
A Temporal Concurrent Constraint
Programming Calculus

Catuscia Palamidessi1 and Frank D. Valencia2

1 Penn State University, USA
catuscia@cse.psu.edu

2 BRICS� � �, University of Aarhus, Denmark
fvalenci@brics.dk

Abstract The tcc model is a formalism for reactive concurrent con-
straint programming. In this paper we propose a model of temporal con-
current constraint programming which adds to tcc the capability of mod-
eling asynchronous and non-deterministic timed behavior. We call this
tcc extension the ntcc calculus. The expressiveness of ntcc is illustrated
by modeling cells, asynchronous bounded broadcasting and timed sys-
tems such as RCX controllers. We present a denotational semantics for
the strongest-postcondition of ntcc processes and, based on this seman-
tics, we develop a proof system for linear temporal properties of these
processes.

1 Introduction

The tcc model [16] is a formalism for reactive ccp which combines deterministic
ccp [18] with ideas from the Synchronous Languages [2]. Time is conceptually
divided into discrete intervals (or time-units). In a particular time interval, a
deterministic ccp process receives a stimulus (i.e. a constraint) from the envi-
ronment, it executes with this stimulus as the initial store, and when it reaches
its resting point, it responds to the environment with the resulting store. Also
the resting point determines a residual process, which is then executed in the
next time interval.

The tcc model is inherently deterministic and synchronous. Indeed, patterns
of temporal behavior such as “the system must output c within the next t time
units” or “the message must be delivered but there is no bound in the delivery
time” cannot be expressed within the model. It also rules out the possibility of
choosing one among several alternatives as an output to the environment. The
task of zigzagging (see Section 4), in which a robot can unpredictably choose its
next move, is an example where non-determinism is useful.

In general, a benefit of allowing the specification of non-deterministic behav-
ior is to free programmers from the necessity of coping with issues that are irrele-
vant to the problem specification. Dijkstra’s language of guarded commands, for
example, uses a nondeterministic construction to help free the programmer from

� � � Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation.

T. Walsh (Ed.): CP 2001, LNCS 2239, pp. 302–316, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Temporal Concurrent Constraint Programming Calculus 303

over-specifying a method of solution. As pointed out in [21], a disciplined use of
nondeterminism can lead to a more straightforward presentation of programs.
This view is consistent with the declarative flavor of ccp: The programmer spec-
ifies by means of constraints the possible values that the program variables can
take, without being required to provide a computational procedure to enforce
the corresponding assignments.

Furthermore, a very important benefit of allowing the specification of non-
deterministic and asynchronous behavior arises when modeling the interaction
among several components running in parallel, in which one component is part
of the environment of the others. These systems often need non-determinism and
asynchrony to be modeled faithfully.

In this paper we propose an extension of tcc, which we call the ntcc calculus,
for temporal ccp. The calculus is obtained by adding guarded-choice for model-
ing non-determinism and an unbounded but finite delay operator for asynchrony.
Computation in ntcc progresses as in tcc, except for the non-determinism and
asynchrony induced by the new constructs. The calculus allows for the specifica-
tion of temporal properties, and for modeling and expressing constraints upon
the environment both of which are useful in proving properties of timed sys-
tems. We shall illustrate the expressiveness of ntcc by modeling constructs such
as cells, asynchronous bounded broadcasting and some applications involving
RCXTM controllers.

The declarative nature of ntcc comes to the surface when we consider the
denotational characterization of the strongest postcondition of a process, as de-
fined in [5] for ccp, and extend it to a timed setting. We show that the elegant
model based on closure operators, developed in [18] for deterministic ccp, can
be extended to a simple sound model for ntcc. We also obtain completeness for
a fragment we shall call local-independent choice.

The logical nature of ntcc comes to the surface when we consider its relation
with linear temporal logic: All the operators of ntcc correspond to temporal logic
constructs. We develop a sound system for linear temporal properties of ntcc and
show that the system is also (relatively) complete wrt local-independent choice
processes. Our system is then complete for tcc as well, since every tcc process
falls into the category of local-independent choice ntcc processes.

The main contributions of this paper can be summarized as follows: (1) a
model of temporal ccp more expressive than tcc (2) a denotational semantics for
the strongest postcondition of ntcc processes, and (3) a proof system for linear
temporal properties of ntcc process.

2 The Calculus

In this section we present the syntax and an operational semantics of the ntcc
calculus. First we recall the notion of constraint system.

Basically, a constraint system provides a signature from which syntactically
denotable objects in language called constraints can be constructed, and an
entailment relation specifying interdependencies between such constraints.

304 C. Palamidessi and F.D. Valencia

Definition 1 (Constraint Systems). A constraint system is a pair (Σ,∆)
where Σ is a signature specifying functions and predicate symbols, and ∆ is a
consistent first order theory.

