
Proving Musical Properties using a temporal
Concurrent Constraint Calculus

Camilo Rueda, Frank Valencia
Universidad Javeriana-Cali andBRICS, University of Aarhus, Denmark

email:crueda@atlas.puj.edu.co, fvalenci@brics.dk

Abstract

We show how thentcc calculus, a model oftem-
poral concurrent constraint programmingwith the
capability of modeling asynchronous and
non-deterministic timed behavior, can be used for
modeling real musical processes. We use the non-
determinism facility of ntcc to build weaker repre-
sentations of musical processes that greatly sim-
plifies the formal expression and analysis of its
properties. We argue that this modeling strat-
egy provides a ”runnable specification” for music
problems that eases the task of formally reason-
ing about them. We show how the linear temporal
logic associated with ntcc gives a very expressive
setting for formally proving the existence of in-
teresting musical properties of a process. We give
examples of musical specifications in ntcc and use
the linear temporal logic for proving properties of
a real musical problem.

1 Introduction

Constraint programming and constraint satis-
faction procedures have found an important place
in music applications. Various languages and tools
using these notions have been defined ((Assayag,
Rueda, Laurson, Agon, and Delerue 1999), (Pa-
chet and Roy 1995), (Laurson 1996)). These tools
extend general purpose programming languages
with new interfaces and search engines which are
deemed suitable to compute musical structures de-
fined by some given set of rules. Recently, more
flexible search engines based on soft constraints
have been proposed to be able to handle over-
specified musical problems ((Truchet, Agon, and
Codognet 2001)). The tendency is thus to provide
tools that can offer approximate solutions when
exact solutions do not exist or are extremely diffi-

cult to find.
Our work belongs to the constraint program-

ming framework but our approach is entirely dif-
ferent. We envision computer supported music
composition from a model of computation per-
spective. We thus look for a reduced set of sim-
ple objects and behavior that should be a minimal
base to construct meaningful musical processes.
The base concept we choose to bootstrap from is
that of concurrent process. We regard music per-
formance and composition as a complex task of
defining and controlling interaction among con-
current activities. We thus borrow concepts and
techniques from concurrent processes modeling
to define suitable computational calculi and ana-
lyze their behavior in real musical settings. What
we gain from thislow levelapproach is twofold.
One the one hand, we are able to ground the de-
velopment of music composition tools on a very
precise formal foundation and by this means propos-
ing coherent higher level musical structures and
operations. On the other hand, our model can give
us clues for constructing formal proofs of interest-
ing properties of a given musical process.

In (Alvarez, Diaz, Quesada, Rueda, Tamura,
Valencia, and Assayag 2001),PiCO, a concurrent
processes calculus integrating constraints and ob-
jects is proposed. Musical applications are pro-
grammed in a visual language having this calcu-
lus as its underlying model. Since there is no ex-
plicit notion of time inPiCO some musical pro-
cesses, in particular those involving real time ac-
tivity, are difficult to express. Moreover, reason-
ing about musical processes behavior inPiCOcan
be difficult since there is no formal logic associ-
ated with it.

In this paper we propose using a temporal non
deterministic concurrent calculus (ntcc, see (Palamidessi
and Valencia 2001)) as a formal base to model

timed musical processes in such a way that inter-
esting musical properties can be formally proved.

The ntcc calculus inherits ideas from the tcc
model (Saraswat, Jagadeesan, and Gupta 1994), a
formalism for reactive concurrent constraint pro-
gramming. In tcc time is conceptually divided
into discrete intervals (or time-units). In a par-
ticular time interval, a deterministic ccp process
receives a stimulus (i.e. a constraint) from the en-
vironment, it executes with this stimulus as the
initial store, and when it reaches its resting point,
it responds to the environment with the resulting
store. Also the resting point determines a residual
process, which is then executed in the next time
interval.

The tcc model is inherently deterministic and
synchronous. Indeed, patterns of temporal behav-
ior such as “the system must output pitchC within
the nextt time units” or “the three voices must
output the same note butthere is no boundin the
occurrence time” cannot be expressed within the
model. It also rules out the possibility of choos-
ing one among several alternatives as an output to
the environment.

