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Abstract We prove that any invariant algebraic set of a given polynomial vector
field can be algebraically represented by one polynomial and a finite set of its
successive Lie derivatives. This so-called differential radical characterization re-
lies on a sound abstraction of the reachable set of solutions by the smallest variety
that contains it. The characterization leads to a differential radical invariant proof
rule that is sound and complete, which implies that invariance of algebraic equa-
tions over real-closed fields is decidable. Furthermore, the problem of generating
invariant varieties is shown to be as hard as minimizing the rank of a symbolic
matrix, and is therefore NP-hard. We investigate symbolic linear algebra tools
based on Gaussian elimination to efficiently automate the generation. The ap-
proach can, e.g., generate nontrivial algebraic invariant equations capturing the
airplane behavior during take-off or landing in longitudinal motion.

Keywords: invariant algebraic sets, polynomial vector fields, real algebraic ge-
ometry, Zariski topology, higher-order Lie derivation, automated generation and
checking, symbolic linear algebra, rank minimization, formal verification

1 Introduction

Reasoning about the solutions of differential equations by means of their conserved
functions and expressions is ubiquitous all over science studying dynamical processes.
It is even crucial in many scientific fields (e.g. control theory or experimental physics),
where a guarantee that the behavior of the system will remain within a certain pre-
dictable region is required. In computer science, the interest of the automated gener-
ation of these conserved expressions, so-called invariants, was essentially driven and
motivated by the formal verification of different aspects of hybrid systems, i.e. systems
combining discrete dynamics with differential equations for the continuous dynamics.

The verification of hybrid systems requires ways of handling both the discrete and
continuous dynamics, e.g., by proofs [15], abstraction [21,27], or approximation [10].
Fundamentally, however, the study of the safety of hybrid systems can be shown to
reduce constructively to the problem of generating invariants for their differential equa-
tions [18]. We focus on this core problem in this paper. We study the case of algebraic
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invariant equation, i.e. invariants described by a polynomial equation of the form h = 0
for a polynomial h. We also only consider algebraic differential equations (or algebraic
vector fields), i.e. systems of ordinary differential equations in (vectorial) explicit form
dx
dt = p(x), with a polynomial right-hand side, p. The class of algebraic vector fields
is far from restrictive and many analytic nonalgebraic functions, such as the square
root, the inverse, the exponential or trigonometric functions, can be exactly modeled as
solutions of ordinary differential equations with a polynomial vector field (a concrete
example will be given in Section 6.2).

While algebraic invariant equations are not the only invariants of interest for hybrid
systems [19,17], they are still intimately related to all other algebraic invariants, such
as semialgebraic invariants. We, thus, believe that the characterization we achieve in
this paper to be an important step forward in understanding the invariance problem of
polynomial vector fields, and hence the hybrid systems with polynomial vector fields.

Our results indicate that algebraic geometry is well suited to reason about and effec-
tively compute algebraic invariant equations. Relevant concepts and results from alge-
braic geometry will be introduced and discussed as needed. The proofs of all presented
results are available in [5].

Content In Section 2, we introduce a precise algebraic abstraction of the reachable set
of the solution of a generic algebraic initial value problem. This abstraction is used to
give a necessary and sufficient condition for a polynomial h to have the reachable set of
the solution as a subset of the set of its roots. Section 3 builds on top of this characteri-
zation to, firstly, check the invariance of a variety candidate (Section 3.1) and, secondly,
give an algebraic characterization for a variety to be an invariant for a polynomial vector
field (Section 3.2). The characterization of invariant varieties is exploited in Section 4
where the generation of invariant varieties is reduced to symbolic linear algebra com-
putation. The contributions of this work are summarized in Section 5. Finally, Section 6
presents three case studies to highlight the importance of our approach through concrete
and rather challenging examples.

2 Sound and Precise Algebraic Abstraction by Zariski Closure

We consider autonomous1 algebraic initial value problems (see Def. 1 below). A nonau-
tonomous system with polynomial time dependency can be reformulated as an au-
tonomous system by adding a clock variable that reflects the progress of time. In this
section, we investigate algebraic invariant equations for the considered initial value
problems. This study is novel and will turn out to be fruitful from both the theoreti-
cal and practical points of view. The usual approach which assumes the initial value to
be in a region of the space, often an algebraic set, will be discussed in Section 3.

Let x = (x1, . . . , xn) ∈ Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,
t 7→ xi(t). The initial value x(tι) = (x1(tι), . . . , xn(tι)) ∈ Rn, for some tι ∈ R, will
be denoted by xι. We do not consider any additional constraint on the dynamics, that is
the evolution domain corresponds to the domain of definition.

1 Autonomous means that the rate of change of the system over time depends only on the sys-
tem’s state, not on time.
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Definition 1 (Algebraic Initial Value Problem). Let pi, 1 ≤ i ≤ n, be multivariate
polynomials of the polynomial ring R[x]. An algebraic initial value problem is a pair
of an explicit algebraic ordinary differential equations system (or polynomial vector
field), p, and an initial value, xι ∈ Rn:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n, x(tι) = xι . (1)

Since polynomial functions are smooth (C∞, i.e. they have derivatives of any order),
they are locally Lipschitz-continuous. By Cauchy-Lipschitz theorem (a.k.a. Picard-
Lindelöf theorem), there exists a unique maximal solution to the initial value prob-
lem (1) defined on some nonempty open set Ut ⊆ R. A global solution defined for
all t ∈ R may not exist in general. For instance, the maximal solution x(t) of the
1-dimensional system

{
ẋ = x2, x(tι) = xι 6= 0

}
is defined on R \ {tι + x−1ι }.

