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Abstract This paper presents a theoretical and experimental comparison of sound
proof rules for proving invariance of algebraic sets, that is, sets satisfying poly-
nomial equalities, under the flow of polynomial ordinary differential equations.
Problems of this nature arise in formal verification of continuous and hybrid dy-
namical systems, where there is an increasing need for methods to expedite for-
mal proofs. We study the trade-off between proof rule generality and practical
performance and evaluate our theoretical observations on a set of heterogeneous
benchmarks. The relationship between increased deductive power and running
time performance of the proof rules is far from obvious; we discuss and illustrate
certain classes of problems where this relationship is interesting.

1 Introduction

In safety verification of dynamical systems, either purely continuous or hybrid [22,29],
one is typically concerned with ensuring that by initializing a system in some set of
states X0 ⊆ X (where X is the state space), the system will never evolve into an
unsafe state (belonging to some Xu ⊆ X). When the system is given by ordinary
differential equations ẋ = p(x), one may attempt to solve this problem by showing
that the solution to the initial value problem, for any initial value x0 ∈ X0, cannot enter
the unsafe region; that is, x(x0, t) /∈ Xu for all t ≥ 0, where x(x0, t) is the state of the
system at time t w.r.t. the initial value x0. This safety verification problem is equivalent
to showing that the intersection of the reachable set {x(x0, t) ∈ X | t ≥ 0} with the
set of unsafe states is empty. However, solutions to ordinary differential equations will
rarely be available in closed form; and even when they are, will often be much more
complicated than the differential equations themselves. Instead, it is possible to work
with the differential equations directly [26,21,23,29].

A fundamental notion in safety verification is that of an invariant set. In fact, exact
reachable sets of any given state x0 of the system are the smallest invariant sets one can
hope to find that include x0. However, obtaining and working with exact descriptions of
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reachable sets is not always practical or even possible. This does not mean that system
safety cannot be established by other means - if one finds a larger invariant set, I ⊆ X ,
with a simpler (perhaps algebraic) description which contains the reachable set and
does not itself intersect the set of unsafe states (i.e. I ∩Xu = ∅), then one can soundly
conclude that the system is safe. In this paper, we focus on checking whether a given
set is an invariant region from which no system trajectory can escape.

Hybrid systems verification completely reduces to questions about invariant re-
gions [20,22]. We focus on the important case where the invariant regions are algebraic
sets, i.e. can be defined by polynomial equations. Many sound proof rules already ex-
ist for deciding invariance properties of algebraic sets. However, in order to identify a
good trade-off, it is crucial to study the relationship between the deductive power and
the practical running time performance of these proof rules.

Contributions. (I) We theoretically compare the deductive power of 7 different
proof rules for checking invariance properties of algebraic sets under the flow of poly-
nomial ordinary differential equations. Further, we assess the practical utility of each
of these rules in order to identify a good trade-off between generality and running time
performance. (II) We investigate the effect of square-free reduction on both the deduc-
tive power and the computational complexity of the proof rules. (III) We assess the
practical proof rule performance on a heterogeneous set of 75 benchmarks. We demon-
strate the counter-intuitive fact that square-free reduction does not necessarily improve
the computational efficiency of certain proof rules and explore interesting connections
between the deductive power and the practical running time performance that we ob-
serve for the proof rules.

Content. In Section 2, we recall some basic definitions and concepts that will be
used throughout the paper. We then introduce (in Section 3) two proof rules that serve
as extensions of Lie’s criterion for equational invariants. In Section 4, we compare the
deductive power of the proof rules. The benefits and drawbacks of performing square-
free reduction as a pre-processing step are investigated in Section 5. In Section 6, we
present the set of benchmarks and our experimental results. We finally discuss other
related work in Section 7 before concluding. All proofs, as well as more detailed results
from running our benchmarks, can be found in the companion technical report [10].

2 Preliminaries

We consider autonomous3 polynomial vector fields (see Def. 1 below).
Let x = (x1, . . . , xn) ∈ Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,

t 7→ xi(t). The ring of polynomials over the reals will be denoted by R[x1, . . . , xn].
Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polynomi-
als of the polynomial ring R[x]. A polynomial vector field, p, is an explicit system of
ordinary differential equations with polynomial right-hand side:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

3 That is, the rate of change of the system over time depends only on the system’s state, not on
time. Non-autonomous systems with polynomial time-dependence can be made autonomous
by adding an extra clock variable that reflects the progress of time.
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Since polynomial functions are smooth (C∞, i.e. they have derivatives up to any order),
they are locally Lipschitz-continuous. By the Cauchy-Lipschitz theorem (a.k.a. Picard-
Lindelöf) [14], there exists a unique maximal solution to the initial value problem (ẋ =
p, x(0) = x0) defined for t in some nonempty open interval.

For h ∈ R[x1 . . . , xn], if h(x(t)) = 0 for all t ≥ 0, we say that the equation
h = 0 is a (positive) invariant under the flow of p. In differential dynamic logic [20],
invariance of h = 0 is semantically equivalent to the validity of the following formula:

(h = 0)→ [ẋ = p](h = 0) (2)

Geometrically, the equation h = 0 represents the set of real roots of h. Such a set is
known as real algebraic set or a real variety and will be henceforth denoted by VR(h).
Algebraic sets are intimately related to sets of polynomials with special algebraic prop-
erties called ideals. Ideals are closed under addition and external multiplication; that is,
if I is an ideal, then for all h1, h2 ∈ I , the sum h1+h2 ∈ I; and if h ∈ I , then, qh ∈ I ,
for all q ∈ R[x1 . . . , xn]. To say that the real variety VR(h) of the ideal generated by
h is invariant under the flow of the vector field p is equivalent to the statement that the
equation h = 0 is invariant.

