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Abstract. A membrane system (P system) is a model of computation
inspired by some basic features of the structure and behaviour of living
cells. In this paper we consider systems with string-objects processed
by rewriting, with the communication controlled by conditions on the
contents of the strings. Symbols, substrings (in an arbitrary place, or as
a prefix/suffix), or the shape of the whole string are used as permitting
and as forbidding conditions when moving strings from a membrane to
a neighboring membrane. Many of the obtained variants lead to new
characterizations of recursively enumerable languages (as expected, these
characterizations indicate a trade-off between the number of membranes
and the strength of the communication conditions used). Several open
problems are also formulated.

1 Introduction

Membrane computing is a branch of molecular computing which abstracts from
the way the alive cells process chemical compounds (as well as energy and infor-
mation) in the complex compartmental structure defined by the various mem-
branes present inside a cell. In short, we have a membrane structure, in the form
of a hierarchical arrangement of membranes (in principle, understood as three
dimensional vesicles, but a two dimensional representation is equivalent), em-
bedded in a skin membrane. Each membrane delimits in a one-to-one manner a
region. For an elementary membrane (that is, a membrane without any mem-
brane inside) this is the space enclosed by it, while the region of a non-elementary
membrane is the space in-between the membrane and the membranes directly
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included in it. Each membrane is labeled; the one-to-one correspondence be-
tween membranes and regions associated with them makes it possible to refer
the regions by the labels of membranes. Figure 1 illustrates these notions.
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Fig. 1. A membrane structure
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Each region contains objects and (evolution) rules. In this paper we consider
the case when the objects are described by strings and the evolution rules are
context-free rewriting rules. After rewriting a string, it is assumed that it is no
longer present, and the result of the rewriting replaces it. (However, this is not
essential for the variants of P systems we consider in this paper, but it is impor-
tant for certain variants where the strings can influence each other.) In the basic
variant of such a membrane system, a target indication is associated with each
rule, specifying where the string obtained by a rewriting operation performed
by that rule will be placed. Such indications are of the form here (the string
remains in the same region), out (the string exits the region), inj (the string is
sent to the membrane with label j, providing that it is immediately inside the
region where the rule is used), or, a weaker variant of the last command, in (the
string is sent to one of the immediately inner membranes, nondeterministically
choosing it).

In each step, each string which can be rewritten by a rule in its region is
rewritten. (All the strings are processed in parallel, but the rewriting of each
string is done sequentially: at each step only one rule per string is applied.) In this
way, one gets transitions between the configurations of the system. A sequence
of transitions is called a computation. The result of a halting computation (one
which reaches a configuration where no rule can be applied) is the set of strings
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sent out of the system during the computation. Thus, a rewriting P system
generates a language.

Priorities among rules or possibilities to control the membrane permeability
were also considered in the literature. In most cases, characterizations of recur-
sively enumerable languages were obtained. Results of this type can be found,
e.g., in [4], [17], [8], [11], [12], [13], [14], [20].

In this paper we consider a variant of rewriting P systems where the com-
munication of strings is not controlled by the evolution rules, but it depends
on the contents of the strings themselves. This is achieved by considering cer-
tain types of permitting and forbidding conditions, based on the symbols or the
substrings (arbitrary, or prefixes/suffixes) which appear in a given string, or on
the shape of the string. By combining these variants we get a large number of
classes of P systems, hence of families of languages generated by these systems.
As expected, many of these families equal the family of recursively enumerable
languages. In many cases, such results are obtained for systems with a small
number of membranes. Several cases remain to be further investigated, for in-
stance, when checking prefixes or suffixes: we do not know whether or not we
can characterize the recursively enumerable languages by systems where only
prefixes or only suffixes are checked (we conjecture that the answer is regative);
when both prefixes and suffixes are used, we have obtained a characterization of
recursively enumerable languages by systems without a bound on the number
of membranes (but we conjecture that such a characterization holds also for a
reduced number of membranes, as happens for almost all classes of P systems).

We emphasize the fact that this way of communicating strings through mem-
branes is “more realistic” than that based on target indications associated with
the rewriting rules, it corresponds to the biochemical situation where the objects
(some of them strings, such as DNA molecules) can pass through membranes
depending on their shape (size, polarization, other properties) and not depend-
ing on the last transformation applied to them (the last rewriting, in the basic
model of P systems).

2 Language Theory Prerequisites

In this section we introduce some formal language theory notions and notations
which will be used in this paper; for further details we refer to [19].

For an alphabet V , by V ∗ we denote the set of all strings over V , including
the empty one, denoted by λ; V + denotes the set of all non-empty strings over
V , that is, V + = V ∗ − {λ}. The set of symbols appearing in a string x ∈ V ∗ is
denoted by alph(x) and the set of substrings of x is denoted by Sub(x). A regular
expression is said to be elementary if it has the star height at most one and uses
the union at most for symbols in the alphabet. (For instance, {a, b}∗cca∗ is an
elementary expression, while a∗ ∪ ab is not.) We denote by L(e) the language
represented by a regular expression e. One can see that the language of an
elementary regular expression can also be represented by a pattern, in the sense
of [1], with each variable appearing only once (such a pattern is called regular)
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and with a domain associated with each variable, in the form of a star language
U∗, where U is a set of symbols. For instance, L(e) for the previous expression
also corresponds to the pattern XccY , with X interpreted by any string from
{a, b}∗ and Y interpreted by any string from a∗.

By FIN, REG, LIN, CF, CS, RE we denote the families of finite, regular,
linear, context-free, context-sensitive, and recursively enumerable languages, re-
spectively.

In the proofs from the subsequent sections we need the notions of a ma-
trix grammar with appearance checking, of Kuroda normal form, and of a pure
context-free grammar.

A matrix grammar with appearance checking is a construct G = (N,T, S,M,
F ), where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of
the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪T (with
Ai ∈ N, xi ∈ (N ∪ T )∗, in all cases), and F is a set of occurrences of rules in
M (N is the nonterminal alphabet, T is the terminal alphabet, S is the axiom,
while the elements of M are called matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪T )∗, 1 ≤ i ≤ n+1, such that w =
w1, z = wn+1, and, for all 1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪T )∗, or (2) wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. When F = ∅ (hence
we do not use the appearance checking feature), the generated family is denoted
by MAT .

It is known that CF ⊂MAT ⊂ MATac = RE, the inclusions being proper.
All one-letter languages in the family MAT are regular, see [10].

A matrix grammar G = (N,T, S,M,F ) is said to be in the binary normal
form if N = N1 ∪N2 ∪ {S,#}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A→ # appearing in matrices of type 3; # is called a trap-symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last
step of a derivation.

According to [6], for each matrix grammar there is an equivalent matrix
grammar in the binary normal form.

For an arbitrary matrix grammarG = (N,T, S,M,F ), let us denote by ac(G)
the cardinality of the set {A ∈ N | A → α ∈ F}. From the construction in the
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proof of Lemma 1.3.7 in [6] one can see that if we start from a matrix grammar
G and we get the grammar G′ in the binary normal form, then ac(G′) = ac(G).

Improving the result from [16] (six nonterminals, all of them used in the
appearance checking mode, suffice in order to characterize RE with matrix
grammars), in [9] it was proved that four nonterminals are sufficient in order
to characterize RE by matrix grammars and out of them only three are used
in appearance checking rules. Of interest here is another result from [9]: if the
total number of nonterminals is not restricted, then each recursively enumerable
language can be generated by a matrix grammar G such that ac(G) ≤ 2.

Consequently, to the properties of a grammar G in the binary normal form
we can add the fact that ac(G) ≤ 2. We will say that this is the strong binary
normal form for matrix grammars.

A type-0 grammar G = (N,T, S, P ) is said to be in the Kuroda normal form
if the rules from P are of one of the following two forms: A → x,AB → CD,
for A,B,C,D ∈ N and x ∈ (N ∪T )∗ (that is, besides context-free rules we have
only rules which replace two nonterminals by two nonterminals).

A pure context-free grammar is a construct G = (V, S, P ), where V is an
alphabet, S ∈ V and P is a finite set of context-free rules over V . The generated
languages is defined by L(G) = {w ∈ V ∗ | S =⇒∗ w with respect to P} (all
generated strings are accepted).

Convention. When comparing two languages, the empty string is ignored,
that is, L1 is considered identical with L2 as soon as L1 − {λ} = L2 − {λ}.

