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Abstract

The �-calculus is a model of concurrent computation based upon the

notion of naming . It is �rst presented in its simplest and original form,

with the help of several illustrative applications. Then it is generalized from

monadic to polyadic form. Semantics is done in terms of both a reduction

system and a version of labelled transitions called commitment ; the known

algebraic axiomatization of strong bisimilarity is given in the new setting,

and so also is a characterization in modal logic. Some theorems about the

replication operator are proved.

Justi�cation for the polyadic form is provided by the concepts of sort

and sorting which it supports. Several illustrations of di�erent sortings are

given. One example is the presentation of data structures as processes which

respect a particular sorting; another is the sorting for a known translation of

the �-calculus into �-calculus. For this translation, the equational validity of

�-conversion is proved with the help of replication theorems. The paper ends

with an extension of the �-calculus to !-order processes, and a brief account

of the demonstration by Davide Sangiorgi that higher-order processes may be

faithfully encoded at �rst-order. This extends and strengthens the original

result of this kind given by Bent Thomsen for second-order processes.

This work was done with the support of a Senior Fellowship from the Science and

Engineering Research Council, UK.



1 Introduction

The �-calculus is a way of describing and analysing systems consisting of agents

which interact among each other, and whose con�guration or neighbourhood is

continually changing. Since its �rst presentation [19] it has developed, and con-

tinues to do so; but the development has a main stream. In this tutorial paper

I give an introduction to the central ideas of the calculus, which can be read by

people who have never seen it before; I also show some of the current developments

which seem most important { not all of which have been reported elsewhere.

Any model of the world, or of computation (which is part of the world), makes

some ontological commitment; I mean this in the loose sense of a commitment

as to which phenomena it will try to capture, and which mental constructions

are seen to �t these phenomena best. This is obvious for the \denotational"

models of computing; for example, the set-theoretic notion of function is chosen

as the essence or abstract content of the deterministic sequential process by which
a result is computed from arguments. But mathematical operations { adding,
taking square-roots { existed long before set theory; and it seems that Church

in creating the �-calculus had \algorithm" more in mind than \function" in the
abstract sense of the word.

Nevertheless, the �-calculus makes some ontological commitment about com-
putation. It emphasizes the view of computation as taking arguments and yielding
results. By contrast, it gives no direct representation of a heterarchical family of

agents, each with its changing state and an identity which persists from one com-
putation to another. One may say that the �-calculus owes its very success to its
quite special focus upon argument-result computations.

Concurrent computation, and in particular the power of concurrently active
agents to in
uence each other's activity on the 
y, cannot be forced into the \func-

tion" mould (set-theoretic or not) without severe distortion. Of course concurrent
agents can be assumed (or constrained) to interact in all sorts of di�erent ways.
One way would be to treat each other precisely as \function computers"; such
an agent's interaction with its environment would consist of receiving arguments
and giving results and expecting its sub-agents, computing auxiliary functions, to

behave in a similar way. Thus functional computation is a special case of concur-
rent computation, and we should expect to �nd the �-calculus exactly represented

within a general enough model of concurrency.

In looking for basic notions for a model of concurrency it is therefore prob-
ably wrong to extrapolate from �-calculus, except to follow its example in seeking
something small and powerful. (Here is an analogy: Music is an art form, but it

would be wrong to look for an aesthetic theory to cover all art forms by extrapol-

ation from musical theory.) So where else do we look? From one point of view,
there is an embarrassingly wide range of idea-sources to choose from; for concur-

rent computation in the broadest sense is about any co-operative activity among
independent agents { even human organizations as well as distributed computing

systems. One may even hope that a model of concurrency may attain a breadth
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of application comparable to physics; Petri expressed such hopes in his seminal

work on concurrency [25], and was guided by this analogy.

Because the �eld is indeed so large, we may doubt whether a single uni�ed

theory of concurrency is possible; or, even if possible, whether it is good research

strategy to seek it so early. Another more modest strategy is to seize upon some

single notion which seems to be pervasive, make it the focus of a model, and then

submit that model to various tests: Is its intrinsic theory tractable and appealing?

Does it apply to enough real situations to be useful in building systems, or in

understanding those in existence?

This strategy, at least with a little hindsight, is what led to the �-calculus. The

pervasive notion we seize upon is naming. One reason for doing so is that naming

strongly presupposes independence; one naturally assumes that the namer and

the named are co-existing (concurrent) entities. Another reason is that the act of

using a name, or address, is inextricably confused with the act of communication.

Indeed, thinking about names seems to bring into focus many aspects of comput-
ing: problems, if not solutions. If naming is involved in communicating, and is
also (as all would agree) involved in locating and modifying data, then we look for
a way of treating data-access and communication as the same thing; this leads to

viewing data as a special kind of process, and we shall see that this treatment of
data arises naturally in the �-calculus.

Another topic which we can hope to understand better through naming is
object-oriented programming; one of the cornerstones of this topic (which is still
treated mostly informally) is the way in which objects provide access to one an-

other by naming. In [17] I used the term object paradigm to describe models
such as the �-calculus in which agents (objects) are assumed to persist and retain
independent identity. David Walker [28] has had initial success in giving formal
semantics to simple object-oriented languages in the �-calculus. A challenging
problem is to reconcile the assumption, quite common in the world of object-

oriented programming, that each object should possess a unique name with the
view expressed below (Chapter 1) that naming of channels, but not of agents,
should be primitive in the �-calculus.

By focussing upon naming, we should not give the impression that we expect

every aspect of concurrency to be thereby explained. Other focal notions are likely

to yield a di�erent and complementary view. Yet naming has a strong attraction
(at least for me); it is a notion distilled directly from computing practice. It

remains to be seen which intuitions for understanding concurrency will arise from
practice in this way, and which will arise directly from logic { which in turn is a

distillation of a kind of computational experience, namely inference. Both sources

should be heeded. An example of a logical intuition for concurrency is the light
cast upon resource use by Girard's linear logic [9]. I believe it quite reasonable
to view these two sources of intuition as ultimately the same source; then the

understanding of computation via naming (say) is just as much a logical activity

as is the use of modal logics (say) in computer science.
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Background and related work The work on �-calculus really began with

a failure, at the time that I wrote about CCS, the Calculus of Communicating

Systems [15]. This was the failure, in discussion with Mogens Nielsen at Aarhus

in 1979, to see how full mobility among processes could be handled algebraically.

The wish to do this was motivated partly by Hewitt's actor systems, which he

introduced much earlier [12]. Several years later Engberg and Nielsen [8] succeeded

in giving an algebraic formulation. The �-calculus [19] is a simpli�cation and

strengthening of their work.

Meanwhile other authors had invented and applied formalisms for processes

without the restriction of a �nite �xed initial connectivity. Two prominent ex-

amples are the DyNe language of Kennaway and Sleep [14], and the work on

parametric channels by Astesiano and Zucca [3]. These works are comparable to

the �-calculus because they achieve mobility by enriching the handling of channels.

By contrast, one can also achieve mobility by the powerful means of transmit-

ting processes as messages; this is the higher-order approach. It is well exempli�ed
by the work Astesiano and Reggio [2] in the context of general algebraic spe-
ci�cation, F. Nielson [22] with emphasis upon type structure, Boudol [6] in the
context of �-calculus, and Thomsen [27]. It has been a deliberate intention in

the �-calculus to avoid higher order initially, since the goal was to demonstrate
that in some sense it is su�ciently powerful to allow only names or channels to
be the content of communications. Indeed Thomsen's work supports this conjec-
ture, and the present work strengthens his results comparing the approaches. See
Milner [17] for a discussion contrasting the approaches.

Outline There are six short chapters following this introduction.

Chapter 2 reviews the formalism of the monadic �-calculus, essentially as it
was presented in [19]; it also de�nes the notion of structural congruence and the
reduction relation as �rst given in [17].

Chapter 3 is entirely devoted to applications; the �rst de�nes a simple mobile
telephone protocol, the second encodes arithmetic in �-calculus, and the third
presents two useful disciplines of name-use (such as may be obeyed in an operating

system) in the form of properties invariant under reduction.

Chapter 4 generalizes �-calculus to polyadic communications, introduces the
notions of abstraction and concretion which enhance the power of expression of
the calculus (illustrated by a simple treatment of truth values), and a�rms that

the reduction relation remains essentially unchanged.

Chapter 5 and Chapter 6 provide the technical basis of the work. In Chapter 5,
�rst reduction congruence is de�ned; this is a natural congruence based upon re-

duction and observability. Next, the standard operational semantics of [19] is
reformulated in terms of a new notion, commitment; this, together with the 
ex-

ibility which abstractions and concretions provide, yields a very succinct present-

ation. Then the (late) bisimilarity of [19] is restated in the polyadic setting,
with its axiomatization. Its slightly weaker variant early bisimilarity, discussed in
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Part II of [19], is shown to induce a congruence identical with reduction congru-

ence. Some theorems about replication are given. Finally, the modal logic of [20],

which provides characterizations of both late and early bisimilarity, is formulated

in a new way { again taking advantage of the new setting.

Chapter 6 introduces the notions of sort and sorting, which are somewhat ana-

logous to the simple type hierarchy in �-calculus, but with signi�cant di�erences.

Data structures are shown to be represented as a particularly well-behaved class

of processes, which moreover respect a distinctive sorting discipline. Finally, with

the help of sorts, new light is cast upon the encoding of �-calculus into �-calculus

�rst presented in [17]; a simple proof is given of the validity of �-conversion in this

interpretation of �-calculus, using theorems from Chapter 5.