A very important benefit of allowing the spec-
ification of non-deterministic and asynchronous
behavior arises when modeling the interaction among
several components running in parallel, in which
one component is part of the environment of the
others. This is frequent in musical applications.
These systems often need non-determinism and
asynchrony to be modeled faithfully.

The ntcc calculus is obtained from tcc by adding
guarded-choicefor modeling non-determinism and
an unbounded but finite delayoperator for asyn-
chrony. Computation in ntcc progresses as in tcc,
except for the non-determinism and asynchrony
induced by the new constructs. The calculus al-
lows for the specification of temporal properties,
and for modeling and expressing constraints upon
the environment both of which are useful in prov-
ing properties of timed systems.

In (Rueda and Valencia 2001) we took advan-
tage of the expressiveness ofntcc to program a
music improvisation process. In this paper we
are interested in the possibility of formally prov-
ing the properties of a musical process. We are
able to do this thanks to the logical nature of ntcc,
which comes to the surface when we consider its
relation with linear temporal logic: All the oper-
ators of ntcc correspond to temporal logic con-
structs. In constraint based musical applications,

the existence or non existence of a musical struc-
ture enjoying given properties is discovered after
a time consuming search. The main contribution
of this paper is to show that by modeling a music
process in ntcc one inherits a well defined logical
inference system (see (Palamidessi and Valencia
2001)) that can be used to prove its musical prop-
erties (or lack thereof). We apply this approach
to a real musical problem taken from (Chemillier
1995).

2 The Calculus

In this section we present the syntax and an
operational semantics of the ntcc calculus. First
we recall the notion of constraint system.

Basically, a constraint system provides a sig-
nature from which syntactically denotable objects
in the language calledconstraintscan be constructed,
and an entailment relation specifying interdepen-
dencies between such constraints. The underly-
ing languageL of the constraint system contains
the symbols_:; _̂ ; _); _9; true andfalse which
denote logical negation, conjunction, implication,
existential quantification, and the always true and
always false predicates, respectively.Constraints,
denoted byc; d; : : : are first-order formulae over
L. We say thatc entailsd in �, written c `� d

(or justc ` d when no confusion arises), ifc _) d

is true in all models of�. For operational reasons
we shall requirè to be decidable.

Process Syntax. ProcessesP , Q, . . .2 Proc

are built from constraintsc 2 C and variables
x 2 V in the underlying constraint system by the
following syntax.

P;Q; : : : ::= tell(c) j
P
i2I

when ci doPi

j P k Q j local x inP

j nextP j unless c nextP
j !P j ? P :

The only move or action of processtell(c) is to
add the constraintc to the current store, thus mak-
ing c available to other processes in the current
time interval. The guarded-choice

X

i2I

when ci do Pi;

where I is a finite set of indexes, represents a
process that, in the current time interval, must

non-deterministically choose one of thePj (j 2
I) whose corresponding constraintcj is entailed
by the store. The chosen alternative, if any, pre-
cludes the others. If no choice is possible then
the summation is precluded. We use

P
i2I Pi

as an abbreviation for the “blind-choice” processP
i2I when (true)doPi. We useskip as an

abbreviation of the empty summation and “+” for
binary summations.

ProcessP k Q represents the parallel compo-
sition of P andQ. In one time unit (or interval)
P andQ operate concurrently, “communicating”
via the common store. We use

Q
i2I Pi, whereI

is finite, to denote the parallel composition of all
Pi. Processlocal x in P behaves likeP , ex-
cept that all the information onx produced byP
can only be seen byP and the information onx
produced by other processes cannot be seen byP .

The processnextP represents the activation
of P in the next time interval. Hence, a move of
nextP is a unit-delay ofP . The process

unless cnextP

is similar, butP will be activated only ifc can-
not be inferred from the current store. The “un-
less” processes add (weak) time-outs to the cal-
culus, i.e., they wait one time unit for a piece of
informationc to be present and if it is not, they
trigger activity in the next time interval. We use
nextn(P) as an abbreviation for

next(next(: : : (nextP) : : :));

where next is repeatedn times.
The operator! is a delayed version of the repli-

cation operator for the��calculus ((Milner 1999)):
!P representsP k nextP k next2P k : : :, i.e.
unbounded many copies ofP but one at a time.
The replication operator is the only way of defin-
ing infinite behavior through the time intervals.

