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ABSTRACT
The tcc paradigm is a formalism for timed concurrent con-
straint programming. Several tcc languages differing in their
way of expressing infinite behavior have been proposed in the
literature. In this paper we study the expressive power of
some of these languages. In particular, we show that: (1) re-
cursive procedures with parameters can be encoded into pa-
rameterless recursive procedures with dynamic scoping, and
viceversa. (2) replication can be encoded into parameterless
recursive procedures with static scoping, and viceversa. (3)
the languages from (1) are strictly more expressive than the
languages from (2). Furthermore, we show that behavioral
equivalence is undecidable for the languages from (1), but
decidable for the languages from (2). The undecidability
result holds even if the process variables take values from a
fixed finite domain.
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gram and recursion schemes

General Terms
Languages, Theory

Keywords
constraint programming, timed systems, expressiveness

∗The contribution of Mogens Nielsen and Frank D. Valen-
cia to this work has been supported by Basic Research in
Computer Science, Centre of the Danish National Research
Foundation.
†The contribution of Catuscia Palamidessi to this work has
been supported by the NSF-POWRE grant EIA-0074909.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’02, October 6-8, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-528-9/02/0010 ...$5.00.

1. INTRODUCTION
Timed concurrent constraint programming (tcc) was in-

troduced in [15] as an extension of concurrent constraint
programming (ccp) aimed at specifying timed systems, fol-
lowing the paradigms of Synchronous Languages [1]. As
argued in [15, 16, 17, 12], tcc has a declarative nature that
distinguishes it from other timed formalisms. Indeed, tcc
programs (or processes) can be viewed as first-order linear-
time temporal logic formulas [15, 12]. Furthermore, tcc lan-
guages have simple fully-abstract semantics based on solu-
tions of equations [15, 12].

In tcc time is conceptually divided into discrete intervals
(or time units). Intuitively, in a particular timed interval,
a ccp process P receives a stimulus (i.e. piece of informa-
tion represented as a constraint) c from the environment, it
executes with this stimulus as the initial store, and when
it reaches its resting point, it responds to the environment
with the resulting store d. The resting point also determines
a residual process Q, which is then executed in the next time
interval.

The finite tcc processes provide for the telling and ask-
ing of information, and basic operators for parallel compo-
sition, locality and unit-delay. In the literature there are
several tcc process languages variants differing in their way
of extending standard finite processes in order to express in-
finite behavior. The main purpose of this paper is to study
the expressive power of a few fundamental representatives
of these processes languages. This way, we believe that we
can contribute to the better understanding of tcc languages.

We shall study in detail the following extensions of finite
process:

• rep: obtained by adding a replication operator similar
to the one of the π-calculus [9].

• recp: obtained by adding recursion given with formal
parameters, but no free variables in procedure bodies.

• reci: same as recp, but where the actual parameters in
recursive calls are identical to the formal parameters.

• recd: obtained by adding procedures without parame-
ters, but with free variables in procedure bodies, with
dynamic scoping.

• recs: same as recd but with static scoping.

• rec0 : recursion given by procedures without parame-
ters and with no free variables in procedure bodies.



The expressive power of these process languages is com-
pared relatively to the standard notion of input-output be-
havior [17, 12] for tcc processes. Namely, one language is
considered at least as expressive as another if the input-
output behavior expressed by a process in the latter can be
expressed also by a process in the former. Our comparison
results can be summarized as follows:

• recp and recd are equally expressive, and strictly more
expressive than the other tcc languages,

• rep, recs and reci are equally expressive, and strictly
more expressive than rec0.

We shall actually show a strong separation result between
recp/recd and rep/recs/reci, namely that input-output
equivalence is undecidable for the languages in the the first
class, even if we fix an underling constraint system with a
finite domain, but decidable for the languages in the second
class for arbitrary constraint systems. The undecidability
result is obtained by a reduction from the Post’s correspon-
dence problem [13]. The decidability result is obtained by a
reduction to Büchi automata [2] following similar results in
[17] and [10] establishing the finite-state representability of
rep processes.

The expressiveness gaps illustrated above may look sur-
prising to those acquainted with the π-calculus, because the
π-calculus correspondents of rep, reci and recp have all the
same expressive power. Our interpretation of this difference
is that the π-calculus has some powerful mechanisms (syn-
chronous communication and mobility) which compensate
for the weakness of replication and of the lower forms of
recursion.

The paper is structured as follows. The first section is
devoted to describing the semantics of the various tcc lan-
guages. Section 3 first introduces the equivalences and their
corresponding congruences arising from the input-output
behavior. Then it states the relationship between the equiv-
alences and their congruences for the various languages.
Section 4 presents the undecidability of the input-output
equivalence for recp processes in a finite-domain constraint
system. Section 5 presents the decidability of the input-
output equivalence for rep processes in arbitrary constraint
systems. Finally, Section 6 presents encodings preserving
the input-output semantics, and the classification of the tcc
languages as stated above.

2. TCC LANGUAGES
In this section we describe the various tcc languages. We

shall use the syntax of (the deterministic fragment of) the
ntcc calculus introduced in [12].

2.1 Constraint Systems.
Concurrent constraint languages are parameterized by a

constraint system. A constraint system provides a signature
from which syntactically denotable objects called constraints
can be constructed, and an entailment relation |= specifying
interdependencies between such constraints.

Definition 1. (Constraint System). A constraint sys-
tem is a pair (Σ, ∆) where Σ is a signature specifying con-
stants, functions and predicate symbols, and ∆ is a consis-
tent first-order theory over Σ.

Given a constraint system (Σ, ∆), let L be the underlying
first-order language (Σ,V,S), where V = {x, y, z, . . .} is a
countable set of variables and S is the set of logical symbols
including ∧, ∨, ⇒, ∃, ∀, true and false which denote logical
conjunction, disjunction, implication, existential and univer-
sal quantification, and the always true and false predicates,
respectively. Constraints, denoted by c, d, . . . are first-order
formulae over L. We use fv(c) and bv (c) to designate the set
of free and bound variables of c, respectively. We say that c
entails d in ∆, written c |= d, if the formula c ⇒ d holds in
all models of ∆. As usual, in this paper we shall require |=
to be decidable.

We say that c is equivalent to d, written c ≈ d, iff c |= d
and d |= c. Henceforth, C is the set of constraints modulo ≈
in (Σ, ∆).

The following is a very simple finite-domain constraint
system.

Definition 2. (A Finite-domain Constraint System).
Let n > 0. Define FD[n] as the constraint system s.t.

• Σ is given by the constants symbols 0, 1, ...., n− 1 plus
the equality = and

• ∆ is given by the axioms for equality [19] x = x, x =
y ⇒ y = x, x = y∧y = z ⇒ x = z plus v = w ⇒ false

for each two different constants v, w in Σ.

Intuitively FD[n] provides a theory of variables ranging
over a finite domain of values {0, . . . , n − 1} with syntac-
tic equality over these values. We shall use FD[n] as the
underlying constraint system in the examples and our un-
decidability results.