We will use∇h to denote the gradient of h : Rn → R, that is the vector of its partial
derivatives

(
∂h
∂x1

, . . . , ∂h∂xn

)
. The Lie derivative of h along the vector field p gives the

rate of change of h along the flow of ẋ = p(x) and is formally defined as the scalar
product of∇h and p.

Lp(h)
def
= ∇h · p . (3)

Higher-order Lie derivatives are defined recursively as L(k+1)
p (h) = Lp(L

(k)
p (h)), with

L
(0)
p (h) = h.

We now recall five important proof rules for checking invariance of polynomial
equalities, or equivalently the validity of Eq. (2). In Fig. 1, DI= shows the differential
invariant [21] proof rule restricted to handling equalities. The condition imposed by
the premise of DI= is sufficient, but not necessary; it characterizes polynomial invari-
ant functions. The premise of the Polynomial-scale consecution proof rule [26], P-c
in Fig. 1, requires Lp(h) to be in the ideal generated by h. The condition is also only
sufficient (but is particularly suitable for generating invariant varieties [16]). We also
consider the constant-scale consecution proof rule [26,29], denoted by C-c. The premise
of proof rule C-c requires that Lp(h) = λh, where λ is a scalar, not a polynomial as in
P-c. It is therefore a simple special case of P-c. When λ = 0, one obtains the premise of
the proof rule DI=. It is worth noting that P-c, including its special case C-c, was men-
tioned as early as 1878 [5] and used extensively in the study of integrability of dynam-
ical systems, where they are known as second integrals [12, Chapter 2]. It serves as a
natural extension to invariant functions, also known as first integrals, which are covered
by the proof rule DI=. The proof rule Lie gives Lie’s criterion [13,19] for invariance of
h = 0; this proof rule will be discussed in more depth and extended to handle tricky
cases in Section 3. The last rule, DRI in Fig. 1, was recently introduced and character-
izes (i.e. gives necessary and sufficient conditions for) invariant varieties under the flow
of polynomial vector fields [9]. The number N in DRI is the maximum length of the
ascending chain of polynomial ideals 〈h〉 ⊂ 〈h,Lp(h)〉 ⊂ 〈h,Lp(h),L

(2)
p (h)〉 ⊂ · · · ,

which is finite and computable [9].
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(DI=)
Lp(h) = 0

(h = 0)→ [ẋ = p](h = 0)
(C-c)

∃λ ∈ R, Lp(h) = λh

(h = 0)→ [ẋ = p](h = 0)

(Lie)
h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p](h = 0)
(P-c)

Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p](h = 0)

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)

Figure 1: Proof rules for checking the invariance of h = 0 w.r.t. p: DI= [23, Theorem
3], C-c and P-c [26, Lemma 2], Lie [19, Theorem 2.8], DRI [9, Theorem 2]

3 Lie’s Criterion

One immediate (and somewhat embarrassing) deficiency of the proof rule Lie (Fig. 1)
is its inability to prove invariance properties for isolated points (e.g. system equilibria)
for the simple reason that a description of such a point a = (a1, . . . , an) ∈ Rn is (when
n > 1) given by the sum-of-squares equation h(x) = (x1−a1)2+· · ·+(xn−an)2 = 0.
This sum-of-squares polynomial h is positive-definite, i.e. h(a) = 0 and h(x) > 0 for
all x ∈ Rn \{a}. Positive definite functions have vanishing gradient at their minima, in
this case a, and thus the formula h = 0 → ∇h = 0 holds. This violates the regularity
condition in the premise of the proof rule Lie, namely:

h = 0 −→ ∇h 6= 0 . (4)

In fact, h = 0 → Lp(h) = 0 is a necessary condition when h = 0 is an invariant
equation. Note that simply removing Eq. (4) from the premise of the proof rule Lie is
unsound (see e.g. [23]); that is, the condition h = 0→ Lp(h) = 0 alone is insufficient
to prove the invariance property for h = 0. Unsoundness in the above naı̈ve attempt
at a generalization is a consequence of singularities that may be present in the variety
VR(h). Singularities of VR(h) are points x ∈ VR(h) where the gradient of h vanishes,
i.e. ∇h(x) = 0.

Definition 2 (Singular Locus). Let h ∈ R[x1, . . . , xn], the singular locus of h = 0,
henceforth denoted SL(h), is the set of singular points, that is, points x satisfying

h = 0 ∧ ∂h

∂x1
= 0 ∧ · · · ∧ ∂h

∂xn
= 0 .

Points that are not singular are called regular. At singular points, the Lie derivative of
h along any vector field is 0 · p = 0. To avoid these degenerate cases, the regularity
condition (Eq. (4)) rules out singularities altogether. In the next section we present two
extensions of Lie’s criterion that, in a similar vein to [27], partially overcome the strong
regularity condition by treating the points on the singular locus separately.
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3.1 Handling Singularities

Equilibria are points in the state space where the vector field vanishes (p = 0) so that
there is no motion. However, as seen above, Lie’s criterion cannot generally be applied
to prove invariance properties of isolated equilibria because their description involves
singularities. One simple way to resolve this issue is to drop the non-vanishing gradient
condition and replace it with the proviso that there be no flow (that is p = 0) in the
variables of the invariant candidate on the singular locus; this will allow singularities in
the invariant candidate and will provide a sound proof method in which there is no need
to check for non-vanishing gradient. Below we present two extensions to the proof rule
Lie and justify their soundness after recalling some basic geometric notions.

Definition 3 (Lie◦: Lie + Equilibria).

(Lie◦)
h = 0→

(
Lp(h) = 0 ∧

(
SL(h)→

∧
xi∈vars(h) pi = 0

))
(h = 0)→ [ẋ = p](h = 0)

,

where vars(h) denotes the set of state variables xi occurring in the polynomial h.

The Lie◦ proof rule can be generalized further at the expense of adding an extra
variable by replacing the “no flow” condition (pi = 0) for points on the singular locus
with ∀λ. h(x+ λp(x)) = 0, where λ is a fresh symbol.