Chapter 7 explores higher-order processes, extending the work of Thomsen

[27]. It is shown how sorts and sorting extend naturally not only to second-order

(processes-as-data), but even to !-order; a key rôle is played here by abstractions.

A theorem of Sangiorgi [26] is given which asserts that these !-order processes can
be faithfully encoded in the �rst-order �-calculus (i.e. the calculus of Chapter 4).
Some details of this encoding are given.

Acknowledgements I thank Joachim Parrow and DavidWalker for the insights
which came from our original work together on �-calculus, and which have deeply

informed the present development. I also thank Davide Sangiorgi and Bent Thom-
sen for useful discussions, particularly about higher-order processes. I am most
grateful to Dorothy McKie for her help and skill in preparing this manuscript.

The work was carried out under a Senior Fellowship funded by the Science and
Engineering Research Council, UK.
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2 The Monadic �-calculus

2.1 Basic ideas

The most primitive entity in �-calculus is a name. Names, in�nitely many, are

x; y; : : : 2 X ; they have no structure. In the basic version of �-calculus which

we begin with, there is only one other kind of entity; a process. Processes are

P;Q; : : : 2 P and are built from names by this syntax

P ::= �i2I�i:Pi j P j Q j !P j (�x)P

Here I is a �nite indexing set; in the case I = ; we write the sum as 0. In a

summand �:P the pre�x � represents an atomic action, the �rst action performed

by �:P . There are two basic forms of pre�x:

x(y) , which binds y in the pre�xed process, means

\input some name { call it y { along the link named x",

xy , which does not bind y, means \output the name y
along the link named x".

In each case we call x the subject and y the object of the action; the subject is
positive for input, negative for output.

A name refers to a link or a channel. It can sometimes be thought of as naming
a process at \the other end" of a channel; there is a polarity of names, and x {

the co-name of x { is used for output, while x itself is used for input. But there
are two reasons why \naming a process" is not a good elementary notion. The
�rst is that a process may be referred to by many names; it may satisfy di�erent
demands, along di�erent channels, for many clients. The second is that a name
may access many processes; I may request a resource or a service { e.g. I may cry
for help { from any agent able to supply it. In fact, if we had names for processes

we would have to have (a di�erent kind of) names for channels too! This would
oppose the parsimony which is essential in a basic model.

Of course in human communities it is often convenient, and a convention, that
a certain name is borne uniquely by a certain member (as the name \Robin" is

borne uniquely by me in my family, but not in a larger community). So, in process

communities it will sometimes be a convention that a name x is borne uniquely
by a certain process, in the sense that only this member will use the name x as

a (positive) subject; then those addressing the process will use the co-name x
as a (negative) subject. But conventions are not maintained automatically; they

require discipline! In fact, that a name is uniquely borne is an invariant which is

useful to prove about certain process communities, such as distributed operating

systems.

We dwelt at length on this point about naming, because it illustrates so well
the point made in the introduction about ontological commitment. We now return

to describing the calculus.
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The summation form ��i:Pi represents a process able to take part in one { but

only one { of several alternatives for communication. The choice is not made by the

process; it can never commit to one alternative until it occurs, and this occurrence

precludes the other alternatives. Processes in this form are called normal processes

(because as we see later, all processes can be converted to this normal form). For

normal processes M;N; : : : 2 N we shall use the following syntax:

N ::= �:P j 0 j M+N

In this version of �-calculus we con�ne summation to normal processes, though

previously we have allowed the form P+Q for arbitrary processes. One reason is

that the reduction rules in Section 2.4 are simpler with this constraint; another is

that forms such as (P jQ)+R have very little signi�cance. However, everything in

this paper can be adjusted to allow for the more general use of summation.

What do the last three forms of process mean? P jQ { \P par Q" { simply

means that P and Q are concurrently active, so they can act independently { but
can also communicate. !P { \bang P" { means P jP j : : : ; as many copies as you

wish. There is no risk of in�nite concurrent activity; our reduction rules will see
to that. The operator \!" is called replication. A common instance of replication
is !�:P { a resource which can only be replicated when a requester communicates
via �.

Finally, (�x)P { \new x in P" { restricts the use of the name x to P . Another

way of describing it is that it declares a new unique name x, distinct from all
external names, for use in P . The behaviour of (�x) is subtle. In fact, the character
of the �-calculus derives from the interplay between its two binding operators: x(y)
which binds y somewhat as �y binds y in the �-calculus, and (�x) which has no
exact correlate in other calculi (but is the restriction operator of CCS promoted

to a more in
uential rôle).
Before looking at examples, we introduce a convenient abbreviation. Processes

like x(y):0 and xy:0 are so common that we prefer to omit the trailing \:0" and
write just x(y) and xy.

2.2 Some simple examples

Consider the process

xy:0 j x(u):uv:0 j xz:0

which we now abbreviate to
xy j x(u):uv j xz

Call it P j Q j R. One of two communications (but not both) can occur along the
channel x; P can send y to Q, or R can send z to Q. The two alternatives for the

result are

0 j yv j xz or xy j zv j 0

Note that R has become yv or zv; thus, the communication has determined which
channel R can next use for output, y or z.
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Now consider a variant

(�x)(xy j x(u):uv) j xz

In this case, the (free) x in R is quite di�erent from the (bound) x in P and Q,

so only one communication can happen, yielding

0 j yv j xz

(The restriction (�x) has vanished; it has no work left to do, since the x which it

restricted has been used up by the communication.)

Third, consider
xy j !x(u):uv j xz

This di�ers from the �rst case, because Q is now replicated. So !Q can �rst spin

o� one copy to communicate with P , and the system becomes

0 j yv j !Q j xz

Then !Q can spin o� another copy to communicate with R, and the system be-

comes
0 j yv j !Q j zv j 0

We have just seen several examples of reduction, i.e. the transformation of a pro-
cess corresponding to a single communication. We now present the �-calculus
reduction rules; the analogy with reduction in the �-calculus is striking but so are

the di�erences.

2.3 Structural Congruence

We have already said that there are two binding operators; the input pre�x x(y)

(which binds y) and the restriction (�x). So we can de�ne the free names fn(P ),
and the bound names bn(P ) of a process P in the usual way. We extend these to
pre�xes; note

bn(x(y)) = fyg ; fn(x(y)) = fxg

bn(xy) = ; ; fn(xy) = fx; yg

Also, the names of a process P are n(P )
def
= bn(P ) [ fn(P ).

Now, to make our reduction system simple, we wish to identify several expres-

sions. A typical case is that we want + and j to be commutative and associative.
We therefore de�ne structural congruence � to be the smallest congruence relation

over P such that the following laws hold:

1. Agents (processes) are identi�ed if they only di�er by a change of bound

names
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2. (N=�; +; 0) is a symmetric monoid

3. (P=�; j; 0) is a symmetric monoid

4. !P � P j !P

5. (�x)0 � 0; (�x)(�y)P � (�y)(�x)P

6. If x =2 fn(P ) then (�x)(P jQ) � P j (�x)Q

Exercise Use 3, 5 and 6 to show that (�x)P � P when x =2 fn(P ).

Note that laws 1, 4 and 6 allow any restriction not inside a normal process to be

pulled into outermost position; for example, if P � (�y)xy then

x(z):yz j !P � x(z):yz j (�y)xy j !P

� x(z):yz j (�y
0
)xy

0
j !P

� (�y
0
)(x(z):yz j xy

0
) j !P

This transformation has brought about the juxtaposition x(z): � � � j xy0: � � �, which
is reducible by the rules which follow below. The use of structural laws such as the
above, to bring communicands into juxtaposition, was suggested by the Chemical
Abstract Machine of Berry and Boudol [5].

2.4 Reduction rules

This section is devoted to de�ning the reduction relation ! over processes; P ! P
0

means that P can be transformed into P 0 by a single computational step. Now
every computation step consists of the interaction between two normal terms. So
our �rst reduction rule is communication:

comm : (� � �+ x(y):P ) j (� � �+ xz:Q)! Pfz=yg j Q

There are two ingredients here. The �rst is how communication occurs between
two atomic normal processes �:P which are complementary (i.e. whose subjects
are complementary). The second is the discard of alternatives; either instance

of \� � �" can be 0 of course, but if not then the communication pre-empts other
possible communications.

comm is the only axiom for ! ; otherwise we only have inference rules, and
they are three in number. The �rst two say that reduction can occur under-

neath composition and restriction, while the third simply says that structurally
congruent terms have the same reductions.

par :
P ! P

0

P j Q! P 0 j Q
res :

P ! P
0

(�x)P ! (�x)P 0

struct :
Q � P P ! P

0
P

0
� Q

0

Q! Q0
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Exercise In Section 2.2 and the previous exercise several reductions were given

informally. Check that they have all been inferred from the four rules for !.

It is important to see what the rules do not allow. First, they do not allow

reductions underneath pre�x, or sum; for example we have

u(v):(x(y) j xz) 6!

Thus pre�xing imposes an order upon reduction. This constraint is not necessary.

However, the calculus changes non-trivially if we relax it, and we shall not consider

the possibility further in this paper.