Algebraic invariant equations for initial value problems are defined as follows.

Definition 2 (Algebraic Invariant Equation (Initial Value Problem)).
An algebraic invariant equation for the initial value problem (1) is an expression of

the form h(x(t)) = 0 that holds true for all t ∈ Ut, where h ∈ R[x] and x : Ut → Rn,
is the (unique) maximal solution of (1).

Notice that any (finite) disjunction of conjunctions of algebraic invariant equations
over the reals is also an algebraic invariant equation (w.r.t. Def. 2) using the following
equivalence (R[x] is an integral domain):∨

i

∧
j

fi,j = 0←→
∏
i

∑
j

f2i,j = 0 . (2)

In Def. 2, the function h(x(t)), and hence the polynomial h(x), depend on the fixed
but unknown initial value xι. We implicitly assume this dependency for a clearer nota-
tion and will emphasize it whenever needed. Also, observe that h(x(t)), seen as a real
valued function of time t, is only defined over the open set Ut ⊆ R since the solution
x(t) is itself only defined over Ut. The polynomial function h : Rn → R;x 7→ h(x)
is, however, defined for all Rn.

Definition 3 (Orbit). The reachable set, or orbit, of the solution of Eq. (1), x(t) is

defined as O(xι)
def
= {x(t) | t ∈ Ut} ⊆ Rn.

The complete geometrical characterization of the orbit requires the exact solution
of Eq. (1). Very few initial value problems admit an analytic solution, although a local
approximation can be always given using Taylor series approximations (such approxi-
mation is for instance used in [10] for the verification of hybrid systems). In this work,
we introduce a sound abstraction of the orbit, O(xι), using (affine) varieties2. The idea
is to embed the orbit (which is not a variety in general) in a variety to be defined. The
embedding we will be using is a well-known topological closure operation in algebraic

2 In the literature, some authors use the terminology algebraic sets so that varieties is reserved
for irreducible algebraic sets. Here we will use both terms equally.
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geometry called the Zariski closure ([6, Chapter 1]). Varieties, which are sets of points,
can be represented and computed efficiently using their algebraic counterpart: ideals
of polynomials. Therefore, we first recall three useful definitions: an ideal of the ring
R[x], the variety of a subset of R[x], and finally the vanishing ideal of a subset of Rn.

Definition 4 (Ideal). An ideal I is a subset of R[x] that contains the polynomial zero
(0), is stable under addition, and external multiplication. That is, for all h1, h2 ∈ I , the
sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I for all q ∈ R[x].

For a finite natural number r, we denote by 〈h1, . . . , hr〉 the subset of R[x] gener-
ated by the polynomials {h1, . . . , hr}, i.e. the set of linear combinations of the polyno-
mials hi (where the coefficients are themselves polynomials):

〈h1, . . . , hr〉
def
=

{
r∑
i=1

gihi | g1, . . . , gr ∈ R[x]

}
.

By Def. 4, the set 〈h1, . . . , hr〉 is an ideal. More interestingly, by Hilbert’s Basis The-
orem [7], any ideal I of the Noetherian ring R[x] can be finitely generated by, say
{h1, . . . , hr}, so that I = 〈h1, . . . , hr〉.

Given Y ⊆ R[x], the variety (over the reals), V (Y ), is a subset of Rn defined by
the common roots of all polynomials in Y . That is,

V (Y )
def
=
{
x ∈ Rn | ∀h ∈ Y, h(x) = 0

}
.

The vanishing ideal (over the reals), I(S), of S ⊆ Rn is the set of all polynomials
that evaluates to zero for all x ∈ S:

I(S)
def
=
{
h ∈ R[x] | ∀x ∈ S, h(x) = 0

}
.

The Zariski closure Ō(xι) of the orbit O(xι) is defined as the variety of the van-
ishing ideal of O(xι):

Ō(xι)
def
= V (I(O(xι))) . (3)

That is, Ō(xι) is defined as the set of all points that are common roots of all polynomials
that are zero everywhere on the orbit O(xι). The variety Ō(xι) soundly overapproxi-
mates all reachable states x(t) in the orbit of O(xι), including the initial value xι:

Proposition 1 (Soundness of Zariski Closure). O(xι) ⊆ Ō(xι) .

Therefore, all safety properties that hold true for Ō(xι), are also true for O(xι).
The soundness in Proposition 1 corresponds to the reflexivity property of the Zariski
closure: for any subset S of Rn, S ⊆ V (I(S)). Besides, the algebraic geometrical fact
that the Zariski closure Ō(xι) is the smallest3 variety containing O(xι) corresponds to
the fact that Ō(xι) is the most precise algebraic abstraction of O(xι).