2.2 Finite Processes
Processes P, Q, . . . ∈ Proc are built from constraints in

c ∈ C and variables x ∈ V in the underlying constraint
system. The processes that define finite behavior are given
by the syntax P, Q :=

skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP

Process skip does nothing. Process tell(c) adds the con-
straint c to the current store, thus making c available to
other processes in the current time interval. Process
when c do P performs the action of asking c in the cur-
rent time interval. If during the current time interval this
information can eventually be inferred from the store d (i.e.,
d |= c ) then process P is executed within the same time
interval, otherwise the process is precluded from execution.
Process P ‖ Q represents the parallel composition of P and
Q. In one time unit (or interval) P and Q operate con-
currently, communicating through the store. We shall use�

i∈I Pi, where I is finite, to denote the parallel composition
of all Pi.

Process (localx) P behaves like P , except that all the in-
formation on x produced by P can only be seen by P and the
information on x produced by other processes cannot be seen
by P . We then say that (localx)P binds x in P . Given a
process Q, we can define, in the standard way, its bound vari-
ables bv(Q) as the set of variables with a bound occurrence
in Q, and its free variables fv(Q) as the set of variables with
a non-bound occurrence in Q. We use (localx1x2 . . . xn) P
as an abbreviation of (localx1) (localx2) . . . (localxn)P .



The only move of nextP is a unit-delay for the activation
of P . The process unless c nextP is similar, but P will
be activated only if c cannot be eventually inferred from the
store during the current time interval. We use nextn(P ) as
an abbreviation for next(next(. . . (nextP ) . . . )), where
next is repeated n times.

2.3 Semantics of Finite Process
Operationally, the current information is represented as a

constraint c ∈ C, so-called store. Following standard lines
[18], we extend the syntax with a construct (localx, d)P
which represents the evolution of a process of the form
(localx)Q, where d is the local information (or private
store) produced during this evolution. Initially d is “empty”,
so we regard (localx)P as (localx, true)P .

The operational semantics will be given in terms of the
reduction relations −→, =⇒⊆ Proc × C × Proc × C defined
in Table 1. The internal transition

〈P, c〉 −→ 〈Q,d〉

should be read as “P with store c reduces, in one internal
step, to Q with store d ”. The observable transition

P
(c,d)

====⇒ Q

should be read as “P on input c from the environment, re-
duces in one time unit to Q and outputs d to the environ-
ment”. Process Q is the process to be executed in the next
time unit. Such a reduction is obtained from a sequence of
internal reduction starting in P with initial store c and ter-
minating in a process Q′ with store d. Crudely speaking, Q
is obtained by removing from Q′ what was meant to be exe-
cuted only during the current time interval. In tcc the store
d is not automatically transferred to the next time unit. If
needed, information in d can be transfered to next time unit
by process P .

Let us look at the rules for the internal transitions. Rules
RT, RW, RPL, RPR, RU follow [18, 15, 12] and they should be
self-explanatory. Rule RL is the standard rule for locality (or
hiding) in concurrent constraint programming (see [18, 4]).
We ought to describe RL as it plays a key role in the results
of this paper. Consider the process Q = local (x, c) in P .
We distinguish between the external (corresponding to Q)
and the internal point of view (corresponding to P ). From
the internal point of view, the information about x, possi-
bly appearing in the “global” store d, cannot be observed.
Thus, before reducing P we should first hide the informa-
tion about x that Q may have in d. We can do this by
existentially quantifying x in d. Similarly, from the external
point of view, the observable information about x that the
reduction of internal agent P may produce (i.e., c′ ) cannot
be observed. Thus, we hide it by existentially quantifying
x in c′ before adding it to the global store corresponding to
the evolution of Q. Additionally, we should make c′ the new
private store of the evolution of the internal process for its
future reductions.

Let us now describe the rule for the observable transi-
tions. Rule RO says that an observable transition from P
labeled by (c, d) is obtained by performing a terminating
sequence of internal transitions from 〈P, c〉 to 〈Q,d〉, for
some Q. The process to be executed in the next time inter-
val, F (Q) (“future” of Q), is obtained by removing from Q
“when” processes which could not be executed during the
current time interval and any local information which has

been stored in Q, and by “unfolding” the sub-terms within
nextR expressions. More precisely:

Definition 3. (Future Function). Let F : Proc ⇀ Proc
be defined by

F (P ) =

������� ������
skip if P = skip
skip if P = when c do Q
F (P1) ‖ F (P2) if P = P1 ‖ P2

(localx)F (Q) if P = (localx, c) Q
Q if P = nextQ
Q if P = unless c nextQ

Remark 1. Function F is not total, but this is not a prob-
lem since whenever we need to apply F to a P (Rules RO

in Table 1), all the sub-processes of P not considered in
the definition of F will occur within a “next” or “unless”
expression.

RT
〈tell(c), d〉 −→ 〈skip, d∧̇c〉

RW

d |= c

〈when c do P, d〉 −→ 〈P, d〉

RPL

〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q,d〉

RPR

〈Q, c〉 −→ 〈Q′, d〉

〈P ‖ Q, c〉 −→ 〈P ‖ Q′, d〉

RU

d |= c

〈unless c next P, d〉 −→ 〈skip, d〉

RL

〈P, c ∧ (∃xd)〉 −→ 〈P ′, c′ ∧ (∃xd)〉

〈(localx, c) P, d〉 −→ 〈(localx, c′) P ′, d ∧ ∃xc′〉

RO

〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)

====⇒ F (Q)

Table 1: Rules for the internal reduction −→ (upper
part) and the observable reduction =⇒ (lower part).
Function F is given in Definition 3.

In the following sections we consider several ways in which
tcc languages can express infinite behavior through the time
intervals.

2.4 Replication
One simple way to express infinite behavior in tcc is by

using a replication operator as in [12] and [17]1. Let us
extend the syntax of processes as follows.

P := . . . | !P (1)

1More precisely, [17] uses the hence operator. However,
henceP is equivalent to next ! P and, similarly ! P is equiv-
alent to P ‖ henceP .



the operator “!” represents a delayed version of the repli-
cation operator of the π−calculus [9]: ! P represents P ‖
nextP ‖ next2P ‖ . . . , i.e. unboundedly many copies of P
but one at a time. We shall use rep to denote the language
using this operator for infinite behavior.

The operational semantics of rep is obtained by adding
to the rules in Table 1 the rule for replication:

RREP
〈! P, c〉 −→ 〈P ‖ next ! P, c〉 (2)

Rule RREP specifies that the process ! P produces a copy
P at the current time unit, and then persists in the next
time unit.

2.5 Recursion
An alternative to define infinite behavior in tcc languages

is by using recursion as it was done in [15, 16, 21] . We
extend the syntax of finite processes by:

P := . . . | A(y1, . . . , yn) (3)

Process A(y1, . . . , yn) is an identifier with arity n. We
assume that every such an identifier has a (recursive) defini-

tion A(x1, . . . , xn)
def
= P where the xi’s are pairwise distinct,

and the intuition is that A(y1, . . . , yn) behaves as P with yi

replacing xi for each i. We presuppose an underlying set of
definitions D. We shall often use the notation ~x as an abbre-
viation of x1, x2, . . . , xn if n is unimportant or obvious. We
shall sometimes say that A(~y) is an invocation with actual

parameters ~y and given A(~x)
def
= P we shall refer to P as its

body and to ~x as its formal parameters
Following [15] we shall require (1) any process to depend

only on finitely many definitions and (2) recursion to be

“next” guarded. For example, given A(~x)
def
= P , every invo-

cation A(~y) in P must occur within the scope of a “next”
or “unless” operator operator. This avoids non-terminating
sequences of internal reductions (i.e., non-terminating com-
putation within a time interval).