Second, the rules do not allow reduction beneath replication. In some sense,

this does not reduce the computational power; for if we have P ! P
0 then, instead

of inferring !P ! !P
0
, which is equivalent to allowing unboundedly many coexisting

copies of P to reduce, we can always infer

!P � P j P j � � � j P| {z }
n times

j !P !
n
P

0
j P

0
j � � � j P

0
j !P

thus (in n reductions) reducing as many copies of P as we require { and for �nite
work we can only require �nitely many !

Third, the rules tell us nothing about potential communication of a process P
with other processes. From the reduction behaviour alone of P and Q separately,

we cannot infer the whole reduction behaviour of, say, P jQ. (This is just as in
the �-calculus, where �xx and �xxx have the same reduction behaviour { they
have no reductions { but applying them to the same term �yy gives us two terms
(�xx)(�yy) and (�xxx)(�yy) with di�erent reduction behaviour.)

If we wish to identify every potential communication of a process, so as to dis-

tinguish say xy from xz, then we would indeed become involved with the familiar
labelled transition systems used in process algebra (and introduced later in this
paper). We do not want to do this yet. But for technical reasons we want to do a
little of it. To be precise, we only want to distinguish processes which can perform
an external communication at some location � { a name or co-name { from those

which cannot. So we give a few simple de�nitions.

First, we say that Q occurs unguarded in P if it occurs in P but not under a
pre�x. Thus, for example, Q is unguarded in QjR and in (�x)Q but not in x(y):Q.

Then we say P is observable at � { and write P #� { if some �:Q occurs unguarded
in P , where � is the subject of � and is unrestricted. Thus x(y) #x and (�z)xz #x,

but (�x)xz 6#x; also (�x)(x(y) j xz) 6#x even though it has a reduction.

It turns out that we get an interesting congruence over P in terms of ! and

#�. This will be set out in Chapter 4; �rst we digress in Chapter 3 to look at

several applications.
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3 Applications

In this section, we give some simple illustrations of the �-calculus. We begin by

introducing a few convenient derived forms and abbreviations.

3.1 Some derived forms

In applications, we often want forms which are less primitive than the basic con-

structions of monadic �-calculus. One of the �rst things we �nd useful is multiple

inputs and outputs along the same channel. A natural abbreviation could be to

write e.g. x(yz) for x(y):x(z) and xyz for xy:xz. But this would give a misleading

impression about the indivisibility of the pair of actions in each case. Consider

x(yz) j xy1z1 j xy2z2

for example; the intention is that y; z should get bound to either y1; z1 or y2; z2.
But if we adopt the above abbreviations there is a third possibility, which is a
mix-up; y; z can get bound to y1; y2. To avoid this mix-up, a way is needed of
making a single commitment to any multiple communication, and this can be done
using private (i.e. restricted) names. So we introduce abbreviations

x(y
1
� � �yn) for x(w):w(y

1
): � � � :w(yn)

xy1 � � �yn for (�w)xw:wy1: � � � :wyn

{ writing just x for x() when n = 0. You can check that the mix-up in the example
is no longer possible. The abbreviation has introduced an extra communication,
even in the case n = 1, but this will cause no problem.

Next, we often wish to de�ne parametric processes recursively. For example,
we may like to de�ne A and B, of arity 1 and 2 respectively, by

A(x)
def
= x(yz):B(y; z) ; B(y; z)

def
= yz:A(z)

If we wish to allow such parametric process de�nitions of the general formK(~x)
def

=

PK , we add

P ::= � � � j K(~y)

to the syntax of processes, where K ranges over process identi�ers; for each de�n-

ition we also add a new structural congruence law K(~y) � PKf~y=~xg to those given

in Section 2.3.

However, it is easier to develop a theory if \de�nition-making" does not have to

be taken as primitive. In fact, provided the number of such recursive de�nitions is
�nite, we can encode them by replication; then the introduction of new constants,

with de�nitions, is just a matter of convenience. We shall content ourselves with
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showing how to encode a single recursive de�nition with a single parameter. Thus,

suppose we have

A(x)
def
= P

where we assume that fn(P ) � fxg, and that P may contain occurrences of A

(perhaps with di�erent parameters). The idea is, �rst, to replace every recursive

call A(y) within P by a little process ay which excites a new copy of P . (Here a

is a new name.) Let us denote by bP the result of doing these replacements in P .

Then the replication

!a(x): bP
corresponds to the parametric process A(x). We now have to take care of the

outermost calls of A. So let A(z) occur in some system S; then we replace it by

(�a)(az j !a(x): bP )
Note that this places a separate copy of the replication at each call A(z) in S.
Alternatively one can make do with a single copy; transform S to bS by replacing
each call A(z) just by az, and then replace S by

(�a)( bS j !a(x): bP )
Of course, these translations do not behave identically with the original, because
they do one more reduction for each call of A; but they are weakly congruent to
the original (in the sense of [19]), which is all we would require in applications.

From now on, in applications we shall freely use parametric recursive de�ni-

tions; but, knowing that translation is possible, in our theoretical development we
shall ignore them and stick to replication.

3.2 Mobile telephones

Here is a \
owgraph" of our �rst application:
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This is a simpli�ed version of a system used by Orava and Parrow [23] to illustrate

�-calculus. A centre is in permanent contact with two base stations, each in

a di�erent part of the country. A car with a mobile telephone moves about the

country; it should always be in contact with a base. If it gets rather far from

its current base contact, then (in a way which we do not model) a hand-over

procedure is initiated, and as a result the car relinquishes contact with one base

and assumes contact with another.

The 
owgraph shows the system in the state where the car is in contact with

base1; it may be written

system1

def

= (� talki; switchi; givei; alerti : i = 1; 2)�
car(talk1; switch1) j base1 j idlebase2 j centre1

�

What about the components?

A car is parametric upon a talk channel and a switch channel. On talk it can

talk repeatedly; but at any time along switch it may receive two new channels
which it must then start to use:

car(talk; switch)
def
= talk :car(talk; switch)

+ switch(talk
0
switch

0
) :car(talk

0
; switch

0
)

A base can talk repeatedly with the car; but at any time it can receive along
its give channel two new channels which it should communicate to the car, and
then become idle itself; we de�ne

base(t; s; g; a)
def
= t :base(t; s; g; a)

+ g(t
0
s
0
) : st

0
s
0
: idlebase(t; s; g; a)

An idlebase, on the other hand, may be told on its alert channel to become
active:

idlebase(t; s; g; a)
def
= a :base(t; s; g; a)

We de�ne the abbreviation

basei
def

= base(talki; switchi; givei; alerti) (i = 1; 2)

and a similar abbreviation idlebasei. Thus, for example,

basei � talki :basei + givei(t
0
s
0
) : switchit

0
s
0
: idlebasei

idlebasei � alerti :basei

Finally the centre, which initially knows that the car is in contact with base
1
,

can decide (according to information which we do not model) to transmit the

channels talk2, switch2 to the car via base1, and alert base2 of this fact. So we

de�ne

centre1
def

= give
1
talk2switch2 : alert2 :centre2

centre2
def

= give
2
talk1switch1 : alert1 :centre1

12



Exercise Check carefully that indeed system
1
reduces in three steps to system

2
,

which is precisely system
1
with the subscripts 1 and 2 interchanged. The reduc-

tion is (using ~c for the set of eight restricted channels):

system1 � (�~c)
�
car(talk1; switch1) j base1 j idlebase2 j centre1

�

! (�~c)
�
car(talk

1
; switch

1
) j switch

1
talk

2
switch

2
: idlebase

1

j idlebase2 j alert2 :centre2

�

! (�~c)
�
car(talk2; switch2) j idlebase1

j idlebase
2
j alert

2
:centre

2

�

! (�~c)
�
car(talk

2
; switch

2
) j idlebase

1
j base

2
j centre

2

�
� system

2

Of course this example is highly simpli�ed. Consider one possible re�nement.
There is no reason why the number of available (talk, switch) channel-pairs is

equal to the number of bases; nor that each base always uses the same channel-
pair. The reader may like to experiment with having an arbitrary (�xed) number
of bases; at each handover the new base could be chosen at random, and a
channel-pair picked from a store of available channel pairs maintained (say) in a
queue.

3.3 Numerals and arithmetic

For our second application we show that arithmetic can be done in �-calculus
in much the same way as it can in �-calculus. Church represented the natural

number n in �-calculus by
�f�xf

n
(x)

{ i.e. the function which iterates its function argument n times.
As a �rst attempt in �-calculus, we may choose to represent n by the parametric

process

n(x)
def
= x: � � � :x| {z }

n times

which we abbreviate to (x:)n. But this process cannot be tested for zero, and the
arithmetic operators (coded also as processes) will need a test for zero.

So we give n two parameters, one representing successor, and the other rep-

resenting zero:

n(xz)
def

= (x:)
n
z

13



Now, how do we do arithmetic? We shall represent binary summation, for ex-

ample, by a parametric process Add(x
1
z
1
; x

2
z
2
; yw) ; the channels xi; zi represent

the arguments and y;w represent the result. (The commas separating the six

parameters of Add are just for clarity.) The correctness of this representation is

expressed by the equation

(�x1z1x2z2)
�
n1(x1z1) j n2(x2z2) j Add(x1z1; x2z2; yw)

�
� n1+n2(yw)

where � means weak congruence. To achieve this, we �rst de�ne \copy" and

\successor" by mutual recursion:

Copy(xz; yw)
def
= x:Succ(xz; yw) + z:w

Succ(xz; yw)
def
= y:Copy(xz; yw)

Now, though we have not developed the machinery here, one can easily prove by

induction on n that

(�xz)
�
n(xz) j Copy(xz; yw)

�
� n(yw)

(�xz)
�
n(xz) j Succ(xz; yw)

�
� n+1(yw)

Consider the induction step for example; we have

(�xz)
�
n+1(xz) j Copy(xz; yw)

�
! (�xz)

�
n(xz) j y:Copy(xz; yw)

�

� y:(�xz)
�
n(xz) j Copy(xz; yw)

�
� y:n(yw) (by induction)

� n+1(yw)

(One step in this argument needs justi�cation: the extraction of y into leading
position. Also, to complete the argument, one has to show why the reduction! in
the �rst line can be replaced by �. These are routine consequences of the theory
of weak congruence.)