Observe that if the set of generators of I(O(xι)) is only the zero polynomial,
I(O(xι)) = 〈0〉, then Ō(xι) = Rn (the whole space) and the Zariski closure fails

3 Smallest here is to be understood w.r.t. to the usual geometrical sense, that is, any other variety
containing O(xι), contains also its closure Ō(xι).
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to be informative. For instance, for (non-degenerated) one dimensional vector fields
(n = 1) that evolve over time, the only univariate polynomial that has infinitely many
roots is the zero polynomial. This points out the limitation of the closure operation used
in this work and raises interesting question about how to deal with such cases (this will
be left as future work).

The closure operation abstracts time. This means that Ō(xι) defines a subset of
Rn within which the solution always evolves without saying anything about where the
system will be at what time (which is what a solution would describe and which is
exactly what the abstraction we are defining here gets rid off). In particular, Ō(xι) is
independent of whether the system evolves forward or backward in time.

Although, we know that I(O(xι)) is finitely generated, computing all its genera-
tors may be intractable. By the real Nullstellensatz, vanishing ideals over R are in fact
exactly the real radical ideals [1, Section 4.1]. In real algebraic geometry, real radical
ideals are notoriously hard4 to compute. However, we shall see in the sequel that Lie
derivation will give us a powerful computational handle that permits to tightly approx-
imate (and even compute in some cases) I(O(xι)). The Lie derivative of a polynomial
along a vector field is defined as follows.

Definition 5 (Lie Derivative). The Lie derivative of h ∈ R[x] along the vector field
p = (p1, . . . , pn) is defined by:

Lp(h)
def
=

n∑
i=1

∂h

∂xi
pi . (4)

Higher-order Lie derivatives are defined recursively: L(k+1)
p (h)

def
= Lp(L

(k)
p (h)), with

L
(0)
p (h)

def
= h.

We state an important property of the ideal I(O(xι)). Similar result is known under
different formulations ([23, Theorem 3.1] and [16, Lemma 3.7]).

Proposition 2. I(O(xι)) is a differential ideal for Lp, i.e. it is stable under the action
of the Lp operator. That is, for all h ∈ I(O(xι)), Lp(h) ∈ I(O(xι)).

In the next section, we give a necessary and sufficient condition for a polynomial h
to be in I(O(xι)), that is for the expression h = 0 to be an algebraic invariant equation
for the initial value problem (1), i.e. h evaluates to 0 all along the orbit of xι.

3 Differential Radical Characterization

In this section, we study the algebraic properties of the Zariski closure Ō(xι) defined
in the previous section. We then define and characterize invariant algebraic sets of poly-
nomial vector fields.

4 Given an ideal I ⊆ R[x], the degree of the polynomials that generate its real radical is bounded
by the degree of polynomials that generate I to the power of 2O(n2) [14, Theorem 5.9].
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For h ∈ R[x], we recursively construct an ascending chain of ideals of R[x] by
appending successive Lie derivatives of h to the list of generators:

〈h〉 ⊂ 〈h,L(1)
p (h)〉 ⊂ · · · ⊂ 〈h, . . . ,L(N−1)

p (h)〉 = 〈h, . . . ,L(N)
p (h)〉 .

Since the ring R[x] is Noetherian, the chain above has necessarily a finite length: the
maximal ideal (in the sense of inclusion), so-called the differential radical ideal5 of h,
will be denoted by Lp

√
〈h〉. Its order is the smallest N such that:

L(N)
p (h) ∈ 〈L(0)

p (h), . . . ,L(N−1)
p (h)〉 . (5)

The following theorem, an important contribution of this work, states a necessary
and sufficient condition for a polynomial h to be in I(O(xι)).

Theorem 1 (Differential Radical Characterization). Let h ∈ R[x], and let N denote
the order of Lp

√
〈h〉. Then, h ∈ I(O(xι)) if and only if∧

0≤i≤N−1

L(i)
p (h)(xι) = 0 . (6)

The statement of Theorem 1 is general and assumes nothing about xι ∈ Rn. A nat-
ural question to ask is how differential radical characterization can be used to reason
about invariant regions of a given polynomial vector field. By invariant (or stable) re-
gions, we mean, regions S ⊂ Rn from which the trajectory of the solution of the initial
value problem (1), with xι ∈ S, can never escape. In particular, we focus on invariant
algebraic sets where S is variety.

Definition 6 (Invariant Variety). The variety S is an invariant variety for the vector
field p if and only if ∀xι ∈ S,O(xι) ⊆ S.

Dual to the geometrical point of view in Def. 6, the algebraic point of view is given
by extending the definition of algebraic invariant equation for initial value problems
(Def. 2), to algebraic invariant equation for polynomial vector fields.

Definition 7 (Algebraic Invariant Equation (Vector Field)). The expression h = 0
is an algebraic invariant equation for the vector field p if and only if V (〈h〉) is an
invariant variety for p.

Unlike Def. 2, Def. 7, or its geometrical counterpart, Def. 6, corresponds to the typ-
ical object of studies in hybrid system verification as they permit the abstraction of
the continuous part by means of algebraic equations. In the two following sections, we
show how differential radical characterization (Theorem 1) can be used to address two
particular questions: checking the invariance of a variety candidate (Section 3.1) and
characterizing invariant varieties (Section 3.2).