3 Rewriting P Systems

We introduce here only the class of P systems with string-objects processed by
rewriting, in the variant we will investigate in this paper. For other classes the
reader is referred to the bibliography (an up-to-date bibliography of the area can
be found at the web address http://bioinformatics.bio.disco.unimib.it/
psystems).

A membrane structure is pictorially represented by a Euler-Venn diagram
(like the one in Figure 1); mathematically, it can be represented in a natural
way by a tree or by a string of matching parentheses. For instance, the structure
from Figure 1 is represented by the expression

[1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9 ]6 [7 ]7 ]4 ]1.

Of course, the same membrane structure may be represented by different paren-
thesis expressions (neighboring membranes in the same level can be permuted).

An extended rewriting P system (of degree m ≥ 1) with conditional commu-
nication is a construct

Π = (V, T, µ,M1, . . . ,Mm, R1, P1, F1, . . . , Rm, Pm, Fm),
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where:

1. V is the alphabet of the system;
2. T ⊆ V is the terminal alphabet;
3. µ is a membrane structure withmmembranes (injectively labeled by 1, 2, . . . ,
m);

4. M1, . . . ,Mm are finite languages over V , representing the strings initially
present in the regions 1, 2, . . . ,m of the system;

5. R1, . . . , Rm are finite sets of context-free rules over V present in region i
of the system, Pi are permitting conditions and Fi are forbidding conditions
associated with region i, 1 ≤ i ≤ m.

The conditions can be of the following forms:

1. empty: no restriction is imposed on strings, they either exit the current mem-
brane or enter any of the directly inner membrane freely (but they cannot
remain in the current membrane); we denote an empty permitting condi-
tion by (true,X), X ∈ {in, out}, and an empty forbidding condition by
(false, notX), X ∈ {in, out}.

2. symbols checking: each Pi is a set of pairs (a,X), X ∈ {in, out}, for a ∈ V ,
and each Fi is a set of pairs (b, notX), X ∈ {in, out}, for b ∈ V ; a string w can
go to a lower membrane only if there is a pair (a, in) ∈ Pi with a ∈ alph(w),
and for each (b, notin) ∈ Fi we have b /∈ alph(w); similarly, for sending the
string w out of membrane i it is necessary to have a ∈ alph(w) for at least
one pair (a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi.

3. substrings checking: each Pi is a set of pairs (u,X), X ∈ {in, out}, for u ∈ V +,
and each Fi is a set of pairs (v, notX), X ∈ {in, out}, for v ∈ V +; a string
w can go to a lower membrane only if there is a pair (u, in) ∈ Pi with
u ∈ Sub(w), and for each (v, notin) ∈ Fi we have v /∈ Sub(w); similarly, for
sending the string w out of membrane i it is necessary to have u ∈ Sub(w)
for at least one pair (u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi.

4. prefix/suffix checking: exactly as in the case of substrings checking, with the
checked string being a prefix or a suffix of the string to be communicated.

5. shape checking: each Pi is a set of pairs (e,X), X ∈ {in, out}, where e
is an elementary regular expression over V , and each Fi is a set of pairs
(f, notX), X ∈ {in, out}, where f is an elementary regular expression over
V ; a string w can go to a lower membrane only if there is a pair (e, in) ∈ Pi

with w ∈ L(e), and for each pair (f, notin) ∈ Fi we have w /∈ L(f); similarly,
for sending the string w out of membrane i it is necessary to have w ∈ L(e)
for at least one pair (e, out) ∈ Pi and w /∈ L(f) for all (f, notout) ∈ Fi.

We say that we have conditions of the types empty, symb, subk, prefk, suffk,
patt, respectively, where k is the length of the longest string in all Pi, Fi; when
no upper bound on this length is imposed we replace the subscript by ∗.

A system is said to be non-extended if V = T .
The transitions in a system as above are defined in the following way. In

each region, each string which can be rewritten is rewritten by a rule from
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that region. The rule to be applied and the nonterminal it rewrites are non-
determistically chosen. Each string obtained in this way is checked against the
conditions Pi, Fi from that region. If it fulfills the requested conditions, then
it will be immediately sent out of the membrane or to an inner membrane, if
any exists; if it fulfills both in and out conditions, then it is sent either out
of the membrane or to a lower membrane, nondeterministically choosing the
direction – and nondeterministically choosing the inner membrane in the case
when several directly inner membranes exist. If a string does not fulfill any
condition, or it fulfills only in conditions and there is no inner membrane, then
the string remains in the same region. A string which is rewritten and a string
which is sent to another membrane is “consumed”, we do not have a copy of it
at the next step in the same membrane. If a string cannot be rewritten, then
it is directly checked against the communication conditions, and, as above, it
leaves the membrane (or remains inside forever) depending on the result of this
checking.

That is, the rewriting has priority over communication: we first try to rewrite
a string and only after that do we try to communicate the result of the rewriting
or the string itself if no rewriting is possible on it.

As usual, a sequence of transitions forms a computation and the result of a
halting computation is the set of strings over T sent out of the system during
the computation. In the case of non-extended systems, all strings sent out are
accepted. A computation which never halts yields no result. A string which
remains inside the system or, in the case of extended systems, which exits but
contains symbols not in T does not contribute to the generated language. The
language generated in this way by a system Π is denoted by L(Π).

The family of all languages L(Π), computed as above by extended systems
Π of degree at most m ≥ 1 and with permitting conditions of type α and
forbidding conditions of type β, is denoted by ERPm(α, β), α, β ∈ {empty,
symb, sub∗, pref∗, suff∗, patt} ∪ {subk, prefk, suffk | k ≥ 1}; when using non-
extended systems we get the family RPm(α, β). When we use both prefix and
suffix checking (each condition string may be checked both as a prefix or as a
suffix, that is, we do not separately give sets of prefixes and sets of suffixes), then
we will indicate this by prefsuffk. If the degree of the systems is not bounded,
then the subscript m is replaced by ∗.

4 Proof Mechanisms

The proofs of universality which follow in the next Section are based on the
simulation of well known models of universal computating devices in normal
forms.

In particular, we exploit the Kuroda normal form for type 0 grammars and
the binary normal form for matrix grammars with appearance checking.

Rewriting steps in these normal forms are simulated by coordinating the se-
quential use of context-free rules. Such a coordination is achieved by introducing
new non terminals derived from those of a grammar in normal form and tagged so
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that they can be rewritten only in coordination with others analogously tagged,
and constraining their coordinate usage to occur only within some well-defined
membranes. We anticipate here the general mechanisms that will be exploited
in the next Section in which detailed proofs are presented.

In general, as will be shown in the next Section, the distinction between ter-
minal and non terminal alphabets can be simulated by the use of an additional
membrane letting only terminal symbols out. The proofs need therefore to con-
sider only pure systems or extended systems with an empty forbidding condition.
It is indeed easy to realise that forbidding has global scope, while permitting con-
ditions can obtain a global effect only by constraining the complete form of a
word, i.e. by expressing the constraint through patterns.

In particular, we will observe that patterns can constrain the simulation of
Kuroda rewriting by allowing only the communication of words in which symbols
derived from a rule of the form AB → CD are present in the correct sequence,
i.e. (A, r)[B, r], where r is a label indicating the originating rule. In this case
communication is allowed towards a membrane where the original rule can be
simulated in two steps.

Conversely, a forbidding condition needs only to check that symbols derived
from the same rule appear in the correct order, by listing all possible incorrect
occurrences of these symbols in the context of symbols related to other rules.
Hence checking a substring of length two suffices.

This is not sufficient if the substring is checked in a permitting condition. A
check on individual symbols is indeed needed in a forbidding condition to force
strings containing derived non terminals to reach a membrane where they can
be both used. In this case, the depth of the membrane system must increase
for the rewriting to occur only in the innermost membrane. In general, the
level of nesting is related to the decomposition of the Kuroda rules, which can
occur through at most 4 levels. One can also observe that checking on single
symbols is already powerful in that it forces directionality in the traversing of the
membranes by preventing movements in the opposite direction. Finally, checking
based on suffix/prefix strings can be used to constrain the location in which rules
have to be applied.

For proofs based on the simulation of matrix grammars, special membranes
are needed in order to simulate the use of rules on which appearance checking
is based. Rewriting in these matrices means that the original rewriting in the
matrix grammar would produce the trap symbol #. For the other rules at least
two levels of nesting are needed to simulate the coupling of the rules in the
binary normal form. In this case the check can be based on just one symbol,
as needed for directing words with symbols deriving from a matrix to reach the
correct membrane into which to simulate the matrix.