Finally, having Copy available, we can de�ne addition by

Add(x
1
z
1
; x

2
z
2
; yw)

def
= x

1
:y:Add(x

1
z
1
; x

2
z
2
; yw) + z

1
:Copy(x

2
z
2
; yw)

Exercise Show that

(�x1z1x2z2)
�
n(x1z1) j 0(x1z2) j Add(x1z1x2z2; yw)

�
� n(yw)

by induction, using a similar argument to the inductive proof given earlier. Then

prove the general correctness property for Add.

The reader will have noticed that numerals are ephemeral; n(xz) can only be

accessed once. This is why copying is needed. In fact, if you try to de�ne mul-

tiplication you will �nd that you �rst need something like Double(xz; y1w1; y2w2)

which produces two copies of n(xz) from one. It is natural to expect replication

to come to our aid. In fact, replication cannot be used directly with the numerals
as de�ned above, but it can be used with the more general representation of data

structures which we treat later.
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3.4 Invariants in process communities

We now look at two desirable behavioural properties of mobile systems, and we are

able to �nd syntactic conditions which ensure that these properties are enjoyed.

Unique names In Section 2.1 we mentioned the unique naming discipline. Now

we formalize it in a simple way, and give conditions under which a process com-

munity obeys the discipline.

Consider a system

S � (�~v)(P
1
j � � � j Pm j !N

1
j � � � j !Nn)

We call each Pi and !Nj a component of S. We say that S is friendly (there is no

obvious word to use!) if it satis�es the following conditions:

1. fn(S) = ;, i.e. S is a closed system.

2. No Pi or Nj contains a composition or a replication.

Many systems are friendly; for example, the mobile telephone system in Section 3.2
is friendly when its recursion is coded into replication. The �rst thing to notice
about them is that they stay friendly, that is, friendliness is preserved by reduction.
This is easy to prove. Note, however, reduction can change m; a friendly system
works by spinning o� copies of its replications as often as required { and each

replica becomes a Pi.
Now, let us say that any process P bears the name x if x occurs free in P as

a positive subject. This is clearly a necessary condition for P to receive input im-
mediately at x. (It is also su�cient, if the occurrence is unguarded.) For example,
!Nj bears x if Nj � x(y):P ; then sending a message along x, i.e. \addressing the
component by name", will spin o� a copy of the resource !Nj. One thing we would

ensure for a friendly system is that, at any one time, at most one component {
whether Pi or !Nj { can receive a message along x. Now consider the condition
on S that

3. At most one component bears x.

This clearly means that any output along x (from another component) has a

determined destination. But condition (3) is not preserved by reduction! For
one thing, a replication may well produce two components bearing x. Also, a
component Pi may acquire the bearing of x; for example if

P1 j P2 � v(z):z(w) j vx:x(w)

! x(w) j x(w)

then clearly condition (3) is destroyed by the reduction. This gives us a hint about
what extra conditions will ensure preservation of (3):
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4. If Nj � ��jk:Qjk, then no Qjk bears x.

5. For any v and z, if the expression v(z):P occurs anywhere in S then P does

not bear z.

Note that (4) still allows Nj itself to bear x. Condition (5) says, in e�ect, that

the bearing of a name can never be acquired.

It is not quite obvious, but can be proved, that conditions (1{5) together are

invariant under reduction.

Now let us say that a name x is uniquely borne in S if, whenever S !
�
S
0
, then

S
0
satis�es condition (3). Intuitively, this means that output along x will always

have a determined destination. We have been able to give syntactic conditions,

(1{5), which ensure that a given x is uniquely borne in a given system S.

Unique handles There is a dual property to unique naming, which it is useful

to ensure in an operating system { even in a sequential one, and a fortiori in a

concurrent one! This is the property that, at any one time, only one component
can handle a given resource. To make things precise, let us say that P can handle

the name x if x occurs free in P as a negative subject. This is clearly a necessary
condition for P to be able to send output immediately along x { and also su�cient,
if the occurrence is unguarded.

Now we look at friendly systems S, as before, and we consider the condition
on S that

6. At most one component can handle x.

This means, for example, that a sequence of messages along x from two di�erent
components will not be accidentally interleaved; this is clearly desirable if x gives
access to a printing device. Again, condition (6) is not preserved by reduction;

this can be argued just as for condition (3) above.
But now we wish to proceed di�erently from unique naming. In that case, our

conditions ensured that the bearing of a name could never be acquired. Here, by

contrast, we want to allow the handling capability to be transmitted freely among
components, subject to (6). Therefore we do not wish to impose a condition

on inputs, like (5). Instead, we want to impose a condition on outputs; when a
component transmits a handle, it should neither use it again nor transmit it again.

We naturally arrive at the following two conditions:

7. No Nj can handle x.

8. For any v and z, if vz:P occurs anywhere in S then P does not contain z

free.

Condition (8) says, in e�ect, that when an agent transmits a name then it must
\forget" it. Note that z may be bound in S; that is, it may stand for a name {

perhaps x itself { to be received at some time from another component.
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Now, let us say that a name x is uniquely handled in S if, whenever S !
�
S
0
,

then S0 satis�es condition (6). Then the syntactic conditions (1, 2, 6{8) ensure

that a given x is uniquely handled in a given system S.

Exercise We have concentrated on simplicity in giving our conditions. Try to

�nd slightly weaker conditions which ensure that a name is uniquely borne, or

uniquely handled, in a friendly system.

The two examples we have just looked at suggest that the syntax of �-calculus is

rich enough to allow many interesting structural invariants to be de�ned, which

in turn ensure useful behavioural properties. In both cases, the reader may have

felt that the blanket condition on all inputs in (5), or all outputs in (8), was

unnecessarily strong. But it can be weakened very satisfactorily to apply only

to names of a particular sort , when we have introduced our sorting discipline in

Chapter 6.

4 The Polyadic �-calculus

4.1 Abstractions

In Section 3.1 we saw that a polyadic input x(y1 � � �yn), or polyadic output xy1 � � �yn,
can be encoded quite straightforwardly in the monadic �-calculus. So at �rst sight
we may regard polyadicity as a mere abbreviational device, with no theoretical
interest. But for more than one reason, we shall gain by taking polyadic commu-

nication as primitive.
The �rst reason is to do with abstractions. (The second reason is to do

with sorts, and will be deferred to Chapter 6.) An abstraction takes the form
(�x

1
� � �xn)P or equivalently (�x

1
) � � � (�xn)P ; it is just an abstraction of names

from a process. It is quite di�erent from abstraction in �-calculus, because a

bound name will only ever be instantiated to a name { never to a compound term.
Abstractions are useful in various ways. First, they are the essence of para-

metric de�nition; instead of writing K(x1; : : : ; xn)
def
= P , we naturally write

K
def
= (�x1 � � �xn)P

A second use for abstraction is in de�ning combinators. Consider for example a
process with two free names x and y, representing links:

��
��
P

x y

Now if we want to chain together several such processes, with the y link of one

joining the x link of its right neighbour, in CCS we would use the renaming
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operator [z=x] to de�ne the chaining combinator, _, thus:

P _ Q
def
= (�z)(P [z=y] j Q[z=x])

��
��
P

x z ��
��
Q

y

Now abstraction in the �-calculus renders the renaming operator super
uous. For

in fact we de�ne the chaining combinator _ not over processes but over (binary)

abstractions:

F _ G
def
= (�xy)(�z)(Fxz j Gzy)

Indeed, suppose F � (�xy)P , and G � (�xy)Q; then we obtain easily

(F _ G)xy � (�z)(Pfz=yg j Qfz=xg)

where of course substitution fz=xg is a meta-syntactic operator.
Thus we see that abstraction is a handy de�nitional device in �-calculus ; but

we should remain clear that it has none of the computational signi�cance which it
possesses in the �-calculus because this signi�cance depends upon instantiating a
bound variable to an arbitrary term { and this is grammatically incorrect in the
�-calculus! 1

Now since abstraction earns a place on its own merit, it would be ridiculous
to preserve its distinction from the other binding operator for which instantiation

is allowed, namely input pre�x. For we can simply declare the abbreviation

x(y):P
def
= x:(�y)P

thus factoring input pre�x into two parts; one part is abstraction, and the other

we shall call location. In the above, x is the location of (�y)P ; it indicates where
the name (for which y stands) should be received. But then, of course, it is quite
unreasonable not to allow polyadic input:

x(y1 � � �yn):P
def

= x:(�y1 � � �yn)P

1A notational question arises. Adopting the form (�x) for abstraction, we risk the miscon-
ception that the �-calculus is an extension of the �-calculus. This is a serious misconception,
because one of the main motivations for the �-calculus has been the belief that, in order to unify
functional and concurrent computation, we needed basic constructions more primitive than those
in �-calculus! In some ways the lightweight form (x), used by Martin-L�of and others, would have
been more attractive. But with two forms of binding, abstraction and restriction, it seems clearer
to mark each with a symbol. Also, in the higher-order processes in Chapter 7 abstraction of
process-variables is used; this is closer to �-calculus, so the symbol � is more appropriate, and
it is smoother to have one notation for abstraction in all versions of �-calculus.
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More than this; when we study sorts, we shall �nd that it is not only reasonable,

but actually necessary, to allow polyadic input if we wish to respect a very natural

sort discipline.