Definition 4 (Lie∗: Lie + Vanishing Sub-tangent).

(Lie∗)
h = 0→

(
Lp(h) = 0 ∧ (SL(h)→ h(x+ λp) = 0)

)
(h = 0)→ [ẋ = p](h = 0)

.

To prove soundness of Lie◦ and Lie∗, we use a result about positive invariance of
closed sets under locally Lipschitz-continuous vector fields, known as the Nagumo the-
orem [18,30, Chapter 10, XV–XVI, pp. 117-119], which gives a powerful (but generally
intractable) geometric characterization of positively invariant closed sets. The notion of
positive invariance of the equation h = 0 from Section 2 generalizes to an arbitrary set.

Definition 5 (Invariant Sets). A set S is positively (negatively) invariant under the
flow of ẋ = p if for all x0 ∈ S we have x(x0, t) ∈ S for all t ≥ 0 (t ≤ 0), where
x(x0, t) is the solution of the initial value problem (ẋ = p,x(0) = x0). A set S is
bi-invariant if it is both positively and negatively invariant.

Nagumo’s theorem needs the geometric notion of sub-tangential vectors to a set.

Definition 6 (Sub-tangent vector). A vector v ∈ Rn is sub-tangential to a set S at
x ∈ S if

lim inf
λ→0+

dist (S,x+ λv)

λ
= 0,

where dist denotes the Euclidean set distance, i.e. dist(S,x) ≡ infy∈S‖x− y‖.

Theorem 1 (Nagumo Theorem). Given a continuous system ẋ = p(x) and assuming
that solutions exist and are unique inside some open setO ⊆ Rn, let S ⊂ O be a closed
set. Then, S is positively invariant under the flow of the system if and only if p(x) is
sub-tangential to S for all x ∈ ∂S, where ∂S is the boundary of S.
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Let us observe that given x ∈ ∂S, if x + λp(x) ∈ S for all λ ∈ R, then
dist (S,x+ λp(x)) = 0 and p(x) is sub-tangential to S at x. This observation is
important for algebraic sets, for which ∂S = S, and the condition x + λp(x) ∈ S
translates to h(x + λp(x)) = 0. This is the main idea behind the soundness of the
proof rule Lie∗ (see [10] for the detailed proof).

Proposition 1. The proof rule Lie∗ is sound.

The case p(x) = 0 for all x in the singular locus is a special case of the proof rule
Lie∗. Therefore, the soundness of Lie◦ is an immediate corollary of Prop. 1.

Corollary 1. The proof rule Lie◦ is sound.

4 Proof Rules: Hierarchy and Complexity

In this section, we compare the deductive power of the existing (Fig. 1) and the newly-
introduced proof rules (Lie◦ and Lie∗ in Section 3) for checking the invariance of al-
gebraic sets. This study should be complemented by another comparison that considers
the interaction between the different proof rules in the context of a formal proof system
in a similar vein to [24]. We leave this for future work.

Given two proof rules (let us call them R1 and R2) featuring the same conclusion
((h = 0) −→ [ẋ = p](h = 0)), we will say that R2 generalizes R1 and write R2 < R1

(or R1 4 R2), if the premise of R1 implies the premise of R2. That is, if R1 proves
that h = 0 is an invariant, then so does R2. If R1 4 R2 and R1 < R2, we say that R1

and R2 are equivalent, and denote this by R1 ∼ R2. Likewise, R1 64 R2 (or R2 6< R1)
denotes that R1 is not generalized by R2. We also write R1 ≺ R2 when R1 4 R2 and
R1 6< R2. That is, the rule R2 increases the deductive power of R1.

It is easy to see that the order 4 is a partial order (with ∼ acting as equality): it is
reflexive, R 4 R (the premise of R implies itself); it is anti-symmetric (by definition),
and transitive: if R1 4 R2 and R2 4 R3, then the premise of R1 implies the premise of
R3 by transitivity of the implication, so R1 4 R3. Finally, If R1 64 R2 and R1 6< R2,
we will write R1 ≺� R2 and say that the proof rules R1 and R2 are incomparable. This
means that for both R1 and R2 there are problems that one rule can prove and the other
cannot. In the sequel, we use the partial order 4 to illustrate the lattice structure of the
proof rules under consideration. In Section 4.2 we discuss the computational complexity
of the conditions appearing in their premises.

4.1 Hierarchy

We use the partial order (4) to compare the deductive power of all considered proof
rules {DI=,C-c,P-c,Lie,Lie

◦,Lie∗,DRI}. For convenience, the propositions of this
section are summarized in the comparison matrix (Fig. 3). For instance, Prop. 6 proves
that DI= ≺� Lie. Cells without numbers are proved by transitivity of the partial order.
For instance, DI= ≺ DRI can be proved using DI= ≺ C-c (Prop. 2) and C-c ≺ P-c
(Prop. 3) and P-c ≺ DRI (Prop. 5). The Hasse diagram (Fig. 2) gives the lattice struc-
ture where arrows represent strictly increasing deductive power; every missing edge in
the graph represents ≺�, as shown in the comparison matrix.
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DRI

Lie∗

Lie◦

Lie

P-c

C-c

DI=

Figure 2: Hasse diagram.
An arrow R1 → R2 means
R1 ≺ R2, all other non de-
picted links mean (≺�).

DI= C-c P-c Lie Lie◦ Lie∗ DRI

DI= ∼ ≺
2
≺ ≺�

6
≺�

8
≺�

7
≺

C-c �
2
∼ ≺

3
≺�

9
≺�
10
≺�
10

≺

P-c � �
3
∼ ≺�

9
≺�
10
≺�
10

≺
5

Lie ≺�
6
≺�

9
≺�

9
∼ ≺

4
≺ ≺

Lie◦ ≺�
8
≺�
10
≺�
10

�
4
∼ ≺

4
≺

Lie∗ ≺�
7
≺�
10
≺�
10

� �
4
∼ ≺

5

DRI � � � � � � ∼

Figure 3: Comparison matrix of the deductive power of
{DI=,C-c,P-c,Lie,Lie

◦,Lie∗,DRI}. The numbers re-
fer to the propositions.