The operator? allows us to express asynchronous
behavior through the time intervals. The process
?P represents an arbitrary long but finite delay
for the activation ofP . For example,? tell(c)
can be viewed as a messagec that is eventually
delivered but there is no upper bound on the de-
livery time.

We shall use!IP and?IP , whereI is an inter-
val of the natural numbers, as an abbreviation forQ

i2I next
iP and

P
i2I next

iP , respectively. For
instance,?[m;n]P means thatP is eventually ac-
tive between the nextm andm + n time units,

while ![m;n]P means thatP is always active be-
tween the nextm andm+ n time units.

2.0.1 Operational Semantics.

Operationally, the current information is rep-
resented as a constraintc 2 C, so-calledstore.
The operational semantics is given by consider-
ing transitions betweenconfigurations
 of the
form hP; ci. We define� as the set of all config-
urations. The formal definition (see (Palamidessi
and Valencia 2001) for details) introduces two re-
duction relations, one representinginternal tran-
sitionsand the otherobservable transitions.

Theinternal transitionhP; ci �! hQ; di should
be read as “P with storec reduces, in one internal
step, toQ with stored ”. The observable transi-

tion P
(c;d)

====) Q should be read as “P on input
c from the environment reduces, in one time unit,
toQ and outputsd to the environment ”. Such an
observable transition is defined in terms of a se-
quence of internal transitionstransitionshP; ci �!�

hQ0; di starting inP with storec and ending in
some processQ0 with stored. Crudely speaking,
to obtainQ we should remove fromQ0 what was
meant to be executed only in the current time in-
terval. SinceQ is to be executed in the next time
interval we should also “unfold” the sub-terms
within nextR expressions inQ0. As in tcc, the
store does not transfer automatically from one in-
terval to another.

To illustrate reductions in ntcc, consider a mu-
sical process, say! P , that continually outputs ei-
ther C (MIDI=60) or E (MIDI=64) until another
process (the conductor)Q signals the end. Pro-
cess!P k Q, for P andQ as defined below,
models the example.

P
def
= when (Go = 1)do (tell (Note = 60)

+ tell (Note = 64))
k unlessEnd = 1next tell (Go = 1)

Q
def
= tell (Go = 1) k ? tell (End = 1)

Then there is a sequence of internal transitions

h! P;Go = 1i �! hP k next ! P;Go = 1i
�!� htell (Note = 65) k next ! P;Go = 1i
�! hnext ! P;Note = 65 ^Go = 1i 6�! : : :

Initially the store contains constraintGo = 1
(which, as described below, will be added to the-
store byQ). Replicated process!P then creates a

copy ofP and schedules itself for the next time
unit. ProcessP chooses note E (the store gets
Go = 1^Note = 65). No further reductions are
possible in the current time unit. Two processes,
!P andtell Go = 1 are scheduled for the next
time unit. So, in the caseP k Q, for an arbitrary
(number of time units)n > 1, the following are
possible transitions:

h!P k Q; truei �!�

hnext !P k next tell Go = 1
k nextntell(End = 1);Go = 1 ^ Note = 64i

and

!P k Q
(true;Go=1^Note=64)

====)
!P k tell Go = 1 k nextn�1tell(End = 1):

The first one is the internal transition relation,
whereas the second is the observable transition.
Thus !P continually outputs either pitch C or E
for an arbitrary numbern of time units until the
constraintEnd = 1 is put in the store.

As mentioned before, an important feature of
the ntcc model is that there is a logic associated
with it. We describe next this logic.

3 A Logic of ntcc Processes

A relatively complete formal system for prov-
ing whether or not an ntcc process satisfies a linear-
temporal property was introduced in (Palamidessi
and Valencia 2001). In this section we summarize
these results.