Given a constraint system (Σ,∆), let L be the underlying first-order lan-
guage (Σ,V,S), where V = {x, y, z, . . . } is a countable set of variables and S
is the set containing the symbols ¬̇, ∧̇, ⇒̇, ∃̇, true and false which denote logi-
cal negation, conjunction, implication, existential quantification, and the always
true and always false predicates, respectively. Constraints, denoted by c, d, . . .
are first-order formulae over L. We say that c entails d in ∆, written c
∆ d (or
just c
 d when no confusion arises), if c ⇒̇ d is true in all models of ∆. We
write c ≈ d iff c
 d and d
 c. We will consider constraints modulo ≈ and use C
for the set of representants of equivalence classes of constraints. For operational
reasons we shall require
 to be decidable.

Process Syntax. Processes P , Q, . . . ∈ Proc are built from constraints c ∈ C
and variables x ∈ V in the underlying constraint system by the following syntax.

P,Q, . . . ::= tell(c) |∑
i∈I

when ci doPi | P ‖ Q | local x inP

| nextP | unless c nextP | !P |
 P .

The only move or action of process tell(c) is to add the constraint c to the current
store, thus making c available to other processes in the current time interval. The
guarded-choice

∑
i∈I when ci do Pi, where I is a finite set of indexes, represents

a process that, in the current time interval, must non-deterministically choose
one of the Pj (j ∈ I) whose corresponding constraint cj is entailed by the store.
The chosen alternative, if any, precludes the others. If no choice is possible then
the summation is precluded. We use

∑
i∈I Pi as an abbreviation for the “blind-

choice” process
∑

i∈I when (true)doPi. We use skip as an abbreviation of the
empty summation and “+” for binary summations.

Process P ‖ Q represents the parallel composition of P and Q. In one time
unit (or interval) P and Q operate concurrently, “communicating” via the com-
mon store. We use

∏
i∈I Pi, where I is finite, to denote the parallel composition

of all Pi. Process local x in P behaves like P , except that all the information
on x produced by P can only be seen by P and the information on x produced
by other processes cannot be seen by P .

The process nextP represents the activation of P in the next time interval.
Hence, a move of nextP is a unit-delay of P . The process unless cnextP is
similar, but P will be activated only if c cannot be inferred from the current
store. The “unless” processes add (weak) time-outs to the calculus, i.e., they
wait one time unit for a piece of information c to be present and if it is not, they
trigger activity in the next time interval. We use nextn(P) as an abbreviation
for next(next(. . . (nextP) . . .)), where next is repeated n times.

The operator ! is a delayed version of the replication operator for the
π−calculus ([14]): !P represents P ‖ nextP ‖ next2P ‖ . . ., i.e. unbound-
ely many copies of P but one at a time. The replication operator is the only way
of defining infinite behavior through the time intervals.

A Temporal Concurrent Constraint Programming Calculus 305

The operator
 corresponds to the unbounded but finite delay operator ε
for synchronous CCS ([13]) and it allows us to express asynchronous behavior
through the time intervals. The process
P represents an arbitrary long but finite
delay for the activation of P . For example,
 tell(c) can be viewed as a message
c that is eventually delivered but there is no upper bound on the delivery time.
By using the
 operator we can define a fair asynchronous parallel composition
P | Q as (P ‖
 Q) + (
 P ‖ Q) as described in [13]. A move of P | Q is either
one of P or one of Q (or both). Moreover, both P and Q are eventually executed
(i.e. a fair execution of P | Q).

We shall use !IP and
IP , where I is an interval of the natural numbers, as
an abbreviation for

∏
i∈I next

iP and
∑

i∈I next
iP , respectively. For instance,

[m,n]P means that P is eventually active between the next m and m+ n time
units, while ![m,n]P means that P is always active between the next m and m+n
time units.

Operational Semantics. Operationally, the current information is represented
as a constraint c ∈ C, so-called store. Our operational semantics is given by con-
sidering transitions between configurations γ of the form 〈P, c〉. We define Γ
as the set of all configurations. Following standard lines, we extend the syn-
tax with a construct local (x, d) inP , which represents the evolution of a pro-
cess of the form localx inQ, where d is the local information (or store) pro-
duced during this evolution. Initially d is “empty”, so we regard localx inP as
local (x, true) in P

We need to introduce a notion of free variables that is invariant wrt the
equivalence on constraints. We can do so by defining the “relevant” free variables
of c as fv(c) = {x ∈ V | ∃xc �≈ c}. For the bound variables, define bv(c) =
{x ∈ V |x occurs in c} − fv(c). Regarding processes, define fv(tell(c)) = fv(c),
fv(

∑
i when ci do Pi) =

⋃
i fv(ci)∪ fv(Pi), fv(localx inP) = fv(P)−{x}. The

bound variables and the other cases are defined analogously.