We begin by comparing Darboux-based proof rules, i.e. {DI=,C-c,P-c} and then
proceed to the Lie-based proof rule family, i.e. {Lie,Lie◦,Lie∗}. Next, we demonstrate
the deductive superiority of the necessary and sufficient conditions in the premise of
the proof rule DRI. Finally, we establish that Darboux-based proof rules and Lie-based
proof rules form two distinct proof rule families; that is, any proof rule from one family
is deductively incomparable to any proof rule from the other family.

Proposition 2. DI= ≺ C-c.

Proof. The premise of the rule C-c requires the existence of some λ ∈ R, such that
Lp(h) = λh. In particular, λ = 0 gives the premise of DI=. Thus, DI= 4 C-c. To
see that DI= 6< C-c, consider the one-dimensional vector field p = (x), we have
Lp(x) = 1x, and hence C-c (λ = 1) concludes that x = 0 is an invariant. However,
DI= cannot prove the invariance of x = 0 because x is not a conserved quantity in the
system. ut

Proposition 3. C-c ≺ P-c.

Proof. The premise of the rule P-c requires the existence of some α ∈ R[x], such
that Lp(h) = αh (equivalently, Lp(h) ∈ 〈h〉). In particular, the constant polynomial
gives the premise of C-c. Thus, C-c 4 P-c. To prove that C-c 6< P-c, consider he two-
dimensional vector field p = (xy, x), we have Lp(x) = xy (or equivalently Lp(x) ∈
〈x〉 ⊂ R[x, y]) and hence conclude, using P-c, that x = 0 is an invariant. However, C-c
fails to prove this invariant as the required cofactor is not a scalar. ut

Proposition 4. Lie ≺ Lie◦ and Lie◦ ≺ Lie∗.



8 K. Ghorbal, A. Sogokon, and A. Platzer

Proof. We already established that Lie 4 Lie◦ (Prop. 1) and Lie◦ 4 Lie∗ (Prop. 1); we
give two counterexamples to establish the strict inclusion. (I) Lie 64 Lie◦. Whenever
the variety has a singularity, the proof rule Lie will fail. Lie◦ is tailored to prove invari-
ance of equilibrium points in addition to regular points of the variety. For instance, for
p = ((−1+x1)x2, x2(1+x2)), Lie fails to prove that h = (−1+x1)2+(1+x2)

2 = 0
is invariant as the gradient ∇h vanishes at (1,−1) and h((1,−1)) = 0. However, at
(1,−1) we also have p1 = p2 = 0, and hence the premise of Lie◦ is satisfied, and
h = 0 is proved to be an invariant under the flow of p. (II) Lie◦ 64 Lie∗. In addition
to equilibria, Lie∗ goes one step further and handles all singular points, x, where the
vector x + λp is in the variety VR(h) for all λ ∈ R (that is h(x + λp) = 0, for all
λ). For instance, consider the polynomial h = x1x2x3, its singular locus is given by
the three axes x1 = x2 = 0, x1 = x3 = 0 and x2 = x3 = 0. For the vector field
p = (x1, x2, x3), the equilibrium point is at the origin (0, 0, 0), which obviously does
not contain the entire singular locus of h. Thus, Lie◦ fails but Lie∗ succeeds because
h(x+ λp) = 0 when x is a point of one of the axes. ut

Proposition 5. P-c ≺ DRI and Lie∗ ≺ DRI.

Proof. DRI is both necessary and sufficient [9], so we know that P-c 4 DRI and
Lie∗ 4 DRI. To prove the claim it is left to show that (I) P-c 6< DRI. Consider the
following two-dimensional vector field: p = ((−1+ x1)(1+ x1), (−1+ x2)(1+ x2)).
The candidate invariant (given by the roots of the Motzkin polynomial) h = 1−3x21x22+
x41x

2
2+x

2
1x

4
2 = 0 cannot be proved using P-c, as Lp(h) 6∈ 〈h〉. However, the invariance

property may be proved using DRI. For this, we need to consider the second-order Lie
derivative of h and we prove that L(2)

p (h) ∈ 〈h,Lp(h)〉. Thus, the premise of DRI
holds for N = 2. (II) Lie∗ 6< DRI. Consider the following three-dimensional vector
field p = (−x2+x1(1−x21−x22), x1+x2(1−x21−x22), x3). We want to prove that h =
(−1+x21+x22)2+x23 = 0 is an invariant. In this case, the variety VR(h) is exactly equal
to the singular locus of h which is the two-dimensional unit circle −1 + x21 + x22 = 0.
However, at all points of this unit circle, the vector field p is equal to (−x2, x1, 0) 6= 0,
which prevents us from using Lie∗ (because h((x1, x2, 0) + λ(−x2, x1, 0)) 6= 0 for
some λ ∈ R). The rule DRI proves the invariance of h = 0 with N = 2. ut

To appreciate the difference between DI= and Lie, let us note that while the condi-
tion in the premise of DI= may seem strong (i.e. too conservative), singularities in the
invariant candidate do not present a problem for DI=, whereas the premise of Lie rules
out such candidates altogether (see Fig. 4). Indeed, the proof rule Lie cannot prove that
0 = 0 (the whole space is invariant), whereas this is the most trivial case for DI=.

Proposition 6 (DI= and Lie are incomparable.). DI= ≺� Lie.