3.0.2 Temporal Logic.

We define a linear temporal logic for express-
ing properties of ntcc processes. The formulae
A;B; ::: 2 A are defined by the grammar

A ::= c j A) A j :A j 9xA j ÆA j �A j }A:

The symbolc denotes an arbitrary constraint. The
symbols), : and9x represent temporal logic
implication, negation and existential quantifica-
tion. These symbols are not to be confused with
the logic symbols _), _: and _9x of the constraint
system. The symbolsÆ,�, and} denote the tem-
poral operatorsnext, alwaysandsometime. Given
a propertyA (e.g.x > 10) the intended meaning
of ÆA, �A and}A is that the property holds, in

the next time unit, always and eventually, respec-
tively. We useA_B as an abbreviation of:A)
B andA^B as an abbreviation of:(:A_:B).

We shall say that processP satisfiesA iff ev-
ery infinite sequence thatP can possibly output
satisfies the property expressed byA. A relatively
complete proof system for assertionsP ` A,
whose intended meaning is thatP satisfiesA, can
be found in (Palamidessi and Valencia 2001). We
shall writeP ` A if there is a derivation of
P ` A in this system.

The following notion will be useful for dis-
cussing properties of our musical examples.

Definition 1 (Strongest Derivable Formulae) A
formulaA is the strongest temporal formula deriv-
able for P if P ` A and for all A0 such that
P ` A0, we haveA) A0.

Note that the strongest temporal formula of a
processP is unique modulo logical equivalence.
We give now a constructive definition of such for-
mula.

Definition 2 (Strongest Formula Function) Let
the functionstf : Proc ! A be defined as fol-
lows:

stf (tell(c)) = c

stf (WHEN (ci ;Pi)) =
�W

i2I ci ^ stf (Pi)
�

_
V
i2I :ci

stf (P k Q) = stf(P) ^ stf (Q)
stf (local x P) = 9xstf (P)
stf (next P) = Æ stf (P)
stf (unless c next P) = c _ Æstf (P)
stf (!P) = � stf (P)
stf (?P) = } stf (P):

where the expressionWHEN(ci; Pi)) represents
process

P
i2I when (ci)doPi:

From (Palamidessi and Valencia 2001) it fol-
lows thatP ` stf (P). From this we have:

Proposition 1 For every processP , stf (P) is the
strongest temporal formula derivable forP .

Note that to prove thatP ` A is sufficient
to prove thatstf (P)) A. In addition, the proof
system described in (Palamidessi and Valencia 2001)
gives extra mechanisms for carrying out proofs of
process properties.

4 Musical examples

We introduce a broad idea for modeling music
process inntccby means of a well known prob-
lem: Constructing a chromatic series containing
all notes and all intervals. For simplicity we as-
sume that notes are numbered1::12 and likewise
for intervals,0::11, expressed in half tones. We
define12 ntcc processes each taking care of choos-
ing one note (among those still available consider-
ing previous choices) and then informing the oth-
ers about its choice. A note is chosen so that in-
tervals are not repeated.

It will be convinient to specify our processes
by using (possibly recursive) definitions. In ntcc
it is possible to encode recursive definitions of

the formA
def
= PA; whereA is the process name

andPA. The intended behavior of a callA is
that of PA. A precise encoding of recursion in
ntcc is given in (Palamidessi and Valencia 2001).
In what follows we rely on the usual intuitions
concerning procedure calls in a programming lan-
guage.

CHOOSEme
def
=

(unlessToken = me

next (CHOOSEme)
k whenToken = medoP

j when (Prev = j)doP
i unless (Nchoice 6= i

_Ichoice 6= int(j; i))
next (! tell (Nchoice 6= i)

k ! tell (Ichoice 6= int(j; i))
k tell (Token = me+ 1)
k tell (Prev = i)
k ! tell (Noteme = i)
)

SERIES
def
=

(tell (Token = 1) k tell (Prev = 1)

k CHOOSE1 k : : : k CHOOSE12

In processCHOOSEi summations range over
note values. Each processCHOOSEi nondeter-
ministically selects a certain note value unless it
has already been chosen or the interval formed
with the previous note has already appeared. Vari-
ablePrev represents the value taken by the pre-
vious note in the sequence. Summation overj

serves to find what that specific value was so as to
use it for testing the constraint over the intervals.
Functionint(j; i) computes the interval between

notesi andj. Once a note successfully selected,
the process states this fact forever and propagates
forward new constraints to forbid further choices
of this note (tellNchoice 6= i) and also of the
corresponding interval (tell Ichoice 6= int(j; i)).
A token is passed so that all note processes are run
sequentially.