Definition 2 (Structural Congruence). Let ≡ be the smallest congruence
over processes satisfying the following laws:

1. (Proc/≡, ‖, skip) is a symmetric monoid.
2. P ≡ Q if they only differ by a renaming of bound variables.
3. next skip ≡ skip next(P ‖ Q) ≡ nextP ‖ nextQ.
4. localx in skip ≡ skip localx y inP ≡ local y x inP .
5. localx innextP ≡ next(localx inP).
6. localx in (P ‖ Q) ≡ P ‖ localx inQ if x �∈ fv(P).

We extend ≡ to configurations by defining 〈P, c〉 ≡ 〈Q, c〉 if P ≡ Q.

The reduction relations −→⊆ Γ ×Γ and =⇒ ⊆ Proc × C × C × Proc are the
least relations satisfying the rules appearing in Table 1. The internal transition
〈P, c〉 −→ 〈Q, d〉 should be read as “P with store c reduces, in one internal step,

to Q with store d ”. The observable transition P
(c,d)

====⇒ Q should be read as
“P on input c reduces, in one time unit, to Q with store d ”. As in tcc, the store
does not transfer automatically from one interval to another.

306 C. Palamidessi and F.D. Valencia

We now give a description of the operational rules. Rules TELL, CHOICE,
PAR and LOC are standard [18]. Rule UNLESS says that if c is entailed by the
current store, then the execution of the process P (in the next time interval) is
precluded. Rule REPL specifies that the process !P produces a copy P at the
current time unit, and then persists in the next time unit. STAR says that
P
triggers P in some time interval (either in the current one or in a future one).
Rule STRUCT simply says that structurally congruent processes have the same
reductions.

Rule OBS says that an observable transition from P labeled by (c, d) is ob-
tained by performing a terminating sequence of internal transitions from 〈P, c〉
to 〈Q, d〉, for some Q. The process to be executed in the next time interval,
F (Q) (“future” of Q), is obtained by removing from Q what was meant to be
executed only in the current time interval and any local information which has
been stored in Q, and by “unfolding” the sub-terms within nextR expressions.
More precisely:

Definition 3 (Future Function). The partial function F : Proc ⇀ Proc is
defined as follows:

F (P) =




Q if P = next Q or P = unless c next Q
F (P1) ‖ F (P2) if P = P1 ‖ P2
local x in F (Q) if P = local (x, c) in Q
skip if P =

∑
i∈I when ci do Pi

Remark 1. Function F does not need to be total since whenever we apply F to
a process P (Rule OBS in Table 1), all replications and unbounded finite-delay
operators in P occur within a next construction.

Interpreting Process Runs. Let us consider an infinite sequence of observable
transitions

P = P1
(c1,c′

1)====⇒ P2
(c2,c′

2)====⇒ P3
(c3,c′

3)====⇒ . . .

This sequence can be interpreted as a interaction between the system P and an
environment. At the time unit i, the environment provides a stimulus ci and Pi

produces c′
i as response. If α = c1.c2.c3. . . . and α′ = c′

1.c
′
2.c

′
3 . . ., we represent

the above interaction as P
(α,α′)
====⇒ω.

Alternatively, if α = trueω, we can interpret the run as an interaction among
the parallel components in P without the influence of an external environment
(i.e., each component is part of the environment of the others). In this case α
is called the empty input sequence and α′ is regarded as a timed observation of
such an interaction in P .

3 Strongest Postcondition: Denotation and Logic

In this section we introduce the strongest postcondition of a process and investi-
gate its denotational and logic. Henceforward, we use α, α′ to represent elements

A Temporal Concurrent Constraint Programming Calculus 307

Table 1. An operational semantics for ntcc. The upper part defines the internal tran-
sitions while the lower part defines the observable transitions. The function F , used in
OBS, is given in Definition 3

TELL 〈tell(c), d〉 −→ 〈skip, d∧̇c〉

CHOICE
〈∑

i∈I when ci do Pi, d
〉 −→ 〈Pj , d〉 if d � cj , for j ∈ I

PAR
〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

LOC

〈
P, c∧̇∃̇xd

〉
−→ 〈Q, c′〉

〈local (x, c) in P, d〉 −→
〈
local (x, c′) in Q, d∧̇∃̇xc′

〉

UNLESS 〈unless c next P, d〉 −→ 〈skip, d〉 if d � c

REPL 〈!P, c〉 −→ 〈P ‖ next !P, c〉

STAR 〈
 P, c〉 −→ 〈nextnP, c〉 for some n ≥ 0.