Proof. (I) DI= 64 Lie. For the vector field p = (−2x2,−2x1 − 3x21), the equation
x21 + x31 − x22 = 0 is provable with DI= but not Lie, see Fig. 4 (left). (II) DI= 64 Lie.
For the vector field p = (x1 − x31 − x2 − x1x22, x1 + x2 − x21x2 − x32), the invariance
of the limiting cycle x21 + x22 − 1 = 0 is provable with Lie but not DI=, see Fig. 4
(right). ut
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x1

x
2

x1

x
2

Figure 4: The invariance of the variety VR(x
2
1 + x31 − x22) (left) provable using DI=

(but not Lie since (0, 0) is a singular point) and a smooth invariant limit cycle VR(x
2
1 +

x22 − 1) (right) provable using Lie (but not DI= since it is not an invariant function).

We now prove that Lie-based proof rules {Lie,Lie◦,Lie∗}, and Darboux-based
proof rules {DI=,C-c,P-c} are two distinct families of proof rules; that is, any Lie-
based proof is deductively incomparable to any Darboux-based proof rule. The follow-
ing lemma follows from the transitivity of the partial order.

Lemma 1. If R1 4 R2 and R3 ≺� R1, then R2 64 R3.

Proof. Consider three proof rules R1, R2 and R3. If R2 4 R3, using R1 4 R2, one
gets by transitivity R1 4 R3, which contradicts the assumption R3 ≺� R1.

Proposition 7. DI= ≺� Lie∗.

Proof. Since Lie 4 Lie◦ (Prop. 1) and Lie◦ 4 Lie∗ (Prop. 1), then Lie 4 Lie∗. By
Lem. 1, from Lie 4 Lie∗ and DI= ≺� Lie (Prop. 6), we get Lie∗ 64 DI=. The fol-
lowing example proves that DI= 64 Lie∗: Consider the three-dimensional vector field
p = (x2,−x1, 0). The invariance of the equation x23 + (−1+ x21 + x22 + x23)

2 = 0 can-
not be established using Lie∗ (the singular locus is a circle in R3), but is easily provable
using DI= as Lp(h) vanishes. ut

Proposition 8. DI= ≺� Lie◦.

Proof. By Lem. 1, from Lie 4 Lie◦ (Prop. 1) and DI= ≺� Lie (Prop. 6), we get Lie◦ 64
DI=. On the other hand, if DI= 4 Lie◦ then, by transitivity DI= 4 Lie∗ (since Lie◦ 4
Lie∗ by Prop. 1), which contradicts DI= ≺� Lie∗ (Prop. 7). Thus, DI= 64 Lie◦, and
the proposition follows. ut

Similarly, by substituting DI= by Lie, Lie∗ by P-c, and Lie◦ by C-c in Prop. 7 and
Prop. 8 as well as their respective proofs, we show that:

Proposition 9. Lie ≺� P-c and Lie ≺� C-c.

Proof. To complete the proof, we still need an example showing that Lie 64 P-c. Con-
sider the vector field p = (3(−4 + x2), 3 + xy − y2), the proof rule Lie fails to prove
that the equation h = −3+x2+2xy+6y2+2xy3+y4 = 0 is invariant as the singular
locus of h contains (−2, 1) and (2,−1). However, Lp(h) = (6x − 4y)h and therefore
P-c proves that h = 0 is an invariant equation. ut
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The remaining cases follow from the results established above.

Proposition 10. For d ∈ {C-c,P-c}, ` ∈ {Lie◦,Lie∗}, d ≺� `.
Proof. Since DI= ≺ d, if d 4 `, then DI= 4 `. However, DI= ≺� ` (Prop. 7 and
Prop. 8). Thus d 64 `. Similarly, since l � Lie, if d < `, then d < Lie which contradicts
d ≺� Lie (Prop. 9). Hence d 6< ` and the proposition follows. ut
Remark 1. Provided the invariant candidate has no singular points, Lie’s criterion is
known to be both necessary and sufficient to prove invariance properties of level sets
[19, Theorem 2.8]. Also, DI= characterizes invariant functions [23] but not all invari-
ant equations. On the other hand, for algebraic differential equations, the differential
radical criterion in DRI fully characterizes all invariant algebraic sets [9]. Thus, as es-
tablished in Prop. 5, DRI increases the deductive power of both Darboux-based rules
{DI=,C-c,P-c} and Lie-based rules {Lie,Lie◦,Lie∗}, which form different families.

4.2 Complexity

While decidable [28], the complexity of real quantifier elimination is doubly expo-
nential in the number of quantifier alternations [6]. Most existing implementations of
real quantifier elimination procedures are based on cylindrical algebraic decomposition
(CAD) [2,3], which has doubly-exponential running time in the number of variables.

The purely existential fragment of real quantifier elimination has been shown to
exhibit singly exponential time complexity in the number of variables [1]. However, in
practice this has not yet led to an efficient decision procedure, so typically it is much
more efficient to use CAD. Theoretically, the best bound on the complexity of deciding
a sentence in the universal theory of R is given by (sd)O(n), where s is the number of
polynomials in the formula, d their maximum degree and n the number of variables [1].

The premises of rules DI=, Lie, Lie◦, Lie∗ are universally quantified sentences in
the theory of real arithmetic. One sees from the expression for the complexity bound
that it is important for these rules to keep the number of variables low and also that it is
desirable to work with polynomials of low degree. In this respect, we would anticipate
the rule Lie∗ to incur a performance penalty from introducing a fresh variable.

C-c and P-c involve reasoning about multivariate polynomial ideal membership,
which is an EXPSPACE-complete problem over Q [17]. Gröbner basis algorithms al-
low us to perform membership checks in ideals generated by multivariate polynomials.
Significant advances have been made in algorithms for computing Gröbner bases [8]
which in practice can be expected to perform very well.

The premise of DRI may be decided using a real quantifier elimination procedure,
like any other first-order sentence in the theory of real arithmetic. However, in order to
obtain the bound N on the order of the Lie derivatives, one is also required to check for
polynomial ideal membership at least N − 1 times.