We will say that the polynomial h is a differential radical invariant (for p) if and
only if V

(
Lp
√
〈h〉
)

is an invariant variety for p.

5 The construction of Lp
√
〈h〉 is very similar to the construction of the radical of an ideal except

with higher-order Lie derivatives in place of higher powers of polynomials.
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3.1 Checking Invariant Varieties by Differential Radical Invariants

The problem we solve in this section is as follows: given a polynomial vector field p,
can we decide whether the equation h = 0 is an algebraic invariant equation for the
vector field p ? Dually, we want to check whether the variety V (〈h〉) is invariant for p.
Theorem 2 solves the problem.

Theorem 2. Let h ∈ R[x], and let N denote the order of Lp
√
〈h〉. Then, V (〈h〉) is an

invariant variety for the vector field p (or equivalently h = 0 is an algebraic invariant
equation for p) if and only if

h = 0→
∧

1≤i≤N−1

L(i)
p (h) = 0 . (7)

Corollary 1 (Decidability). It is decidable whether the expression h = 0 is an alge-
braic invariant equation for the vector field p assuming real algebraic coefficients for
h and p.

The sound and complete related proof rule from Theorem 2 can be written as follows
(N denotes the order of Lp

√
〈h〉):

(DRI)
h = 0→

∧
1≤i≤N−1 L

(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)
. (8)

Using the naive trick in Eq. (2), theoretically, the proof rule can be easily extended to
check for the invariance of any finite disjunction of conjunctions of algebraic invariant
equations for p. This means that we can check for the invariance of any variety for
p, given its algebraic representation. However, in practice, other techniques, outside
the scope of this paper, should be considered to try to keep the degree of the involved
polynomials as low as possible.

3.2 Differential Radical Characterization of Invariant Varieties

In the previous section, we were given a variety candidate of the form V (〈h〉) and asked
whether we can decide for its invariance. In this section, we characterize all invariant
varieties of a vector field p using a differential radical criterion. The following theorem
fully characterizes invariant varieties of polynomial vector fields.

Theorem 3 (Characterization of Invariant Varieties). A variety S is an invariant
variety for the vector field p if and only if there exists a polynomial h such that S =
V
(
Lp
√
〈h〉
)
. As a consequence, every invariant variety corresponds to an algebraic in-

variant equation involving a polynomial and its higher-order Lie derivatives (N denotes
the order of Lp

√
〈h〉): ∧

0≤i≤N−1

L(i)
p (h) = 0 . (9)
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Observe how Theorem 3 proves, from the differential radical characterization point
of view, the well-known fact about invariant polynomial functions [17, Theorem 3]:
If Lp(h(x)) = 0, then, for any c ∈ R, Lp

√
〈h(x)− c〉 = 〈h(x) − c〉, and so S =

V (〈h(x)− c〉) is an invariant variety for p.
An algebraic invariant equation for p is defined semantically (Def. 7) as a polyno-

mial that evaluates to zero if it is zero initially (admits xι as a root). Differential radi-
cal invariants are, on the other hand, defined as a structured, syntactically computable,
conjunction of polynomial equations involving one polynomial and its successive Lie
derivatives. By Theorem 3, both coincide.

The explicit formulation of Eq. (5), namely

L(N)
p (h) =

N−1∑
i=0

giL
(i)
p (h), (10)

for some gi ∈ R[x], is computationally attractive as it only involves polynomial arith-
metic on higher-order Lie derivatives of one polynomial, h, which in turn can be com-
puted automatically by symbolic differentiation. Section 4 exploits this fact to automat-
ically generate differential radical invariants and consequently invariant varieties.

4 Effective Generation of Invariant Varieties

In the previous section, we have seen (Theorem 3) that differential radical ideals charac-
terize invariant varieties. Based on Eq. (10), we explain in this section how we automat-
ically construct differential radical ideals given a polynomial vector field p by deriving
a set of constraints that the coefficients of a parametrized polynomial have to satisfy.

The degree of a polynomial in R[x] is defined as the maximum degree among the
(finite) set of degrees of its monomials6. When the degrees of all nonzero monomials
of a polynomial h are equal, we say that h is homogeneous, or a form, of degree d.

By introducing an extra variable x0 and multiplying all monomials by a suitable
power of x0, any polynomial of R[x] can be homogenized to a form in R[x0][x]. The
additional variable x0 is considered as a time-independent function: its time derivative
is zero (ẋ0 = p0 = 0). “De-homogenizing” the vector field corresponds to instantiating
x0 with 1, which gives back the original vector field. Geometrically, the homogenization
of polynomials corresponds to the notion of projective varieties in projective geometry,
where the homogenized polynomial is the algebraic representative of the original vari-
ety in the projective plane [3, Chapter 8].

From a computational prospective, working in the projective plane offers a more
symmetric representation: all monomials of a form have the same degree. The arith-
metic of degrees over forms is also simplified: the degree of a product is the sum of
the degrees of the operands. In the reminder of this section, we only consider forms of
R[x0, . . . , xn]. The symbol x will denote the vector of all involved variables.