Hence a trade-off occurs between the complexity of the check and the depth of
the membrane system, which remains in any case limited. The degree of branch-
ing of the membrane system is in general independent of the grammar. Hence,
the results obtained hold for P systems with a fixed number of membranes. The
only exception is the case of check based on prefixes and suffixes, where branch-
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ing depends on the number of rules of the form AB → CD present in the original
grammar (each simulated with 4 levels of nesting in independent subsystems)
and on the number of symbols in the grammar (to consider that a prefix can
start with any of the grammar symbols).

5 Generative Power

We start by mentioning some relations which directly follow from the definitions
or can be easily proved; in all these relations α, β assume all possible values in
the set {empty, symb, sub∗, pref∗, suff∗, prefsuff∗, patt} ∪ {subk, prefk, suffk,
prefsuffk | k ≥ 1}.

Lemma 1. (i) ERP∗(α, β) ⊆ RE.
(ii) RPm(α, β) ⊆ ERPm(α, β),m ≥ 1.
(iii) RPm(α, β) ⊆ RPm+1(α, β),m ≥ 1.
(iv) RPm(empty, β) ⊆ RPm(symb, β) = RPm(sub1, β) ⊆ RPm(sub∗, β)

⊆ RPm(patt, β), m ≥ 1.
(v) RPm(αk, β) = RPm(αk+1, β),m, k ≥ 1, α ∈ {sub, pref, suff, prefsuff}.
The relations from (iii) – (v) are valid also in the case of families of language

generated by extended systems; in all relations (ii), (iv), (v) the subscript m can
also be ∗.

Lemma 2. ERPm(α, β) ⊆ RPm+1(α, β), for all α, β such that β �= empty
and m ≥ 1.

Proof. Starting from a given system Π with the total alphabet V and the
terminal alphabet T , with a selection of a type (α, β) such that β allows at
least the checking of symbols, we add one further membrane around the skin
membrane of Π , as the skin membrane of the new system, we introduce no
rewriting rule into it, but only the permitting condition (true, out) and the
forbidding conditions (a, notout), for all a ∈ V − T . If we denote by Π ′ the
obtained system, then we clearly have L(Π) = L(Π ′) (no rewriting is possible
in the skin membrane of Π ′, hence the halting computations in Π are halting
also in Π ′, but only strings over T can leave the system). ��

Corollary 1. RP∗(α, β) = ERP∗(α, β) for all α, β such that β �= empty.
We now pass to proving the universality results we have announced. They sug-

gest a trade-off between the number of membranes and the permitting/forbidding
conditions we use. We start by using strong conditions, and this makes possible
characterizations of RE by systems with a reduced number of membranes.

Theorem 1. RP2(patt, empty) = RE.

Proof. Let G = (N,T, S, P ) be a type-0 Chomsky grammar in the Kuroda
normal form; assume that all non-context-free rules in P are labeled in a one-
to-one manner. We construct the P system

Π = (V, V, [1[2 ]2]1, {S}, ∅, R1, P1, F1, R2, P2, F2),
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with the following components:

V = T ∪N ∪ {(A, r), [B, r] | r : AB → CD ∈ P},
R1 = {A→ x | A→ x ∈ P}

∪ {A→ (A, r), B → [B, r] | r : AB → CD ∈ P},
P1 = {(T ∗, out)}

∪ {(N ∪ T )∗(A, r)[B, r](N ∪ T )∗, in) | r : AB → CD ∈ P},
F1 = {(false, notin), (false, notout)},
R2 = {(A, r)→ C, [B, r]→ D | r : AB → CD ∈ P},
P2 = {((N ∪ T )∗, out)},
F2 = {(false, notout)}.

At any moment, only one string is present in the system; initially, this is the
axiom of G.

Only terminal strings can be sent out. A string which contains at least a
nonterminal of G is either rewritten in the skin membrane, or it remains forever
there, hence we get no output. A string from the skin membrane can be sent
to the inner membrane only if it is of the form x(A, r)[B, r]y, for some rule
r : AB → CD and x, y ∈ (N ∪ T )∗, which ensures the correct simulation in
membrane 2 of this rule; the string exits membrane 2 only after replacing (A, r)
with C and [B, r] with D. The context-free rules of P are simulated in the skin
membrane. Consequently, L(G) = L(Π). ��

When checking only substrings we need non-empty forbidding conditions,
or a bigger number of membranes (Theorem 3); in turn, checking substrings of
length at most two suffices.

Theorem 2. RP2(empty, sub2) = RE.

Proof. For a type-0 Chomsky grammar in the Kuroda normal form G =
(N,T, S, P ), with the non-context-free rules in P labeled in a one-to-one manner,
we construct the P system

Π = (V, T, [1[2 ]2]1, {XSX}, ∅, R1, P1, F1, R2, P2, F2),

with the following components:

V = T ∪N ∪ {A′ | A ∈ N} ∪ {X}
∪ {(A, r), [B, r] | r : AB → CD ∈ P},

R1 = {A→ x | A→ x ∈ P}
∪ {A→ (A, r), B → [B, r] | r : AB → CD ∈ P}
∪ {A→ A, A′ → A | A ∈ N}
∪ {X → λ},

P1 = {(true, out), (true, in)},
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F1 = {(X,notout)} ∪ {(A, notout), (A′, notout) | A ∈ N}
∪ {((A, r), notout), ([B, r], notout) | for all A,B ∈ N and
r a non-context-free rule in P}

∪ {(A, r)α, notin), ((A, r)(E, r′), notin), (α[B, r], notin),
([B, r][E, r′], notin), ([B, r](E, r′), notin) |
for all possible A,B,E ∈ N,α ∈ N ∪ T ∪ {X},
and r a non-context-free rule in P}, r �= r′

R2 = {(A, r)→ C′, [B, r]→ D′ | r : AB → CD ∈ P},
P2 = {(true, out)},
F2 = {((A, r)E′, notout), (E′[B, r], notout) | A,B,E ∈ N}.

The equality L(G) = L(Π) is easy to be proved: as in the proof of Theorem
1, we can pass a string from membrane 1 to membrane 2 only if it is of the
form x(A, r)[B, r]y, for r : AB → CD ∈ P and x, y ∈ (N ∪ T )∗, maybe with x
starting and y ending with X (the forbidding conditions prevent having further
occurrences of symbols of the form (E, p), [E, p] in the strings x, y; a string with
only one occurrence of a symbol of the form (E, p), [E, p] cannot be sent to
the inner membrane); a string in (N ∪ T )∗, maybe starting or ending with X ,
can be sent to membrane 2 after applying a rule A → A,A′ → A, or X → λ
in membrane 1, but it will exit immediately, unchanged; note also that only
terminal strings with respect to G can be sent out of the system. ��

At the price of using a larger number of membranes, we can obtain a charac-
terization of RE by systems which check permitting substrings of length 2 and
forbidding symbols.

Theorem 3. RP4(sub2, symb) = RE.

Proof.We start again from a type-0 Chomsky grammar in the Kuroda normal
form G = (N,T, S, P ), with the non-context-free rules in P labeled in a one-to-
one manner, and we construct the P system

Π = (V, T, [1[2[3[4 ]4]3]2]1, {S}, ∅, ∅, ∅, R1, P1, F1, . . . , R4, P4, F4),

with the following components:

V = T ∪N ∪ {A′, A′′ | A ∈ N} ∪ {$, Z}
∪ {(A, r), [B, r] | r : AB → CD ∈ P},

R1 = {A→ x | A→ x ∈ P}
∪ {A→ (A, r) | r : AB → CD ∈ P}
∪ {E → E, E′′ → E | E ∈ N},

P1 = {(λ, out)} ∪ {((A, r), in) | r : AB → CD ∈ P},
F1 = {(E, notout), (E′, notout) | E ∈ N}

∪ {((A, r), notout) | r : AB → CD ∈ P},
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R2 = {B → [B, r] | r : AB → CD ∈ P}
∪ {E′ → E′′, E′′ → Z | E ∈ N},

P2 = {(E′′, out) | E ∈ N}
∪ {([B, r], in) | r : AB → CD ∈ P},

F2 = {([B, r], notout) | r : AB → CD ∈ P}
∪ {(E′, notin), (E′′, notin) | E ∈ N},

R3 = {E′ → E | E ∈ N},
P3 = {((A, r)[B, r], in) | r : AB → CD ∈ P}

∪ {(E′, out) | E ∈ N},
F3 = {($, notin), ($, notout)},
R4 = {(A, r)→ C′, [B, r]→ D′ | r : AB → CD ∈ P},
P4 = {(C′D′, out) | r : AB → CD ∈ P},
F4 = {($, notout)}.

