetic Operations on Perturbed Affine Forms
Multiplication

Multiplication operation

x̂ × ŷ = αx
0α

y
0 +

n∑
i=1

(αx
i α

y
0 + αy

i α
x
0)εi +

m∑
j=1

(βxj α
y
0 + βyj α

x
0)ηj + `(x̂ , ŷ)ηf .

Two methods to bound the quadratic non linear term

1 Straightforward method: interval arithmetic
I rough approximation but efficient computation

2 SemiDefinite Programming Technique
I more accurate but more expensive on time
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Comparative example

#My Simple Program

x = [0,2];

y = x + [0,2];

z = x*y;

t = z - 2*x - y;

Abstract computations
Ê x̂ = 1 + ε1

Ë ŷ = 2 + ε1 + ε2

Ì ẑ = 2.875 + 3ε1 + ε2 + 1.125η1

Í t̂ = −1.125 + 1.125η1

K. Ghorbal (CMU) NASA Ames 26 Invited Talk 26 / 74



Comparative example

#My Simple Program

x = [0,2];Ê

y = x + [0,2];

z = x*y;

t = z - 2*x - y;

Abstract computations
Ê x̂ = 1 + ε1
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Comparative example

#My Simple Program

x = [0,2];Ê

y = x + [0,2];Ë

z = x*y;Ì

t = z - 2*x - y;Í

Abstract computations
Ê x̂ = 1 + ε1

Ë ŷ = 2 + ε1 + ε2

Ì ẑ = 2.875 + 3ε1 + ε2 + 1.125η1

Í t̂ = −1.125 + 1.125η1

(x ,t) invariant in control point Í

Polyhedra


t + x ≤ 4

−t − 3x ≤ 2
x ≤ 2
−x ≤ 0

; Octagons



t − x ≤ 8
t + x ≤ 8
−t − x ≤ 6
−t + x ≤ 10

t ≤ 8
−t ≤ 8
x ≤ 2
−x ≤ 0
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Comparative example
Concretisation of abstract set (Í) projected onto (t,x) plane

t

x

8−8

Interval concretisation of variable t
• Octagons t ∈ [−8, 8]
• Polyhedra t ∈ [−8, 4]
• PAS t ∈ [−2.25, 0] (t̂ = −1.125 + 1.125η1)
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Join over Perturbed Affine Sets

we do not have a supremum in general,

many “minimal” upper bounds exist,

the best (if many) minimal upper bound depends on the future
evaluations

computing a minimal enclosing zonotope of two given zonotopes is a
hard problem

Minimal Upper Bound with respect to � / ∼
Z is a minimal upper bound of X and Y if and only if

upper bound: X � Z and Y � Z , and

minimal: for all W upper bound of X and Y , Z �W =⇒ Z ∼W
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Perturbed Affine Forms
One Dimensional Affine Set

A Perturbed Affine Form is nothing but 1-dim a Perturbed Affine Sets
(with one perturbation noise symbol).

x̂ = αx
0 +

n∑
i=1

αx
i εi + βxηxu

and therefore

x̂ ≤1 ŷ ⇐⇒ ‖αx − αy‖1 ≤ |βy | − |βx |
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Minimal Upper Bound of Two Perturbed Affine Forms

Proposition

The following ẑ is a minimal upper bound of x̂ and ŷ (if x̂ and ŷ are non
comparable) whose interval concretisation is the union of the interval
concretizations of x̂ and ŷ :

αz
0 = mid(γ(x̂) ∪ γ(ŷ)) (central value of ẑ)
αz
i = argmin

min(αx
i ,α

y
i )≤α≤max(αx

i ,α
y
i )

(|α|), ∀i ≥ 1 (coeff. of εi )

βz = sup(γ(x̂) ∪ γ(ŷ))− αz
0 −

∑
i≥1 |αz

i | (coeff. of εU)

where :

γ(x̂) = [αx
0 −

∑n
i=1 |αx

i |, αx
0 +

∑n
i=1 |αx

i |],
and mid([a, b]) := 1

2 (a + b),

and argmin
a≤x≤b

(|x |) := {x ∈ [a, b], |x | is minimal }.
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Componentwise Relaxation

X̂ =

x̂1
...
x̂p

 ≤1 Ŷ =

ŷ1
...
ŷp

 ⇒
∀i , 1 ≤ i ≤ p, x̂i ≤1 ŷi

Moreover, when the Perturbation Matrices PY and PX are diagonal,
the equivalence holds

We have a linear algorithm to compute a minimal upper bound of
two Perturbed Affine Forms.