We can formalize the two requirements above as follows.

Given A1(~x1)
def
= P1 and A2(~x2)

def
= P2 we say that A1 (di-

rectly) depends on A2, written A1 ; A2, if there is an invo-
cation A2(~y) in P1. The first requirement can be then for-
malized by requiring the strict ordering induced by ;

∗ (the
reflexive and transitive closure of ;)2 to be well founded.
For the second requirement, suppose that A1 ; A2 ; . . . ;

An ; An+1 = A1, where Ai(~x1)
def
= Pi. We shall require

that for at least one i, 1 ≤ i ≤ n, the occurrences of Ai+1 in
Pi are within the scope of a “next” or an “unless” operator.

Furthermore, for the simplicity of the presentation let us
assume that the free variables in definitions’ bodies are for-

mal parameters. More precisely, for each A(x1, . . . , xn)
def
=

P , we have fv(P ) ⊆ {x1, . . . , xn}. This requirement is im-
posed on the recursive versions of the π-calculus.

We shall use recp to denote the tcc language with recur-
sion with the above syntactic restriction. The operational
rules for recp are obtained by adding to the rules in Table

2The relation ;
∗ is a preordering. By induced strict order-

ing we mean the strict component of ;
∗ modulo the equiv-

alence relation obtained by taking the symmetric closure of
;

∗.

1 the rule for recursion:

RREC

A(~x)
def
= P 〈P [~y/~x]〉 −→ 〈P ′, d′〉

〈A(~y), d〉 −→ 〈P ′, d′〉 (4)

As usual P [y1 . . . yn/x1 . . . xn] is the process that results
from syntactically replacing every free occurrence of xi by
yi using α-conversion wherever needed to avoid capture.

2.5.1 Identical Parameters Recursion.
An interesting tcc language considered in [15] arises from

recp by requiring the parameters not to change through re-
cursive invocations. In the π-calculus this restriction does
not cause any loss of expressive power since such form of
recursion can encode replication and replication can encode
general recursion (see [9]).

An example satisfying this restriction on recursion is the

definition RP (~x)
def
= P ‖ nextRP (~x). Here the actual pa-

rameters of the invocation in the definition’s body are the
same as the formal parameters of RP . An example not satis-

fying the restriction is R′
P (~x)

def
= P ‖ next (local ~x) R′

P (~x).
Here the actual parameters, although syntactically the same,
are bound and therefore different from those of the formal
parameters. One can generalize this for a set of mutually
recursive definitions as follows. Suppose that A1 ; A2 and

A2 ;
∗ A1 with A1(~x1)

def
= P1 and A2(~x2)

def
= P2 in the un-

derlying set of definitions D. Then for each invocation A2(~y)
in P1 we should require ~y = ~x2 and ~y 6∈ bv(P1). In other
words the actual parameters of the invocation A2 in P1 (i.e.,
~y) should be syntactically the same as its formal parameters
(i.e., ~x2). Furthermore, they should not be bound in P1

to avoid cases such as R′
P (~x) above. The processes of tcc

with identical parameters are those of recp that satisfy this
requirement. We shall refer to this language as reci.

2.6 Parameterless Recursion.
Tcc with parameterless recursion have been studied in

[15]. We shall refer to identifiers with arity zero and their
corresponding definitions as constant identifiers and con-
stant definitions, respectively. We omit the “( )” in A( ).

Given a parameterless definition A
def
= P , requiring all

variables in fv(P ) to be formal parameters, as we did in recp,
would be too restrictive. This would mean that the body
P has no free variables and processes in ccp communicate
through free variables. For example, it would be impossible
to define the process that every two time units tells x =
1. Consequently, let us consider a fragment allowing only
parameterless recursion with free variables in the bodies of
constant definitions.

Now assuming that the operational rules for parameter-
less recursion are the same as for recp, one may wonder
about the scope of the free variables in definitions bodies.
Is it some kind of dynamic scoping similar to that of CCS
[8] and, most notably, as it is in the standard model of con-
current constraint programming [18]? Is it static as in most
programming languages?.

The next section answers this question. Let us first illus-
trate what we mean by dynamic and static scoping.

Example 1. Consider a constant identifier A with the fol-
lowing definition

A
def
= tell(x = 1)

‖ next (localx) (A ‖ when x = 1 do tell(z = 1))



In the case of dynamic scoping, an outside invocation A
causes the execution tell(z = 1) in the second time interval.
The reason is that (localx) binds the x resulting from the
unfolding of the A inside the definition’s body3. In fact, the
telling of x = 1, in the second time unit, will not be visible
in the store. In the case of static scoping, (localx) does
not bind the x of the unfolding of A because such an x is
intuitively a “global” variable, and hence tell(z = 1) will
not be executed. In fact, the telling of x = 1, will also be
visible in the store in the second time interval.

2.6.1 Parameterless Recursion with Dynamic Scop-
ing

Rule RL combined with RREC causes the parameterless
recursion to have dynamic scoping4. As illustrated in the
example below, the idea is that since (localx)P reduces to
a process of the form (localx)Q, the x’s occurring free in
the unfolding of invocations in P get bounded. We shall refer
to the language allowing only parameterless recursion with
free-variables in the procedure bodies as recd; parameterless
recursion with dynamic scoping.

Example 2. Let A as defined in Example 1. Let us ab-

breviate the definition of A as A
def
= tell(x = 1) ‖ P . Also

let Q = skip ‖ P . We have the following reduction of
(localx)A in store true.

〈tell(x = 1), true〉 −→ 〈skip, x = 1〉
RT

〈tell(x = 1) ‖ P, true〉 −→ 〈Q,x = 1〉
RPL

〈A, true〉 −→ 〈Q,x = 1〉
RREC

〈(localx, true) A, true〉 −→ 〈(localx, x = 1) Q, true〉
RL

Thus, (localx) A in store true reduces to (localx, x =
1) (skip ‖ P ) in store true. Notice that the free x in A’s
body become local to (localx, x = 1) (skip ‖ P ), i.e, it now
occurs in the local store but not in the global one.

Remark 2. It should be noticed that, unlike in recp, we
cannot freely α-convert processes in recd without changing
behavior. For example, we could α-convert the (localx)A
in the above example into (local z)A (since A[z/x] is syn-
tactically equal to A) but the behavior of (local z)A would
not be the same as that of (localx)A. We could solve this
problem by defining the substitutions [z/x] to be relabel-
ing functions as in CCS instead of syntactic replacements.
We can see in Table 1, however, that no syntactic substitu-
tions will be applied in the reductions of recd as this deals
only with constant definitions. Therefore, the operational
semantics in recd does not appeal to α-conversion.

2.6.2 Parameterless Recursion with Static Scoping
From the previous section it follows that if we want to

have static scoping as in [15] we should replace the rule for
local behavior RL .

Rule R′
L defines locality for the parameterless recursion

with static scoping language henceforth referred to as recs.

R′
L

〈P [y/x], d〉 −→ 〈P ′, d′〉 y is fresh

〈(localx)P, d〉 −→ 〈P ′, d′〉 (5)

3Just as in the CCS definition A
def
= a.O ‖ τ.(A ‖ ā.O)\a,

process ā.O can communicate through a with the unfolding
of A.
4Rules RL and RREC are the same in ccp, hence the observa-
tions made in this section regarding dynamic scoping apply
to ccp as well.