STRUCT γ1 ≡ γ′
1 γ′

1 −→ γ′
2 γ′

2 ≡ γ2
γ1 −→ γ2

OBS
〈P, c〉 −→∗ 〈Q, d〉
−→

P
(c,d)
====⇒ F (Q)

of Cω and β to represent an element of C∗. Given c ∈ C, c.α represents the
concatenation of c and α. Furthermore, β.α represents the concatenation of β
and α. We use ∃̇xα to represent the sequence obtained by applying ∃̇x to each
constraint in α. Notation α(i) denotes the i-th element in α.

We define the strongest postcondition of P , sp(P), as the set of all sequences
P can possibly output. More precisely,

Definition 4 (Strongest Postcondition). Let us define the set sp(P) as

{α′ | P (α,α′)
====⇒ω for some α}.

Denotational Semantics. We give now a denotational characterization of the
strongest postcondition following ideas in [5] and [16] for the ccp and tcc case,
respectively. The presence of non-determinism, however, presents a technical
problem to deal with: The strongest postcondition for the hiding operator can-
not be specified compositionally (see [5]). Therefore, we will have to identify a
practical fragment for which the semantics is complete.

308 C. Palamidessi and F.D. Valencia

Table 2. Denotational Semantics of ntcc

D1 [[tell(c)]] = {d.α | d � c, α ∈ Cω}

D2 [[
∑

i∈I when ci do Pi]] =
⋃

i∈I{d.α | d � ci, d.α ∈ [[Pi]]}
∪⋂

i∈I{d.α | d
� ci, d.α ∈ Cω}

D3 [[P ‖ Q]] = [[P]] ∩ [[Q]]

D4 [[local x in P]] = {α | there exists α′ ∈ [[P]] s.t. ∃̇xα = ∃̇xα′}

D5 [[next P]] = {d.α | d ∈ C, α ∈ [[P]]}

D6 [[unless c next P]] = {d.α | d � c, α ∈ Cω} ∪ {d.α | d
� c, α ∈ [[P]]}

D7 [[!P]] = {α | ∀β ∈ C∗, α′ ∈ Cω s.t. α = β.α′, we have α′ ∈ [[P]]}

D8 [[
 P]] = {β.α | β ∈ C∗, α ∈ [[P]]}

The denotational semantics is defined as a function [[·]] which associates to
each process a set of infinite constraint sequences, namely [[·]] : Proc → P(Cω).
The definition of this function is given in Table 2. Intuitively, [[P]] is meant
to capture the set of all sequences P can possibly output. For instance, the
sequences that tell(c) can output are those whose first element is stronger than
c (D1). Process nextP has not influence in the first element of a sequence, thus
d.α can be output by it if α is can be output by P (D5). A sequence can be
output by !P if every suffix of it can be output by P (D7). The other rules
can be explained analogously. The next theorems state the relation between the
denotation of P and its strongest postcondition.

Theorem 1 (Soundness). For every ntcc process P , sp(P) ⊆ [[P]].

For the reasons mentioned at the beginning of this section, the converse of this
theorem does not hold in general. Nevertheless, it holds for local-independent
choice processes which we define next.

Definition 5 (Local-Independent Choice). A process P is said to be local-
independent choice iff for all local x in Q in P , for all

∑
i∈I when ci do Qi in

Q, the ci’s either are equivalent, mutually exclusive or do not have free occur-
rences of x.

This is a substantial fragment of ntcc since every restricted-choice process is
also local-independent choice and, unlike the restricted-choice fragment defined
[7], its condition does not imply structural confluence. In fact, all the process
examples in this paper are local-independent choice.

A Temporal Concurrent Constraint Programming Calculus 309

Theorem 2 (Completeness). If P is a local-independent choice ntcc process,
then sp(P) = [[P]].

For deterministic processes such as tcc processes, namely those which contain
neither the choice (except when the index set is a singleton) nor the
 operator,
we have an even stronger result: the semantics allows to retrieve the input-output
relation (which for deterministic processes is a function). Let us use ≤ to denote
the (partial) order relation {(α, α′) | ∀i ≥ 1 α′(i)
 α(i)} and min(S) to denote
the minimal element of S ⊆ Cω in the complete lattice (Cω,≤).
Theorem 3. If P is a deterministic process, then (α, α′) ∈ io(P) iff α′ =
min([[P]]∩ ↑ α), where ↑ α = {α′′|α ≤ α′′}.

Linear-Temporal Logic. Let us define a linear temporal logic for expressing
properties of ntcc processes. The formulae A,B, ... ∈ A are defined by the gram-
mar A ::= c | A ⇒ A | ¬A | ∃xA | ◦A | �A | ♦A. The symbol c denotes
an arbitrary constraint. The symbols ⇒, ¬ and ∃x represent temporal logic im-
plication, negation and existential quantification. These symbols are not to be
confused with the logic symbols ⇒̇, ¬̇ and ∃̇x of the constraint system. The
symbols ◦, �, and ♦ denote the temporal operators next, always and sometime.
We use A ∨ B as an abbreviation of ¬A ⇒ B and A ∧ B as an abbreviation of
¬(¬A ∨ ¬B).