The fact that this problem has a solution can
be stated as follows:

pSERIESq ` }Æ12
_

i

(Note12 = i):

That is, eventually the twelve note in the twelve
time unit has a concrete value. Since this can only
happens when all the other notes have a concrete
value, a solution is implied (we useÆp as a short-
hand forp nested occurrences of operatorÆ. See
below). One may also wonder whether solutions
having certain interval patterns do exist. For in-
stance, the logic could be used to prove that there
are solutions with a third followed by a fifth in the
middle of the series:

pSERIESq `
}Æ12 (

W
i(Note12 = i)

^(jNote6 �Note5j = 3)
^(jNote7 �Note6j = 7))

4.1 modeling a harmonic problem

We model next a musical process described
in (Chemillier 1995). It deals with harp music
from Nzakara people of Central African repub-
lic. Two voices are constructed in such a way that
the second one reproduces the first (up to trans-
position) with a time gap ofp. The upper and
lower voices play notes in the setsf64; 67; 70g
andf60; 62; 64g, respectively. A transposition func-
tion f(64) = 60, f(67) = 62, f(70) = 64 gives
for each upper voice note the lower note that is
to be playedp time units later. Additional con-
straints state that time units that are either con-
tiguous or separated byp units should not play the
same chord. Finally, all chords thus formed must
belong to the setf(60; 64); (60; 67); (62; 67); (62; 70);
(64; 70)g:

The fourntcc processes shown below model
this problem.

NOTES(midi;p)
def
=P

v (when errors2 = v do

unless chord(PNU ; PNL; CNL; BNL;midi)
next (tell errors2 = v + 1) k

(when chord(PNU ; PNL; CNL; BNL;midi)
do

(tell (CNU = midi)
k next (tellPNU = midi)
k nextp (tellCNL = f(midi)

k tell BNU = midi

k next (tellPNL = f(midi)))
k next2p (tellBNL = f(midi)))
k next (tell errors2 = v)))

CHOOSE(p)
def
=

NOTES(64;p) + NOTES(67;p)
+NOTES(70;p)

COUNTER
def
=P

v (when errors1 = v do

(whenwrong(CNL; CNU)do
next (tell errors = v + 1)

k (unlesswrong(CNL; CNU)
next (tell errors1 = v)

PROCESS(n;p)
def
=

![0;p�1] (tellCNL = 0 ^ BNU = 0 ^ PNL = 0)
k tell errors1 = 0 k tell errors2 = 0
k nextp (tellPNL = 0)
k ![0;2p�1] (tellBNL = 0)
k ![0;n�1] (CHOOSE(p) k COUNTER)

VariablesPNX , CNX andBNX represent
the previous note, the current note and the back
note playedp time units before, respectively. In-
dexX is eitherU (upper voice) orL (lower voice).

ProcessCHOOSE(p) models the nondeter-
ministic selection of a note in the upper voice.
ProcessNOTES(midi;p) verifies the chord con-
straints (except membership to the given set) and
then outputs the current upper note (CNU). It
also sends its current upper and lower notes as
previous and back notes for the future. When the
chord constraint does not hold, variableerrors2
is incremented in the next time unit.

ProcessCOUNTER counts the number of
output chords not belonging to the given set. Sum-
mation indexv ranges from0 ton (the number of
notes). Finally,PROCESS(n;p) states that there
cannot be lower, previous or back notes before the
time gap ofp, so these are set to zero (meaning a

silence). It also initializes the number of errors
and launches the other process for all time units
from zero to the number of notes.

4.2 proving properties of the Nzakara
process

The model given above is weaker than required
for the Nzakara musical problem. Instead of as-
serting chord membership constraints, errors are
simply counted. Giving weakerntcc models al-
lows proving negative properties of the real prob-
lem, such as the fact that there is no solution.

