
On validity in modelization of musical problems by CCP
C. Rueda, F. Valencia

Abstract We show how the ntcc calculus, a model of
temporal concurrent constraint programming with the
capability of modeling asynchronous and non-determin-
istic timed behavior, can be used for modeling real musical
processes. In particular, we show how the expressiveness
of ntcc allows to implement complex interactions among
musical processes handling different kinds of partial
information. The ntcc calculus integrates two dimensions
of soft computing: a horizontal dimension dealing with
partial information and a vertical one in which non
determinism comes into play. This integration is an
improvement over constraint satisfaction and concurrent
constraint programming models, allowing a more natural
representation of a variety of musical processes. We use
the nondeterminism facility of ntcc to build weaker rep-
resentations of musical processes that greatly simplifies
the formal expression and analysis of its properties. We
argue that this modeling strategy provides a ‘‘runnable
specification’’ for music problems that eases the task of
formally reasoning about them. We show how the linear
temporal logic associated with ntcc gives a very expressive
setting for formally proving the existence of interesting
musical properties of a process. We give examples of
musical specifications in ntcc and use the linear temporal
logic for proving properties of a realistic musical problem.

1
Introduction
From a broad perspective we view soft computing as those
techniques pertaining to systems that can best be de-
scribed as a collection of processes dealing with partial
information. What ’’partial’’ means depends on the par-
ticular application. It can refer to being able to use partial
knowledge of a state of affairs and to perform different
kinds of guessing (bounded or unbounded non deter-
minism, probabilistic choices, approximate answers). In
this view, concurrency also belongs to this realm since it

deals with partial information on the ordering of events.
So does constraint programming which is based on the
very idea of computing with predicates expressing differ-
ent degrees of knowledge about variable values. Concur-
rent constraint (CC) process calculi [5,11,9] provide
formal grounds to the integration of concurrency and
constraints so that non trivial properties of concurrent
systems can be expressed and proved. They are thus nat-
ural simulators to gain experience on different soft com-
puting techniques.

We view musical experience as constructed from very
complex interactions among a great number of concurrent
processes acting on different musical dimensions. We
share the view in [7] that as a result of those interactions
musical structures such as rhythm and harmony emerge.
Concurrent processes occurring in music exhibit a rich
variety of synchronization schemes, calling into play dif-
ferent degrees of precision (i.e. partial information) about
temporal or harmonic relations involving them. The
complexity of musical phenomena poses a great challenge
to any computational formalism. We think that a suitable
CC process calculus should provide a convenient frame-
work to get insights into the right models to cope with this
challenge.

We thus borrow concepts and techniques from con-
current processes modeling to define suitable computa-
tional calculi and analyze their behavior in real musical
settings. What we gain from this low level approach is
twofold. One the one hand, we are able to ground the
development of music composition tools on a very precise
formal foundation and by this means proposing coherent
higher level musical structures and operations. On the
other hand, our model can give us clues for constructing
formal proofs of interesting properties of a given musical
process.

In [1], PiCO, a concurrent processes calculus integrating
constraints and objects is proposed. Musical applications
are programmed in a visual language having this calculus
as its underlying model. Since there is no explicit notion of
time in PiCO some musical processes, in particular those
involving real time activity, are difficult to express.
Moreover, reasoning about musical processes behavior in
PiCO can be difficult since there is no formal logic asso-
ciated with it.

We propose using a temporal non deterministic con-
current calculus (ntcc, see [8]) as a formal base to model
timed musical processes in such a way that their musical
properties can be formally proved.

Focus Soft Computing 8 (2004) 641–648 ! Springer-Verlag 2004

DOI 10.1007/s00500-004-0390-7

Published online: 15 July 2004

C. Rueda (&)
Universidad Javeriana-Cali,
Ingenieria de Sistemas y Computation,
C1 18 118-250 via Pance, Cali
e-mail: crueda@atlas.puj.edu.co

F. Valencia
Department of Information Technology,
Uppsala University, Sweden
e-mail: fvalenci@brics.dk

641

The ntcc calculus inherits ideas from the tcc model [10],
a formalism for reactive concurrent constraint program-
ming. In tcc time is conceptually divided into discrete
intervals (or time-units). In a particular time interval, a
deterministic ccp process receives a stimulus (i.e. a con-
straint) from the environment, it executes with this stim-
ulus as the initial store, and when it reaches its resting
point, it responds to the environment with the resulting
store. Also the resting point determines a residual process,
which is then executed in the next time interval.

The tcc model is inherently deterministic and syn-
chronous. Indeed, patterns of temporal behavior such as
‘‘the system must output pitch C within the next t time
units’’ or ‘‘the three voices must eventually output the
same note but there is no bound in the occurrence time’’
cannot be expressed within the model. It also rules out the
possibility of choosing one among several alternatives as
an output to the environment.

A very important benefit of being able to specify non-
deterministic and asynchronous behavior arises when
modeling the interaction among several components
running in parallel, in which one component is part of the
environment of the others. This is frequent in musical
applications. These systems often need non-determinism
and asynchrony to be modeled faithfully.