The symbol $ never appears in a string, it is only used in some forbidding con-
ditions which should always be false, while Z is a trap-symbol, once introduced
it is never removed. A string can be sent from membrane 1 to membrane 2 only
after using a rule of the form A → (A, r) associated with a rule r : AB → CD
from P , and, conversely after using such a rule, the string must go to membrane
2 (this ensures the fact that exactly one such a rule is used). Similarly, a string
can be sent from membrane 2 to membrane 3 after using one rule of the form
E → [E, p] (if no rule of this form can be used, then the string remains forever in
membrane 2 and we get no output). Membrane 3 just checks whether or not the
two rules used in membranes 1 and 2 correspond to the same non-context-free
rule of P and the symbols which were rewritten are adjacent. If this is the case,
then the string enters membrane 4, where the rule r : AB → CD is simulated;
only when both C′ and D′ are introduced can the string leave membrane 4.
One primed symbol is replaced in membrane 3 with its non-primed variant and
the string immediately exits. In membrane 2 we cannot use a rule of the form
E → [E, p], because the string will remain forever here (it cannot exit because
of [E, p] and cannot go to membrane 3 because of the primed symbol; even after
using a rule E′ → E′′, we cannot send the string to membranes 1 or 3). Thus,
we have to use the rule E′ → E′′ and exit. Assume that in the skin membrane
we introduce again a symbol (A, r) before using the rule E′′ → E. The string
goes to membrane 2. If we use the rule E′′ → Z, then the trap-symbol is in-
troduced. If we use a rule of the form B → [B, r], then the string will remain
here forever (hence, eventually, the rule E′′ → Z should be used). Therefore, in
the skin membrane we have to remove the primes, and only after that can we
start simulating another non-context-free rule of G. The context-free rules are
simulated in the skin membrane at any time before using a rule A → (A, r).
Thus, any derivation of G can be simulated in Π . Clearly, only terminal strings
with respect to G can be sent out, so we have the equality L(G) = L(Π). ��
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By using one further membrane, as well as final selection by a terminal al-
phabet, we can completely avoid the checking of forbidding conditions:

Theorem 4. RE = ERP5(sub2, empty).

Proof.We start again from a type-0 Chomsky grammar in the Kuroda normal
form G = (N,T, S, P ), with the non-context-free rules in P labeled in a one-to-
one manner, and we construct the P system

Π = (V, T, [1[2[4 ]4]2[3[5 ]5]3]1, ∅, ∅, ∅, {S}, ∅, R1, P1, F1, . . . , R5, P5, F5),

with the following components:

V = T ∪N ∪ {A′, A′′, A′′′ | A ∈ N} ∪ {f, Z}
∪ {(A, r), [B, r] | r : AB → CD ∈ P},

R1 = {f → λ}
∪ {A′ → Z, A′′′ → Z,A′′ → A | A ∈ N},

P1 = {λ, out)}
∪ {((A, r)[B, r], in) | r : AB → CD ∈ P}
∪ {(A′, in) | A ∈ N},

R2 = {B → [B, r] | r : AB → CD ∈ P}
∪ {E′ → E′′, E′′′ → Z | E ∈ N},

P2 = {(f, out)}
∪ {([B, r], out) | r : AB → CD ∈ P},

R3 = {(A, r)→ C′, [B, r]→ Z | r : AB → CD ∈ P},
P3 = {(E′, in), (E′′, out) | E ∈ N},
R4 = {A→ (A, r) | r : AB → CD ∈ P}

∪ {A→ x, A→ xf | A→ x ∈ P}
∪ {A′′′ → A | A ∈ N},

P4 = {(f, out)} ∪ {((A, r), out) | r : AB → CD ∈ P},
R5 = {[B, r]→ D′′ | r : AB → CD ∈ P}

∪ {C′ → Z | C ∈ N},
P5 = {(C′D′′, out) | r : AB → CD ∈ P}.

All sets of forbidding conditions consist of the pairs (false, notin), (false,
notout).

This system works as follows. We start in membrane 4 with the axiom of G.
The context-free rules of G can be simulated here. If a terminal rule A→ xf is
used in membrane 4, then the string exits; if it not terminal and a rule B → [B, r]
is used in membrane 2, then the string goes to membrane 1 and from here out
of the system; but since it is not terminal, it is not accepted in the generated
language. If the string is terminal, then it exits (f is erased in the skin membrane)
and is introduced in L(Π).



338 Paolo Bottoni et al.

Assume that a string w is rewritten in membrane 4 by a rule A → (A, r)
associated with a rule r : AB → CD ∈ P . It exits; if no rule can be applied in
membrane 2, then no output is produced. Assume that a rule E → [E, p] is used
in membrane 2. The string is immediately sent to membrane 1. If the two tuple
symbols are not associated with the same rule from P , so that no rule can be
used in the skin membrane, then the string is sent out of the system, but it is
not a terminal one. Assume that the string is of the form w1(A, r)[B, r]w2 , for
some r : AB → CD ∈ P . No rule can be applied in the skin membrane, but
the string can be sent to a lower membrane. If it arrives back in membrane 2,
then it will exit either unchanged – if no rule of the form E → [E, p] can be
used – or after introducing one further symbol of the form [E, p]. The process is
repeated; eventually, the string will arrive in membrane 3 (otherwise we either
continue between membranes 1 and 2 or we send the string out and it is not
terminal). In membrane 3, the unique copy of the symbol (A, r) is replaced by
C′ and the string is sent to membrane 5. Here we also replace a symbol [E, p]
with H ′′. The string exits only if the primed symbols, C′H ′′, correspond to a rule
r : AB → CD ∈ P , otherwise the rule C′ → Z introduces the trap-symbol Z.
Assume that we have a substring C′D′′ associated with a rule r : AB → CD ∈ P .
The string is sent to membrane 3. If we had at least two symbols of the form
[E, p], then the trap-symbol is introduced, otherwise the string is sent to the
skin membrane. Consequently, we have to replace exactly two symbols A,B
with (A, r), [B, r], in adjacent positions, hence this corresponds to simulating
the rule r : AB → CD ∈ P .

Now, in the skin membrane (if not using the rule C′ → Z) we use the rule
D′′ → D and the string is sent to one of membranes 2 and 3. From membrane
3 the string should enter unchanged membrane 4, and here the rule C′ → Z is
used. Thus, we have to send the string to membrane 2. We have here two cases.
If we use a rule E → [E, p], then the string is sent back to the skin membrane,
where the only applicable rule is C′ → Z and no terminal string will be ever
obtained. If in membrane 2 we use the rule C′ → C′′′, then the string is sent
to membrane 4, where again we have two cases. If we use the rule C′′′ → C,
then we have again a string over (N ∪ T )∗, and the process can be iterated. If,
before using the rule C′′′ → C, we use a rule A→ (A, r), then the string should
go to membrane 2. If we use here the rule C′′′ → Z, then the computation will
produce nothing. If we use a rule E → [E, p], then the string is sent to membrane
1, where the only applicable rule is C′′′ → Z.

Consequently, we have to completely simulate the rule r : AB → CD ∈ P ,
ending by using the rule C′′ → C in membrane 4. Thus, L(G) = L(Π). ��

We do not know whether or not the number of membranes in the previ-
ous system can be decreased without decreasing the generative power. Anyway,
somewhat surprisingly, one additional membrane with respect to those used in
the system from the proof of Theorem 4 suffices in order to characterize RE
even when checking only symbols as permitting conditions.