The standard interpretation structures of linear temporal logic are infinite
sequences of states [12]. In ntcc states are represented with constraints, thus we
consider as interpretations the elements of Cω. We say that α ∈ Cω is a model
of A, notation α |= A, if 〈α, 1〉 |= A, where:

〈α, i〉 |= c iff α(i)
 c
〈α, i〉 |= ¬A iff 〈α, i〉 �|= A
〈α, i〉 |= A1 ⇒ A2 iff 〈α, i〉 |= A1 implies 〈α, i〉 |= A2
〈α, i〉 |= ◦A iff 〈α, i+ 1〉 |= A
〈α, i〉 |= �A iff for all j ≥ i 〈α, j〉 |= A
〈α, i〉 |= ♦A iff there exists j ≥ i s.t. 〈α, j〉 |= A

〈α, i〉 |= ∃xA iff there exists α′ ∈ Cω s.t. ∃̇xα = ∃̇xα
′ and 〈α′, i〉 |= A.

We define [[A]] = {α | α |= A}, i.e., the collection of all models of A.

Proving Properties of Processes. We are interested in assertions of the
form P
 A, whose intuitive meaning is that every sequence P can possibly
output satisfies the property expressed by A – i.e., that every sequence in sp(P)
(Definition 4) is a model ofA. An inference system for such assertions is presented
in Table 3. We will say that P
 A holds if the assertion P
 A has a proof
in this system.

The following theorem states the soundness and the relative completeness of
the proof system.

Theorem 4 (Relative Completeness). For every ntcc process P and every
formula A, P
 A holds iff [[P]] ⊆ [[A]] holds.

310 C. Palamidessi and F.D. Valencia

Table 3. A proof system for linear temporal properties of ntcc processes

P1 tell(c) � c P3
P � A Q � B

P ‖ Q � A ∧ B

P2
∀i ∈ I Pi � Ai

∑

i∈I

when ci do Pi �
∨

i∈I

(ci ∧ Ai) ∨
∧

i∈I

¬ci

P4
P � A

local x in P � ∃xA

P5
P � A

next P � ◦A
P6

P � A

unless c next P � c ∨◦A

P7
P � A

!P � �A
P8

P � A

� P � ♦A

P9
P � A

P � B
if A ⇒ B

The reason why this theorem is called “relative completeness” is because of
the consequence rule P9 (consequence rule). Proving A ⇒ B is known to be
decidable for the quantifier-free fragment of linear time temporal formulae as
well as for some other interesting first-order fragments (see [10]).

From Theorems 4, 1 and 2 we immediately derive the following:

Corollary 1. 1. For every ntcc process P and every formula A, if P
 A
holds then sp(P) ⊆ [[A]] holds.

2. For every local-independent choice ntcc process P and every formula A, P

A holds iff sp(P) ⊆ [[A]] holds.

We shall see that the kind of recursion considered in [16] can be encoded
in ntcc. Hence, tcc processes can be considered as a particular case of local-
independent choice ntcc processes, and therefore the proof system is complete
for tcc.

The following notion will be useful in the Section 4, for discussing properties
of our examples.

Definition 6 (Strongest Derivable Formulae). A formula A is the strongest
temporal formula derivable for P if P
 A and for all A′ such that P
 A′, we
have A⇒ A′.

Note that the strongest temporal formula of a process P is unique modulo
logical equivalence. We give now a constructive definition of such formula.

A Temporal Concurrent Constraint Programming Calculus 311

Definition 7 (Strongest Temporal Formula Function). Let the function
stf : Proc → A be defined as follows:

stf (tell(c)) = c
stf (

∑
i∈I when (ci)doPi) =

(∨
i∈I ci ∧ stf (Pi)

) ∨∧
i∈I ¬ci

stf (P ‖ Q) = stf (P) ∧ stf (Q)
stf (local x P) = ∃xstf (P)
stf (next P) = ◦ stf (P)
stf (unless c next P) = c ∨ ◦stf (P)
stf (!P) = � stf (P)
stf (
P) = ♦ stf (P).

We can easily prove that [[stf (P)]] = [[P]] and that P
 stf (P). From these
we have:

Proposition 1. For every process P , stf (P) is the strongest temporal formula
derivable for P .

Note that to prove that P
 A is sufficient to prove that stf (P) ⇒ A.
However, to prove such implication may not be always feasible or possible. The
proof system provides the additional flexibility of proving P
 A by using the
consequence rule (P9) on subprocesses of P and on formulae different from A.