As in [7], we use the notion of fresh variable meaning that
it does not occur elsewhere in a process, definition or the
store. It will be convenient to presuppose that the set of
variables V is partitioned into two infinite sets F and V−F .
We shall assume that the fresh variables are taken from F
and that no input from the environment or process, other
than the ones generated when applying R′

L, can contain vari-
ables in F .

The fresh variables introduced by R′
L are not to be visible

from the outside. We hide these fresh variables, as it is done
in [17], by using existential quantification in the output con-
straint of observable transitions. More precisely, we replace
the rule for the observable transitions RO with the rule

R′
O

〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,∃Fd)
====⇒ F (Q) (6)

where ∃Fd represents the constraint resulting from the ex-
istential quantification in d of free occurrences of variables
in F .

In order to see why R′
L causes static scoping in recs, sup-

pose that P in Rule R′
L in Equation 5 contains an invocation

A with A
def
= R. When replacing x with y in P , A remains

the same since A[y/x] is A. Furthermore, since y is chosen
from F , there will be no capture of free variables in R when
unfolding A. This causes the scoping to be static. Let us
illustrate this by revisiting the previous example.

Example 3. Let A, P and Q as in the previous example.
We have the following reduction of (localx)A in store true.

〈tell(x = 1), true〉 −→ 〈skip, x = 1〉
RT

〈tell(x = 1) ‖ P, true〉 −→ 〈Q,x = 1〉
RPL

〈A, true〉 −→ 〈Q,x = 1〉
RREC

〈(localx) A, true〉 −→ 〈Q,x = 1〉
R′

L

Thus, (localx)A in store true reduces to skip ‖ P in store
(x = 1) making the free x in A’s body, as oppose to the
previous example, visible in the “global” store .

Remark 3. Notice that, as in recd, in recs we do not need
α-conversion since in the reductions of recs we only use
syntactic replacements of variables by fresh variables (i.e.,
there will not be captures).

2.7 Summary of TCC Languages
We described several languages based on the literature of

(Timed) ccp. We have rep the tcc language with replication
and recp the tcc language with recursion instead. A special
case of recp is reci which restricts the parameters not to
change through the recursive invocations. We also have the
parameterless recursion languages recd and recs. The for-
mer deals with dynamic-scoping while the later deals with
static scoping.

For the sake of completeness, we consider here an addi-
tional language: rec0, the language with neither parameters
nor free variables in the bodies of definitions.

Notation 1. Henceforward we use L to designate the set
of tcc languages {rep, recp, reci, recd, recs, rec0}. In the
following sections, we shall sub-index sets and relations with
the appropriate tcc language name to make it clear what
is the language under consideration. For example −→recp



means that the reduction under consideration is that of recp.
Similarly, Procrecp denotes the set of processes in recp. Often
we shall omit the sub-index when it is unimportant or clear
from the context.

3. PROCESS EQUIVALENCES
In the following we use α, α′ to represent elements of Cω

and β to represent an element of C∗. Notation β.α represents
the concatenation of β and α.

Let us consider infinite sequence of observable transitions

P = P1
(c1,c′

1
)

====⇒ P2
(c2,c′

2
)

====⇒ P3
(c3,c′

3
)

====⇒ . . .

This sequence can be interpreted as an interaction between
the system P and an environment. At the time unit i, the
environment provides a stimulus ci and Pi produces c′i as
response. We then regard (α, α′) as a reactive observation
of P . If α = c1.c2.c3. . . . and α′ = c′1.c

′
2.c

′
3 . . ., we represent

the above interaction as P
(α,α′)
====⇒ω. Given P we shall refer

to the set of all its reactive observations as the input-output
behavior of P .

Alternatively, if α = true
ω, we can interpret the run as an

interaction among the parallel components in P without the
influence of an external environment (i.e., each component
is part of the environment of the others). In this case α is
called the irrelevant input sequence and α′ is regarded as
a timed observation of such an interaction in P . We shall
refer to the set of all timed observations of a process P as
the (default) output behavior of P 5.

The following definition summarizes the observables above
mentioned.

Definition 4. (Equivalences). For each tcc language ` ∈
L let us define

1. The input-output (or stimulus-response) relation of a
process P in ` as

io`(P ) = {(α, α′) | P
(α,α′)
====⇒ω

` }

2. The output relation of a process P in ` as

o`(P ) = {α′ | P
(trueω,α′)
====⇒ ω

` }

Furthermore, define P ∼io
` Q iff io`(P ) = io`(Q) and P ∼o

`

Q iff o`(P ) = o`(Q).

Let us now to consider the largest congruences included
in ∼io

` and ∼o
` , respectively. More precisely,

Definition 5. (Congruences). Let ` ∈ L. We define
P ≈io

` Q iff for every process context C[·] in `, C[P ] ∼io
`

C[Q], and similarly P ≈o
` Q iff for every process context

C[·] , C[P ] ∼o
` C[Q].

As usual a process context C[·] is a process term with a
single hole such that placing a process in the hole yields a
well-formed process.

The following theorem relate the equivalences and their
congruences for the various tcc languages. The proof can be
found in [11].

5In [10] the term “language” instead of “output” is used.

Theorem 1. (Equivalences’ Relationship). For each
` ∈ L,

1. If ` 6= recs then ≈io
` =≈o

` =∼io
` ⊂∼o

` .

2. If ` = recs then ≈io
` =≈o

` ⊂∼io
` ⊂∼o

` .

The theorem states that the input-output and output con-
gruences coincide for all languages. It also states that the
input-output behavior is a congruence for every tcc language
but recs. This difference between recs and the other tcc lan-
guages (and in fact, between recs and the standard model of
ccp [18]) is due to the fact that the input-output behavior of
an arbitrary process (localx)P in recs cannot be inferred
from the input-output behavior of P only.

In the following sections we shall classify the tcc languages
based on the decidability of their input-output equivalence.

4. UNDECIDABILITY RESULTS
In this section we first state that ∼io

recp
is undecidable for

processes with an underlying finite-domain constraint sys-
tem. Recall that a finite-domain constraint system FD[n]
(see Definition 2) provides a theory of variables ranging over
a finite domain of values D = {0, 1, . . . , n−1} with syntactic
equality over these values. We shall also prove a stronger
version of this result establishing that ∼io

recp
is undecidable

even for the finite-domain constraint system with one sin-
gle constant FD[1], i.e., |D| = 1. In sections 6 we shall
give an input-output preserving encoding from recp into the
parameterless recursion language recd. Therefore, ∼io

recd
is

undecidable as well.
Our proof of undecidability will proceed by a reduction

from the Post’s correspondence problem (PCP) [13]. Let us
recall the following definition.

Definition 6. (Post’s Correspondence Problem). A
PCP instance is a tuple (W,V ), where W = {w0, . . . , wn}
and V = {v0, . . . , vn} are two set of words over the alphabet
{0, 1}. A solution to this instance is a sequence of indexes
i0, . . . , im in I = {0, . . . , n} s.t.

wi0 .wi2 . . . wim
= vi0 .vi2 . . . vim

.