6 The degree of the zero polynomial (0) is undefined. We assume in this work that all finite
degrees are acceptable for the zero polynomial.
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If h denotes a form of degree d, and d′ the maximum degree among the degrees of
pi, then the degree of the polynomial L(k)

p (h) is given by:

deg(L(k)
p (h)) = d+ k(−1 + d′) . (11)

Recall that a form of degree d in R[x0, . . . , xn] has

md
def
=
(
n+d
d

)
(12)

monomials (the binomial coefficient of n+d and d). A parametrized form hα of degree
d can therefore be represented by its symbolic coefficients’ vector α : Rmd . For this
representation to be canonical, one needs to fix an order over monomials of the same
degree. We will use the usual lexicographical order, except for x0: x1 > x2 > · · · >
xn > x0. We first compare the degrees of x1, if equal, we compare the degrees of x2
and so on till reaching xn and then x0. For instance, for n = 2, a parametrized form
hα of degree d = 1 is equal to α1x1 + α2x2 + α3x0. Its related coefficients’ vector is
α = (α1, α2, α3).

Let hα be a parametrized form of degree d and let α = (α1, . . . , αmd
) denote

the coefficients’ vector with respect to the monomial order defined above. Since all
polynomials in Eq. (10) are forms in projective coordinates, the degree of each term
giL

(i)
p (hα) matches exactly the degree of L(N)

p (hα). Hence, by Eq. (11): deg(gi) =
(N − i)(−1 + d′). The coefficients’ vector of each form gi is then a vector, βi, of
size m(N−i)(−1+d′) (see Eq. (12)). So that we obtain md+N(−1+d′) biaffine equations:
linear in αi, 1 ≤ i ≤ md, and affine βi,j , 0 ≤ i ≤ N − 1, 1 ≤ j ≤ m(N−i)(−1+d′). A
concrete example is as follows.

Example 1. Suppose we have n = 2, d′ = 1, p1 = a1x1 +a2x2 and p2 = b1x1 + b2x2.
For d = 1, the parametrized form hα is equal to α1x1 +α2x2 +α3x0. Let N = 1. The
first-order Lie derivative, Lp(hα), has the same degree, 1, and is equal to α1(a1x1 +
a2x2) +α2(b1x1 + b2x2). In this case, g is a form of degree 0, that is a real number. So
it has one coefficient β ∈ R. We, therefore, obtain m1 =

(
3
1

)
= 3 constraints:

(−a1 + β)α1 + (−b1)α2 = 0
(−a2)α1 + (−b2 + β)α2 = 0
(β)α3 = 0

↔

−a1 + β −b1 0
−a2 −b2 + β 0

0 0 β

 .

α1

α2

α3

 = 0 .

As suggested in Example 1, for a given d and N , and if we concatenate all vectors
βi into one vector β, the equational constraints can be rewritten as a symbolic linear
algebra problem of the following form:

Md,N (β)α = 0, (13)

where α and β are decoupled. The matrix Md,N (β) is called the matrix representation
of the ideal membership problem L

(N)
p (hα) ∈?〈hα, . . . ,L(N−1)

p (hα)〉.
Recall that the kernel (or null-space) of a matrix M ∈ Rr×c, with r rows and c

columns is the subspace of Rc defined as the preimage of the vector 0 ∈ Rc:

ker(M)
def
= {x ∈ Rc |Mx = 0} .
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Let s = dim(ker(Md,N (β))) ≤ md. If, for all β, s = 0, then the kernel is {0}.
Hence, α = 0 and, for the chosen N , we have hα = 0: the only differential radi-
cal ideal generated by a form of degree d is the trivial ideal 〈0〉. If, however, s ≥ 1,
then, by Theorem 3, we generate an invariant (projective) variety for p. In this case, de-
homogenizing is not always possible. In fact, the constraint on the initial value could
involve x0, which prevents the de-homogenization (see Example 2). Otherwise, we re-
cover an invariant (affine) variety for the original vector field. This is formally stated in
the following theorem.

Theorem 4 (Effective Generation of Projective Invariant Varieties).
Let hα denote a parametrized form of degree d. There exists a real vector β such

that dim(ker(Md,N (β))) ≥ 1 if and only if for α ∈ ker(Md,N (β)), V
(
Lp
√
〈hα〉

)
⊂

Rn+1 is a projective invariant variety for the homogenized vector field.

When s = dim(ker(Md,N (β))) ≥ 1, the subspace ker(Md,N (β)) is spanned by s
vectors, e1, . . . , es ∈ Rmd , and forα = γ1e1+· · ·+γses, for arbitrarily (γ1, . . . , γs) ∈
Rs, the variety V

(
Lp
√
〈hα〉

)
is a family of invariant varieties of p (parametrized with γ).

In the sequel, we give a sufficient condition, so that, for any given initial value,
one gets a variety (different from the trivial whole space) that embeds the reachable set
of the trajectory, O(xι). For instance, for conservative Hamiltonian system, if the total
energy function, h, is polynomial (such as the energy function of the perfect pendulum),
then, for any initial value xι, O(xι) ⊆ V

(
Lp
√
〈h(x)− h(xι)〉

)
= V (〈h(x)− h(xι)〉).