5 Square-free Reduction

In this section we assess the utility of performing square-free reduction of invariant
candidates as a means of (i) increasing the deductive power of Lie-based proof rules
and (ii) simplifying problems passed to decision procedures for real arithmetic.
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5.1 Square-free Reduction with Lie-based Proof Rules

While Lie uses a powerful criterion that captures a large class of practically relevant
invariant sets, it will fail for some seemingly simple invariant candidates. For instance,
the condition in the premise of Lie will not hold when the goal is to prove that h =
x2 − 6x + 9 = 0 is invariant, no matter what vector field one considers. The reason
for this is simple: x2 − 6x + 9 factorizes into (x − 3)2. The problem here lies in the
polynomial h itself, rather than the real variety VR(h). In fact, VR(h) is exactly the
singular locus of h and the proof rule Lie fails because all points inside VR(h) are
singular points. More generally, the chain rule implies∇hk · p = khk−1∇h · p, which
has the consequence that any polynomial h which is not square-free will have vanishing
gradient at the real roots of factors with multiplicity greater than 1.

One can eliminate such annoying instances by reducing h to square-free form,
which is a basic pre-processing step used in computer algebra systems. The square-free
reduction of a polynomial h may be computed efficiently as follows:

SF(h) =
h

gcd
(
h, ∂h∂x1

, . . . , ∂h∂xn

) . (5)

Intuitively, in performing square-free reduction we hope to shrink the singular locus
of the original polynomial. If SL(SF(h)) is the empty set (which is the case for h =
x2 − 6x + 9 in the example given above), the proof rule Lie applies to SF(h) but not
to h. In general, SF(h) may satisfy the assumptions of the proof rules Lie◦ or Lie∗,
where h fails to do so. It is always sound to conclude that h = 0 is invariant from
the knowledge that SF(h) = 0 is invariant, since real varieties remain unaltered under
square-free reduction of their defining polynomials [4], i.e. VR(h) ≡ VR(SF(h)), thus
replacing hwith SF(h) in the premise of Lie, Lie◦ and Lie∗ remains sound and enlarges
the class of polynomials that these proof rules can work with.

Proposition 11. For all ` ∈ {Lie,Lie◦,Lie∗}, ` ≺ SF `.

This result is unsurprising when one understands that Lie-based proof rules use
geometric concepts to prove invariance properties of sets. In fact, the square-free reduc-
tion removes some purely algebraic oddities that prevent the geometric condition from
holding true when checked syntactically by a machine.

In addition to increasing the deductive power, the square-free reduction reduces the
total degree of the polynomial in the invariant candidate and hence serves to reduce
the complexity of deciding the conditions in the premise (see Section 4.2). In our im-
plementation, we adopt the convention that invariant candidates supplied to Lie and its
generalizations are square-free reduced in a pre-processing step.

5.2 Square-free Reduction with Darboux-based proof rules

Unlike Lie-based proof rules, it is perhaps surprising that using square-free reduction
as a pre-processing step for the proof rules DI= and C-c, denoted SFDI= and SFC-c
respectively, does not, in general, increase the deductive power.

Proposition 12. DI= ≺� SFDI=.
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Proof. (I) DI= 6≺ SFDI=. The polynomial h = x2y is an invariant function for
the vector field p = (∂h∂y ,−

∂h
∂x ) = (x2,−2xy), thus DI= proves the invariance of

h = 0. However, SF(h) is not an invariant function for the same vector field, since
Lp(SF(h)) = Lp(xy) = −x2y 6= 0, thus SFDI= fails to prove the invariance of
h = 0. (II) SFDI= 6≺ DI=. Similarly, the polynomial h = xy is an invariant function
for the vector field p = (∂h∂y ,−

∂h
∂x ) = (x,−y), thus SFDI= proves the invariance of

x2y = 0, since SF(x2y) = h. However, DI= fails to prove the invariance of x2y = 0,
because Lp(x

2y) = x2y 6= 0. ut

Prop. 12 may at first seem counter-intuitive. However, the criterion in the premise
of DI= is different in that it proves that the candidate h is an invariant function. In per-
forming square-free reduction on h, one in general obtains a different function, SF(h),
which need not be conserved in the system if h is conserved or, conversely, may be
conserved even if h is not.

The same observation holds for C-c as the SF reduction does not preserve the con-
stant rate exponential decrease (or increase).

Proposition 13. C-c ≺� SFC-c.

Proof. (I) C-c 6≺ SFC-c. The proof rule C-c proves the invariance of h = x2y = 0
for the vector field p = (x2, y(1 − 2x)) as Lp(h) = 1h. However, C-c cannot prove
SF(h) = 0, since Lp(SF(h)) = Lp(xy) = (1− x) SF(h). (II) SFC-c 6≺ C-c. For the
same h, C-c proves the invariance of SF(h) = 0 for the vector field p = (x2, y(1−x))
as Lp(SF(h)) = Lp(xy) = 1 SF(h). However, without the SF reduction C-c alone
fails to prove the invariance of h = 0 for the considered p, as Lp(h) = (x+ 1)h. ut

After Prop. 12 and 13, one expects P-c to be incomparable with its square-free coun-
terpart. Surprisingly, the proof rules P-c and SFP-c (which applies P-c after the square-
free reduction) are in fact equivalent. This follows from the fact that a polynomial is
Darboux for a vector field p if and only if all its factors are also Darboux for the same
vector field. Our findings are stated in Prop. 14 and its corollary Prop. 15 (both proofs
are available in the report [10]).

Proposition 14. Let h = qm1
1 · · · qmr

r denote the decomposition of the polynomial h
into irreducible (over the reals) factors, qi. Then, h is Darboux for p if and only if, for
all i, qi is Darboux for p.

Proposition 15. P-c ∼ SFP-c.