In the PCP we are given an instance (V, W ) and we are
asked whether there is a solution for such an instance. The
PCP is known to be undecidable [13], even if we confine our
attention to instances involving non-empty words only and
to solutions where the first index is required to be 0.

Theorem 2. (Undecidability of ∼io
recp

). Given P, Q ∈
Procrecp in a finite-domain constraint system, the question

of whether P ∼io
recp

Q or not is undecidable.

Proof. Here we give a reduction from the PCP where the
instances involve non-empty words only and the solutions
are required to have 0 as their first index.

Let (V, W ) be a PCP instance where W = {w0, . . . , wn}
and V = {v0, . . . , vn} are sets of non-empty words. Let
FD[m] (Definition 2) be the underlying constraint system
where m = max (|V |, 2) (i.e., we need at least two constants
in the encoding below). For each i ∈ I = {0, . . . , |V | − 1},
we shall a define process Ai(b1, b2, index , x) which intuitively
does the following:



1. It waits until is told that b1 = 1 to start writing wi,
one symbol per time unit. Each such a symbol, say s,
will be written in x by telling x = s. Similarly, it waits
until b2 = 1 to start writing vi, one symbol per time
unit. Each such a symbol will also be written in x.

2. It spawns a process Aj(b
′
1, b

′
2, index , x) when the envi-

ronment inputs an index index = j in I.

3. It sets b1 = 0 and b′1 = 1 when it finishes writing wi,
i.e., |wi| time units later after it started writing (this
way it announces that its job of writing wi is done,
and allows Aj to start writing wj). Similarly, it sets
b2 = 0 and b′2 = 1 when it finishes writing vi.

4. It aborts unless the environment provides an index in
I. It also aborts if an inconsistency arises: Either two
symbols (one from a W word and another from a V
word) are written in x in the same time unit and they
do not match (thus generating false), or the environ-
ment itself inputs false.

Thus, intuitively the Ai’s keep writing W and V words, as
the environment dictates, as long as the symbols match and
the environment keeps providing indexes in I at each time
unit.

We use the following constructs:

Wc,P (~x)
def
= when c do P ‖ unless c nextWc,P (~x)

RQ(~y)
def
= Q ‖ nextRQ(~y)

where fv(P )∪fv(c) = {~x} and fv(Q) = {~y}. We use the more
readable notation wait c do P and repeat Q for Wc,P (~x)
and RQ(~y), respectively.

Below we define Ai(b1, b2, index , x) for each i ∈ I accord-
ing to Items 1-4. The local variable ichosen is used as flag
to check whether the environment input an index.

Ai(b1, b2, index , x)
def
= (local b′1 b′2 ichosen) (

wait b1 = 1 do (Wi(x)

‖ next |wi|(tell(b1 = 0) ‖ tell(b′1 = 1)))
‖ wait b2 = 1 do (Vi(x)

‖ next |vi|(tell(b2 = 0) ‖ tell(b′2 = 1)))
‖

�
j∈I when index = j do (tell(ichosen = 1)

‖ nextAj(b
′
1, b

′
2, index , x))

‖ Abort (ichosen))

Process Wi(x) writes, one by one, the wi symbols in x
(notation wi(n) denotes the n−th element of wi). Process
Vi(x) is defined analogously.

Wi(x)
def
=

�
0≤k≤|wi|−1

next ktell(x = wi(k)),

Vi(x)
def
=

�
0≤k≤|vi|−1

next ktell(x = vi(k))

Process Abort aborts, according to Item 4 above, by telling
false thereafter (thus creating a constant inconsistency).

Abort(ichosen)
def
=

‖ unless ichosen = 1 next repeat tell(false)
‖ when false do repeat tell(false)

Let us now define a process Bi(b1, b2, index , x, ok) for each
i ∈ I that behaves exactly like Ai(b1, b2, index , x), but in
addition it outputs ok = 1 if it stops writing vi and wi

exactly in the same time interval. This happens when b1

and b2 are set to zero in the same unit and it will imply that
a solution of the form wi0 . . . . .wi = vi0 . . . . .vi for the PCP
(V, W ) has been found.

Bi(b1, b2, index , x, ok )
def
= (local b′1 b′2 ichosen) (

wait b1 = 1 do (Wi(x)

‖ next |wi|(tell(b1 = 0) ‖ tell(b′1 = 1)))
‖ wait b2 = 1 do (Vi(x)

‖ next |vi|(tell(b2 = 0) ‖ tell(b′2 = 1)))
‖

�
j∈I when index = j do (tell(ichosen = 1)

‖ nextBj(b
′
1, b

′
2, index , x, ok))

‖ Abort (ichosen)
‖ wait b1 = 0 ∧ b2 = 0 do tell(ok = 1))

Since we require the first index in a solution for PCW
(W,V ) to be 0, we define two processes A(index , x) and
B(index , x, ok ) which trigger A0 and B0 as follows .

A(index , x)
def
= (local b1 b2) (

tell(b1 = 1) ‖ tell(b2 = 1) ‖ A0(b1, b2, index , x))

B(index , x, ok)
def
= (local b1 b2) (

tell(b1 = 1) ‖ tell(b2 = 1) ‖ B0(b1, b2, index , x, ok))

One can verify that the only difference between a process
A(index , x) and B(index , x, ok) is that the latter eventually
tells ok = 1 iff there is a solution to the PCP (V, W ). There-
fore, A(index , x) ∼io

recp
B(index , x, ok ) iff the answer to PCP

(W,V ) is negative. It follows that ∼io
recp

is undecidable for
finite domain constraint systems.

We now give a stronger version of the above theorem;
input-output equivalence in undecidable in recp even if we
fix the underlying constraint system to be FD[1], which is
the finite-domain constraint system whose only constant is
0. The proof can be found in [11].

Theorem 3. (Undecidability of ∼io
recp

over FD[1]).
Fix FD[1] to be the underlying constraint system. The ques-
tion of whether P ∼io

recp
Q or not is undecidable.

From the above theorem and Theorem 1 we obtain the
following result.

Corollary 1. The input-output and output congruences
≈io

recp
and ≈o

recp
are undecidable for processes in the finite-

domain constraint system FD[1].

Notice that FD[1] is a very simple constraint system (i.e.,
only equality and one single constant). So, the undecidabil-
ity results for other constraint systems providing theories
with equality and an at least one constant symbol follow
from Theorem 3. This includes almost all constraint system
of interest (e.g. the Herbrand constraint system [14], the
Kahn constraint system [18], Enumerated Types [14] and
modular arithmetic [12] ) .

5. DECIDABILITY RESULTS
In this section we establish that ∼io

rep is decidable for ar-
bitrary constraint systems. In section 6 we shall show via
encodings that rep, reci, recs have the same expressive
power. We then conclude that the corresponding equiva-
lences for reci and recs are also decidable.



The key for our decidability result is that the transitions of
processes in rep can be represented by finite-state machines.
This follows similar results in [17] and [10].

Example 4. Let Q =!!P with P = tell(c). For all n ≥ 1,
The following is an observable transition sequence in rep.

Q
(c1,d1)
==⇒!P ‖ Q

(c2,d2)
==⇒!P ‖!P ‖ Q

(c3,d3)
==⇒ . . .

(cn,dn)
==⇒ �

n

!P ‖ Q

where for 1 ≤ i ≤ n di = ci ∧ c. Thus, process Q has an
infinite number of derivatives. This illustrates that in a tran-
sition system where states are the elements of Procrep it is
possible to have infinite paths where all states are different.