Idea: use componentwise minimal upper bounds computation to
define an upper bound of X̂ and Ŷ in the general case.
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Join : Relaxing the Problem

We Over-approximate X̂ and Ŷ

X̂ ≤1 X̂ ′ = CX ε+ PX ′ηX ,
I PX ′

is a diagonal matrix,
I PX ′

i,i = δ(PX ei | ΦX
η )(= ‖(βxi

1 , . . . , β
xi
m)‖1).

The over-approximation of Ŷ by Ŷ ′ is similar.

We compute componentwisely a Minimal Upper Bound of X̂ ′ and Ŷ ′.

û We get an upper bound of X̂ and Ŷ .
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Example: Join over Perturbed Affine Sets(
x̂1 = 3 + ε1 + 2ε2

x̂2 = 0 + ε1 + ε2

)
∪

(
ŷ1 = 1− 2ε1 + ε2

ŷ2 = 0 + ε1 + ε2

)

x̂1

x̂2

∪
ŷ1

ŷ2

(
ẑ1 = 2 + ε2 + 3ηzu
ẑ2 = ε1 + ε2

)

ẑ1

ẑ2 Properties

γ(ẑi ) = γ(x̂i ) ∪ γ(ŷi )

Complexity : O(pn)
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Meet Operation

Issues

Unlike the join, choosing a maximal lower bound is not sound,

The set of Affine Forms is not a Riez space, that is −((−x̂) ∪ (−ŷ))
does not give a a maximal lower bound in general,

The intersection of a hyperplane and a zonotope is not a zonotope in
general,

The meet of two non equal non perturbed affine forms (βx = βy = 0)
is the bottom element,

û Tests are mainly ignored in Perturbed Affine Sets Abstract Domain,
which is sound but too pessimistic. Reduced product with intervals is
used to improve the precision.
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Interpretation of Tests
Intuitions

ε1

ε2

x̂

ŷ

∀i , εi ∈ [−1, 1]
x̂ = ε1 − ε2

ŷ = 2ε1

0 ≤ x̂

The intersection is a general polytope

Propagate the constraint on noise symbols
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Outlines

1 Static Analysis-based Abstract Interpretation

2 Affine Sets Abstract Domain

3 Constrained Affine Sets Abstract Domain

4 Experiments, Taylor1+

5 Appendix
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Constrained Affine Sets

X̂ =


x̂ = αx

0 +
∑n

i=1 α
x
i εi +

∑m
j=1 β

x
j η

X
j

ŷ = αy
0 +

∑n
i=1 α

y
i εi +

∑m
j=1 β

y
j η

X
j

ẑ = . . .

X̂ = CX ε+ PXηX , (ε, ηX ) ∈ γ2(ΦX )

ΦX is an element of another abstract domain A2 (boxes, octagons,
polyhedra etc.) .
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Geometric Concretisation
not a zonotope in general

ε1

ε2

1

1

γ2(Φ)

ηx1
u , η

x2
u ∈ [−1, 1]

X̂ =

{
x̂1 = 1 + ε1 + ε2 + ηx1

u

x̂2 = −1 + 2ε2 + ηx2
u

,Φ

x1

x2

1

1

γ(X̂ )
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Order Relation over Constrained Affine Sets

X̂ =

x̂1
...
x̂p

 ,ΦX ≤1×2 Ŷ =

ŷ1
...
ŷp

 ,ΦY

∆⇐⇒
ΦX ≤2 ΦY

{γ(X̂ , ε) | X̂ = CX ε+ PXηX , (ε, ηX ) ∈ γ2(ΦX )}
⊆

{γ(Ŷ , ε) | X̂ = CY ε+ PY ηY , (ε, ηY ) ∈ γ2(ΦY )}
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Upper Bound of Two Constrained Affine Sets