Remark 2. The condition Lp(p) ∈ 〈SF(p)〉—which is weaker than Lp(p) ∈ 〈p〉—is
not sufficient to prove the invariance of p = 0. It is therefore an unsound proof rule.
Consider the polynomial p = (−1 + x2)2 and the 1-dimensional vector field ẋ = x.
Although Lp(p) = 4(−1 + x2)x2 ∈ 〈−1 + x2〉 = 〈SF(p)〉, the equation p = 0 is not
invariant, however, because x(t) = ±et. Notice that the proof rule P-c (with or without
the square-free reduction) is unable to prove or disprove the invariance of p = 0.
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5.3 Square-free Reduction On Differential Radical Invariants (DRI)

Square-free reduction cannot increase the deductive power of the proof rule DRI be-
cause its premise is necessary and sufficient to prove invariance of real algebraic sets,
which is unaffected by applying SF reduction. However, the computational impact of
using square-free reduction with DRI remains an interesting question. Empirically, we
observed a better performance of DRI when the SF reduction is applied first. In addi-
tion to lowering the degrees of the involved polynomials (as it did for Lie-based proof
rules), we observed that the order NSF for SF(h) is always lower than the order N for
h. We, therefore, conjecture NSF ≤ N . However, we identified an example for which
square-free reduction resulted in a significant (×100) computational overhead (see [10,
Section 5.3]) due to the ideal membership checking (which we perform using Gröbner
bases with reverse lexicographic monomial ordering). In our implementation of DRI,
called DRIopt in the sequel, we use the square-free reduction only as a pre-processing
step for the quantifier elimination problems in the premise of DRI.

Remark 3. Notice that Prop. 14 does not have an analogue for DRI. In other words, if
a polynomial equation h = 0 is invariant for p, its irreducible factors need not define
invariant equations themselves. Geometrically, this means that if a variety is invariant
under the flow of p, its irreducible components need not be invariants under the flow of
p. For instance, consider the irreducible polynomials q1 = y−1 and q2 = x2+(y−1)2.
The equation q1q2 = 0 which is equivalent to y = 1, is invariant for p = (1, 0), since
the premise of the proof rule DRI holds true for N = 3. However, the equation q2 = 0,
which is equivalent to x = 0 ∧ y = 1, is not an invariant equation for p.

6 Experimental Comparison

We empirically compare the running time performance of all the proof rules discussed
in this paper on a heterogeneous collection of 76 invariant varieties (available in [10]).
The examples we used originate from a number of sources—many come from textbooks
on Dynamical Systems; some from the literature on formal verification of hybrid sys-
tems; others have been hand-crafted to exploit sweetspots of certain proof rules. In this
section, the prefix SF is implicit for all Lie-based proof rules. We consider 4 equally
sized classes of invariant sets: (1) 24 smooth invariants, where Lie is both necessary
and sufficient, (2) 17 isolated equilibria as trivial (for humans, not machines) equa-
tional invariants for which both Lie◦ and Lie∗ provide necessary and sufficient condi-
tions, (3) 17 other singularities and high integrals, (4) 18 functional invariants, where
DI= is necessary and sufficient. The most interesting experimental question we seek to
address here is whether the greater generality of the more deductively powerful proof
rules also comes at a substantially higher computational cost when assessed across the
entire spectrum of examples. As a complement to the theoretical deductive power re-
lationships between the different proof rules (Section 4), we also seek to identify some
nuances in the complexity of the conditions in the premises, which the coarse-grained
complexity bounds miss, being highly sensitive to the number of variables.

From our experiments it emerges that the proof rules exhibit different (and at times
surprising) trade-offs between generality and efficiency. Figure 5 compares the number
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Figure 5: Experimental performance of proof rules: problems solved per time (log scale)

of invariant varieties that each rule could prove within 60 seconds. The vertical axis
shows cumulative time spent on the problems. All runs were performed on an Intel
Core i5 1.7GHz machine with 4Gb RAM. Generally, we observe DRI performing very
well across the entire spectrum of problem classes. This is very encouraging, but also
at first sight appears to defy intuition since it implies that one does not necessarily
sacrifice performance when opting to use a more deductively powerful rule. In this
graph, we also see that overall Lie◦ appears to offer an interesting compromise between
deductive power and efficiency—it is able to prove a significant body of problems that
are out of scope for Lie, while avoiding the complexity penalty which affects Lie∗ (due
to introducing an extra variable).

A more careful analysis of the benchmarks reveals interesting relationships that are
obscured in the “big picture”; to see them, one needs to consider the individual classes
of invariants for which some of the sufficient conditions in the rules are in fact neces-
sary and sufficient. Together with DRI, this yields two decision procedures for each
class and allows us to focus only on running time performance and assess practical-
ity of proof rules. In Fig. 6, we observe the rules Lie◦ and Lie∗ performing very well in
proving invariance of isolated equilibria. This is to be expected as Lie◦ in particular was
formulated with this problem class in mind. It is interesting that DRI remains highly
competitive here; though its performance is slightly poorer in our set of benchmarks.

It is clear that because proof rules Lie◦ and Lie∗ generalize Lie, they will be able
to prove every problem in the smooth invariant benchmarks. The running time perfor-
mance of the three rules is almost identical, with Lie offering a slight speed-up over
its generalizations. The premises of Lie◦ and Lie∗ impose conditions on states in the
singular locus, which is the empty set for smooth invariants; this, in practice, appears
to be slightly more expensive than checking an equivalent property that the gradient is
non-vanishing on the variety (as in the premise of Lie).