We give first thestrongest temporal formula
for the process:

stf(PROCESS(n;p)) =
(�p�1 CNL = 0 ^ BNU = 0)
^(�p PNL = 0) ^ (�2p�1BNL = 0)
^errors1 = 0 ^ errors2 = 0
^ (�n�1stf(CHOOSEp)

^stf(COUNTER))

where strongest temporal formulae for processes
CHOOSEp andCOUNTER are

stf(COUNTER) =
(
W
v errors1 = v ^ (:wrong ^Æ(errors1 = v))
_(wrong ^ Æ(errors1 = v + 1)))

stf(CHOOSE(p)) =
(
W
i2f64;67;70g stf(NOTES(i;p)))

stf(NOTES(i;p)) =
(
W
w2f0::ng errors2 = w

^(chordmidi _Æ(errors2 = w + 1))
^chordmidi ^ CNU ^ Æ(PNU = midi)
^Æp(CNL = f(midi) ^ BNU = midi)
^Æp+1(PNL = f(midi))
^Æ(BNL = f(midi)) ^ Æ(errors2 = w))

In the above definitions we writeÆkA for k
nested occurrences ofÆ in Æ(Æ(: : : (ÆA)) : : :).
Similarly, we write�kA for A^ÆA ^Æ(ÆA) ^
� � � ^ Æ

kA.
We can use the strongest formula ofPROCESS

for proving various musical properties. It is straight-
forward to prove fromstf(NOTES) that the value
of errors2 never decreases and also that a chord
constraint violation implies a non zero vale oferrors2
in subsequent time units. That is,

�(stf(NOTES(n;p)) ^ errors2 = w

) Æ (errors2 � w))

stf(NOTES(n;p)) ^ errors2 = w ^ :chord
) Æ (errors2 > w)

Similarly, from the strongest formula ofCOUNTER

we can prove thaterrors1 never decreases and
that a single violation of the chord set member-
ship constraint causes a non zero value oferrors1
there on.

The proof of the non solvability of the Nkazara
process can be carried out by showing that each
possible chord in the given set leads to a chord
constraint violation:

Proposition 2 Each chord in the given set vio-
lates a chord constraint. For allk 2 0::n� p we
have:

stf(PROCESS(n;p)))

�Æ
p+k(CNL = 60 ^ CNU = 64
^errors1 = 0) errors2 > 0)

stf(PROCESS(n;p)))

�Æ
2p+k(CNL = 60 ^ CNU = 67
^errors1 = 0) errors2 > 0)

stf(PROCESS(n;p)))

�Æ
3p+k(CNL = 62 ^ CNU = 67
^errors1 = 0) errors2 > 0)

stf(PROCESS(n;p)))

�Æ
3p+k+1 (
(((CNL = 62 ^ CNU = 70)
_(CNL = 64 ^ CNU = 70))
^errors1 = 0)) errors2 > 0)

Since there are no options for chords other than
those ruled out by the previous proposition, we
have

Corollary 1 There is always a chord constraint
violation after three periods (Nzakara time gaps),
i.e.,

stf(PROCESS(n;p)))

�Æ
3p+k+1(errors1 = 0) errors2 > 0)

from which it is easy to show

Corollary 2 There is no solution for the Nzakara
musical process having 30 notes and a time gap
of 6, i.e.,

stf(PROCESS(30;6)))
�Æ

30(errors1 > 0 _ errors2 > 0)

The expressive power of linear time logic and the
weaker implementation of the Nzakara process in
ntcc allow us to infer many other interesting mu-
sical properties, such as (see (Chemillier 1995))

Proposition 3 There is a Nzakara musical pro-
cess having 30 notes and a time gap of 6 with
fewer than 7 wrong chords, i.e.,

stf(PROCESS(30;6)))
}Æ30(errors2 = 0 ^ errors1 < 7)

5 Related and Future Work

We have described an ongoing project con-
cerning modeling musical processes with ntcc. The
main advantages of this approach is that construc-
tion and manipulation of musical structures rests
on the firm ground of a precise, simple, yet pow-
erful ”time aware” computational model. This al-
lows us to better understand interactions among
concurrent musical processes and thus having bet-
ter clues for the development of coherent music
composition tools, particularly for real time set-
tings. It is of course true that complex musical
processes, particularly those involving several mu-
sical dimensions, could be extremely difficult to
model in such a ”low level” mechanism. Our aim
is not promote ntcc as a computer music language,
but as a sort of ”runnable specification” formal-
ism of a variety of musical processes.