Nevertheless, from standard results in ccp [18], in all the
tcc languages in L one copy of P does exactly the same job
than two copies, i.e. P ‖ P 6. So, !P ‖!P ‖ . . . ‖!P and !P
are equivalent. Such equivalence is captured by the relation
≡ defined next.

Definition 7. (Relation ≡`). For each tcc language ` ∈ L
define ≡` as the smallest congruence satisfying the axiom
P ≡` P ‖ P for P ∈ Proc`

The following property states that ≡ is preserved by input-
output congruence.

Proposition 1. For each ` ∈ L, ≡` ⊂ ≈io
` .

Definition 8. (Derivatives). We say that Q is a deriva-

tive of P if there is a sequence P
(c1,c2)
====⇒ . . .

(cn,dn)
====⇒ Q.

Define Der(P ) as the set of all derivatives of P .

The following properties are used for constructing au-
tomata representing processes in rep.

Lemma 1. (Finite Number of States ). Suppose that
P ∈ Procrep. Then the set Der(P ) modulo ≡ is finite.

Proof. The proof can be established by induction on
the structure of P following analogous proofs in [17] and
[10].

Proposition 2. Relation ≡rep is decidable.

We shall characterize the input-output behavior (see Defi-
nition 4) in terms of ω-regular languages, i.e., the languages
accepted by Büchi automata. Recall that Büchi automata
are ordinary finite-state automata equipped with an accep-
tance condition that is appropriate for ω-sequences: an ω-
sequence is accepted if the automaton can read it from left
to right while visiting a sequence of states in which some
final state occurs infinitely often. This condition is called
Büchi acceptance [2].

Our plan is then to construct Büchi automata for the
input-output behavior in which the transitions are labeled
with input-output constraints. The problem, however, is
that there are infinitely many input constraints (even if the
underlying constraint system is finite domain as there are
infinitely many variables). In [17] is shown how to com-
pute a set containing the “relevant” input constraints for
hiding-free processes in arbitrary constraint systems. Below
we extend the result to arbitrary processes.

6Notice that this does mean that !P and P behave the same
way.

Definition 9. (Relevant Constraints). Given S ⊆ C,
let S be the closure under conjunction and implication of S.
Let C : Proc → C be defined as:
C(skip) = {true}
C(tell(c)) = {c}
C(when c do P ) = C(unless c nextP ) = {c} ∪ C(Pi)
C(P ‖ Q) = C(P ) ∪ C(Q)
C(! P ) = C(nextP ) = C(P )

C((localx)P ) = {∃xc, ∀xc | c ∈ C(P )}
Let Ω = {P1, . . . , Pn}. Define the relevant input con-

straints for processes in Ω, written C(Ω), as the closure under

conjunction of the set C(P1) ∪ . . . ∪ C(Pn).

We shall use assertions of the form S ⊂fin S′ to mean that
S is a finite subset of S′.

Definition 10. (Strongest Consequence). Assume that
P ∈ Ω ⊂fin Proc. Define the strongest consequence of d in
Ω, written d(Ω), as the unique constraint (modulo logical
equivalence) e ∈ C(Ω) such that d |= e and e |= e′ for every
e′ ∈ C(Ω) such that d |= e′.

Notice that that d(Ω) always exists since C(Ω) is closed
under conjunction. Furthermore, it can be computed since
|= is decidable and C(Ω) is finite.

The next lemma states that C(Ω) indeed contains the rel-
evant input constraints of each P ∈ Ω.

Lemma 2. Assume that P ∈ Ω ⊂fin Proc. Then

P
(c,c∧d)
====⇒ P ′ iff P

(c(Ω),c(Ω)∧d)
====⇒ P ′.

Proof. It suffices to show that

〈P, c〉 −→∗ 〈Q, c ∧ d〉 iff 〈P, c(Ω)〉 −→∗ 〈Q, c(Ω) ∧ d〉

Consider the “only if” direction. To simplify the presenta-
tion of this proof, let us assume that P contains no nesting
of local operator. Each sequence 〈P0, c〉 −→∗ 〈Pn, c ∧ d〉,
with P0 = P and Pn = Q, can be represented as a sequence:

〈P0, c〉 −→
∗ 〈P1, c ∧ c1〉 −→ 〈P ′

1, c ∧ c1〉 −→
∗ . . .

−→∗ 〈Pi, c ∧ ci〉 −→ 〈P ′
i , c ∧ ci〉

−→∗ 〈Pi+1, c ∧ ci+1〉 −→ 〈P ′
i+1, c ∧ ci+1〉 −→

∗ . . .

satisfying the following condition. The (zero or more) reduc-
tions 〈Pi, c ∧ ci〉 −→ 〈P ′

i , c ∧ ci〉 are those obtained from a
derivation whose topmost (or root) rule is either RW or RU.
In other words the reduction involves the execution of either
a “when” or an “unless” operator. Furthermore, each of the
〈Pi, c ∧ ci〉 −→∗ 〈Pi+1, c ∧ ci+1〉 involves no application of
RW or RU.

Suppose that gi is the constraint guard in a when or unless
operator when deriving 〈Pi, c ∧ ci〉 −→ 〈P ′

i , c ∧ ci〉. We can
infer that

ei ∧ ∃~xi
(c ∧ ci) |= gi

where ~xi is vector of at most one variable and ei is represents
local information introduced by rule RL (the vector can be
empty and ei can be true meaning that RL was not applied).
Notice that

ei ∧ ∃~xi
(c ∧ ci) |= gi iff ∃~xi

(c ∧ ci) |= (ei ⇒ gi)

iff ∃~xi
(c ∧ ci) |= ∀~xi

(ei ⇒ gi)

iff c ∧ ci |= ∀~xi
(ei ⇒ gi)

iff c |= ci ⇒ ∀~xi
(ei ⇒ gi) (7)



Let di = ci ⇒ ∀~xi
(ei ⇒ gi). From Definition 9, gi ∈ C(Ω)

since gi appears as a guard in P . One can verify that ci can
be constructed out of the constraints in the tell operators
of P via conjunction and existential quantification. Hence
ci ∈ C(Ω) by Definition 9. Similarly, since ei represents local
information, one can verify that it can be constructed out
the constraints in the tell operators of some local process
in P via conjunction and existential quantification, hence
ei ∈ C(Ω). Therefore, from Definition 9, di ∈ C(Ω).

Let c′ = �
i∈{1,...,n} di. By induction on n we can show

that 〈P0, c
′〉 −→∗ 〈Pn, c′ ∧ d〉. From the equivalences in

Equation 7, c |= c′. Moreover, c′ ∈ C(Ω) since each di ∈
C(Ω) and C(Ω) is closed under conjunction. Hence c |=
c(Ω) |= c′ by Definition 10. We can then verify that
〈P0, c(Ω)〉 −→∗ 〈Pn, c(Ω) ∧ d〉 as wanted. The “if” direc-
tion can be obtained in a similar way.

Having found the relevant input constraints for a given
finite set of processes, we can now proceed to define a finite-
state automaton representing the behavior of each process
in such a set.