The ntcc calculus is obtained from tcc by adding
guarded-choice for modeling non-determinism and an
unbounded but finite delay operator for asynchrony.
Computation in ntcc progresses as in tcc, except for the
non-determinism and asynchrony induced by the new
constructs. The calculus allows for the specification of
temporal properties, and for modeling and expressing
constraints upon the environment both of which are useful
in proving properties of timed systems.

In this essay we are interested in showing how non
trivial musical processes calling into action different forms
of partial information can be modeled in ntcc. In partic-
ular, we implement systems in which the number of notes
is a derived property. Systems of this kind are awkward to
model using constraint satisfaction because the exact
number of variables is not known in advance. We are also
interested in modeling musical patterns resulting from the
controlled interaction of independent musical agents, such
as is the case in several forms of musical improvisation. In
this type of systems, state changes in one process following
particular local laws must be ‘‘partially’’ synchronized with
state changes in other processes. This poses difficulties to
CCP models not including state change constructs. In fact,
two dimensions of soft computing issues can be identified:
a ‘‘horizontal’’ dimension in which agents compute, share
and accumulate partial information, and a ‘‘vertical’’
dimension in which they perform non deterministic
choices. Very different interpretations of the same musical
piece bear witness of the presence of both dimensions in a
real score, particularly when improvisation is called into
play. Most CCP models include only the horizontal
dimension whereas most concurrent process calculi in-
clude only the vertical dimension. The ntcc calculus in-
cludes both. We show that music processes with non
determinism, partial information and state change syn-

chronization are naturally expressed in ntcc. We claim this
is a clear advantage of the ntcc calculus.

We also investigate ways in which properties of
musical process can be formally proved. We are able to
do this thanks to the logical nature of ntcc, which comes
to the surface when we consider its relation with linear
temporal logic: All the operators of ntcc correspond to
temporal logic constructs. In constraint based musical
applications, the existence or non existence of a
musical structure enjoying given properties is
discovered after a time consuming search. The main
contributions of this paper are: 1) to show how the
expressiveness of the ntcc model allows simple
descriptions of complex systems of interacting musical
processes and 2) showing that by modeling a music
process in ntcc one inherits a well defined logical
inference system (see [8]) that can be used to prove its
musical properties (or lack thereof).

2
The calculus
In this section we present the syntax and an operational
semantics of the ntcc calculus. First we recall the notion of
constraint system.

Basically, a constraint system provides a signature from
which syntactically denotable objects in the language
called constraints can be constructed, and an entailment
relation specifying interdependencies between such con-
straints.

Definition 1. (Constraint Systems) A constraint system is
a pair ðR;DÞ where R is a signature specifying functions
and predicate symbols, and D is a consistent first order
theory.

The underlying language L of the constraint system
contains the symbols _:; _̂; _); _9, true and false which de-
note logical negation, conjunction, implication, existential
quantification, and the always true and always false
predicates, respectively. Constraints, denoted by c; d; . . .
are first-order formulae over L. We say that c entails d in
D, written c ‘D d (or just c ‘ d when no confusion arises),
if c _) d is true in all models of D. For operational reasons
we shall require ‘ to be decidable.

Process Syntax. Processes P, Q, 2 Proc are built from
constraints c 2 C and variables x 2 V in the underlying
constraint system by the following syntax.

P;Q; . . . ::¼ tellðcÞj
P
i2I

when ci do Pi

jP k Qj local x in P
jnext Pj unless c next P

j!Pj ? P :

The only move or action of process tellðcÞ is to add the
constraint c to the current store, thus making c available to
other processes in the current time interval. The guarded-
choice
X

i2I
when ci do Pi;

where I is a finite set of indexes, represents a process that,
in the current time interval, must non-deterministically

642

choose one of the Pj (j 2 I) whose corresponding con-
straint cj is entailed by the store. The chosen alternative, if
any, precludes the others. If no choice is possible then the
summation is precluded. We use

P
i2I Pi as an abbrevia-

tion for the ‘‘blind-choice’’ process
P

i2I whenðtrueÞdo Pi.
We use skip as an abbreviation of the empty summation
and ‘‘þ’’ for binary summations.

Process P k Q represents the parallel composition of P
and Q. In one time unit (or interval) P and Q operate
concurrently, ‘‘communicating’’ via the common store. We
use

Q
i2I Pi, where I is finite, to denote the parallel com-

position of all Pi. Process local x in P behaves like P, ex-
cept that all the information on x produced by P can only
be seen by P and the information on x produced by other
processes cannot be seen by P.

The process next P represents the activation of P in the
next time interval. Hence, a move of next P is a unit-delay
of P. The process

unless c next P

is similar, but P will be activated only if c cannot be in-
ferred from the current store. The ‘‘unless’’ processes add
(weak) time-outs to the calculus, i.e., they wait one time
unit for a piece of information c to be present and if it is
not, they trigger activity in the next time interval. We use
nextnðPÞ as an abbreviation for

nextðnextð. . . ðnextPÞ . . .ÞÞ;
where next is repeated n times.