We shall say that the abstraction (�y1 � � �yn)P has arity n. In particular, a

process P is an abstraction with zero arity.

4.2 Concretions

We would like to treat output dually to input. This immediately suggests that we

consider the output pre�x form as a derived form:

xy
1
� � �yn:P

def
= x:bdy

1
� � �ynceP

thus factoring it into two parts: the co-location x, and the concretion bdy1 � � �ynceP .

We consider this equivalent to bdy
1
ce � � � bdynceP , and its arity is n; we call each yi

a datum-name of the concretion. Any process P is a concretion with zero arity.

Some abbreviations are convenient; we write x:bd~yce for x:bd~yce0, x:P for x:bdceP and
x for x:bdce.

(It may be useful to consider concretions C;D; : : : as having arity � 0; then
an agent { either an abstraction or a concretion { may have any integer as arity.)

Now consider the simple form of reduction

x(~y):P j x~z:Q ! Pf~z=~yg j Q

where ~y; ~z are name vectors of equal length (the components of ~y being distinct).

This is the natural generalization of comm to the polyadic case (ignoring + for
the moment). It now takes the form

x:F j x:C ! F rC
where F and C are an abstraction and concretion of equal arity, and the pseudo-
application � r� is de�ned in an obvious way (see Section 4.3 below).

So far, concretions may appear to be no more than notational elegance. In

fact, they have some conceptual signi�cance. We can illustrate this by considering

truth-values and case-analysis: this will also illustrate the importance of admitting
the use of restriction (�x) upon concretions.

In �-calculus, the terms �x�yx and �x�yy are often taken to represent the two
truth-values. Now that we have abstraction, we can analogously de�ne

True
def
= (�t)(�f )t

False
def
= (�t)(�f )f

in �-calculus. We would often have a truth-value located at a boolean location

b, e.g. the process b:True. This located truth-value may be compared with the
natural number n(xz) in Section 3.3, which was located by a pair of names; but

19



with the introduction of abstractions we now have a purer representation, for

unlocated data, and indeed we shall extend this to general data structures later.

Now consider the following concretion, representing case-analysis:

Cases(P;Q)
def
= bdtfce(t:P+f:Q)

where t and f do not occur in P and Q. It represents the o�er to select P or Q,

by using the name t or f . In fact, using pseudo-application, we �nd

True rCases(P;Q) � t j (t:P+f:Q)

! P

and similarlyFalse rCases(P;Q)! Q. This is still slightly imperfect, for we should

prefer Cases(P;Q) to have no more free names than P and Q. We therefore prefer

to represent case-analysis by a restricted concretion:

Cases(P;Q)
def
= (�tf )bdtfce(t:P+f:Q)

Moreover this ensures that t and f are distinct names. Now, we have instead

True rCases(P;Q) � (�tf )(t j (t:P+f:Q))

� P

Note that the right-hand side not only reduces to P , but is weakly congruent (�)
to P , because of the restriction.

To emphasize the role played by concretions, consider the familiar conditional
form

if b then P else Q

In �-calculus we take it to mean \inspect the truth-value located at b and perform
P or Q according to the value". Now, we can see the conditional form as just the
co-located case-analysis

b:Cases(P;Q)

and indeed we have

b:True j b:Cases(P;Q) ! True rCases(P;Q) � P

An intriguing point is that abstraction and (restricted) concretion o�er two

subtly di�erent forms of closure for an arbitrary process P . For if the free names
of P are ~x, then we may call (�~x)P the abstract closure, and (�~x)bd~xceP the concrete

closure. They di�er in this sense: the concrete closure ensures that P 's free names
are all distinct from each other, and distinct from all names in the environment; on

the other hand, the abstract closure o�ers arbitrary instantiation of these names.

Finally, why should we not allow mixed abstraction and concretion, such as
(�x)bdyceP or bdyce(�x)P ? To allow this does indeed enrich the calculus in a valuable

way. But we leave it to a future paper; the present version of the calculus is a
natural whole, and rich enough for our present purposes.
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4.3 Syntax, structural congruence and reduction

In moving from the monadic to the polyadic calculus, the main di�erences are that

pre�xes x(~y) and x~y are no longer primitive, but become abbreviations, and that

we add the forms for abstractions F;G; : : : and concretions C;D; : : : , calling them

collectively agents A;B; : : : . We use �; �; : : : to range over names and co-names,

and ~x; ~y; : : : to stand for vectors of names, with length j~xj; j~yj; : : : .

Normal processes : N ::= �:A j 0 j M +N

Processes : P ::= N j P j Q j !P j (�x)P

Abstractions : F ::= P j (�x)F j (�x)F

Concretions : C ::= P j bdxceC j (�x)C

Agents : A ::= F j C

Over this syntax, we again wish to represent those identi�cations which have no
computational signi�cance by structural congruence, �. For processes, the laws
(1{6) for structural congruence are just those given in Section 2.3, understanding
that change of bound names is allowed in any agent whatever. Then we add the

following rules:

7. (�y)(�x)F � (�x)(�y)F (x 6= y)

8. (�y)bdxceC � bdxce(�y)C (x 6= y)

9. (�x)(�y)A � (�y)(�x)A ; (�x)(�x)A � (�x)A

Some interesting consequences of these laws are not immediately obvious. We can,
in fact, use laws 1 and 7 to convert every abstraction F to a standard form

F � (�~x)P

by pushing restrictions inwards. We cannot do the same for concretions, because
the datum-name y is free in bdyceC. But we can use laws 1 and 8 to pull all restric-
tions of data-names outwards, and push all other restrictions inwards, yielding a

standard form

C � (�~y)bd~xceP (~y � ~x)

The arity of the abstraction F or concretion C is just the length of the vector ~x
in its standard form.

We now de�ne pseudo-application F rC of an abstraction to a concretion, con-

�ning ourselves to the case in which F and C have equal arity. Let F � (�~x)P

and C � (�~z)bd~yceQ where ~x \ ~z = ; and j~xj = j~yj. Then

F rC def

= (�~z)(Pf~y=~xg j Q)

With the help of this, our reduction system is de�ned almost exactly as in the
monadic case:
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De�nition The reduction relation! over processes is the least relation satisfy-

ing the following rules:

comm : (� � �+ x:F ) j (� � �+ x:C)! F rC
par :

P ! P
0

P j Q! P 0 j Q
res :

P ! P
0

(�x)P ! (�x)P 0

struct :
Q � P P ! P

0
P

0
� Q

0

Q! Q0

Note that reduction is de�ned only over processes, not over arbitrary agents.

Therefore in comm, F and C must have equal arity.

The reader may have noticed that we have not de�ned the application Fy of

an abstraction to a name. Formally there was no need to do so, because if we now

de�ne

((�x)F )y
def
= Ffy=xg

then indeed every instance of application can be eliminated, using structural con-
gruence. However, we shall freely use application. In fact if we wish to introduce
(recursive) de�nitions of abstraction constants, such as

K
def
= FK

where FK is an abstraction which may contain K and other abstraction constants,
this application is an indispensable abbreviative device. (Recall from Section 3.1

that we use parametric recursive de�nition freely in examples, but ignore them in
theoretical development, since they can be eliminated in favour of replication, up
to weak congruence.)

5 Equivalence, Algebra and Logic

5.1 Reduction equivalence and congruence

Let us �rst recall from Section 2.4 the notions of unguardness and observability,
and de�ne them in the new context of polyadic �-calculus.

De�nition An agent B occurs unguarded in A if it has some occurrence in A

which is not under a pre�x �. A process P is observable at �, written P #�, if
some �:A occurs unguarded in P with � unrestricted.

Now we de�ne a natural notion of bisimilarity which takes observability into ac-

count.
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De�nition (Strong) reduction equivalence,
:
�r, is the largest equivalence relation

� over processes such that P �Q implies

1. If P ! P
0
, then Q! Q

0
for some Q

0
such that P

0
�Q

0
.

2. For each �, if P #� then Q#�.

This notion, also called barbed bisimulation, is studied by Milner and Sangiorgi

[21]. Essentially a barbed equivalence is the bisimilarity induced by a reduction

relation, together with an extra condition { observability.
2

Reduction equivalence is a natural idea, but is not preserved by process con-

structions. For example, x
:
�r y (recall that x abbreviates x:0), but x jx 6

:
�r y jx.

Since the left side has a reduction. Therefore we de�ne

De�nition (Strong) reduction congruence, �r, is the largest congruence in-

cluded in reduction equivalence.

It is standard that P �r Q i�, for all process contexts C[ ]; C[P ]
:
�r C[Q]. A

process context C[ ] is a process term with a single hole, such that placing a
process in the hole yields a well-formed process.

The reason for imposing the observability condition in reduction equivalence is
that reduction congruence then coincides exactly with the strong early congruence
relation of [19]. This is proved in [21]. Here is an example, due to G�erard Boudol,
showing the need for the observability condition. For this purpose we use � , the
silent (unobservable) action which we shall introduce formally in the next section.