5.1 Input-Output Automata
Given an arbitrary process P and a finite set of (input)

constraints S, we shall construct an automaton AS
P which

recognizes the input-output behavior of P restricted to in-
puts in S. The start state is P and each transition from
state Q to state R with label (c, d), where c ∈ S, represents

an observable reduction Q
(c,d)

====⇒ R in rep. The construc-
tion is given in the proof of the following lemma which also
states the language accepted by AS

P .

Lemma 3. (Automata Representation). Suppose that
P ∈ Procrep and S ⊆fin C. One can effectively construct
a Büchi automaton AS

P which recognizes the set of all
(c1, d1).(c2, d2) . . . ∈ (S × C)ω s.t., (c1, c2 . . . , d1.d2 . . .) ∈
io(P ).

Proof. Here is the algorithm that constructs AS
P . (1)

Make P to be an accepting and the start state. (2) Choose
a state Q from the current transition graph and compute

a reduction Q
(c,d)

====⇒ R (such computation always termi-
nates). The choice should satisfy that there is not already
an edge labeled with (c, d) from Q to some R′ ≡rep R. If
such a choice is not possible then stop. (3) Else if there is
already a state R′ ≡rep R then create an edge labeled with
(c, d) from Q to it. Otherwise, create a new (accepting) state
R and edge from Q to it with label (c, d). (4) Go to (2).

From the finiteness of S, the decidability of ≡rep (Propo-
sition 2) and Lemma 1 it follows that the algorithm termi-
nates. The partial correctness of the construction is easy to
verify.

From the above lemma it follows that the question of
whether P and Q have the same input-output behavior re-
stricted to S can be reduced to whether AS

P and AS
Q accept

the same language. Therefore, the question of whether P
and Q have the same output behavior can be reduced to
whether AS

P and AS
Q with S = {true} accept the same lan-

guage. Since language equivalence for Büchi automata is
decidable [20], we can conclude that ∼o

rep is decidable for
arbitrary constraint systems.

Theorem 4. (Decidability of ∼o
rep). Let P, Q ∈ Procrep

over an arbitrary constraint system. The question whether
or not P ∼o

rep Q is decidable.

Similarly, by appealing to Lemma 2, it follows that the
question of whether P and Q have the same input-output
behavior can be reduced to whether AS

P and AS
Q with S =

C({P, Q}) accept the same language.

Theorem 5. (Decidability of ∼io
rep). Let P, Q ∈ Procrep

over an arbitrary constraint system. The question whether
or not P ∼io

rep Q is decidable

From the above theorem and Theorem 1 we obtain the
following result.

Corollary 2. The input-output and output congruences
≈io

rep and ≈o
rep are decidable for processes over arbitrary con-

straint systems.

These decidability results in rep with arbitrary constraint
system are to be contrasted to the undecidability results in
recp with the simple finite-domain constraint system FD[1].

6. CLASSIFICATION OF THE TCC LAN-
GUAGES

In this section we discuss the relation between the various
tcc languages, and we classify them on the basis of their
expressive power.

Figure 1 shows the sub-language inclusions and the en-
codings preserving the input-output semantics between the
various tcc versions. Classes I, II, III represent a parti-
tion based on the expressive power: two languages are in
the same class if and only if they have the same expressive
power. We will first discuss the separation results, and then
the equivalences.

Given the encodings, which will be proved later, the sep-
aration between Classes II and III follows immediately from
the results of Sections 4 and 5. From the proof of The-
orem 2 it follows that recp is capable of expressing the
”behavior” of Post’s correspondence problems, and hence
clearly capable of expressing input-output behaviors not ac-
cepted by Büchi automata, and hence not in rep (Lemma
3). For example, consider the PCP instance (V, W ) with
W = {w0 = aa, w1 = b} and V = {v0 = aaa, v1 = a}, where
a = 0 and b = 1. Define the constraints c0 = (index = 0),
c1 = (index = 1) and d = (x = a). Let P be the pro-
cess A(index , x) in the proof of Theorem 2. It is easy to
verify that P on input cn

0 .cω
1 contributes to output with

d2n. falseω (i.e., it outputs (c0 ∧ d)n.(c1 ∧ d)n. falseω). It
follows from Lemma 3 and simple arguments from automata
theory that no process in rep can then exhibit the input-
output behavior of A(index , x).

The separation between Classes I and II, on the other
hand, follows from the fact that without parameters or free
variables the recursive calls cannot communicate with the
external environment, hence in rec0 a process can produce
information on variables for a finite number of time intervals
only. More precisely, we have the following result:

Proposition 3. Let (c1.c2.c3. . . . , d1.d2.d3. . . .) ∈ io(P )
with P ∈ rec0. There exists n such that, for all k > n,
if ∃xck = ck then ∃xdk = dk (i.e., if ck does not contain
information about x then dk does not contain information
about x either).



In rep, on the contrary, it is possible to express process
which produce information about certain variables indefi-
nitely through the time intervals. For instance, the pro-
cess ! tell(x = 1) has an input-output sequence of the form
(true . true . true . . . . , x = 1.x = 1.x = 1. . . .).

The rest of this section is devoted to illustrate the encod-
ings of the various tcc languages. In the following, [[·]] : ` →
`′ will represent the encoding function for each pair ` and
`′. We will say that [[·]] is homomorphic wrt to the parallel
operator if [[P ‖ Q]] = [[P ]] ‖ [[Q]], and similarly for the
other operators.

6.1 Encoding rep → reci

This encoding is rather simple. The idea is to replace ! P
by a call to a new process identifier RP , defined as a process
that expands P and then calls itself recursively in the next
time interval. The free variables of ! P , ~x, are passed as
(identical) parameters. Therefore we define

[[! P ]] = RP (~x),

with RP (~x)
def
= P ‖ nextRP

where {~x} = fv(P )

and [[·]] homomorphic on all the other operators of rep.
In what follows we use repeat P as an abbreviation of

RP (~x). Notice that repeat was already used in the proof
of Theorem 2.

6.2 Encoding recs → rep

Here the idea is to simulate a procedure definition by a
replicated process that activates its body B each time there
is a call for it. The activation can be done by using a con-
struct of the form when c do B. The call, of course, will
be simulated by tell(c).

The key case is the local operator, since we do not want to
capture the free variables in the bodies of procedures. Thus,
we need to α-convert the local variables with fresh variables.

In the following sections we shall use call(x) as abbrevia-
tion of x = 1 (thus assuming that the underlying constraint
system provides equality and at least one constant symbol).
We shall also use for each identifier A, a fresh variable zA

uniquely associated to it.
We first define an auxiliary function [[·]]0 : recs → rep as

follows:

[[A
def
= P ]]0 = !when call(zA) do [[P ]]0

[[A]]0 = tell(call(zA))

[[(local x)P ]]0 = (local y) ([[P ]]0[y/x])
where y is fresh

and [[·]]0 homomorphic on all the other operators of recs.
Let P be an arbitrary process in recs. We shall use I(P )

to denote the set of identifiers P depends upon (formally,
I(P ) is the transitive closure under ; of the identifiers in
P , see Section 2.5). The encoding [[·]] : recs → rep is given
by

[[P ]] = (local~z) ([[P ]]0 ‖ �
1≤i≤n

[[Ai(~x1)
def
= Pi]]0)

where I(P ) = {A1, . . . , An} and ~z = zA1
. . . zAn

.

6.3 Encoding reci → rep

This encoding is somewhat more complex because we have
to encode the passing of parameters.