For a generic xι ∈ Rn, if xι satisfies Eq. (6), then, by Theorem 1, hα ∈ I(O(xι)),
and Ō(xι) ⊆ V

(
Lp
√
〈hα〉

)
([5, Corollary 1]). However, for xι to satisfy Eq. (6),αmust

be in the intersection of N hyperplanes, H0, . . . ,HN−1, each defined explicitly by the
condition L

(i)
p (hα)(xι) = 0:

Hi
def
=
{
α ∈ Rmd | L(i)

p (hα)(xι) = 0
}
. (14)

Proposition 3 (Effective Sound Approximation ofO(xι)). Let hα be a parametrized
form of degree d, and Md,N (β) the matrix representation of Eq. (10). Let Hi ⊆ Rmd ,
0 ≤ i ≤ N − 1, be the hyperplanes defined in Eq. (14). Then, O(xι) ⊆ V

(
Lp
√
〈hα〉

)
, if

there exists β such that:

dim(ker(Md,N (β))) > md − dim

(
N−1⋂
i=0

Hi

)
. (15)

The remainder of this section discusses our approach to maximize the dimension of
the kernel of Md,N (h), as well as the complexity of the underlying computation.

Gaussian Elimination Let β = (β1, . . . , βs) : Rs. By Theorem 4, we want to find
an instance, β∗, of β that maximizes dim ker(Md,N (β)), where all the elements of
Md,N (β) are affine in β. At each iteration, our algorithm [5, Algorithm 1] assigns
new values to the remaining coefficients in β for the matrix Md,N (β) to maximize
the dimension of its kernel. A set, M , gathers all the instantiations of Md,N (β). The
procedure ends when no further assignment can be done. The algorithm is in fact a
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typical MapReduce procedure which can be parallelized. A naive approach would be
to first extract a basis for the matrix Md,N (β) (which requires symbolic computation
capabilities for linear algebra), then, solves for βs that zero the determinant. In prac-
tice, however, row-reducing speeds up the computation: we row-reduce Md,n(β), and
record any divisions by the pivot element: we then branch with any β that zero the
denominator.

Example 2. We apply the algorithm sketched above to Example 1. The determinant of
the matrix M1,1(β) is β

(
β2 − (a1 + b2)β − a2b1 + a1b2

)
. Since we do not have any

constraints on the parameters a1, a2, b1, b2, the only generic solution for the determinant
is β = 0. The kernel of M1,1(0), of dimension 1, is generated by (0, 0, 1). The only
candidates in this case are hα(x) = γx0, γ ∈ R. If we de-homogenize (set x0 to 1),
then, γ = 0 and we find the trivial invariant variety, Rn.

The result of Example 2 is expected as it studies a generic linear vector field without
any a priori constraints on the parameters. This triggers, naturally, an interesting fea-
ture of the differential radical characterization: its ability to synthesize vector fields to
enforce an invariant variety. For instance, in Example 2, let δ def

= (a1 − b2)2 + 4a2b1.
If δ ≥ 0, and a2 6= 0, then the kernel of M1,1(β) is generated by the vector

(
a1 − b2 ±√

δ, 2a2, 0
)

(which is an eigenvector of the matrix M1,1(β)). By Theorem 4, we have
an invariant variety given by:

(
a1− b2±

√
δ
)
x1 + 2a2x2 = 0. This is also expected for

linear systems as eigenvectors span stable subspaces.

Complexity By Theorem 4, the generation of invariant varieties is equivalent to maxi-
mizing the dimension of the kernel of the matrixMd,N (β) over unconstrained β, which
is in turn equivalent to the following unconstrained minimal rank problem:

min
β

rank(Md,N (β)), (16)

where the elements of the vector β are in R. If the vector field p has no parameters,
then the entries of the matrix Md,N (β) are either elements of β or real numbers. Under
these assumptions, the problem (16) is in PSPACE [2, Corollary 20] over the field of
real numbers7, and is at least NP-hard (see [2, Corollary 12] and [8, Theorem 8.2])
independently from the underlying field. In fact, deciding whether the rank ofMd,N (β)
is less than or equal to a given fixed bound is no harder than deciding the corresponding
existential first-order theory.

On the other hand, there is an NP-hard lower bound for the feasibility of the original
set of (biaffine) equations in β andα given in Eq. (13). In the simpler bilinear case and,
assuming, as above, that the vector field has no parameters, finding a nontrivial solution
(α = 0 is trivial) is also NP-hard [8, Theorems 3.7 and 3.8].

5 Related Work and Contributions

The contribution of this work is fourfold.
7 The complexity class depends on the underlying field and is worse for fields with nonzero

characteristic.
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Sound and Precise Algebraic Abstraction of Reachable Sets (Section 2) Unlike
previous work [28,23,12,11], we start by studying algebraic initial value problems. We
propose a sound abstraction (Proposition 1) to embed (overapproximate) the reachable
set. Our abstraction relies on the Zariski closure operator over affine varieties (closed
sets of the Zariski topology), which allows a clean and sound geometrical abstraction.
From there, we define the vanishing ideal of the closure, and give a necessary and suf-
ficient condition (Theorem 1) for a polynomial equation to be an invariant for algebraic
initial value problems.