De�ne

J
def

= �:J + a:K ; K
def

= �:K

Note that neither J nor K ever reaches a state in which a reduction is impossible.
Now J 6

:
�r K, since J #a but K 6#a. However, J and K would be congruent if

:
�r

were weakened by omission of the observability condition.
Later we shall sometimes allude to weak reduction congruence, which is de�ned

essentially by replacing ! by its transitive re
exive closure in the above:

De�nition Weak reduction equivalence,
:
�r, is the largest equivalence relation

� over processes such that P �Q implies

1. If P ! P
0, then Q!

�
Q

0 for some Q0 such that P 0
�Q

0.

2. For each �, if P #� then Q!
�
#�.

2It can be shown that the condition can be relaxed to simply P #) Q#, where P # means
P#� for some �, without changing the induced congruence. But this has not been shown for the
weak version.
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Then weak reduction congruence, �r, is the largest congruence included in weak

reduction equivalence.

It turns out that this congruence indeed coincides with the weak analogue of strong

early congruence.

These coincidences show that a satisfactory semantics for the �-calculus can

be de�ned via reduction and observability. But in one sense the de�nitions above

are unsatisfactory; quanti�cation over all contexts is far from a direct way of

characterizing a congruence, and gives little insight. We now proceed to repeat

the treatment of bisimilarity in [19], though in a form more appropriate to our

new presentation of the �-calculus. The bisimilarity equivalences are very close to

their induced congruences.

5.2 Commitment and congruence

An atomic normal process �:A can be regarded as an action � and a continuation
A. (It is perhaps more accurate to think of � as the location of an action; we
have already used this term.) We shall call �:A a commitment ; it is a process
committed to act at �.

The idea we want to formalize is that, semantically, a process is in general
nothing more than a set of commitments. (This means that every process is
semantically congruent with a normal process ��i:Ai; we shall justify the term
\set" by showing that M +M is congruent with M .) The way we shall formalize
it is by de�ning the relation

P � �:A

between processes and commitments, pronounced \P can commit to �:A". Of
course, this is exactly what the labelled transition system of [19] achieved, with
di�erent notation. For example, instead of P � x:bdyceP

0, the labelled transition

P
xy
! P 0 was used in [19]; similarly, instead of P � x:(�y)P 0, the transition P

x(y)
! P 0

was used. Joachim Parrow indeed suggested using P
x
! (�y)P

0 for the latter, and

the introduction of concretions in e�ect allows P
x
! bdyceP

0 for the former. This
usage is not just notational convenience; it yields a more satisfactory presentation

of �-calculus dynamics, as we see below.
Two preliminaries are necessary. First, we introduce the unobservable action

� , and henceforth we allow �; �; : : : to stand for � as well as for a name or co-
name. 3 Second, we wish to extend composition j to operate on abstractions and

concretions (though not to compose an abstraction with a concretion). So, in

line with the de�nition of pseudo-application in Section 3.3, let F � (�~x)P and

G � (�~y)Q where the names ~x do not occur in G, nor ~y in F . Then

F j G
def

= (�~x~y)(P j Q)

3In fact, the pre�x � is de�nable by �:P
def
= (�x)(x:P j x) where x 62 fn(P ).
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Similarly, let C � (�~x)bd~uceP and D � (�~y)bd~vceQ where the names ~x do not occur in

D, nor ~y in C. Then

C j D
def

= (�~x~y)bd~u~vce(P j Q)

Clearly, j is associative up to �, but not commutative in general (though it is so

upon processes). Note also that, because a process is both an abstraction and a

concretion, AjP is de�ned for any agent A and process P ; moreover, AjP � P jA.

We are now ready to de�ne our operational semantics in terms of commitment.

De�nition The commitment relation � between processes and commitments is

the smallest relation satisfying the following rules:

sum : � � �+ �:A � �:A

comm :
P � x:F Q � x:C

P j Q � �:(F rC)
par :

P � �:A

P j Q � �:(A j Q)
res :

P � �:A

(�x)P � �:(�x)A
(� 62 fx; xg)

struct :
Q � P P � �:A A � B

Q � �:B

The reader who is familiar with [19] will notice how much simpler our operational
semantics has become. Of course, some of the complexity is concealed in the laws

of structural congruence; but those laws are so to speak digestible without concern
for the dynamics of action, and therefore deserve to be factored apart from the
dynamics. The treatment of restriction derives further bene�t from the admission
of restricted concretions; the restriction rule res here covers the two rules res and
open of [19]. Moreover, the only remaining side condition, which is upon res, is

the essence of restriction; all other side-conditions in the rules of [19] were nothing

more than administrative { avoiding clashes of free and bound names.
We shall proceed to de�ne the most natural form of bisimilarity in terms of

commitment. First, a desirable property of relations will make the job simpler:

De�nition Let � be an arbitrary binary relation over agents. We say � is
respectable if it includes structural congruence (�), and moreover it is respected

by decomposition of concretions and application of abstractions, i.e.

1. If C �D then they have standard forms C � (�~x)bd~yceP and D � (�~x)bd~yceQ

such that P �Q.

2. If F �G then their arities are equal, n say, and for any ~y of length n,

F~y�G~y.
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Note that this is dual to a congruence condition; the relation is to be preserved

by decomposition rather than composition.

Now we de�ne bisimulation and bisimilarity for all agents, not only processes,

as follows:

De�nition A relation � over agents is a (strong) simulation if it is respectable,

and also if P �Q and P � �:A, then Q � �:B for some B such that A�B.

� is a (strong) bisimulation if both � and its converse are simulations.

(Strong) bisimilarity,
:
�, is the largest bisimulation.

We may also describe
:
� as the largest respectable equivalence closed under com-

mitment. It is the union of all bisimulations; hence to prove P
:
� Q one need only

exhibit a bisimulation containing the pair (P;Q). It is the strong late bisimilarity

of [19].

As pointed out there, it is not quite a congruence relation. In fact, it is not

preserved by substitution (of names for names); for example

x j y
:
� x:y + y:x but x j x 6

:
� x:x+ x:x

However
:
� is preserved by every agent construction except abstraction, (�x). It

is therefore much closer to its induced congruence than is the case for reduction
equivalence. To close the gap we need only impose closure under substitutions. Let
� range over substitutions, i.e. replacements f~y=~xg of names for (distinct) names.
Then:

De�nition P and Q are strongly congruent , written P � Q, if P�
:
� Q� for all

substitutions �.

Proposition � is a congruence.

Proof Along the lines in [19].

5.3 Axiomatization

Now following [19], but making minor adjustments to allow for abstractions and

concretions, we can present an axiomatization of
:
� which is complete for �nite

agents, i.e. those without replication.

De�nition The theory SGE (Strong Ground Equivalence) is the smallest set of

equations A = B over agents satisfying the following (we write SGE ` A = B to
mean that A=B 2 SGE):

1. If A
1
� A

2
then SGE ` A

1
= A

2
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2. SGE is closed under every agent construction except abstraction. For ex-

ample, if SGE `M
1
=M

2
then SGE `M

1
+N =M

2
+N .

3. If SGE ` Fy = Gy for every
4
y then SGE ` F = G.

4. SGE `M +M =M

5. SGE ` (�x)��i:Ai = ��i:(�x)Ai, if no �i is either x or x.

6. (Expansion)

SGE `M j N = �f�:(A j N) : �:A a summand of Mg

+ �f�:(B jM) : �:B a summand of Ng

+ �f�:(F rC) : x:F a summand of M (resp. N)

and x:C a summand of N (resp. M)g

\Ground equivalence" is a synonym for \bisimilarity"; the term \ground" indicates
that the theory is not closed under substitution for names.

Theorem (Soundness of SGE) If SGE ` A = B then A
:
� B.

Proof Along the lines in [19].

Theorem (Completeness of SGE) If A and B are �nite and A
:
� B, then

SGE ` A = B.

Proof Along the lines in [19].

The essence of SGE is that two agents are equivalent i� they have equivalent
commitments. The proof of completeness depends upon showing that for any P ,

there is a normal process (i.e. a sum of commitments)M such that SGE ` P =M .
This characterization allows us to show exactly why strong congruence, �, is

in fact stronger than strong reduction congruence, �r. For there are processes P

and Q which do not have equivalent commitments, and yet P �r Q. In particular,
let

M � x(u):P1 + x(u):P2 ; N �M + x(u):P3

where P1; P2 and P3 are distinct under �, but P3 behaves like P1 if u takes a

particular value y, and otherwise behaves like P2.
5 Then it turns out that indeed

4This rule is in e�ect �nitary, since the hypothesis need only be proved for every name y free
in F or G, and one new y.

5For example P1 � u:y + y:u; P2 � u:y + y:u+ �; P3 � u j y:
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M �r N , whileM 6� N since N has a commitment distinct from any commitment

of M . (We omit full details of this argument.)

So how must we modify strong bisimilarity
:
�, so that its induced congruence

coincides exactly with �r? The answer is that we must relax the condition on

positive commitments only.

De�nition Strong early bisimilarity,
:
�e, is the largest respectable equivalence

� such that if P �Q then

1. If P � x:F and F has arity n, then for each ~y of length n there exists G

such that Q � x:G and F~y�G~y.