(X̂ ,ΦX ) ≤1×2 (X̂ ,�ΦX ),

�ΦX defined as the smallest box that contains γ2(ΦX ),

Similarly for (Ŷ ,ΦY ) is over-approximated by (Ŷ ,�ΦY )

We then compute an upper bound of (X̂ ,�ΦX ) and (Ŷ ,�ΦY ):

using “Diagonal” Perturbation Sets (as seen in the non constrained
case)

We therefore need to compute a minimal lower bound of two Constrained
Affine Forms.
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Similarly for (Ŷ ,ΦY ) is over-approximated by (Ŷ ,�ΦY )
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Order Relation over Constrained Affine Forms

x̂ = αx
0 +

n∑
i=1

αx
i εi︸ ︷︷ ︸

x(ε)

+βxηxu ≤1×2

ŷ = αy
0 +

n∑
i=1

αy
i εi︸ ︷︷ ︸

y(ε)

+βyηyu

ηxu ∈ [−1, 1] ηyu ∈ [−1, 1]

∆⇐⇒

supε∈�(ΦX
ε )|x(ε)− y(ε)| ≤ |βy | − |βx |
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Computing supε∈�(Φε)|x(ε)− y(ε)|
Computing the supremum over �(ΦX

ε )

sup
ε∈�(Φε)

|x(ε)− y(ε)| = δ
(
αx − αy | convex(1×�(ΦX

ε ),−1×−�(ΦX
ε ))
)
,

where αx = (αx
0 , . . . , α

x
n), and αy = (αy

0 , . . . , α
y
n).

A Particular Case: Non Constrained Case

�(ΦX
ε ) = [−1, 1]n

convex(1×�(ΦX
ε ),−1×−�(ΦX

ε )) = MX ∗Bn+1

convex(1×�(ΦX
ε ),−1×−�(ΦX

ε )) = [−1, 1]n+1

δ(αx − αy | [−1, 1]n+1) = ‖αx − αy‖1

Indeed we have already seen in the non constrained case that

sup
ε
|x(ε)− y(ε)| = ‖αx − αy‖1 .
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Join Operation

Two (Distinct in general) Sufficient Conditions for Minimality

¬ |βz | is minimal over all upper bounds

 |βz | is minimal over all upper bounds which minimize the interval
concretisation of ẑ

give in general different minimal upper bound
Φa = [−1, 0]× [0, 0.5]
â = 1− ε1 + 2ε2

γ(â) = [1, 3]


Φb = [−0.5, 0.5]× [0, 1]

b̂ = 2 + ε1 + ε2

γ(b̂) = [1.5, 3.5]

Two (non trivial) Minimal Upper Bounds:




Φc = [−1, 0.5]× [0, 1]
ĉ = 1.75 + ε2 + 0.75ηcu
γ(ĉ) = [1, 3.5] = [1, 3] ∪ [1.5, 3.5]

¬


Φd = [−1, 0.5]× [0, 1]

d̂ = 1.7 + 0.2ε1 + 1.6ε2 + 0.7ηdu
γ(d̂) = [0.8, 4.1] ⊇ [1, 3.5]
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Which αz minimizes |βz | ?

ẑ is an upper bound :

x̂ ≤1×2 ẑ ⇐⇒ δ(MX (αz − αx) | Bn+1) ≤ |βz | − |βx |
ŷ ≤1×2 ẑ ⇐⇒ δ(MY (αz − αy ) | Bn+1) ≤ |βz | − |βy |

=⇒
|βz | ≤ max{δ(MX (αz −αx) | Bn+1) + |βx |, δ(MY (αz −αy ) | Bn+1) + |βy |}
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x̂ ≤1×2 ẑ ⇐⇒ δ(MX (αz − αx) | Bn+1) ≤ |βz | − |βx |
ŷ ≤1×2 ẑ ⇐⇒ δ(MY (αz − αy ) | Bn+1) ≤ |βz | − |βy |

=⇒
|βz | ≤ max{δ(MX (αz −αx) | Bn+1) + |βx |, δ(MY (αz −αy ) | Bn+1) + |βy |}

K. Ghorbal (CMU) NASA Ames 44 Invited Talk 44 / 74



Which αz minimizes |βz | ?