Checking Invariant Varieties by Differential Radical Invariants (Section 3.1)
The differential radical characterization allows to check for and falsify the invariance
of a variety candidate. Unlike already existing proof rules [28,12,17], which are sound
but can only prove a restrictive class of invariants. From Theorem 2, we derive a sound
and complete proof rule (Eq. (8)) and prove that the problem is decidable (Corollary 1)
over the real-closed algebraic fields.

Differential Radical Characterization of Invariant Varieties (Section 3.2) The
differential radical criterion completely characterizes all invariant varieties of polyno-
mial vector fields. This new characterization (Theorem 3) permits to relate invariant
varieties to a purely algebraic, well-behaved, conjunction of polynomial equations in-
volving one polynomial and its successive Lie derivatives (Eq. (9)). It naturally gener-
alizes [9,26] where linear vector fields are handled and [24,12] where only a restrictive
class of invariant varieties is considered.

Effective Generation of Invariant Varieties (Section 4) Unlike [28,23,11,22], we
do not use quantifier elimination procedures nor Gröbner Bases algorithms for the gen-
eration of invariant varieties. We have developed and generalized the use of symbolic
linear algebra tools to effectively generate families of invariant varieties (Theorem 4)
and to soundly overapproximate reachable sets (Proposition 3). In both cases, the prob-
lem requires maximizing the dimension of the kernel of a symbolic matrix. The com-
plexity is shown to be NP-hard, but in PSPACE, for polynomial vector fields without
parameters. We also generalize the previous related work on polynomial-consecution.
In particular, Theorems 2 and 4 in [12] are special cases of, respectively, Theorem 4 and
Proposition 3, when the order of differential radical ideals is exactly 1.

6 Case Studies

The following challenging example comes up as a subsystem we encountered when
studying aircraft dynamics: p1 = −x2, p2 = x1, p3 = x24, p4 = x3x4.

It appears frequently whenever Euler angles and the three dimensional rotational
matrix is used to describe the dynamics of rigid body motions. For some chosen initial
value, such as xι = (1, 0, 0, 1), it is an exact algebraic encoding of the trigonometric
functions : x1(t) = cos(t), x2(t) = sin(t), x3(t) = tan(t), x4(t) = sec(t). When
d = 2 and N = 1, the matrix M2,1(β) is 35 × 15, with 90 (out of 525) nonzero
elements, and |β| = 5. The maximum dimension of ker(M2,1(β)) is 3 attained for
β = 0. The condition of Proposition 3 is satisfied and, for any xι, we find the following
algebraic invariant equations for the corresponding initial value problem:

h1 = x21 + x22 − xι21 − xι22 = 0, h2 = −x23 + x24 + xι
2
3 − xι24 = 0 .
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In particular, for the initial value xι = (1, 0, 0, 1), one recovers two trigonometric
identities, namely cos(t)2 + sin(t)2 − 1 = 0 for h1 and − tan(t)2 + sec(t)2 − 1 = 0
for h2.

For N = 3, the matrix M2,3(β) is 126 × 15, with 693 (out of 1890) nonzero ele-
ments, and |β| = 55. We found a β for which the dimension of ker(M2,3(β)) is 5. By
Theorem 4, we have a family of invariant varieties for p encoded by the following differ-
ential radical invariant: h = γ1−x23γ2+x24γ2+x2x4γ3+x21γ4+x22γ4+x1x4γ5, where
γi, 1 ≤ i ≤ 5, are real numbers. In particular, when (γ1, γ2, γ3, γ4, γ5) = (1, 0, 0, 0, 1),
we have the following algebraic invariant equation for p:

−1 + x1x4 = 0 ∧ −x2x4 + x3 = 0 ∧ −1− x23 + x24 = 0 . (17)

Interestingly, since xι = (1, 0, 0, 1) satisfies the above equations, we recover, respec-
tively, the following trigonometric identities:

−1 + cos(t) sec(t) = 0∧− sin(t) sec(t) + tan(t) = 0∧−1− tan(t)2 + sec(t)2 = 0 .

We stress the fact that Eq. (17) is one algebraic invariant equation for p. In fact, any
conjunct alone, a part from −1− x23 + x24 = 0, of Eq. (17) is not an algebraic invariant
equation for p. Indeed, we can falsify the candidate −1 + x1x4 = 0 using Theorem 2:
the implication −1 + x1x4 = 0 −→ −x2x4 + x3 = 0 is obviously false in general.

Notice that h1 and h2 can be found separately by splitting the original vector field
into two separate vector fields since the pairs (p1, p2) and (p3, p4) can be decoupled.
However, by decoupling, algebraic invariant equation such as Eq. (17) cannot be found.
This clearly shows that in practice, splitting the vector field into independent ones
should be done carefully when it comes to generating invariant varieties. This is some-
how counter-intuitive as decoupling for the purpose of solving is always desirable. In
fact, any decoupling breaks an essential link between all involved variables: time.

We proceed to discuss collision avoidance of two airplanes (Section 6.1) and then
the use of invariant varieties to tightly capture the vertical motion of an airplane (Sec-
tion 6.2).