4 Applications

In this section we illustrate some ntcc examples. We first need to define an
underlying constraint system.

Definition 8 (A Finite-Domain Constraint System). Let max be a positive
integer number. Define FD [max] as the constraint system whose signature Σ
includes symbols in {0, succ,+,×,=} and the first-order theory ∆ is the set of
sentences valid in arithmetic modulo max.

The intended meaning of FD [max] is the natural numbers interpreted as in
arithmetic modulo max. Henceforth, we assume that the signature is extended
with two new unary predicate symbols call and change. We will designate Dom
as the set {0, 1,,max− 1} and use v and w to range over its elements.

Recursion. We can encode recursive definitions of the form q(x) def= Pq, where
q is the process name and Pq contains at most one occurrence of q which must
be within the scope of a “next” and out of the scope of any “!”. The reason
for such a restriction is that we want to keep bounded the response time of the
system.

We also want to consider the call-by-value. This may look unnatural since
in constraint programming the natural parameter passing mechanism is through
“logical variables”, like in logic programming. Indeed, it is more difficult to
encode in ntcc call-by-value than “call-by-logical-variable”. However, for the kind

312 C. Palamidessi and F.D. Valencia

of applications we have in mind (some of which are illustrated in the rest of this
section), call-by-value is the mechanism we need. Note also that we mean call-by-
value in the sense of value “persisting through the time intervals”, and this would
not be possible to achieve directly with the “call-by-logical-variable”, because
the values of variables are not maintained from one interval to the next. More
precisely: The intended behavior of a call q(t), where t is a term fixed to a value
v (i.e. t = v in the current store), is that of Pq[v/x], where [v/x] is the operation
of (syntactical) replacement of every occurrence of x by v.

Given q(x) def= Pq, we will use q , qarg to denote any two variables not in
fv(Pq). Let �x := t� be defined as the process

∑
v when t = v do ! tell(x = v),

i.e., the persistent assignment of t’s fixed value to x. Then the ntcc process
corresponding to definition of q(x), denoted as �q(x) def= Pq�, is :

! (when call(q) do local x in (�x := qarg� ‖ �Pq�)) ,

where �Pq� denotes the process that results from replacing in Pq each q(t) with
tell(call(q)) ‖ tell(qarg = t) (thus telling that there is a call of q with argument
t). Intuitively, whenever the process q is called with argument qarg , the local x
is assigned the argument’s value so it can be used by q’s body �Pq�.

We then consider the calls q(t) in other processes. Each such a call is replaced
by local q qarg in (�q(x) def= Pq� ‖ tell(call(q)) ‖ tell(qarg = t)), which we shall
denote by �q(t)�. The local declarations are needed to avoid interference with
other recursive calls.

The above encoding generalizes easily to stratified recursion and to the case
of arbitrary number of parameters including the parameterless recursion of tcc
considered in [16]. We now show some temporal properties satisfied by the en-
coding. Next theorem describes the strongest temporal formulae satisfied by
�q(t)�.

Proposition 2. Given �q(x) def= Pq�, let B the strongest temporal formula deriv-
able for �Pq�. Then the temporal formula

∃q,qarg(call(q) ∧ qarg = t ∧�(call(q)⇒ ∃x(B ∧
∧
w

(qarg = w ⇒ �x = w)))

is the strongest temporal formula derivable for �q(t)�.

The above proposition gives us a proof principle for recursive definitions,
i.e., in order to prove that �q(t)�
 A it is sufficient to prove that a strongest
temporal formula of �q(t)� implies A. The next corollary states a property that
one would expect of recursive calls, i.e., if B is satisfied by q′s body then B[v/x]
should be satisfied by q(t) provided that t = v.

Corollary 2. Given �q(x) def= Pq�, suppose that q, qarg do not occur free in B
and �Pq�
 B. Then for all v ∈ Dom, �q(t)�
 t = v ⇒ B[v/x].

A Temporal Concurrent Constraint Programming Calculus 313

Cells. Cells provide a basis for the specification and analysis of mutable and
persistent data structures. A cell can be thought of as a structure that contains
a value, and if tested, it yields this value. A mutable cell is a cell that can be
assigned a new value1. We model mutable cells of the form x : (v), which we
interpret as a variable x currently fixed to some v.

x: (z) def= tell(x = z) ‖ unless change(x)next x: (z)
exchf (x, y)

def=
∑

v when (x = v) do (tell(change(x)) ‖ tell(change(y))
‖ next(�x: (f(v))� ‖ �y: (v)�)).