ẑ is an upper bound :
I |βz | ≤ max{δ(MX (αz − αx) | Bn+1) + |βx |, δ(MY (αz − αy ) |
Bn+1) + |βy |}

ẑ is a minimal upper bound : we minimize this maximum

Characterization of αz

|βz | is a saddle-value of L(α, λ)

αz is a saddle-point of L(α, λ)

L(α, λ)

L(α, λ) = λ(δ(MX (α− αx) | Bn+1) + |βx |)
+ (1− λ)(δ(MY (α− αy ) | Bn+1) + |βy |),

where α ∈ Rn+1, and λ ∈ [0, 1].

use the subdifferential theory and the Fenchel duality.
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Which αz minimizes |βz | ?
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Saddle-Point
f (x , y) = x2 − y 2
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Characterization of the set of saddle-points of L(α, λ)

Theorem

When x̂ and ŷ are non comparable, we have

•λ̄ ∈]0, 1[,

•δ(MX (ᾱ− αx) | Bn+1) + |βx | = δ(MY (ᾱ− αy ) | Bn+1) + |βy |,
•λ̄δ(MX (ᾱ− αx) | Bn+1) + (1− λ̄)δ(MY (ᾱ− αy ) | Bn+1) =

δ(αx − αy | λ̄MX ∗Bn+1 ∩ (1− λ̄)MY ∗Bn+1) .

where (ᾱ, λ̄) denotes a saddle-point of L.
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Complexity of Computations

X̂ =

x̂1
...
x̂p

 ,ΦX ∪1×2 Ŷ =

ŷ1
...
ŷp

 ,ΦY

=

Ẑ =

ẑ1
...
ẑp

 ,ΦX ∪2 ΦY

Complexity for each ẑi

O(n3) in the worst case to compute |βzi |,
αzi is deduced as a solution of a LP of dimension n + 1 with 2n + 3
constraints,

û Polynomial algorithm to compute a minimal upper bound with the
least perturbation.
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Other Join Variants

Two Sufficient Conditions for Minimality

¬ |βz | is minimal over all upper bounds (∪1×2)

 |βz | is minimal over all upper bounds which minimize the interval
concretisation of ẑ (t1×2)

t1×2

+ Computes a minimal upper bound

+ Linear Complexity

− May lose “many” noise symbols

]1×2 (weaker version of t1×2)

+ Linear Complexity

+ lose less noise symbols

± Computes an upper bound in general (but may give the minimal
upper bound returned by t1×2)
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Example 1

Minimal Upper Bounds
Φa = [−1, 0]× [0, 0.5]
â = 1− ε1 + 2ε2

γ(â) = [1, 3]


Φb = [−0.5, 0.5]× [0, 1]

b̂ = 2 + ε1 + ε2

γ(b̂) = [1.5, 3.5]

Two (non trivial) Minimal Upper Bounds:

t1×2,]1×2


Φc = [−1, 0.5]× [0, 1]
ĉ = 1.75 + ε2 + 0.75ηcu
γ(ĉ) = [1, 3.5] = [1, 3] ∪ [1.5, 3.5]

∪1×2


Φd = [−1, 0.5]× [0, 1]

d̂ = 1.7 + 0.2ε1 + 1.6ε2 + 0.7ηdu
γ(d̂) = [0.8, 4.1] ⊇ [1, 3.5]
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Example 2

Minimal Upper Bounds
Φa = [−1, 0]× [0, 0.5]
â = −2ε1 + ε2

γ(â) = [0, 2.5]


Φb = [−0.5, 0.5]× [0, 1]

b̂ = −2ε1 + ε2

γ(b̂) = [−1, 2]

Two Minimal Upper Bounds:

t1×2


Φc = [−1, 0.5]× [0, 1]
ĉ = 0.25 + ε2 + 1.25ηcu
γ(ĉ) = [−1, 2.5]

;∪1×2


Φd = [−1, 0.5]× [0, 1]

d̂ = −2ε1 + ε2

γ(d̂) = [−1, 3]