The operator ! is a delayed version of the replication
operator for the p%calculus ([6]): !P represents
P k nextP k next2P k . . ., i.e. unbounded many copies of P
but one at a time. The replication operator is the only way
of defining infinite behavior through the time intervals.

The operator ? allows us to express asynchronous
behavior through the time intervals. The process ?P rep-
resents an arbitrary long but finite delay for the activation
of P. For example, ?tellðcÞ can be viewed as a message c
that is eventually delivered but there is no upper bound on
the delivery time.

We shall use !IP and ?IP, where I is an interval of
natural numbers, as an abbreviation for processesQ

i2I next
iP and

P
i2I next

iP, respectively. For instance,
?½m;n'P means that process P is eventually active between
the next m and mþ n time units, while !½m;n'P means that
P is always active between the next m and mþ n time
units.

The ? operator is suitable to specify lack of information
about a system. When implementing the system, however,
having some idea (albeit vague) of the occurrence of an
activity is usually the case. For instance, a composer might
wish a certain musical event to happen at some point
before a given time limit. In this case, the derived con-
struct ?IP is more relevant, as can be seen in the impro-
visation example discussed further below.

Operational Semantics
Operationally, the currently available information is rep-
resented as a constraint c 2 C, so-called store. The oper-
ational semantics is given by considering transitions
between configurations c of the form P; ch i. We define C as

the set of all configurations. The formal definition (see [8]
for details) introduces two reduction relations, one rep-
resenting internal transitions and the other observable
transitions, as can be seen in table 1.

The internal transition P; ch i ! Q; dh i should be read as
‘‘P with store c reduces, in one internal step, to Q with

store d’’. The observable transition P¼)
ðc;dÞ

Q should be read
as ‘‘P on input c from the environment reduces, in one
time unit, to Q and outputs d to the environment’’ (inputs
and outputs represent information i.e. a store). Such an
observable transition is defined in terms of a sequence of
internal transitions P; ch i !(Q0; dh i starting in P with
store c and ending in some process Q0 with store d. Cru-
dely speaking, to obtain Q we should remove from Q0 what
was meant to be executed only in the current time interval.
Since Q is to be executed in the next time interval we
should also ‘‘unfold’’ the sub-terms within next R
expressions in Q0 (this is modeled by function F in table 1).
As in tcc, the store does not transfer automatically from
one interval to another.

To illustrate reductions in ntcc, consider a musical
process, say ! P, that continually outputs either C
(MIDI=60) or E (MIDI=64) until another process (the
conductor) Q signals the end. Process !P k Q, for P and Q
as defined below, models the example.

P ¼def when ðGo ¼ 1Þ do ðtell ðNote ¼ 60Þ
þ tell ðNote ¼ 64ÞÞ

k unless End ¼ 1 next tellðGo ¼ 1Þ
Q ¼def tell ðGo ¼ 1Þ k ? tell ðEnd ¼ 1Þ
Then there is a sequence of internal transitions

! P; Go ¼ 1h i ! P k next ! P; Go ¼ 1h i
!(tell ðNote ¼ 65Þ k next ! P; Go ¼ 1h i
! next ! P; Note ¼ 65 ^Go ¼ 1h i 6! . . .

Table 1. An operational semantics for ntcc. The upper part
defines the internal transitions while the lower part defines the
observable transitions.

TELL htell ðcÞ; di ! hskip; d _̂ci

CHOICE
X

i2I
when ci do Pi; d

* +

! Pj; d
! "

if d ‘ cj; for j 2 I
PAR hP; ci ! hP0; di

hP k Q; ci ! hP0 k Q; di
LOC P; c _̂ _9xd

! "
! hQ; c0i

hlocal ðx; cÞ in P; di
! local ðx; c0Þ in Q; d _̂ _9xc0

! "

UNLESS hunless c next P; di ! hskip; di
ifd ‘ c

REPL !P; ch i ! P k next !P; ch i
STAR h?P; ci ! hnextnP; ci

for some n) 0:
STRUCT c1 * c01 c01 ! c02 c02 * c2

c1 ! c2

OBS hP; ci !(hQ; di 6!

P¼)
ðc;dÞ

FðQÞ

643

Initially the store contains constraint Go ¼ 1 (which, as
described below, will be added to the store by Q). Repli-
cated process !P then creates a copy of P and schedules
itself for the next time unit. Process P chooses note E (the
store gets Go ¼ 1 ^Note ¼ 65). No further reductions
are possible in the current time unit. Two processes, !P and
tell Go ¼ 1 are scheduled for the next time unit. So, in the
case P k Q, for an arbitrary (number of time units) n > 1,
the following are possible transitions:

!P k Q; trueh i !(

hnext !P k next tell Go ¼ 1
k nextntellðEnd ¼ 1Þ; Go ¼ 1 ^Note ¼ 64i
and

!P k Q ¼)
ðtrue; G0¼1^Note¼64Þ

!P k tell Go ¼ 1 k nextn%1tellðEnd ¼ 1Þ:
The first one is the internal transition relation, whereas the
second is the observable transition. Thus !P continually
outputs either pitch C or E for an arbitrary number n of
time units until the constraint End ¼ 1 is put in the store.