The proof rules DI= and P-c, corresponding to conditions with historical origins
in the study of integrability of dynamical systems, can be seen to perform very well in
proving functional invariants, while performing very poorly in benchmarks for isolated
equilibria. In proofs of smooth invariants their behaviour is radically different, with DI=
proving only a handful of examples and P-c succeeding in proving most of the prob-
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Figure 6: Number of problems solved per class (log scale).

lems very efficiently. This can be explained by the fact that P-c generalizes DI= and is
therefore more deductively powerful. P-c appears slightly slower at proving functional
invariants, but shows very impressive running time performance for some problems
from the smooth invariant benchmarks, where it is the fastest proof rule for many of
problems where it succeeds. Comparing running time performance with DRI, we see
that DRI is only slightly slower at proving functional invariants than DI= and P-c.
Again, the performance gap between DRI and the two rules appears to be insignificant
for most problems. Theoretically, when P-c proves an invariant, DRI applies conditions
that are identical to the premise of P-c. Hence, although DRI is a generalization, this
does not come at a significant extra cost for the classes where P-c shows good running
time performance. The slightly greater running time of DRI compared to that of P-c
can be accounted for by the fact that in our implementation DRI computes the Gröbner
basis for every order N including for N = 1 where such computation is unnecessary.

For functional invariants DI= benefits from the fact that the condition in its premise,
which requires to show that the Lie derivative evaluates to zero everywhere, is equiv-
alent to showing that the Lie derivative is the zero polynomial, which can be checked
very efficiently by symbolic computation, without a decision procedure for real arith-
metic.

In the examples featuring singularities and high integrals in the benchmarks we see
DRI as the clear winner, simply because there was no other rule that was tailored to
work on this class. Indeed, the structure of these invariant sets can be rather involved,
making it difficult to characterize in a single proof rule; however, sometimes it is pos-



16 K. Ghorbal, A. Sogokon, and A. Platzer

sible to exploit the structure of high integrals inside a proof system and arrive at very
efficient proofs that outperform DRI [11].

It is not surprising that DRI should overtake all the other rules in terms of deductive
power (it is, after all, necessary and sufficient); what is remarkable is that the perfor-
mance we observe for DRI is often very competitive to that of the sufficient rules when
they also succeed at a proof. This observation suggests a possible strategy for proof
search in a proof system: give precedence to DRI and switch to other sufficient rules
if DRI takes longer than some time-out value. The rationale behind this decision is our
empirical observation that DRI performs consistently well on all problem classes we
considered, but it is also sometimes possible to save time by using a proof rule which
is less deductively powerful. It is important to note here that the overall proof system
benefits from including the sufficient proof rules, rather than relying solely upon DRI.

7 Related Work

TALY & TIWARI in [27] investigate an approach to proving invariance properties of
non-strict polynomial inequalities and closed semi-algebraic sets which inspired our
formulation of the proof rules Lie◦ and Lie∗ for real algebraic varieties; we employ
the same ideas for reasoning about the singular locus separately and appealing to the
Nagumo theorem for the proof of soundness. At least some of the difficulties encoun-
tered with inequalities in [27] can be eliminated for real algebraic sets by working only
with square-free reduced polynomials; a reduction we perform as a pre-processing step.
Indeed, in [27] the authors provide a simple example in which an invariant polynomial
equality is encoded as a polynomial inequality of the form h2 ≤ 0 (over the reals this is
equivalent to h2 = 0) which falls out of scope of their proof rules. Square-free reduc-
tion may be extended to polynomial inequalities using order parity decomposition [7]
and makes progress possible on similar problems.

The deductive power of the proof rule DI (which generalizes DI= to semi-algebraic
sets) combined with other proof rules (such as differential cut or differential weakening)
have been investigated in [24]. In this work, we focus on sound proof rules for checking
invariance properties of algebraic sets and investigate their deductive power as well as
their practical efficiency. To our knowledge, this is the first attempt to structure and
empirically compare the performance of the proof rules we considered.

8 Conclusions and Future Work

We have theoretically and empirically compared proof rules for checking invariance
properties of real algebraic sets in polynomial vector fields. Our work investigated an
important aspect of deductive safety verification of continuous and hybrid dynamical
systems. Namely, given the abundance of existing sufficient conditions for invariant
equations (DI=, C-c and P-c, Lie), in addition to the extensions of Lie’s criterion,
Lie◦ and Lie∗, and the recently developed necessary and sufficient conditions for real
algebraic invariants (DRI [9]), it is crucial to know whether the gains in deductive
power come at the price of greater computational complexity and poor running time
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performance that would hinder practical applications. The work presented in this paper
leads us to arrive at the following conclusions:

• Empirically, we observe that the most deductively powerful rule (DRI) performs
very well in checking invariance of polynomial equalities.

• P-c is made redundant by DRI (DRI strictly increases the deductive power of P-c
while being equally efficient).

• Reducing polynomials to square-free form is always of benefit to the proof rule Lie
and its generalizations, where it yields improvements in both the deductive power
and the running time performance.

• We proved that combining SF with the proof rules DI= and C-c yields new incom-
parable proof rules, whereas SF with P-c is as powerful as P-c alone.

• Performing square-free reduction of an invariant candidate may introduce a perfor-
mance penalty for DRI and therefore cannot be regarded as an optimization.

It is our hope to extend this work to similarly study proof methods for invariance of
semi-algebraic sets in polynomial vector fields. This problem is of fundamental impor-
tance to verification of continuous and hybrid systems [20,22] and a better understand-
ing of the factors affecting proof rule efficiency has the potential to be of considerable
practical utility. There are currently three available methods that have been proposed
for checking invariance of semi-algebraic sets: the method of differential invariants due
to Platzer [25], a characterization of invariant semi-algebraic sets due to Liu et al. [15]
and a method for closed semi-algebraic sets based on the Nagumo theorem proposed
by Taly & Tiwari [27]. The latter approach can unfortunately be shown to be unsound
(we identify the problem in [10, Appendix B]); however, this deficiency can be fixed. It
would be very interesting to extend the work presented in this paper to investigate the
relationship between deductive power and running time performance in the aforemen-
tioned methods. We leave this for future work.
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