An Upper Bound:

]1×2


Φe = [−1, 0.5]× [0, 1]
ê = 0.75 + 1.75ηcu
γ(ê) = [−1, 2.5] = [0, 2.5] ∪ [−1, 2]
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]1×2 vs t1×2 vs ∪1×2

1

2

X̂ =


ΦX = [−1, 0]× [0, 0.5]
x̂1 = 1− ε1 + 2ε2

x̂2 = −2ε1 + ε2

Ŷ =


ΦY = [−0.5, 0.5]× [0, 1]
ŷ1 = 2 + ε1 + ε2

ŷ2 = −2ε1 + ε2
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]1×2 vs t1×2 vs ∪1×2

1

2

ΦZ = [−0.5, 1]× [0, 1]

]1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.75 + 1.75ηz2
u
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]1×2 vs t1×2 vs ∪1×2

1

2 ΦZ = [−0.5, 1]× [0, 1]

]1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.75 + 1.75ηz2
u

t1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.25 + ε2 + 1.25ηz2
u
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]1×2 vs t1×2 vs ∪1×2

1

2
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ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.75 + 1.75ηz2
u

t1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.25 + ε2 + 1.25ηz2
u

∪1×2

{
ẑ1 = 1.7 + 0.2ε1 + 1.6ε2 + 0.7ηz1

u

ẑ2 = −2ε1 + ε2
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]1×2 vs t1×2 vs ∪1×2

1

2

û We use in addition a
Reduced Product with
Intervals.

ΦZ = [−0.5, 1]× [0, 1]

]1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.75 + 1.75ηz2
u

t1×2

{
ẑ1 = 1.75 + ε2 + 0.75ηz1

u

ẑ2 = 0.25 + ε2 + 1.25ηz2
u

∪1×2

{
ẑ1 = 1.7 + 0.2ε1 + 1.6ε2 + 0.7ηz1

u

ẑ2 = −2ε1 + ε2
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Interpretation of Tests

X̂ =

x̂1
...
x̂p

 ,ΦX {x̂i == x̂j , x̂i ≤ 0, x̂j × x̂i ≤ x̂k} Ŷ =

ŷ1
...
ŷp

 ,ΦY

∆⇐⇒
ΦY = JconsK]2(ΦX )

∀i , 1 ≤ i ≤ p, ŷi = x̂i
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Interpretation of Equality Tests
Example

X̂ =

 x̂1 = 4 + ε1 + ε2 + ε3

x̂2 = − ε1 + 3ε2

x̂3 = − ε1 + 2ε2 + ε3

 ,ΦX = [−1, 1]3 {x̂1 == x̂2} Ŷ = ?

x̂1 == x̂2 ⇐⇒ 4 + 2ε1 − 2ε2 + ε3 == 0,

ΦY = J4 + 2ε1−2ε2 + ε3 == 0K]2(ΦX ) = [−1,−0.5]× [0.5, 1]× [−1, 0]

ŷi is extracted from x̂i such that the interval concretisation of ŷi is
minimal
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ŷi is extracted from x̂i such that the interval concretisation of ŷi is
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Interpretation of Equality Tests
Example Con’t

ŷ1 = 2 + 2ε2 + 0.5ε3, bound2(Ŷ1,Φ
Y ) = [2.5, 4] (by substituting ε1)

ŷ1 = 6 + 2ε1 + 1.5ε1, bound2(Ŷ1,Φ
Y ) = [2.5, 5] (by substituting ε2)

ŷ1 = −ε1 + 3ε2, bound2(Ŷ1,Φ
Y ) = [2, 4] (by substituting ε3)

ΦY := [−1,−0.5]× [0.5, 1]× [−1, 0]

ŷ1 := 2 + 2ε2 + 0.5ε3, bound2(Ŷ1,Φ
Y ) = [2.5, 4]

ŷ2 := 2 + 2ε2 + 0.5ε3, bound2(Ŷ2,Φ
Y ) = [2.5, 4]

ŷ3 := 2 + ε2 + 1.5ε3, bound2(Ŷ3,Φ
Y ) = [1, 3]
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Y ) = [1, 3]