As mentioned before, an important feature of the ntcc
model is that there is a logic associated with it. We
describe next this logic.

3
A Logic of ntcc processes
A relatively complete formal system for proving whether
or not an ntcc process satisfies a linear-temporal property
was introduced in [8]. In this section we summarize these
results.

Temporal Logic
We define a linear temporal logic for expressing properties
of ntcc processes. The formulae A;B; ::: 2 A are defined
by the grammar
A ::¼ c j A) A j :A j 9xA j + A j (A j , A:
The symbol c denotes an arbitrary constraint. The symbols
), : and 9x represent temporal logic implication, nega-
tion and existential quantification. These symbols are not
to be confused with the logic symbols _), _: and _9x of the
constraint system. The symbols +;(; and, denote the
temporal operators next, always and sometime. Given a
property A (e.g. x > 10) the intended meaning of +A, (A
and ,A is that the property holds, in the next time unit,
always and eventually, respectively. We use A _ B as an
abbreviation of :A) B and A ^ B as an abbreviation of
:ð:A _ :BÞ.

We shall say that process P satisfies A iff every infinite
sequence that P can possibly output satisfies the property
expressed by A. A relatively complete proof system for
assertions P ‘ A, whose intended meaning is that P sat-
isfies A, can be found in [8]. We shall write P ‘ A if there
is a derivation of P ‘ A in this system.

The following notion will be useful for discussing
properties of our musical examples.

Definition 2. (Strongest Derivable Formulae) A formula
A is the strongest temporal formula derivable for P if P ‘ A
and for all A0 such that P ‘ A0, we have A) A0.

Note that the strongest temporal formula of a process P
is unique modulo logical equivalence. We give now a
constructive definition of such formula..

Definition 3. (Strongest Formula Function) Let the
function stf : Proc ! A be defined as follows:

stf ðtellðcÞÞ ¼ c
stf ðWHENðci; PiÞÞ ¼

W
i2I ci ^ stf ðPiÞ

$

_
V

i2I :ci
stf ðP k QÞ ¼ stf ðPÞ ^ stf ðQÞ

stf ðlocal x PÞ ¼ 9xstf ðPÞ
stf ðnext PÞ ¼ +stf ðPÞ

stf ðunless c next PÞ ¼ c _ +stf ðPÞ
stf ð!PÞ ¼ (stf ðPÞ
stf ð?PÞ ¼ ,stf ðPÞ:

where the expression WHENðci; PiÞÞ represents process
X

i2I
whenðciÞ do Pi :

From [8] it follows that P ‘ stf ðPÞ. From this we have:

Proposition 1. For every process P, stf ðPÞ is the strongest
temporal formula derivable for P.

Note that to prove that P ‘ A is sufficient to prove that
stf ðPÞ) A. In addition, the proof system described in [8]
gives extra mechanisms for carrying out proofs of process
properties.

4
Musical examples
We introduce the idea of modeling music processes in ntcc
by defining rhythm patterns which are synchronized in a
variety of ways. In the examples given below we use cells.
Cells are variables whose values can be updated in sub-
sequent time units. Notation x :¼ expmeans that cell x is to
be updated with value exp in the next time unit. Notation
x : ðvÞ initializes a cell x with value v. Cells are not extended
constructs since they can be easily encoded in standard
ntcc (see [8] for details). We also use process definitions of
the form q½x' ¼def P, where q is the process name and P, the
body of the definition, is a ntcc process. Process definition
can also be encoded in standard ntcc (see [8] for details of
cell and process definition encodings).
Let us first define a ‘‘metronome’’ process:

M½tick; count; d' ¼def

!ðwhenðcount mod dÞ ¼ 0 do tick :¼ tickþ 1
jjcount :¼ 1
þwhenðcount mod dÞ > 0 do count :¼ count þ 1Þ

One could think of M½tick; count; d' as a process that beats
time every d time units. This process could interact with
an acceleration process:

Accelk½signal; d' ¼
def

!when ðsignal ¼ 1Þ ^ d > k do d :¼ d% k

This process speeds up the ticks of M½tick; count; d' by a
value of k if some other process, which we shall refer to as
Controlðs;d;eÞ½tick; signal', tells signal ¼ 1:

644

Controlðs;d;eÞ½tick; signal' ¼
def

!ðwhen ðs - tick - e ^ ðtick% sÞ mod d ¼ 0Þ
do signal ¼ 1Þ

Process Controlðs;d;eÞ½tick; signal' acts as a conductor sig-
naling the start of a variety of events. Each type of event is
represented by an instance of the controller using a dif-
ferent ‘‘signal’’ variable. A musical process P is controlled
by one of these particular instances when P shares the
signal variable of that controller. For example, if the
Accelk½signal; d' process share its signal variable with the
one in the above Control process, then it would accelerate
tempo every d-th tick in the range between ticks s and e.
Any controller could instead be made (bounded) non
deterministic by triggering it within a summation
X

t2½s;e'
Controlðt;d;eÞ½tick;signal'

In this way, for example, tempo change could be made to
start at some undetermined point between ticks s and e.