2. If P � x:C, then Q � x:D for some D such that C �D.

Here the condition on positive commitments is weaker, because it has 8~y 9G where
:
� e�ectively demands the stronger condition 9G8~y. Thus, it is clear that

:
� �

:
�e.

Again,
:
�e is nearly a congruence, being closed under every construction except

abstraction. So we de�ne

De�nition P and Q are strongly early-congruent , written P �e Q, if P�
:
�e Q�

for all substitutions �:

Proposition �e is a congruence.

And �nally, we have recovered reduction congruence:

Theorem (Sangiorgi) Strong early congruence coincides with reduction con-
gruence; i.e. �e = �r.

We shall not consider equational laws for
:
�e. Joachim Parrow has given an ax-

iomatization; it involves an extra process construction which we are not using in
this paper.

5.4 Properties of replication

Interesting process systems usually involve in�nite behaviour, hence replication.
The equational theory SGE cannot hope to prove all true equations about in�nite

systems { in fact, they are not recursively enumerable. All process algebras [4,

10, 13, 16] use techniques beyond purely algebraic reasoning. Here we shall use
the technique of bisimulation due to Park [24]. We wish to prove three simple but

important properties of replication, which will be needed later.

Proposition !P j !P � !P .
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Proof It can be shown in a routine way that there is a bisimulation � whose

process part (i.e. � \P�P) consists of all pairs

(�~y)( !P j !P j Q) ; (�~y)( !P j Q)

for any ~y, P and Q. By taking ~y to be empty and Q � 0, this ensures !P j !P
:
� !P

for any P . But further, the above set of pairs is closed under substitutions, so the

congruence � also holds.

This property shows that the duplication of a replicable resource has no behavi-

oural e�ect, which is not surprising.

We shall now look at a more subtle property, concerning what may be called

private resources. If a system S contains the subsystem

(�x)(P j !x:F )

then we may call !x:F a private resource of P , because only P can acquire a

replica of it. (Of course F may contain other free names, so the replica { once
active { may interact with the rest of S.)

Now suppose P � P1jP2 in the above. Then P1 and P2 share the private
resource. Does it make any di�erence if we give each of P

1
and P

2
its own private

resource? That is, is it true that

(�x)(P
1
j P

2
j !x:F ) � (�x)(P

1
j !x:F ) j (�x)(P

2
j !x:F ) ?

A moment's thought reveals that this cannot hold in general. Take P
1
� x:bdyce,

P2 � x:(�z)0. Then not only can P1 access the resource; it can also { on the left-
hand side but not on the right-hand side { interact with P2. Thus the bisimilarity
fails. But this is only because P2 bears the name x, in the terms of Section 3.4. So
let us impose the condition that none of P

1
, P

2
or F bears the name x. On this

occasion, we shall use a slightly di�erent extra condition from Section 3.4 to make

this property invariant under action. The extra condition amounts to saying that

x is only used in P1, P2 or F to access the resource; that is, it must not occur free
as an object . Then indeed our desired result follows. To be precise:

Proposition Assume that every free occurrence of x in P1, P2 and F is as a
negative subject. Then

(�x)(P1 j P2 j !x:F ) � (�x)(P1 j !x:F ) j (�x)(P2 j !x:F )

Proof It can be shown that there is a bisimulation � such that � \ P�P

consists of all pairs

(�~y)(�x)(P1 j P2 j !x:F ) ; (�~y)
�
(�x)(P1 j !x:F ) j (�x)(P2 j !x:F )

�
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for any P
1
, P

2
, x, F and ~y such that x occurs free in P

1
, P

2
and F only as a

negative subject. It can be checked that this relation is closed under substitutions,

and hence the result follows by taking ~y to be empty.

As we shall see in Section 6.3, persistent data structures are an instance of rep-

licable resources. So this proposition can be interpreted as saying that it makes

no di�erence whether two processes share a data structure, or each has its own

private copy.

A good way to think of the previous proposition is \a private resource can be

distributed over composition". This immediately suggests the question \ ... and

over what else?" Obviously we hope it can be distributed over replication, and

this is indeed true.

Proposition Assume that every free occurrence of x in P and F is as a negative

subject. Then
(�x)( !P j !x:F ) � !(�x)(P j !x:F )

Proof We proceed much as before, but using the notion of bisimulation up to
:
�

from [16]. This just means that we can use known bisimilarities when exhibiting

new bisimulations. Using the previous proposition, it can be shown that there is
a bisimulation up to

:
� containing the process-pairs

(�~y)(�x)( !P j !x:F j Q) ; (�~y)
�
!(�x)(P j !x:F ) j (�x)(Q j !x:F )

�

for any P , Q, x, F and ~y such that x occurs free in P , Q and F only as a negative
subject. Then we take ~y empty and Q � 0 to get the result.

A striking consequence of these two propositions, as we shall see in Section 6.4,
is that �-conversion is equationally valid in the interpretation of �-calculus in �-

calculus. Essentially, this is because we model application of an abstraction �xM
to a term N in �-calculus by providing M with access { via x { to the resource
N .

It therefore appears that these properties of replication have quite wide applic-

ability, since computational phenomena which appear signi�cantly di�erent can

be seen as accessing resources.

5.5 Logical characterization

In [20], a modal logic was de�ned to give an alternative characterization of the

bisimilarity relations in �-calculus, following a familiar line in process algebra. It

was �rst done for CCS by Hennessy and Milner [11]; see also Milner [16], Chapter
10. No inference system was de�ned for this logic; the aim was just to de�ne the

satisfaction relation P j= ' between processes P and logical formulae ', in such

a way that P and Q are bisimilar i� they satisfy exactly the same formulae.
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The main attention in [20] was upon the modalities, and in particular the

modality for input:

hx(y)i'

Because \late" and \early" strong bisimilarity di�er just in their requirement upon

input transitions P
x(y)
! P

0
, the input modality must have two versions:

6

P j= hx(y)i
l
' i� 9P

0
8z : P

x(y)
! P

0
and P

0
fz=yg j= 'fz=yg

P j= hx(y)i
e
' i� 8z 9P

0
: P

x(y)
! P

0
and P

0
fz=yg j= 'fz=yg

where we have highlighted the only di�erence { quanti�er inversion.

Now, we are representing P
x(y)
! P

0
as the commitment P � x:(�y)P

0
; this

factoring of input pre�x into two parts, location and abstraction, allows us to

simplify our logic by a similar factoring. This holds for output modalities too. In

fact, we �nd that the logical constructions for abstraction and concretion are, as
one might hope, dependent product and dependent sum; also, the action modality

becomes suitably primitive.
Our logic L, which will characterize late bisimilarity, is the set of formulae '

given by the syntax7

' ::= > j ' ^  j :' j x = y j h�i' j (�x)' j (�x)'

(where � ranges, as before, over names, co-names and � ). The last two, sum
and product, bind x; they will only be satis�ed respectively by concretions and
abstractions with non-zero arity. On the other hand h�i' will only be satis�ed by

processes.

De�nition The satisfaction relation j= between agents and formulae is given by
induction on formula size, as follows:

A j= > always

A j= ' ^  i� A j= ' and A j=  

A j= :' i� not A j= '

A j= x = y i� x and y are the same name

A j= h�i' i� for some A0
; A � �:A

0 and A0
j= '

A j= (�x)' i� A � bdyceC or (�y)bdyceC, with y =2 fn((�x)')

in the latter case, and C j= 'fy=xg

A j= (�x)' i� for all y, Ay j= 'fy=xg

Note that hxi(�y)' is exactly hx(y)il; we shall consider hx(y)ie later. There is

another intriguing point; one might have expected to need restriction (�y) in the

6To be exact, in these de�nition we require y 62 fn(P ):
7In [20], the form [x = y]' (meaning \if x = y then '") was used in place of the atomic

formula x = y. But the two are interde�nable in the presence of : and ^.
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logic, to cope with the output modality { more exactly the bound data-name in a

concretion. But the side condition on y in the (�x)' case takes care of restrictions

in agents. To clarify this, consider P � x:bdyce and Q � x:(�y)bdyce; they are not

bisimilar, so { in view of the characterization theorem below { there must be a

formula which distinguishes them. In fact, take ' � hxi(�z)(z = y); then indeed

P j= ', Q 6j= '.

Now the proof of the following can be done along the same lines as in [20]:

Theorem (logical characterisation of
:
�) A

:
� B i� for every ' 2 L,

A j= ' i� B j= '

Our next task is to see how to weaken L, in order to achieve a logic which char-

acterizes the weaker (i.e. larger) equivalence
:
�r, reduction equivalence or early

bisimilarity. The key is that, for P
:
�r Q, we do not demand that every ab-

straction F , to which P can commit at x, must be matched by Q with such an
abstraction G; the equivalence only depends on matching every process instance

of such an abstraction, i.e. every pair ~y; P 0 such that for some F , P � x:F and
F~y�P 0. Thus the logic must be weakened so that P j= ' cannot depend directly

on properties of each F for which P � x:F . This entails removing from L the
positive action modalities hxi, and replacing them with { in e�ect { the polyadic
version of hx(y)ie', namely:

P j= hx(~y)i
e
' i� for all ~z; P � (�~y)P

0
for some P

0

such that P
0
f~z=~yg j= 'f~z=~yg

Let us call this weakened logic Lr. Then indeed,

Theorem (logical characterization of
:
�r) A

:
�r B i�, for every ' 2 Lr,

A j= ' i� B j= '

6 Sorts, Data structures and Functions

If we look at the examples which we have used hitherto to illustrate the �-calculus,

we see that each one obeys some discipline in its use of names. By this, we

mean something very simple indeed: just the length and nature of the vector of
names which a given name may carry in a communication. For the numerals of

Section 3.3, all names carry the empty vector. For the mobile phones of Section 3.2
it is more interesting; alert, give and talk all carry the empty vector, but switch

carries a pair. This is not just any pair; it is a (talk; switch) pair. For the truth-

values of Section 4.2, t and f carry nothing, but a boolean location like b carries
a (t; f) pair.
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It may be that any realistic application of the �-calculus is disciplined in a

natural way, but the discipline can be di�erent in each case. A loose analogy is

that when the (untyped) �-calculus is used in an application, rather than studied in

its own right, there is almost always a type discipline of some kind; e.g. the simple

type hierarchy, or the second-order �-calculus, or a system of value-dependent

types.