A strong point of the described approach is
that the linear temporal logic associated with ntcc
can be used to prove (or disprove) interesting mu-
sical properties of processes before running them.
We showed how this can be achieved for non triv-
ial musical problems. The expressiveness of the
logic allows us to state interesting musical prop-
erties in a very compact way. Moreover recent
results show that a significant fragment of ntcc,
which include all the applications examples in this
paper, can be compiled into finite state systems.
Finite state systems are amenable to automatic
verification (of a program satisfying a temporal
logic formula), since their observable behavior can
be finitely represented.

We plan to pursue this line of work in three di-
rections: first, modeling in ntcc and proving prop-
erties of a variety of rhythm processes, in particu-
lar those aiming at constructing material obeying
well defined patterns, such as described in (Laur-
son and Kuuskankare 2001) or the metric modu-
lations in (Nicolas 1990). Initial work in this area

has given us encouraging results. Second, extend-
ing ntcc to a probabilistic model following ideas
in (Herescu and Palamidessi 2000). This is jus-
tified by the existence of rhythm patterns exam-
ples involving stochastic rules which cannot be
faithfully modeled with non-deterministic behav-
ior. Third, we have begun the implementation of
an abstract machine for ntcc and plan to construct
a music composition language on top of it.

References
Alvarez, G., J. Diaz, L. Quesada, C. Rueda,

G. Tamura, F. Valencia, and G. Assayag (2001,
January). Integrating constraints and concurrent
objects in musical applications: A calculus and
its visual language.Constraints.

Assayag, G., C. Rueda, M. Laurson, C. Agon, and
O. Delerue (1999). Computer-assisted compo-
sition at ircam: From patchwork to openmusic.
Computer music journal 23(3), 59–72.

Chemillier, M. (1995). Une esthetique perdue. In
E. de Dampierre (Ed.),La musique de la harpe,
Paris, pp. 99–208. Presses de l’Ecole normale
Superieur.

Herescu, O. and C. Palamidessi (2000). Probabilis-
tic asynchronous pi-calculus.FoSSaCS, 146–
160.

Laurson, M. (1996). Pwconstraints reference man-
ual. Available through IRCAM user’s group.

Laurson, M. and M. Kuuskankare (2001). A con-
straint based approach to musical textures and
instrumental writing. InProceedings of Work-
shop on musical constraints, CP2001, Paphos,
Cyprus, pp. 44–51.

Milner, R. (1999).Communicating and Mobile Sys-
tems: the�-calculus. Cambridge University
Press.

Nicolas, F. (1990). Le feuillet´e du temps, essaie sur
les modulations m´etriques.Entretemps(9).

Nielsen, M. and F. Valencia (2001, February).Tem-
poral Concurrent Constraint Programming:
Applications and Behavior, Chapter 4, pp. 298–
324. Springer-Verlag, LNCS 2300.

Pachet, F. and P. Roy (1995). Mixing constraints and
objects: A case study in automatic harmoniza-
tion. In Proceedings of TOOLS Europe’95, Ver-
sailles, France, pp. 119–126. Prentice-Hall.

Palamidessi, C. and F. Valencia (2001, 26 Novem-
ber). A temporal concurrent constraint program-
ming calculus. InProc. of the Seventh Interna-
tional Conference on Principles and Practice
of Constraint Programming. Springer-Verlag,
LNCS 2239.

Rueda, C. and F. Valencia (2001). Formalyzing
timed musical processes with a temporal con-
current constraint calculus. InProceedings of
Workshop on musical constraints, CP2001, Pa-
phos, Cyprus, pp. 44–51.

Saraswat, V., R. Jagadeesan, and V. Gupta (1994,
4–7 July). Foundations of timed concurrent con-
straint programming. InProc. of the Ninth An-
nual IEEE Symposium on Logic in Computer
Science, pp. 71–80.

Truchet, C., C. Agon, and P. Codognet (2001). A
constraint programming system for music com-
position, preliminary results. InProceedings of
Workshop on musical constraints, CP2001, Pa-
phos, Cyprus, pp. 34–43.