Theorem 5. ERP6(symb, empty) = RP6(symb, symb) = RE.
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Proof. Let us consider a matrix grammar with appearance checking, G =
(N,T, S,M,F ), in the strong binary normal form, that is with N = N1 ∪N2 ∪
{S,#}, with rules of the four forms mentioned in Section 2, and with ac(G) ≤ 2.
Assume that we are in the worst case, with ac(G) = 2, and let B(1), B(2) be
the two symbols in N2 for which we have rules B(j) → # in matrices of M .
Let us assume that we have k matrices of the form mi : (X → α,A → x), X ∈
N1, α ∈ N1 ∪ {λ}, A ∈ N2, and x ∈ (N2 ∪ T )∗, 1 ≤ i ≤ k (that is, without
rules to be used in the appearance checking manner). Each matrix of the form
(X → λ,A → x), X ∈ N1, A ∈ N2, x ∈ T ∗, is replaced by (X → f,A → x),
where f is a new symbol. We continue to label the obtained matrix in the same
way as the original one. The matrices of the form (X → Y,B(j) → #), X, Y ∈ N1

(that is, with rules used in the appearance checking manner), are labeled by mi,
with i ∈ labj, for j = 1, 2, such that lab1, lab2 and lab0 = {1, 2, . . . , k} are
mutually disjoint sets.

We construct the extended P system (of degree 6)

Π = (V, T, µ,M1, . . . ,M6, R1, P1, F1, . . . , R6, P6, F6),

with the following components:

V = T ∪N1 ∪N2 ∪ {(Xi, j) | X ∈ N1, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {Xi | X ∈ N1, i ∈ lab1 ∪ lab2}
∪ {Ai, (Ai, j) | A ∈ N2, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {X ′, X ′′, X ′′′ | X ∈ N1}
∪ {f ′′, Z},

µ = [1[2[3[4 ]4]3]2[5 ]5[6 ]6]1,
M1 = {XA}, for (S → XA) being the initial matrix of G,
Mi = ∅, for all i = 2, . . . , 6,

and with the following triples (Ri, Pi, Fi), 1 ≤ i ≤ 6 (the membranes with labels
2, 3, 4 will be used for simulating matrices mi, 1 ≤ i ≤ k, while membranes with
labels 5, 6 will simulate the matrices with labels in lab1, lab2, respectively):

R1: X → Xi, for all matrices mi : (X → Y,B(j) → #), i ∈ labj, j = 1, 2,
A→ (Ai, 0), for mi : (X → Y,A→ x), 1 ≤ i ≤ k,
Xi → Y ′, for all matrices mi : (X → Y,D → α), i ∈ lab0 ∪ lab1 ∪ lab2,
X ′′ → X ′′′, for all X ∈ N1,
f ′′ → λ;

P1 = {((Ai, 0), in) | A ∈ N2, i ∈ lab0}
∪ {(Xi, in), (X ′, in), (X ′′′, in) | X ∈ N1, i ∈ lab1 ∪ lab2}
∪ {(a, out) | a ∈ T };

F1 = {(false, notin), (false, notout)};

R2: Xi → Z, for all X ∈ N1, i ∈ lab1 ∪ lab2,
X → (Xi, 0), for all X ∈ N1, 1 ≤ i ≤ k,
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Ai → x, for all mi : (X → Y,A→ x), 1 ≤ i ≤ k,
(Ai, j)→ Z, for all A ∈ N2, 1 ≤ j < i ≤ k,
X ′′ → Z, for all X ∈ N1 ∪ {f},
X ′′′ → X , for all X ∈ N1;

P2 = {((Xi, 0), in) | X ∈ N1, 1 ≤ i ≤ k}
∪ {(X, out), (X ′′, out) | X ∈ N1 ∪ {f}};

F2 = {(false, notin), (false, notout)};

R3: (Xi, j)→ (Xi, j + 1), for all X ∈ N1, 0 ≤ j < i ≤ k,
(Xi, i)→ α′′, for all mi : (X → α,A→ x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f};

P3 = {((Xi, j), in) | X ∈ N1, 1 ≤ j ≤ i ≤ k}
∪ {(X ′′, out) | X ∈ N1 ∪ {f}};

F3 = {(false, notin), (false, notout)};

R4: (Ai, j)→ (Ai, j + 1), for all A ∈ N2, 0 ≤ j < i ≤ k,
(Ai, i)→ Ai, for all mi : (X → α,A→ x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f},
Ai → Z, for all A ∈ N2, 1 ≤ i ≤ k;

P4 = {((Ai, j), out) | A ∈ N2, 1 ≤ j < i ≤ k}
∪ {(Ai, out) | A ∈ N2, 1 ≤ i ≤ k};

F4 = {(false, notout)};

and, for j = 1, 2,
R4+j,1: Xi → Z, for all X ∈ N1, i /∈ labj,

(Ai, 0)→ Z, for all A ∈ N2, i ∈ lab0,
B(j) → Z,
X ′ → X , for all X ∈ N1,
X ′′′ → Z, for all Z ∈ N1;

P4+j = {(a, out) | a ∈ T };
F4+j = {(false, notout)};
Let us examine the work of this system.
Only strings over T are accepted in the generated language; Z is a trap-

symbol, once introduced it will never be removed, hence the string will never
turn to be terminal. From the skin membrane in any moment we can send out
a string which contains at least one terminal symbol, but if any symbol not in
T is present, then the string is not accepted in the generated language.

At any moment we have exactly one string in the system; initially, this is
XA, for (S → XA) the start matrix of G. Assume that we have here a string
of the general form, Xw, with X ∈ N1 and w ∈ (N2 ∪ T )∗. We have to use a
rule of the form X → Xi, for i ∈ labj, 1 ≤ j ≤ 3, or of the form A → (Ai, 0),
for some A ∈ N2, 1 ≤ i ≤ k. In the first case we start the simulation of a matrix
with appearance checking, in the second case we start the simulation of a matrix
mi, 1 ≤ i ≤ k (without appearance checking). If no rule can be used, then the
string exits, but it is not terminal.

Assume that we are in the former case. The string must be communicated
to a lower level membrane, that is, one of membranes 2, 5, 6. In membranes
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2 and those of 5, 6 which are different from 4 + j the only applicable rule
is Xi → Z, hence the computation will not produce a terminal string. If the
string Xiw arrives in the right membrane 4 + j, that is, the membrane with
i ∈ labj, and B(j) is not present in it, then no rule can be applied to it, at
the next step the string exits unchanged; in this way we know that w does not
contain the symbol B(j); if B(j) is present, then the symbol Z is introduced. In
the skin membrane we use the rule Xi → Y ′ which corresponds to the matrix
mi : (X → Y,B(j) → #) fromM . The string is sent again to a lower membrane;
if it arrives in membrane 2, then it will remain here forever, unchanged; from any
membrane 5, 6 it exits with Y ′ replaced with Y . This completes the simulation
of the matrix mi. The obtained string is of the initial form, hence the process
can be iterated. If in the skin membrane we do not use the rule Xi → Y ′, but a
rule of the form A→ (Ai, 0), then the string can be sent to a lower membrane;
both in membrane 2 and in membranes 5, 6 there is only one applicable rule,
(Ai, 0)→ Z, hence no terminal string will be obtained.

Assume now that we have introduced a symbol (Ai, 0), corresponding to a
matrix mi : (X → α,A → x), 1 ≤ i ≤ k, with α ∈ N1 ∪ {f}. The string should
be communicated to a lower membrane. In membranes 5, 6 the symbol Z will
be introduced, hence we have to send it to membrane 2. The only applicable
rule is X → (Xj , 0), for some j ∈ lab0. The string is sent to membrane 3, where
(Xj , 0) is replaced with (Xj , 1). The obtained string is sent to membrane 4,
where (Ai, 0) is replaced with (Ai, 1). The string returns to membrane 3. From
now on, the string will go back and forth between membranes 3 and 4, and the
second component of the symbols (Ai, s), (Xj , t) is alternatively increased.

Now, we distinguish three cases:

Case 1: i < j. This means that at some step in membrane 4 we receive from
membrane 3 a string of the form (Xj , i)w1(Ai, i − 1)w2. We replace (Ai, i − 1)
with (Ai, i) and no communication is possible (note that ((Ai, i), out) is not
in P4), hence one more rewriting is necessary. We replace (Ai, i) with Ai and
the string is sent out. In membrane 3 we replace (Xj , i) with (Xj , i+ 1) (this is
possible, because i+1 ≤ j), the string is sent back to membrane 4, where the trap-
symbol is introduced (the rewriting has priority over checking the communication
conditions).

Case 2: i > j. At some moment we produce in membrane 3 a string of
the form (Xj , j)w1(Ai, j − 1)w2, which is sent to membrane 4. Here we replace
(Ai, j − 1) with (Ai, j), the string exits, in membrane 3 we replace (Xj , j) with
α′′, α ∈ N1 ∪ {f}, and the string is sent out. In membrane 2 we can apply
(Ai, j)→ Z or α′′ → Z, hence again the string will never lead to a terminal one.