Definition x : (z) represents a cell x whose current content is z. The current
content of x will be the same in the next time interval unless it is to be changed
next (i.e change(x)). Definition exchf (x, y) represents an exchange operation
between the contents of x and y. If v is x’s current value then f(v) and v will
be the next x and y′s values, respectively. In the case of functions that always
return the same value (i.e. constants), we will take the liberty of using that value
as its symbol. For example, �x: (3)� ‖ �y: (5)� ‖ �exch7(x, y)� gives us the cells
x: (7) and y: (3) in the next time interval.

The following temporal property states the invariant behavior of a cell, i.e.,
if it satisfies A now, it will satisfy A next unless it is changed.

Proposition 3. For all v ∈ Dom, �x: (v)�
 (A ∧ ¬change(x))⇒ ◦A.

Zigzagging. An RCX is a programmable, microcontroller-based LEGO r© brick
used to create autonomous robotic devices (see e.g., [11]). Zigzagging [8] is a
task in which an (RCX-based) robot can go either forward, left, or right but (1)
it cannot go forward if its preceding action was to go forward, (2) it cannot turn
right if its second-to-last action was to go right, and (3) it cannot turn left if its
second-to-last action was to go left.

In order to model this problem, without over-specifying it, we use guarded
choice and cells. We use cells act1 and act2 to be able to “look back” one and
two time units, respectively. We use three distinct f,r,l ∈ Dom− {0} (standing
for forward, right and left respectively) and three distinct forward,right,left ∈ C.

GoForward def= �exchf(act1 , act2)� ‖ tell(forward)
GoRight def= �exchr(act1 , act2)� ‖ tell(right)
GoLeft def= �exchl(act1 , act2)� ‖ tell(left)
Zigzag def= (when (act1 �= f)do �GoForward�

+ when (act2 �= r)do �GoRight�
+ when (act2 �= l)do �GoLeft�)
‖ nextZigzag

StartZigzag def= �act1 : (0)� ‖ �act2 : (0)� ‖ �Zigzag�.
1 A richer notion of cell can be found in ccp based models such as the Oz calculus
[19], the π+ calculus [6], and PiCO [1].

314 C. Palamidessi and F.D. Valencia

Initially cells act1 and act2 contain neither f,r nor l. Just before a choice is
made act1 and act2 contain the previous and the second-to-last taken actions (if
any). After a choice is made according to (1), (2) and (3), the choice is recorded
in act1 and the previous choice moved to act2 . The definitions of the various
processes are self-explanatory.

The next temporal property states that the robot chooses to go right and
left infinitely often.

Proposition 4. �StartZigzag�
 �(♦right ∧ ♦left).
Other RCX examples modeled by ntcc includes a crane [20] and a wall-

avoiding robot [20].

Value-passing Communication. Value passing plays an important role in
several process calculi. Suppose that x ↑ (v) denotes the action of writing a value
(or message) v in channel x which is then kept in the channel for one time unit.
We assume that in the same time unit, two different values cannot be written in
the same channel. The notation x ↓P [y] represents the action of reading, without
consuming, the value (if any) in channel x which is then used in P . The variable
y, which may occur free in P , is the placeholder for the read value. Several
read actions can get the same value if they read the same channel in the same
time interval. These basic actions can be defined as x ↑ (y) def= tell(x = y) and
x ↓P [y]

def=
∑

v when (x = v) do local y in (! tell(y = v) ‖ P).
Having defined the two basic actions, we can specify different behaviors, e.g.,

process ! (
[0,1](x ↓P [y])) checks “very often” for messages in channel x. Here we
illustrate a form of asynchronous broadcasting communication.

SendAsynx(y)
def=
(�x ↑ (y)�)

WaitingQ,x
def= local stop in (�x ↓(Q‖tell(stop=1))[y]�

‖ unless stop = 1nextWaitingQ,x).

Process SendAsynx(v) asynchronously sends value v in channel x. Process
WaitingQ,x waits for a value in channel x. Note that, if a process is waiting
at the time SendAsynx(v) is executed, then it is guaranteed to get the value,
while other processes may not get it. This property is expressed by the following
result.

Proposition 5. Suppose that Q
 B and stop �∈ fv(Q). Then for all v ∈ Dom,

�SendAsynx(v)� ‖ �WaitingQ,x�
 ♦B[v/y].

5 Related and Future Work

Our proposal is a strict extension of tcc [16], in the sense that tcc can be encoded
in (the restricted-choice subset of) ntcc, while the vice-versa is not possible
because tcc does not have constructs to express non-determinism or unbounded

A Temporal Concurrent Constraint Programming Calculus 315

finite-delay. In [16] the authors proposed also a proof system for tcc, based
on an intuitionistic logic enriched with a next operator. The system, however,
is complete only for hiding-free and recursion-free processes. In contrast our
system is based on the standard classical temporal logic of [12] and is complete
for local-independent choice ntcc processes, hence also for tcc processes. Other
extension of tcc, which does not consider non-determinism or unbounded finite-
delay, has been proposed in [17]. This extension adds strong pre-emption: the
“unless” can trigger activity in the current time interval. In contrast, ntcc can
only express weak pre-emption. As argued in [4], in the specification of (large)
timed systems weak pre-emption often suffices (and non-determinism is crucial).
Nevertheless, strong pre-emption is important for reactive systems. In principle,
strong pre-emption could be incorporated in ntcc: Semantically one would have
to consider assumptions about the future evolutions of the system. As for the
logic, one would have to consider a temporal extension of Default Logic [15].