Since a process can launch an instance of any other
process, very complex temporal patterns can be achieved.
Furthermore, musical processes with local ‘‘clocks’’ can be
easily synchronized to some other global conducting
process, as the following ‘‘ornament’’ process illustrate:

Ornamentn½signal; d; signal1; signal2' ¼
def

when signal ¼ 1 do
ðlocalcounttickÞð

tick : ð0Þjjcount : ð0Þ
M½tick; count; ðddiv nÞ'

jjControlð1;1;d%1Þ½tick; signal1'
jjControlð0;1;dÞ½tick; signal2'ÞÞ

The above process Ornament is launched by some con-
troller (the one setting its signal parameter). When it
starts, it launches a local metronome and two controllers.
Variable signal1 is thus set in n equally spaced ticks,
starting in the current global one and ending (but not
including) the next global tick (i.e the one occurring d time
units later). Variable signal2 is similarly set, but starting
after the current global tick and including the next global
tick. These could be used to signal, for example, when
different types of ornament notes have to be played in
between base notes. The nondeterministic variety of
Control could be used to achieve more freely controlled
ornamentations.

The above scheme defines temporal patterns of con-
ductors signals. Any musical process, be it temporal,
melodic or harmonic could be synchronized according
to those signals. These , in turn, could interact ‘‘diago-
nally’’ by means of constraints coupled with non
determinism:

Amblow;high½signal; bound' ¼
def

when signal ¼ 1 doP
n2½low;high' low - bound - n

NotesS½signal; bound1; bound2; note' ¼
def

!ðwhen signal ¼ 1 doP
pitch2S when bound1 - pitch - bound2

do note ¼ pitchÞ
Process Amb constrains all pitches output from

processes synchronized in that tick to be not higher than a
non deterministically chosen value bound in the range
½low; high'. Process Notes non deterministically selects a
note from the set S, provided it lays within the allowable
range.

The system described above could be instantiated as
follows:

System ¼def

ðlocal tick d count signal signal1; signal2 signala
note note1note2 bound1bound2Þ

ðcount : ð0Þjjtick : ð0Þd : ð2Þ
jjM½tick; count; d'jjAccel2½signala; d'j
jjControlð0;60;120Þ½tick; signala'
jjControlð0;30;120Þ½tick; signal'
jjControlð0;20;120Þ½tick; signal'
jjControlð0;12;120Þ½tick; signal'
jjOrnament4½signal; signal1:signal2'
jjAmbð48;55Þ½signal; bound1'
jjAmbð60;72Þ½signal; bound2'
jjNotes½48;72'½signal; bound1; bound2; note'
jjNotesf60;64;67;71g½signal1; 60; 72; note1'
jjNotesf48;50;55;62g½signal2; 48; 62; note2'Þ

The above system performs a rhythm addition of two eight
notes (d ¼ 30), a triplet (d ¼ 20) and a quintuplet
(d ¼ 12). Tempo is doubled each quarter note. Base notes
are taken in a range supplied by bound1 and bound2,
computed by process Amb. Ornament notes before and
after the beat are selected from given sets of pitches.

4.1
Controlled improvisation
This examples models a non trivial controlled improvisa-
tion musical system. An interesting feature of this example
is that the number of events (notes) to be computed is not
known in advance. This makes it very difficult to imple-
ment as a constraint satisfaction model. Contrary to this,
the problem admits a simple ntcc model. The system can
be described as follows: there is a certain number m of
musicians (or voices), each playing blocks of three notes.
Each of them is given a particular pattern (i.e. a list) of
allowed delays between each note in the block. A musician
can freely choose any permutation of this pattern. For
example, given a pattern p ¼ ½4; 3; 5' a musician can play
his block with time gaps of 5 then 4 and then 3 between the
notes. Once a musician has finished playing his block of
three notes, he must wait for a signal of the conductor
indicating that the other musicians have also finished their
respective blocks. Only after this he can start playing a new
block. The exact time in which he actually starts playing a

645

new block is not specified, but it is constrained to be no
later than the sum of the durations of all patterns. For
example, given three musicians and patterns p1 ¼ ½3; 2; 2';
p2 ¼ ½4; 3; 5' and p3 ¼ 3; 3; 4' no delays between blocks
greater than 29 time units is allowed. The musicians keep
playing this way until all of them play a note at the same
time. After this, all musicians must stop playing.