6.1 Collision Avoidance

We revisit the linear vector field encoding Dubin’s vehicle model for aircrafts [4]. Al-
though the system was discussed in many recent papers [20,23,11], we want to highlight
an additional algebraic invariant equation that links both airplanes when turning with
the same angular velocity. The differential equation system is given by:

p1 = ẋ1 = d1, p2 = ẋ2 = d2, p3 = ḋ1 = −ω1d2, p4 = ḋ2 = ω1d1,

p5 = ẏ1 = e1, p6 = ẏ2 = e2, p7 = ė1 = −ω2e2, p8 = ė2 = ω2e1 .

The angular velocities ω1 and ω2 can be either zero (straight line flight) or equal to a
constant ω which denotes the standard rate turn (typically 180◦/2mn for usual com-
mercial airplanes). When the two airplanes are manoeuvring with the same standard
rate turn ω, apart from the already known invariants, we discovered the following dif-
ferential radical invariant (which corresponds to a family of invariant varieties):

h1 = γ1d1 + γ2d2 + γ3e1 + γ4e2 = 0 ∧ h2 = γ2d1 − γ1d2 + γ4e1 − γ3e2 = 0,
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for an arbitrarily (γ1, . . . , γ4) ∈ R4. We have Lp
√
〈h1〉 =

Lp
√
〈h2〉 = 〈h1, h2〉. Observe

also that V (〈h1〉) and V (〈h2〉) are not invariant varieties for p.

6.2 Longitudinal Motion of an Airplane

The full dynamics of an aircraft are often separated (decoupled) into different modes
where the differential equations take a simpler form by either fixing or neglecting the
rate of change of some configuration variables [25]. The first standard separation used in
stability analysis gives two main modes: longitudinal and lateral-directional. We study
the 6th order longitudinal equations of motion as it captures the vertical motion (climb-
ing, descending) of an airplane. We believe that a better understanding of the envelope
that soundly contains the trajectories of the aircraft will help tightening the surrounding
safety envelope and hence help trajectory management systems to safely allow more
dense traffic around airports. The current safety envelope is essentially a rough cylinder
that doesn’t account for the real capabilities allowed by the dynamics of the airplane.
We use our automated invariant generation techniques to characterize such an envelope.
The theoretical improvement and the effective underlying computation techniques de-
scribed earlier in this work allow us to push further the limits of automated invariant
generation. We first describe the differential equations (vector field) then show the non-
trivial energy functions (invariant functions for the considered vector field) we were
able to generate. Let g denote the gravity acceleration, m the total mass of an airplane,
M the aerodynamic and thrust moment w.r.t. the y axis, (X,Z) the aerodynamics and
thrust forces w.r.t. axis x and z, and Iyy the second diagonal element of its inertia ma-
trix. The restriction of the nominal flight path of an aircraft to the vertical plane reduces
the full dynamics to the following 6 differential equations [25, Chapter 5] (u: axial
velocity, w: vertical velocity, x: range, z: altitude, q: pitch rate, θ: pitch angle):

u̇ =
X

m
− g sin(θ)− qw ẋ = cos(θ)u+ sin(θ)w θ̇ = q

ẇ =
Z

m
+ g cos(θ) + qu ż = − sin(θ)u+ cos(θ)w q̇ =

M

Iyy
.

We encode the trigonometric functions using two additional variables for cos(θ) and
sin(θ), making the total number of variables equal to 8. The parameters are considered
unconstrained. Unlike [23], we do not consider them as new time independent variables.
So that the total number of state variables (n) and hence the degree of the vector field are
unchanged. Instead, they are carried along the symbolic row-reduction computation as
symbols in Md,N (β). For the algebraic encoding of the above vector field (n = 8), the
matrix M3,1(β) is 495×165, with 2115 (out of 81675) nonzero elements, and |β| = 9.
We were able to automatically generate the following three invariant functions:

Mz

Iyy
+ gθ +

(
X

m
− qw

)
cos(θ) +

(
Z

m
+ qu

)
sin(θ),

Mx

Iyy
−
(
Z

m
+ qu

)
cos(θ) +

(
X

m
− qw

)
sin(θ), −q2 +

2Mθ

Iyy
.
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We substituted the intermediate variables that encode sin and cos back to emphasize the
fact that algebraic invariants and algebraic differential systems are suitable to encode
many real complex dynamical systems. Using our Mathematica implementation, the
computation took 1 hour on a recent laptop with 4GB and 1.7GHz Intel Core i5.
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7 Conclusion

For polynomial vector fields, we give an algebraic characterization of invariant varieties.
This so-called differential radical characterization makes it possible to decide for the
invariance of a given variety candidate. It is, in addition, computationally attractive:
generating invariant varieties requires minimizing the rank of a symbolic matrix and is
hence at least NP-hard. The case studies show how the technique applies successfully
to rather complex systems. We also revisited some known problems in the literature to
exemplify the benefits of having a necessary and sufficient condition: all other known
sound approaches generate a special class of invariant varieties (i.e. miss others).

In the future, we plan to investigate upper bounds for the order of the differential
radical ideal of a given polynomial. Also, invariant varieties are not the only invariant of
interest for polynomial vector fields, we want to consider semialgebraic sets as they play
a prominent role in both hybrid systems and control theory. Finally, the effective use of
algebraic invariants in general in the context of hybrid systems is still a challenging
problem that we want to explore in more depth.
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