K. Ghorbal (CMU) NASA Ames 55 Invited Talk 55 / 74



Interpretation of Equality Tests
Example Con’t

Properties

for each i , we solve the above problem with an average complexity of
O(n log(n)),

the equality constraint is algebraically satisfied in Ŷ : ŷ1 = ŷ2,

the concretisation of each ŷi is optimal.
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Assignment - Widening

Assignment

Φ is unchanged

For linear expressions, we simply use affine arithmetic as in Perturbed
Affine Sets (Φ is unused)

For non linear operations, Φ is used to improve the linearization of
non linear terms

Widening

We use the same widening as in Perturbed Affine Sets: losing the relations
encoded by noise symbols.
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Outlines

1 Static Analysis-based Abstract Interpretation

2 Affine Sets Abstract Domain

3 Constrained Affine Sets Abstract Domain

4 Experiments, Taylor1+

5 Appendix
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Taylor1+ Features

analyses programs with real number semantics,

APRON [B. Jeannet, A.Miné, SAS07] like abstract domain (level 0),

written in C and offers an OCAML interface,

linked to interproc [B. Jeannet],

uses double-precision floating-point numbers in a sound manner
for computations in abstract domain (supports also GMP and MPFR),

Noise symbols abstract domains may be any APRON like abstract
domain.
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Unrolled scheme for the 2nd order filter

2nd order filter

Sn = 0.7En − 1.3En−1 + 1.1En−2 + 1.4Sn−1 − 0.7Sn−2

Poles are inside the unit circle (norm close to 0.84)
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Fixpoint Computation

filter o2 fixpoint t(s)
Boxes > 6×10−3

Octagons > 0.19
Polyhedra [−1.30 , 2.82] 0.49
Taylor1+ [−5.40 , 7.07] 0.2

filter o8 fixpoint t(s)
Boxes > 0.01
Octagons > 21
Polyhedra abort >24h
Taylor1+ [−3.81 , 4.81] 0.5
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3rd order Householder Iteration Scheme

Inverse of the square root

hn = 1− Ax2
n , A ∈ [16, 20] and x0 = 2−4

xn+1 = xn + xn

(
1

2
hn +

3

8
h2
n

)

Unrolling (5 It.)
√
A = Axn t(s)

Boxes [0.51 , 8.44] 1×10−4

Octagons [0.51 , 7.91] 0.01
Polyhedra [2.22 , 6.56] 310
T.1+ : [3.97 , 4.51] 1×10−3

• 10 subdivisions [4.00 , 4.47] 0.02
• SDP [3.97 , 4.51] 0.16
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Benchmarks

InterQ1: linear tests with quadratic expressions

Cosine: piecewise 3rd order polynomial interpolation of the cosine
function

SinCos: sum of the squares of the sine and cosine functions

InterL2 (resp. InterQ2): the inverse image of 1 by a piecewise
affine (resp. quadratic) function

Exact Octagons Polyhedra Taylor1+ Cons. Taylor1+
(]1×2)

InterQ1 [0, 1875] [−3750, 6093] [−2578, 4687] [0, 2500] [0, 1875]
Cosine [−1, 1] [−1.50, 1.0] [−1.50, 1.0] [−1.073, 1] [−1, 1]
SinCos {1} [0.84, 1.15] [0.91, 1.07] [0.86, 1.15] [0.99, 1.00]
InterL2 {0.1} [−1, 1] [0.1, 0.4] [−1, 1] [0.1, 1]
InterQ2 {0.36} [−1, 1] [−0.8, 1] [−1, 1] [−0.4, 1]
InterQ2b [−0.1, 3] [−3, 27] [−3, 27] [−0.1, 27] [−0.1, 3.77]
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Does the domain scale up ?

g ( x ) = s q r t ( x∗x−x +0.5)/ s q r t ( x∗x + 0 . 5 ) ;
x = [ −2 , 2 ] ;
/∗ f o r n s u b d i v i s i o n s ∗/
h = 4/n ;
i f (−x<=h−2)

y = g ( x ) ; z = g ( y ) ;
. . .
/∗ 2 <= i <= n−1 ∗/
e l s e i f (−x<=i ∗h−2)