Case 3: i = j. At some moment we pass from membrane 3 to membrane 4 a
string (Xi, i)w1(Ai, i − 1)w2. In membrane 4 we replace (Ai, i − 1) with (Ai, i)
and, because we cannot exit, we replace this latter symbol with Ai. Returned
in membrane 3, we replace (Xi, i) with α′′ and we send the string α′′w1Aiw2

to membrane 2. We have to continue by using the rule Ai → x and the string
α′′w1xw2 is sent to the skin membrane.
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We have here two subcases. If we use the rule α′′ → α′′′, then the string is sent
to membrane 2 again (in membranes 5, 6 the trap-symbol Z will be introduced).
The only applicable rule here is α′′′ → α, which completes the simulation of the
matrix mi. Moreover, we have a string of the form we have started with, hence
– if α ∈ N1 – the process can be iterated. If in the skin membrane we use a rule
of the form C → (Cl, 0), then a string of the form α′′z1(Cl, 0)z2 is sent to one of
membranes 2, 5, 6; in all of them the trap-symbol is immediately produced.

Therefore, the only correct way (that is, leading to a terminal string) to
proceed is to correctly simulate matrices from M .

At the moment when a matrix (X → f,A→ x) is simulated, the computation
must stop: if a string f ′′z1(Cl, 0)z2 is sent to any membrane 2, 5, 6, then the
trap-symbol is produced, hence the rule f ′′ → λ must be used in membrane 1.
The string should exit (no condition allows movement to a lower membrane). If
it is terminal, then it belongs to the language L(Π), if not, then it is “lost”.

If at any moment we get a string of the form Xw,w ∈ T ∗, then we will never
get a terminal string: we can at most simulate matrices mi, i ∈ lab1 ∪ lab2, but
we cannot remove the symbol from N1 present in the string. In turn, if we obtain
a string without any symbol from N1, but containing symbols from N2, then this
means that it is of the form f ′′w, hence as we have seen above, the computation
cannot lead to a terminal string.

Consequently, L(Π)=L(G), and we have the equality EPR6(symb, empty)=
RE.

For the non-extended case we replace all sets Fi, 2 ≤ i ≤ 6, with {($, notin),
($, notout)}, where $ is a new symbol, to be added to V , and we consider

F1 = {($, notin)} ∪ {(α, notout) | α ∈ V − T }.

No string containing symbols not in T can exit the system, but all the strings are
processed as described above, hence the language is not changed. This completes
the proof. ��

It is an open problem whether or not the previous result is optimal, or the
number of used membranes can be decreased.

For the case of checking separately only prefixes or only suffixes of strings
we have not found a universality result, while when using both prefix and suffix
checking we can characterize RE by systems with a number of membranes which
is not bounded. Improving this result (we believe that the hierarchy on the
number of membranes collapses also in this case) and investigating the families
RPm(α, β) with at least one of α, β in {prefk, suffk | k ≥ 1} remain as tasks for
the reader.

Theorem 6. ERP∗(prefsuff2, empty) = RE.

Proof. Let us consider a type-0 grammar G = (N,T, S, P ) in Kuroda normal
form, with k non-context-free rules labeled in an injective manner, ri : AB →
CD, 1 ≤ i ≤ k. Consider a new symbol, $, and assume that N ∪ T ∪ {$} =
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{E1, . . . , En}. We construct the P system Π , of degree 4k + 2n + 7, with the
following components:

V = T ∪N ∪ {A′ | A ∈ N}
∪ {(A′, r), (B, r) | r : AB → CD ∈ P}
∪ {X,X ′, X ′′, Y, Y ′, Y ′′, Z, $},

µ = [
1
[
2
[
3
[
4
[
5
]
5
]
4
[
6
[
E1
[
E′

1
]
E′

1
]
E1
. . . [

En
[
E′

n
]
E′

n
]
En
]
6

[7[r1
[r′

1
[r′′

1
[r′′′

1
]r′′′

1
]r′′

1
]r′

1
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[r′
k
[r′′
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[r′′′
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]r′′′

k
]r′′

k
]r′

k
]rk
]7]3]2]1,

all sets Mi of axioms are empty, excepting M5, which contains the unique
string X ′′$SY , and with the following sets of rules and associated strings to
be checked as permitting conditions (all forbidding condition sets are of the
form {(false, notin), (false, notout)}):

R1: Y ′′ → λ;
P1 = {(a, out) | a ∈ T };

R2: Y ′ → Y ′′,
X → λ,
$→ λ,
Y → Z;

P2 = {(Y ′′, out)};

R3: α→ α′, for all α ∈ N ∪ T ∪ {$},
X ′ → X ′′,
Y → Y ′,
B → (B, r), for all r : AB → CD ∈ P ;

P3 = {(α′Y, in), (αY, out) | α ∈ N ∪ T ∪ {$}}
∪ {(X ′′, in), ($Y ′, out)} ∪ {((B, r)Y, in) | r : AB → CD ∈ P};

R4: = {α′ → Z | α ∈ N ∪ T ∪ {$}}
∪ {(B, r)→ Z | r : AB → CD ∈ P};

P4: = {(X, out), (X ′′, out)};

R5: A→ x, if such a rule is in P ,
X ′′ → X,
α′ → Z, for all α ∈ N ∪ T ∪ {$},
(B, r)→ Z, for all r : AB → CD ∈ P ;

P5 = {(X, out)};

R6 contains no rule;
P6 = {(X, in), (X ′, out)};
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R7 contains no rule;

P7 = {(X, in), (X ′, out)},

for each i = 1, 2, . . . , n, we have:

REi : X ′ → X ′,
E′

i → λ,
α′ → Z, for all α ∈ N ∪ T ∪ {$} such that α �= Ei,
(B, r)→ Z, for all r : AB → CD ∈ P ;

PEi = {(Y, in), (X ′, out)};

RE′
i
: X → X ′Ei;

PE′
i
= {(X ′, out)};

and for each i = 1, 2, . . . , k we have:

Rri : α′ → Z, for all α ∈ N ∪ T ∪ {$},
(B, ri)→ λ,
(F, rj)→ Z, for all 1 ≤ j ≤ k, j �= i, F ∈ N ,
X ′ → X ′,
(A′, ri)→ Z;

Pri = {(Y, in), (X ′, out)};

Rr′
i
: A→ (A′, ri),
X ′ → X ′;

Pr′
i
= {((A′, ri)Y, in), (X ′, out)} ∪ {(αY, out) | α ∈ N ∪ T ∪ {$}};

Rr′′
i
: (A′, ri)→ λ,
X ′ → X ′;

Pr′′
i
= {(Y, in), (X ′, out)};

Rr′′′
i
: X → X ′CD;

Pr′′′
i
= {(X ′, out)}.

For the reader’s convenience, Figure 2 presents the shape of the membrane
structure of the system Π .
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Fig. 2. The membrane structure of the system Π from the proof of Theorem 6
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The idea of this construction is to simulate the non-context-free rules from
P in the right end of the strings of Π , and, to this aim, the sentential forms of
G are circularly permuted in Π ; the symbol $ indicates the actual beginning of
strings from G: if Xw1$w2Y is a sentential form of Π , then w2w1 is a sentential
form of G. Z is a trap-symbol, once introduced, it cannot be removed, hence the
string will never turn to be terminal.

We start from the string X ′′$SY , initially present in membrane 5.
In membrane 5 we can simulate any context-free rule from P and the string,

if not starting with X , will remain in the same region. After using the rule
X ′′ → X , it has to exit. From membrane 4, it immediately goes to membrane 3.

If in membrane 3 we use the rule Y → Y ′, then the string will go to membrane
2 only if it ends with $Y ′, which means that it is in the same permutation as
in G. This is the way to produce a terminal string: the auxiliary symbol X, $
are erased, Y ′ is replaced by Y ′′, the string is sent to the skin membrane, where
Y ′′ is erased. If the string which is sent out of the system is terminal, then it is
added to the language L(Π), if not, then it is “lost”.