In order to model this example we assume that constant
sil in the constraint system represents some note value for
‘‘silence’’. Process Mi; i < m, models the activity of the i-th
musician. When ready to start playing (starti ¼ 1), the i-th
musician chooses a permutation ðj; k; lÞ of his given pattern
pi. ThenMi spawns a process Playiðj;k;lÞ, thus playing a note at
time j (after starting), then at time jþ k and finally at time
jþ kþ l. Constraint ci½notei' specifies some value for notei,
different from sil. After playing a block, the i-th musician
signals termination by setting cell flagi to 1. Furthermore,
upon receiving the go ¼ 1 signal, the i-th musician even-
tually starts a new block no later than pdur which is a con-
stant representing the sum of the durations of all patterns.

Mi ¼
def

!ðwhen starti ¼ 1doP
ðj;k;lÞ2permðpiÞðPlay

i
ðj;k;lÞ

jjnext jþkþl

ðflagi ¼ 1
jj (½0; pdur'tellðstarti ¼ 1ÞÞÞ

Playiðj;k;lÞ ¼
def

!½0; j% 1'tellðnotei ¼ silÞjjnextjtellðci½notei'Þ
jj!½jþ 1; jþ k% 1'tellðnotei ¼ silÞ

jjnextjþktellðci½notei'Þ
jj!½jþ kþ 1; jþ kþ l% 1'tellðnotei ¼ silÞ

jjnextjþkþltellðci½notei'Þ
The conductor process is always checking (listening) whe-
ther all the musicians play a note exactly at the same time
^

i2½1;m'
ðnotei 6¼ silÞ:

If this happens it sets cell stop (initially set to 0) to 1. At the
same time, it waits for all flags to be set to 1, and then
resets the flags and gives the signal go ¼ 1 indicating all
musicians can start a new block, unless all of them have
output a note at te same time (i.e. stop ¼ 1).

Conductor ¼def

wait
V

i2½1;m'ðnotei 6¼ silÞ do stop :¼ 1
jjwhen

V
i2½1;m'ðflagi ¼ 1Þ ^ ðstop ¼ 0Þ

doðtellðgo ¼ 1ÞjjPi2½1;m'flagi :¼ 0Þ
Initially the m flag cells are set to 0, the Mi are given the
start signal starti ¼ 1 and, as mentioned above, the cell
stop is set to 0. The system (i.e. the performance) is just a
parallel execution of all the Mi musicians controlled by the
Conductor process.

Init ¼def

Pi2½1;m'ðflagi : ð0Þjjtellðstarti ¼ 1ÞÞjjstop : ð0Þ

System ¼def

InitjjConductorjjPi2½1;m'Mi

The temporal logic and the proof system of ntcc can then
be used to formally specify and prove termination
properties of this system. For example, we may wonder
whether the assertion

System ‘ ,stop ¼ 1

holds. This assertion expresses that the musicians even-
tually stop playing at all regardless their choices. We may
also wonder whether there exists certain choices the
musicians can make in order that they eventually stop
playing definitely. For this, we can verify whether the
assertion

System ‘ (stop ¼ 0

does not hold, i.e., there is a run of the system for which at
some time unit all the notes are different from sil.

4.2
modeling a harmonic problem
We model next a musical process described in [2]. It deals
with harp music from Nzakara people of Central African
republic. Two voices are constructed in such a way that the
second one reproduces the first (up to transposition) with
a time gap of p. The upper and lower voices play notes in
the sets f64; 67; 70g and f60; 62; 64g, respectively. A
transposition function f ð64Þ ¼ 60, f ð67Þ ¼ 62, f ð70Þ ¼ 64
gives for each upper voice note the lower note that is to be
played p time units later. Additional constraints state that
time units that are either contiguous or separated by p
units should not play the same chord. Finally, all chords
thus formed must belong to the set fð60; 64Þ; ð60; 67Þ;
ð62; 67Þ; ð62; 70Þ; ð64; 70Þg:

The four ntcc processes shown below model this prob-
lem.

NOTESðmidi;pÞ ¼
def

P
vðwhen error s2 ¼ v do
unless chordðP NU ; P NL;C NL;B NL;midiÞ

next ðtell errors2 ¼ vþ 1Þ k
ðwhen chordðP NU ; P NL;C NL;B NL;midiÞ
do
ðtellðC NU ¼ midiÞ
k nextðtell P NU ¼ midiÞ
k nextpðtell C NL ¼ f ðmidiÞ

k tell B NU ¼ midi
k nextðtell P NL ¼ f ðmidiÞÞÞ

k next2pðtell B NL ¼ f ðmidiÞÞÞ
k nextðtell error s2 ¼ vÞÞÞ

CHOOSEðpÞ ¼
def

NOTESð64;pÞ þ NOTESð67;pÞ
þNOTESð70;pÞ

646

COUNTER ¼defP
vðwhen error s1 ¼ v do
when wrongðC NL;C NUÞ do

nextðtell errors ¼ vþ 1Þ
k unless wrongðC NL;C NUÞ

next ðtell error s1 ¼ vÞ
Þ

PROCESSðn;pÞ ¼
def

!½0;p%1'ðtell C NL ¼ 0 ^ B NU ¼ 0 ^ P NL ¼ 0Þ
k tell error s1 ¼ 0 k tell error s2 ¼ 0
k nextpðtell P NL ¼ 0Þ
k !½0;2p%1'ðtell B NL ¼ 0Þ
k !½0;n%1'ðCHOOSEðpÞ k COUNTERÞ

Variables PNX , CNX and BNX represent the previous
note, the current note and the back note played p time
units before, respectively. Index X is either U (upper
voice) or L (lower voice).