The tccp calculus [4] is the only other proposal for a non-deterministic timed
extension of ccp that we know of. One major difference with our approach is that
the information about the store is carried through the time units, so the semantic
setting is rather different. The notion of time is also different; in tccp each time
unit is identified with the time needed to ask and tell information to the store.
As for the constructs, unlike ntcc, tccp provides for arbitrary recursion and does
not have an operator for specifying (unbounded) finite-delay. A proof system for
tccp processes was recently introduced in [3]. The underlying linear temporal
logic in [3] can be used for describing input-output behavior while our logic can
only be used for the strongest-postcondition. As such the temporal logic of ntcc
processes is less expressive than that one underlying the proof system of tccp,
but it is also semantically simpler and defined as the standard linear-temporal
logic of [12]. This may come in handy when using the Consequence Rule which
is also present in [3].

The plan for future research includes the extension of ntcc to a probabilistic
model following ideas in [9]. This is justified by the existence of RCX program
examples involving stochastic behavior which cannot be faithfully modeled with
non-deterministic behavior. In a more practical setting we plan to define a pro-
gramming language for RCX controllers based on ntcc.

Acknowledgments. We are indebted to Mogens Nielsen for having suggested
and discussed this work. We thank Andrzej Filinski, Maurizio Gabbrielli, Camilo
Rueda, Dale Miller, Vineet Gupta, Radha Jagadeesan and Kim Larsen for help-
ful comments on various aspects of this work. Thanks goes also to Paulo Oliva,
Daniele Varacca, Oliver Moeller, Federico Crazzolara, Giuseppe Milicia and
Pawel Sobocinski.

References

1. G. Alvarez, J.F. Diaz, L.O. Quesada, C. Rueda, G. Tamura, F. Valencia, and
G. Assayag. Integrating constraints and concurrent objects in musical applications:
A calculus and its visual language. Constraints, January 2001.

316 C. Palamidessi and F.D. Valencia

2. G. Berry and G. Gonthier. The Esterel synchronous programming language:
design, semantics, implementation. Science of Computer Programming, 19(2):87–
152, November 1992.

3. F. de Boer, M. Gabbrielli, and M. Chiara. A temporal logic for reasoning about
timed concurrent constraint programs. In TIME 01. IEEE Press, 2001.

4. F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent constraint language.
Information and Computation, 1999. To appear.

5. F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent
constraint programs correct. ACM Transactions on Programming Languages and
Systems, 19(5):685–725, 1997.

6. J.F. Diaz, C. Rueda, and F. Valencia. A calculus for concurrent processes with
constraints. CLEI Electronic Journal, 1(2), December 1998.

7. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence in con-
current constraint programming. Theoretical Computer Science, 183(2):281–315,
1997.

8. J. Fredslund. The assumption architecture. Progress Report, Department of Com-
puter Science, University of Aarhus, November 1999.

9. O. Herescu and C. Palamidessi. Probabilistic asynchronous pi-calculus. FoSSaCS,
pages 146–160, 2000.

10. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. In Annals of Pure and Applied Logic, 2000.

11. H. H. Lund and L. Pagliarini. Robot soccer with LEGO mindstorms. Lecture
Notes in Computer Science, 1604, 1999.

12. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
Specification. Springer, 1991.

13. R. Milner. A finite delay operator in synchronous ccs. Technical Report CSR-116-
82, University of Edinburgh, 1992.

14. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

15. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132,
April 1980.

16. V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent
constraint programming. In Proc. of the Ninth Annual IEEE Symposium on Logic
in Computer Science, pages 71–80, 4–7 July 1994.

17. V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint
programming. Journal of Symbolic Computation, 22(5–6):475–520, November–
December 1996.

18. V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concur-
rent constraint programming. In POPL ’91. Proceedings of the eighteenth annual
ACM symposium on Principles of programming languages, pages 333–352, 21–23
January 1991.

19. G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Com-
puter Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

20. F. Valencia. Reactive constraint programming. Progress Report, BRICS, June
2000. Availabe via http://www.brics.dk/∼fvalenci/publications.html.

21. G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.

	Introduction
	The Calculus
	Strongest Postcondition: Denotation and Logic
	Applications
	Related and Future Work