Assume that in membrane 3 we have a string XwY and we use a rule α→ α′,
for some α ∈ N ∪ T ∪ {$}. This will start the procedure of circularly permuting
the string with one symbol: α is removed from the right end of the string and
added in the left end of the string. Note that the nonterminals, the terminals,
and the symbol $ are treated in the same manner. If the primed symbol is
the rightmost one, then the condition to send the string to a lower membrane is
fulfilled, otherwise the string is sent to membrane 2, because a condition (βY, out)
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is fulfilled, for some β ∈ N ∪ T ∪ {$}. In membrane 2 we have to eventually use
the rule Y → Z and no terminal string will be obtained. Thus, we have to prime
the rightmost symbol of the string w, and the obtained string is sent to a lower
level membrane. If it arrives in membrane 4, then the symbol Z is introduced
by the rule α′ → Z, if the string arrives in one of membranes 6 and 7, then it
will be sent to a lower level membrane. In all membranes different from [

α
]
α

the trap-symbol is introduced. In membrane [α ]α the symbol α
′ is removed and

the string is sent to the inner membrane [α′ ]α′ , where the same symbol α is
introduced by the symbol X in the leftmost position; at the same time, X is
replaced by X ′, which makes possible sending the string up to membrane 3. We
have here several possibilities.

If we use the rule Y → Y ′ and the string is sent out (the special symbol $
was adjacent to Y ′), then we cannot remove X ′, hence the string will not lead
to a terminal string. If we use a rule β → β′, then either the string goes to
membrane 2 and Z is introduced, or it goes to a lower membrane; in membrane
4 one introduces the trap-symbol by the rule β′ → Z, from membranes 6 and 7
we have to exit immediately, hence the process is repeated. Similar results are
obtained if we use a rule B → (B, r), for some r : AB → CD ∈ P . Thus, we have
to use the rule X ′ → X ′′, which implies that the string is sent to a lower level
membrane. This should be membrane 4, otherwise the string remains forever in
one of membranes 6 and 7. From membrane 4 the string is sent to membrane 5,
where we can simulate context-free rules from P and eventually we have to use
again the rule X ′′ → X and send to membrane 3 a string XzY (with z obtained
by circularly permutingg the string w with a symbol, maybe also by using some
context-free rules from P ). The process can be iterated.

A similar procedure ensures the simulation of rules r : AB → CD, in the
membranes “protected” by membrane 7: a symbol B is replaced by (B, r) in
membrane 3; if this is not done in the rightmost position, then the string has to
exit and in membrane 2 one introduces the trap-symbol; if the string is of the
form Xw(B, r)Y , then it goes to one of membranes 4, 6, or 7; in membrane 4
one introducees the trap-symbol, from membrane 6 the string is sent to a lower
membrane and will introduce the trap-symbol. From membrane 7, the string is
sent to a lower level membrane. If this is not the one associated with the rule
r, then again the trap-symbol is introduced, otherwise in membrane [r ]r one
removes (B, r) and one goes to the lower membrane. In membrane [r′ ]r′ one
also replaces A by (A′, r). If this is not done in the rightmost position, then the
string has to exit, and in membrane [r ]r one introduces the trap-symbol. If
A was the rightmost symbol, then the string goes one membrane below, where
also (A′, r) is erased. The string enters the lowest membrane associated with the
rule r, where the rule X → X ′CD completes the simulation of the rule. Because
of X ′, the string can now exit all membranes associated with the rule r, and
returns to membrane 3. Again the process can be iterated.

Consequently, we can correctly simulate all rules from P , and all strings
which can be sent out of the system and are terminal precisely correspond to
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strings generated by terminal derivation of G. That is, L(G) = L(Π), which
concludes the proof. ��

6 The Remaining Families

“Below” the families considered in Theorems 1 – 5 there remain several families
whose size is not precisely known. We will present here some results in this
respect, especially about the families of languages generated by systems with
only one membrane, but a systematic study of these families remains as a topic
for further research.

Theorem 7. RP1(empty, symb) = CF .

Proof. For a context-free grammar G = (N,T, S, P ) we consider the system
Π = (N ∪ T,N ∪ T, [1 ]1, {S}, P, {(true, out)}, {(A, notout) | A ∈ N}), and we
obviously have L(G) = L(Π), that is, CF ⊆ RP1(empty, symb).

Conversely, consider a system Π = (V, T, [
1
]
1
,M1, R1, P1, F1) with P1 =

{(true, out)} and with F1 = {(bi, notout) | 1 ≤ i ≤ k}, for some k ≥ 1, bi ∈
V, 1 ≤ i ≤ k. Denote by dom(R1) the set {a ∈ V | a → z ∈ R1}. We construct
the pure context-free grammar G = (U, S, P ) with

U = V ∪ {a′ | a ∈ V } ∪ {S, c},
where S, c are new symbols, and with the following rules (g(w) denotes the string
obtained by priming all symbols from w ∈ V ∗):

P = {S → g(w)c | w ∈M1, alph(w) ∩ dom(R1) = ∅,
and alph(w) ∩ {b1, . . . , bk} = ∅,
or z =⇒ w by a rule from R1, (alph(z) ∪ alph(w)) ∩ {b1, . . . , bk} = ∅}

∪ {S → w | w ∈M1, alph(w) ∩ dom(R1) �= ∅}
∪ {a→ z | a→ z ∈ R1}
∪ {bi → g(z)c | bi → z ∈ R1, 1 ≤ i ≤ k}.

Consider also the morphism h defined by h(a) = h(a′) = a, a ∈ V , and h(c) = λ.
We have the equality

L(Π) = h(L(G)∩(V ∪V ′)∗c(V ∪V ′)∗)∩{w ∈ V ∗ | alph(w)∩{b1, . . . , bk} = ∅}∩T ∗,

where V ′ = {a′ | a ∈ V }. Indeed, the intersection with the regular language
(V ∪ V ′)∗c(V ∪ V ′)∗ selects from the language L(G) only those strings which
contain exactly one occurrence of c, that is, they are either strings fromM1 which
cannot be rewritten (but can be sent out), or they are obtained by a derivation
step when a rule from R1 is used. In the latter case, we either have rewritten an
axiom w1, obtaining a string w2 such that both w1 and w2 contain no symbol
bi, 1 ≤ i ≤ k (hence the derivation can have only one step), or a symbol bi, 1 ≤
i ≤ k, appears either in w1 or in w2, and then a rule bi → g(z)c is used during the
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derivation. Moreover, the intersection with {w ∈ V ∗ | alph(w)∩{b1, . . . , bk} = ∅}
ensures the fact that if a string of the form x1g(z)cx2 is obtained by using such
a rule, then we have alph(x1zx2) ∩ {b1, . . . , bk} = ∅, hence it can be sent out. If
further rules of the form a→ y (without introducing the symbol c) are used for
rewriting a string x1g(z)cx2, then the string remains of the same form, and such
rules were also possible to be used before using the rule bi → g(z)c (the primed
symbols prevent to use rules for rewriting the symbols from z), hence this does
not lead to strings not in L(Π). If a rule of the form bi → g(y)c is used, then the
obtained string is not in the intersection, because it contains two occurrences of
c. The fact that the symbol c is introduced by a rule which removes a symbol
bi, 1 ≤ i ≤ k, ensures the fact that we finish the derivation in the moment when
removing the last symbol from the forbidding set, hence the string is introduced
in the language of L(G) in the same moment when the corresponding string is
sent out of the system Π .

The morphism h erases the primes and the symbol c, hence we return to a
string from V ∗. The intersection with T ∗ ensures the selection of terminal strings
only.

All these operations preserve context-freeness, hence L(Π) ∈ CF . ��

Theorem 8. ERP1(empty, empty) = RP1(empty, empty) = FIN .

Proof. Let Π = (V, T, [1]1,M1, R1, {(true, out)}, {(false, notout)}) be a sys-
tem with empty communication conditions. After each rewriting the string must
exit the system, hence all computations have at most one step, which means
that L(Π) is finite. Conversely, we can take any finite language as M1 and no
rule in R1. In this way, we just send out the strings from M1, hence all finite
languages are in RP1(empty, empty). ��

Lemma 1. RP1(symb, empty)− LIN �= ∅.
Proof. The system

Π = ({a, b, c, d}, {a, b, c, d}, [1 ]1, {dd},
{d→ adb, d→ acb}, {(c, out)}, {(false, notout)}),

generates the non-linear language

L(Π) = {ancbnamdbm, amdbmancbn | n ≥ 1,m ≥ 0}.