Process CHOOSEðpÞ models the nondeterministic selec-
tion of a note in the upper voice. Process NOTESðmidi;pÞ
verifies the chord constraints (except membership to the
given set) and then outputs the current upper note (CNU).
It also sends its current upper and lower notes as previous
and back notes for the future. When the chord constraint
does not hold, variable errors2 is incremented in the next
time unit.

Process COUNTER keeps track of the number of output
chords not belonging to the given set. Summation index v
ranges from 0 to n (the number of notes). Finally,
PROCESSðn;pÞ states that there cannot be lower, previous or
back notes before the time gap of p, so these are set to zero
(meaning a silence). It also initializes the number of errors
and launches the other process for all time units from zero
to the number of notes.

4.3
proving properties of the Nzakara process
The model given above is weaker than required for the
Nzakara musical problem. Instead of asserting chord
membership constraints, errors are simply counted. Giv-
ing weaker ntcc models allows proving negative properties
of the real problem, such as the fact that there is no
solution.

We give first the strongest temporal formula for the
process:

st f ðPROCESSðn;pÞÞ ¼
ð(p%1C NL ¼ 0 ^ B NU ¼ 0Þ
^ð(pP NL ¼ 0Þ ^ ð(2p%1BNL ¼ 0Þ
^error s1 ¼ 0 ^ error s2 ¼ 0
^ð(n%1st f ðCHOOSEpÞ
^st f ðCOUNTERÞÞ
where strongest temporal formulae for the above pro-

cesses CHOOSEp and COUNTER are

st f ðCOUNTERÞ ¼
ð
W

v error s1 ¼ v ^ ð:wrong ^ +ðerror s1 ¼ vÞÞ
_ðwrong ^ +ðerror s1 ¼ vþ 1ÞÞÞ

st f ðCHOOSEðpÞÞ ¼
ð
W

i2f64;67;70g st f ðNOTESði;pÞÞÞ

st f ðNOTESði;pÞÞ ¼
ð
W

w2f0::ng error s2 ¼ w
^ðchordmidi _ +ðerror s2 ¼ wþ 1ÞÞ
^chordmidi ^ CNU ^ +ðP NU ¼ midiÞ
^ +p ðC NL ¼ f ðmidiÞ ^ B NU ¼ midiÞ
^ +pþ1 ðP NL ¼ f ðmidiÞÞ
^ + ðB NL ¼ f ðmidiÞÞ ^ +ðerror s2 ¼ wÞÞ

In the above definitions we write +kA for k nested occur-
rences of + in +ð+ð. . . ð+AÞÞ . . .Þ. Similarly, we write (kA
for A ^ +A ^ +ð+AÞ ^ . . . ^ +kA.

The strongest temporal formula of PROCESS can be
used s for proving various musical properties. It is
straightforward to prove from st f ðNOTESÞ that the value
of error s2 never decreases and also that a chord constraint
violation implies a non zero vale of error s2 in subsequent
time units. That is,

(ðst f ðNOTESðn;pÞÞ ^ error s2 ¼ w
) +ðerror s2) wÞÞ

st f ðNOTESðn;pÞÞ ^ error s2 ¼ w ^ :chord
) +ðerror s2 > wÞ

Similarly, from the strongest formula of COUNTER we can
prove that errors1 never decreases and that a single vio-
lation of the chord set membership constraint causes a
non zero value of errors1 there on.

The proof of the non solvability of the Nkazara process
can be carried out by showing that each possible chord in
the given set leads to a chord constraint violation:

Proposition 2. Each chord in the given set violates a chord
constraint. For all k 2 0::n% p we have:

st f ðPROCESSðn;pÞÞ)
(+pþk ðC NL ¼ 60 ^ C NU ¼ 64

^error s1 ¼ 0) error s2 > 0Þ

st f ðPROCESSðn;pÞÞ)
(+2pþk ðC NL ¼ 60 ^ C NU ¼ 67

^error s1 ¼ 0) error s2 > 0Þ

st f ðPROCESSðn;pÞÞ)
(+3pþk ðC NL ¼ 62 ^ C NU ¼ 67

^error s1 ¼ 0) error s2 > 0Þ

st f ðPROCESSðn;pÞÞ)
(+3pþkþ1 ð

ðððC NL ¼ 62 ^ C NU ¼ 70Þ
_ðC NL ¼ 64 ^ C NU ¼ 70ÞÞ
^error s1 ¼ 0Þ) error s2 > 0Þ