A call A(~y) can occur in a process or in the definition of
another identifier B. If there is no mutual dependency be-
tween A and B or A is a call in a process, then the actual
parameters of A may be different from the formal ones, and
we need to model the call by providing a copy of the repli-
cated process that constitutes the body of A’s definition and
by making the appropriate parameters replacement. If, on
the contrary, there is a mutual dependency between A and B
(i.e. if also A depends on B) then the actual parameters co-
incide with the formal ones (see Section 2.5.1) and therefore
we don’t need to make any parameter replacement. Neither
do we need to provide a copy of the replicated processes as
it will be available at the top level. Note that we need this
simplification in the case of mutual recursion, otherwise the
translation would not terminate.

We define the auxiliary encodings [[·]]0 : reci → rep for
the definitions and for the calls occurring in a body, and
[[·]]A0 : reci → rep (where A is an identifier) for the calls
occurring in a process, as follows:

[[A(~x)
def
= P ]]0 = !when call(zA) do [[P ]]A0

[[A(~y)]]B0 = tell(call(zA))
if A ;

∗ B

[[A(~y)]]B0 = (local zA) (

tell(call(zA)) ‖ ([[A(~x)
def
= P ]]0[~y/~x]))

if A 6;∗ B

[[A(~y)]]0 = (local zA) (

tell(call(zA)) ‖ ([[A(~x)
def
= P ]]0[~y/~x]))

and [[·]]0, [[·]]
A
0 homomorphic on all the other operators of

reci.
The encoding of an arbitrary P in reci into rep is given

by

[[P ]] = (local~z) ([[P ]]0 ‖ �
1≤i≤n

[[Ai(~xi)
def
= Pi]]0)

where I(P ) = {A1, . . . , An} and ~z = zA1
. . . zAn

.

6.4 Encoding rep → recs

Here we take advantage of the automata representation of
the input-output behavior of rep processes given in Section
5.1.

Let P be an arbitrary process in rep. Let M = A
C(P )
P be

the automaton representing the input-output behavior of P
on the inputs of relevance for P , C(P ) (Definition 9). Recall
that the start state of M is P . Each transition from Q to R
with label (c, d), written 〈Q, (c, d), R〉, in M represents an

observable transition Q
(c,d)

====⇒ R, where c ∈ C(P ).
Let T be the set of transitions of M . For each state Q of

M we define an identifier AQ as follows:

AQ
def
=

�
〈Q,(c,d),R〉∈T

when c do (tell(d) ‖ unless C nextAR)

where C = �
e∈{c′ | c′ 6=c, c′|=c, 〈Q,(c′,d′),R′〉∈T}

e

Intuitively, AQ expresses that if we are in state Q and c
is the strongest constraint entailed by the the input, then
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the next state will be R and the output will be d, with
〈Q, (c, d), R〉 ∈ T .

We define the encoding of P as [[P ]] = AP .

6.5 Encoding recd → recp

Intuitively, if the free variables are treated dynamically,
then they could equivalently be passed as parameters. Thus,
we can define the encoding as follows:

[[A
def
= P ]] = A(~x)

def
= [[P ]],

where ~x = fv(P )

[[A]] = A(~x)

and [[·]] homomorphic on all the other operators of recd.

6.6 Encoding recp → recd

The idea is to establish the link between the formal pa-
rameters ~x and the actual parameters ~y by telling the con-
straint ~x = ~y. However, this operation has to be encap-
sulated within a (local ~x) in order to avoid confusion with
other potential occurrences of ~x in the same context of the
call.

[[A(~x)
def
= P ]] = A

def
= [[P ]]

[[A(~y)]] = (local~x) (A ‖ repeat tell(~y = ~x))

and [[·]] homomorphic on all the other operators of recd.

6.7 Correctness of the Encodings
The encodings defined in previous sections are all correct

with respect to the input-output behavior. More precisely:

Proposition 4. io(P ) = io([[P ]]) for each encoding [[·]] :
` → `′ defined from Section 6.1 through Section 6.6.

7. CONCLUDING REMARKS
We have studied the expressive power of several tcc lan-

guages focusing on the decidability of their behavioral equiv-
alences. In particular, we have shown that rep (i.e. tcc
with replication) can be compiled into finite-state automata,
while recp (i.e.tcc with recursion) cannot, not even when the
constraint system is based on a finite domain. Furthermore,

we have presented behavior-preserving encodings between
rep, reci (tcc with identical parameters recursion) and recs

(tcc with parameterless recursion and static-scope free vari-
ables), and between rep and recd (tcc with dynamic-scope
free variables). This implies a clear distinction between dy-
namic and static scoping in tcc languages.

We believe that our results contribute to a better under-
standing of tcc languages and to clarify some conjectures
made in literature. In particular, in [15] it was conjectured
that recs would be equivalent to reci provided that defi-
nitions are allowed to be nested within the processes. Our
results show that this extension is not necessary. Another
consequence of our work is that the denotational semantics
of recs cannot be just an extension to sequences of the stan-
dard ccp construction in [18], because the semantic equa-
tions of ccp can be satisfied only by a dynamically-scoped
language.

One interesting implication of our results is that, from
the point of view of the expressive power, in recs the local
operator is redundant. In fact, as shown in Section 6, recs
can be encoded into rep and rep can be encoded into a local-
free fragment of recs. Note that, on the contrary, locality
plays a key role in the reduction of the PCP to recp and in
the encoding of recp into recd.

A closely related work is [21]. Also that paper explores the
expressiveness of tcc languages, but it focuses on the capabil-
ity of recs to encode synchronous languages. In particular,
it shows that Argos [6] and a version of Lustre restricted to
finite domains [5] can be encoded in recs. Consequently, our
decidability results extend to these synchronous languages
as well.

In [17] similar results show how to compile (an extension
of) rep into finite-state automata. The fact that, in order to
obtain the translation to finite-state machines, the authors
restrict to rep already suggests some of the separation re-
sults that we have formally proved in our paper. In [17] the
states are labeled with processes and transitions are labeled
with output constraints rather than pair of input-output
constraints. Such automata provide an execution model for
recs rather than a direct way of verifying input-output (or
output) equivalence. In particular, the standard equivalence
between two automata defined as in our construction (i.e.



language equivalence) imply input-out equivalence of the
processes they represent. This implication does not hold
in general for the construction in [17]. Another difference
wrt [17] is that we were able to compute the whole set of
relevant constraints, while [17] leaves out the existentially
quantified ones. This capability is a key property of our
construction, because it makes it possible to translate rep

into automata with simple states. Without it, i.e., if only
a subset S of the relevant constraints could be computed,
then it would probably be necessary to consider the pro-
cesses in the states, like it is done in [17], to compute at run
time relevant input constraints which would not be in S. It
should be noticed that using the set of relevant constraints,
our construction and the one in [17] (restricted to processes
in rep) can be obtained from each other.

The tccp calculus [3] is another timed extension of ccp.
The results in our paper do not apply automatically to that
language, because tccp additionally has a nondeterminis-
tic choice, and the information about the store is carried
through the time units, so the semantic setting is rather
different from the languages we are considering.

A correspondence between formulae in a classic first-order
linear-time logic and processes in rep has been established
in [12]. As future work we plan to study how the results in
our paper can help to establish decidability results for such
a logic.
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