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e

y = g ( x ) ; z = g ( y ) ;

g(x) =

√
x2 − x + 0.5√
x2 + 0.5

x

g(g(x))

20−2

0.54

0.58

0.62
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Taylor1+ Scales up

polka

ppl

10 100 200 300

# subdivisions (constraints)

400 50050

1

2

3

C
P

U
ti

m
e

(s
)

4

� [Boxes]

∗ [Octagons]

• [Cons.T1+]

◦ [Polyhedra]

2 4 8 20

# subdivisions (constraints)

w
id

th
o

f
g

(g
(x

))

1

2

3

4

� [Boxes]

∗ [Octagons]

• [Cons.T1+]

◦ [Polyhedra]

K. Ghorbal (CMU) NASA Ames 65 Invited Talk 65 / 74



Comparison of Join Variants

Exact Taylor1+ Cons. Taylor1+ Cons. Taylor1+
(]1×2) (∪1×2)

InterQ1 [0, 1875] [0, 2500] [0, 1875] [0, 1875]

Cosine [−1, 1] [−1.073, 1] [−1, 1] [−1, 1]

SinCos {1} [0.86, 1.15] [0.99, 1.00] [0.99, 1.00]

InterL2 {0.1} [−1, 1] [0.1, 1] [0.066, 0.4]

InterQ2 {0.36} [−1, 1] [−0.4, 1] [−0.29, 0.52]

InterQ2b [−0.1, 3] [−0.1, 27] [−0.1, 3.77] [−0.1, 3.77]
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Scalabity of Join Operators
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Perturbation and Lost Noise Symbols
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Conclusion

Future Directions

Using non linear templates abstract domain to abstract noise
symbols (back to the quaternion normalization problem, we can use
the abstract domain [Adjé,Gaubert,Goubault] for noise symbols).

Abstract the coefficients to catch some specific non-convex
(disjunctive) properties.

better global join than the diagonal relaxiation (we have already
promising results).
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Thanks for your attention !
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Kolev Multiplication

no overestimation if certain simple monotonicity conditions are valid
[Kolev 2007].

However, the affine form obtained is not always correct when dealing
with future evaluations.

Example

x̂ = 10 + 5ε1 + 3ε2 and ŷ = 10− 2ε1 + ε3 ,

Kolev multiplication gives ẑ = 92 + 31ε1 + 21ε2 + 2ε3 + 16ε4.

γ(z) is [22, 162] which is the exact range of xy .

for t = −4x + 0.8z − 79 ,

t̂ = −45.4 + 4.8ε1 + 4.8ε2 + 1.6ε3 + 12.8ε4 ,

and γ(t) ∈ [−69.4,−21.4].

for ε1 = 0 and ε2 = 1 and ε3 = 1,

x = 13 and y = 11 and z = 143, then t = −16.6 6∈ γ(t).
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affine forms multiplication

Lemma [Gaubert 2006]

max
|εi |≤1

n∑
i=1

n∑
j=1

αx
i α

y
j εiεj = max

|εi |≤1
εt .Φ.ε ≤ inf

µ∈Rn
+

{trace(µIn)|Φ−µIn � 0} (1)

where

(φi ,j)1≤i ,j≤n = 1
2 (αx

i α
y
j + αx

j α
y
i )

M � 0 (M is negative semidefinite)

The equality holds when matrix Φ is negative semidefinite. The right hand
side of (1) is a typical SDP problem.
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using SDP throw an example

Let x̂ = 10 + 5ε1 + 3ε2 and ŷ = 10− 2ε1 + ε3, then
ẑ = x̂ × ŷ = 100 + 30ε1 + 30ε2 + 10ε3 + q(ε), where q(ε) = εtQε and

Q =

 −10 −3 2.5
−3 0 1.5
2.5 1.5 0


SDP problems to solve are:

1)
M = minµ.1n

s.t

(
µIn − Q 0

0 µIn

)
� 0

2)
−m = minµ.1n

s.t

(
µIn − (−Q) 0

0 µIn

)
� 0
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The final invariant of InterQ2

x̂

ŷ

x̂

ŷ
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