Since there are no options for chords other than those
ruled out by the previous proposition, we have

647

Corollary 1. There is always a chord constraint violation
after three periods (Nzakara time gaps), i.e.,

st f ðPROCESSðn;pÞÞ)
(+3pþkþ1 ðerror s1 ¼ 0) error s2 > 0Þ

from which it is easy to show

Corollary 2. There is no solution for a Nzakara musical
process having 30 notes and a time gap of 6, i.e.,

st f ðPROCESSð30;6ÞÞ)
(+30 ðerror s1 > 0 _ error s2 > 0Þ

The expressive power of linear time logic and the weaker
implementation of the Nzakara process in ntcc allow us to
infer many other interesting musical properties, such as
(see [2])

Proposition 3. There is a Nzakara musical process having
30 notes and a time gap of 6 with fewer than 7 wrong
chords, i.e.,

st f ðPROCESSð30;6ÞÞ)
, +30 ðerror s2 ¼ 0 ^ errors1 < 7Þ

5
Related and Future Work
We have described an ongoing project concerning mod-
eling musical processes with ntcc. From the soft comput-
ing perspective, the fact that ntcc integrates constraint
programming and non deterministic asynchronous
behavior allows defining in a natural way musical pro-
cesses for which only partial information about their
temporal or harmonic properties is known. In particular,
this includes partial information about the number of
events of a process.

In the ntcc approach the construction and manipulation
of musical structures rests on the firm ground of a precise,
simple, yet powerful ‘‘time aware’’ computational model.
This allows us to better understand interactions among
concurrent musical processes and thus having better clues
for the development of coherent music composition tools,
particularly for real time settings.

A strong point of the described approach is that the
linear temporal logic associated with ntcc can be used to
prove (or disprove) interesting musical properties of
processes before running them. We showed how this can
be achieved for non trivial musical problems. The
expressiveness of the logic allows us to state interesting
musical properties in a very compact way. Moreover a
significant fragment of ntcc, which include all the appli-
cations examples in this paper, can be compiled into finite
state systems. Finite state systems are amenable to auto-

matic verification (of a program satisfying a temporal logic
formula), since their observable behavior can be finitely
represented.

The previous remark implies that the musical examples
given in this paper could probably be implemented also in
deterministic systems such as tcc, but the representation
(i.e. transformation of non deterministic to deterministic
automata) would be costly in space.

We plan to pursue this line of work in three directions:
first, modeling in ntcc and proving properties of a variety
of rhythm processes. Second, extending ntcc to a proba-
bilistic model following ideas in [3]. This is justified by the
existence of rhythm patterns examples involving stochastic
rules which cannot be faithfully modeled with non-deter-
ministic behavior. Third, our research group has imple-
mented an abstract machine (called LMAN) which is
capable of running ntcc code in real time. We have used
LMAN to efficiently control a LEGO robot ([4]) using ntcc
processes. We are currently adding a Midi interface to
LMAN so as to get a more direct feedback about the
musical models defined in ntcc.

References
1. Alvarez G, Diaz JF, Quesada LO, Rueda C, Tamura G,

Valencia F, Assayag G (2001) Integrating constraints and
concurrent objects in musical applications: A calculus and its
visual language. Constraints

2. Chemillier M (1995) Une esthetique perdue. In: de Dampierre
E. (ed), La musique de la harpe, pp. 99–208, Paris, Presses de
l’Ecole normale Superieur

3. Herescu O, Palamidessi C (2000) Probabilistic asynchronous
pi-calculus. FoSSaCS, pp. 146–160

4. Hurtado R, Munoz P, Rueda C, valencia F (2003) Lman, an
abstract machine of the ntcc calculus for concurrent pro-
gramming of lego robots (in spanish). Epiciclos, pp. 4

5. Maher MJ (1998) Logic semantics for a class of committed-
choice programs. In: Proc. 4th International Conference on
Logic Programming, pp. 858–876, Melbourne, Australia

6. Milner R (1999) Communicating and Mobile Systems: the p-
calculus. Cambridge University Press

7. Pachet F (2000) Rhythms as emerging structures. In:
ICMC2000, Berlin, Germany

8. Palamidessi C, Valencia F (2001) A temporal concurrent
constraint programming calculus. In: Proc. of the Seventh
International Conference on Principles and Practice of Con-
straint Programming, 26 November 2001

9. Saraswat V (1993) Concurrent Constraint Programming. The
MIT Press, Cambridge

10. Saraswat V, Jagadeesan R, Gupta V (1994) Foundations of
timed concurrent constraint programming. In: Proc. of the
Ninth Annual IEEE Symposium on Logic in Computer Science,
4–7 July 1994 pp. 71–80

11. Saraswat V, Rinard M, Panangaden P (1991) The semantic
foundations of concurrent constraint programming. In: POPL
’91. Proceedings of the eighteenth annual ACM symposium
on Principles of programming languages, 21–23 January 1991
pp. 333–352

648