(We can send out a string only if it contains the symbol c, hence immediately
after using the rule d → acb; the rule d → adb can be used any number m ≥ 0
of times.) ��

Lemma 2. ERP1(symb, empty) ⊆ CF.

Proof. The proof is similar (but simpler) to that of the inclusion RP1(empty,
symb) ⊆ CF from the proof of Theorem 7, so we only present the construction
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needed (the notations for dom(R1), g, h, V ′ are the same as in the proof of The-
orem 7). Let Π = (V, T, [1 ]1,M1, R1, P1, F1) be a system with P1 = {(bi, out) |
1 ≤ i ≤ k}, for some k ≥ 1, bi ∈ V, 1 ≤ i ≤ k, and with F1 = {(false, notout)}.
We construct the pure context-free grammar G = (U, S, P ) with

U = V ∪ {a′ | a ∈ V } ∪ {S, c},
where S, c are new symbols, and with the following rules:

P = {S → g(w)c | w ∈M1, alph(w) ∩ dom(R1) = ∅,
and alph(w) ∩ {b1, . . . , bk} �= ∅}

∪ {S → w | w ∈M1, alph(w) ∩ dom(R1) = ∅}
∪ {a→ z | a→ z ∈ R1, alph(z) ∩ {b1, . . . , bk} = ∅}
∪ {a→ g(z)c | a→ z ∈ R1, alph(z) ∩ {b1, . . . , bk} �= ∅}.

We have the equality

L(Π) = h(L(G) ∩ (V ∪ V ′)∗c(V ∪ V ′)∗) ∩ T ∗,

consequently L(Π) ∈ CF . ��
This inclusion is proper. Actually, the following stronger result holds (which

somehow completes the study of the families ERP1(symb, empty), RP1(symb,
empty):

Lemma 3. All one-letter languages in ERP1(sub, empty) are finite.

Proof. Consider a regular language L ⊆ a∗ and let Π = (V, {a}, [1 ]1,M1, R1,
P1, {(false, notout)}) be a system such that L(Π) = L. At least one condition
from P1 should be of the form (ak, out) for some k ≥ 0. Let k0 be the smallest k
with this property. All strings obtained by using a rule from R1 and containing
a substring aj with j ≥ k0 is sent out of the system. Let k1 = max{|x| | α →
x ∈ R1}, k2 = max{|w| | w ∈M1}, and denote t = max{k0, k1, k2}.

No string of the form am with m > 3t can be generated by the system
Π . Indeed, in order to produce such a string we need a rewriting w =⇒ am.
Because m > 3t, we must have |w| > 2t, hence w /∈ M1. This means that in its
turn, also w was obtained by a rewriting. However, because t ≥ k0, it follows
that ak0 ∈ Sub(w). This means that w should be sent out immediately after
obtaining it, hence the step w =⇒ am cannot be performed. This contradiction
closes the proof. ��

Theorem 9. The families ERP1(symb, empty), RP1(symb, empty) are in-
comparable with REG, LIN, and strictly included in CF.

However, REG is “almost included” into RP1(symb, empty):

Theorem 10. For each regular language L ⊆ T ∗ and c /∈ T , the language
L{c} is in RP1(symb, empty).
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Proof. For a regular grammar G = (N,T, S, P ) and c /∈ T we consider the
system Π = ({N ∪ T ∪ {c}, N ∪ T ∪ {c}, [1 ]1, {S}, {A → aB | A → aB ∈
P} ∪ {A→ ac | A→ a ∈ P}, {(c, out)}, {(false, notout)}). A string can be sent
out only when c is present, which means that a derivation in G was completed,
hence L(Π) = L(G){c}. ��

If we pass to systems with (at least) two membranes, then much more complex
languages can be produced, even when using communication conditions of a weak
type.

Theorem 11. RP2(empty, empty)− CF �= ∅.
Proof. The system

Π = ({a, b, c, d1, d2}, {a, b, c, d1, d2}, [1[2 ]2]1, {d1d2}, ∅, R1, P1, F1, R2, P2, F2),
R1 = {d1 → ad1b}, P1 = {(true, in), (true, out)},
F1 = {(false, notin), (false, notout)}, R2 = {d2 → cd2},
P2 = {(true, out)}, F2 = {(false, notout)},

generates the non-context-free language

L(Π) = {an+1d1b
n+1cnd2 | n ≥ 0}.

Indeed, after a number of steps when the current string is moved between the skin
membrane and the inner membrane (in such a step all symbols a, b, c increase by
one the number of occurrences), the string can be sent out, which means that
one further copy of a and b are produced. ��

Theorem 12. RP2(empty, symb)−MAT �= ∅.
Proof. The system

Π = ({a, b}, {a, b}, [1[2 ]2]1, {a}, ∅, R1, P1, F1, R2, P2, F2),
R1 = {a→ bb}, P1 = {(true, in), (true, out)}, F1 = {(a, notin), (a, notout)},
R2 = {b→ a}, P2 = {(true, out)}, F2 = {(b, notout)},

generates the language

L(Π) = {b2n | n ≥ 0}.
Assume that we have a string am in the skin membrane; initially, m = 1. We
have to use the rule a→ bb for all copies of a before communicating the obtained
string. Thus, we have to obtain the string b2m, which is either sent out of the
system or to the inner membrane. In membrane 2 we have to use the rule b→ a
for all copies of b, otherwise the string cannot be communicated. Thus, we return
to the skin membrane the string a2m and the process is iterated. ��
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7 Final Remarks; Topics for Further Research

We have considered here a variant of rewriting P systems where communication
is controlled by the contents of the strings, not by the rules used for obtaining
these strings. Specifically, permitting and forbidding conditions were defined,
depending on the symbols or the substrings of a given string, or depending on
the shape of the string (whether or not it is of a given pattern). Several new
characterizations of recursively enumerable languages were obtained, but the
power of many classes of systems (especially with a small number of membranes)
has remained to be clarified.

This approach can be seen as a counterpart of the approach in [3], where the
use of rules (processing multisets, not strings as here) is controlled in a similar
way, by the contents of a given membrane.

On the other hand, this work proceeds in the line of research on constraining
application of context-free rules by the shape of the string to which a production
is applied or into which an application results.

In [2] this was achieved in a setting where only one string was present and only
a level was considered. The basic model proposd there was equivalent to what we
could define as ERP1(patt, empty). This work shows how communication allows
the complexity of the check on the produced words to be reduced, by distributing
it over several membranes.

We have considered here only the rewriting case, but the same idea can be
explored for all types of string-processing operations, in particular, for splicing.
Actually, many other research topics remain to be investigated. We have already
mentioned the need to further examine the families considered in Section 5, to
improve the bounds in Theorems 3, 4, 5, and to find a characterization of RE
as in Theorem 6 with a bounded number of membranes.

Here are three further research topics.
Remember that we have said that when a string fulfills both in and out con-

ditions, it will go to one direction, nondeterministically chosen. An attractive
case would be to replicate the string and send copies of it both out of the current
membrane and to a lower level membrane. In this way we can produce additional
strings, which is in general useful for solving NP-complete problems in polyno-
mial (often, linear) time, by creating an exponential space and trading space for
time (see [18] and references therein; in particular, this is the case of [12]).

In rewriting P systems we process in a parallel way different strings, present
in the same membrane or in different membranes, but each string is rewritten
in a sequential manner. The case of parallel rewriting, like in L systems, was
considered in [11], with the following way of defining the communication: one
counts how many rules from those applied to a string indicate to send the ob-
tained string out, how many in, and how many here, and we send the string to
the place which was indicated a larget number of times. This looks rather arti-
ficial; in the conditional case, the conditions are checked on the string obtained
by rewriting, hence this difficulty does not appear, we can rewrite the string in
any manner we like.
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Finally, we can use patterns not only for defining the communication targets,
but also for modifying the strings, thus replacing rewriting by another type of
operation. This way of “growing” strings was already explored in the so-called
pattern grammars, [7], or in other types of language generating mechanisms based
on patterns, see [15]. The idea is simple: start with finite sets of terminal strings
and of patterns in each membrane, interpret the variables from patterns by
means of the available strings, and then evaluate the communication conditions;
the terminals from a region can be variables in another region and conversely.
In this way, all the work of the system would be based on using patterns.

References

1. D. Angluin, Finding Patterns Common to a Set of Strings, J. Comput. System
Sci., 21 (1980), 46–62.

2. P. Bottoni, A. Labella, P. Mussio, Gh. Păun, Pattern Control on Derivation in
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