The kind of name-use discipline which �rst comes to mind, for the �-calculus,

would employ something like the arities of Martin-L�of; an arity in this sense is just

a properly nested sequence of parentheses. A name which carries nothing would

have arity (); a name which carries a vector of n names with arities a1; : : : ; an would

have arity (a
1
� � �an). But this is too simple! Such a hierarchy of arities does not

work, because a name must sometimes carry another name \of the same kind" {

i.e. of the same arity { as itself; witness switch in the mobile phone example. We

now propose a discipline of sorts which is as simple as possible, while admitting

this kind of circularity (which amounts to admitting a kind of self-reference).

6.1 Sorts and sortings

Assume now a basic collection S of subject sorts and for each S 2 S an in�nity
of names with subject sort S (write x : S). Then the object sorts Ob(S) are just
sequences over S; that is

Ob(S) = S
�

We shall write (S1 � � �Sn), possibly interspersed with commas, for an object sort;
the empty object sort is (). We let s; t; : : : range over object sorts. We use sbt for
the concatenation of object sorts; e.g. (S1)b(S2S3) = (S1S2S3).

Now we de�ne a sorting over S to be a non-empty partial function

ob : S * Ob(S)

If ob is �nite, we typically write it as fS1 7! ob(S1); : : : ; Sn 7! ob(Sn) g. A sorting
just describes, for any name x : S, the sort of name-vector which it can carry.
Thus, for the numerals of Section 3.3 we have the uninteresting sorting

f succ 7! (); zero 7! () g

with x; y : succ and z;w : zero. For the phones of Section 3.2, it is a little more
interesting:

falert 7! (); give 7! (); talk 7! (); switch 7! (talk; switch) g

with alerti : alert, : : : , and switchi : switch. Note that there is little reason to
distinguish alert from give; but we should distinguish talk, since the distinction

gives more precise information about the kind of messages which can be carried

on a switch channel.
Given a sorting ob, we must give the conditions under which an agent is said

to respect ob. To this end, we show how to ascribe an object sort to each suitable
agent, equal in length to its numeric arity; thus a process always has sort ().
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De�nition An agent A respects a sorting ob, or is well-sorted for ob, if we can

infer A : s for some object sort s from the following formation rules:

x : S F : ob(S)

x:F : ()

x : S C : ob(S)

x:C : ()

P : ()

�:P : ()

0 : ()
M : () N : ()

M +N : ()

P : () Q : ()

P j Q : ()

P : ()

!P : ()

A : s

(�x)A : s

x : S F : s

(�x)F : (S)bs
x : S C : s

bdxceC : (S)bs
Exercise First prove { or assume { that if x and y have equal sort and A : s,
then Afy=xg : s. Next prove { or assume { that if A : s and A � B, then B : s.
(Assume that in a change of bound names, a name is replaced only by another of
equal sort.)

Now recall the de�nition of application and composition of abstractions, in

Sections 4.3 and 5.2. Prove that the following formation rules are admissible:

F : (S)bs y : S

Fy : s

F : s G : t

F j G : sbt
(A rule is admissible if every proof using the rule can be transformed into one
which does not use it.)

Some simple sortings correspond to familiar calculi. The simplest sorting of all,

fname 7! () g { one subject sort carrying nothing { is just CCS; the next simplest,
fname 7! (name) g, is just the monadic �-calculus.

Of course there are more re�ned sortings for the monadic �-calculus; they will

classify the use of names, but clearly ob(S) will always be a singleton sequence for
any S. Recall the encoding of multiple inputs and outputs into monadic �-calculus
given in Section 3.1; for example, in the notation used there,

x(y
1
� � �yn):P 7! x(w):w(y

1
): � � � :w(yn):P

This translation destroys well-sortedness! For if y
1
; : : : ; yn have di�erent sorts

then, whatever subject sort we choose for w, the right-hand side will be ill-sorted.

This shows that polyadicity admits a sort discipline which was not possible in the
monadic �-calculus. This is the second reason for introducing polyadicity, which

we promised at the beginning of Chapter 4.
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6.2 Data structures

The representation of natural numbers in Section 3.3 was rather rough and ready,

and does not generalize to arbitrary data structures (by which we mean data freely

constructed using �nitely many constructors). Let us illustrate a general method

by de�ning single-level list structures, over elements represented by a subject sort

val. The sorting will be

f list 7! (cons;nil); cons 7! (val; list); nil 7! () g

and the constructors are Cons, Nil given by

Cons(v; l)
def
= (�cn)c:bdvlce

Nil
def
= (�cn)n

where Cons : (val; list)b(cons;nil) and Nil : (cons;nil). We can think of

such simple abstractions { Cons(v; l) and Nil { as nodes of a data structure; in
particular Nil is a leaf node. They are unlocated ; but such a node { in this case a
list node { can be located by a name of sort list. Thus a Cons value located at l

0

is l0:Cons(v; l), and corresponds to the familiar picture of a list cell:

Cons

-l0

6v

-l

One can think of this located node as follows: at its \address" l
0
you send it a

\form" with two sections, one of which must be �lled in. If the value is a Cons it
�lls in the �rst section, c, with its components and signs it; if it is a Nil it signs
the second section, n (there is nothing more to �ll in).

Now let us consider lists of truth-values, setting val equal to bool. What
is the complete list containing (say) the two truth-values True and False? As a

restricted composition of list nodes and truth-values, it is

L(l
0
)

def
= (�b

1
l
1
)
�
l
0
:Cons(b

1
; l

1
) j b

1
:True j (1)

(�b
2
l
2
)(l

1
:Cons(b

2
; l

2
) j b

2
:False j l

2
:Nil)

�

Note that l0 is the only free name. Here is the diagram, using � to mark private

locations:

Cons

-l0

6
�b1

-�l1

True

Cons

6
�b2

-�l2

False

Nil
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Note that this diagram, besides being the standard way of picturing linked lists,

is actually a 
ow graph drawn in the usual manner for process algebra.

Exercise Revisit the numerals of Section 3.3. Now give a representation of

natural numbers analogous to the above for lists, in terms of the sorting

fnat 7! (succ; zero); succ 7! (nat); zero 7! () g

At this point, the general pattern for data structures should be clear; also, clearly

the truth-values of Section 4.2 follow the pattern. By analogy with the case-

analysis on truth-values, de�ned earlier, we can give a concretion for case-analysis

on lists:

Listcases(F;Q)
def
= (�cn)bdcnce(c:F+n:Q)

Now to do a little programming on lists, let us �rst de�ne a sugared form of the
co-located case-analysis l

0
:Listcases((� vl)P;Q), in the style of Standard ML, as

follows:

case l0 of : Cons(v; l)) P

: Nil) Q

(Note that the constructions between \:" and) are patterns, binding the variables
v and l in P .) Now de�ne the Append function to concatenate lists, in the same

way that we de�ned addition on numerals:

Copy(l;m)
def

= case l of

: Cons(v; l
0
)) (�m

0
)
�
m:Cons(v;m

0
) j Copy(l

0
;m

0
)
�

: Nil) m:Nil

Append(k; l;m)
def
= case k of

: Cons(v; k
0
)) (�m

0
)
�
m:Cons(v;m

0
) j Append(k

0
; l;m

0
)
�

: Nil) Copy(l;m)

Then, if K(k) and L(l) are expressions like (1) representing two lists, and ifM(m)
is an expression representing the concatenation of these two lists, we shall indeed

have

(�lm)(K(k) j L(l) j Append(k; l;m)) �M(m)

The expression (1) exhibits how a list is built from located values and located
nodes. Notice that L(l

0
) is a located list; its location is l

0
, the location of its root

node. Interestingly enough there is no subexpression of (1) which corresponds

either to the unlocated list containing True and False, or to the unlocated sublist
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containing just False. But we can transform L(l
0
) to a strongly bisimilar form

which does contain such subexpressions. In fact

L(l
0
) � l

0
:L

0

where L
0
, L

1
and L

2
are the unlocated list-values given by

L
0

def
= (�cn)c:(�bl)bdblce(b:True j l:L

1
) (2)

L1

def
= (�cn)c:(�bl)bdblce(b:False j l:L2)

L
2

def
= Nil

def
= (�cn)n

Notice that these are closed expressions, just as True and False are closed. So

they mean the same wherever they are used; it is therefore reasonable to refer to

such terms as values.

6.3 Persistent values

In the above treatment, the data structures are purely ephemeral; accessing them
destroys them. But by use of replication they can be made persistent. Reverting
to L(l0) at (1), the natural thing to do is to replicate the nodes and the component
values, giving

M
0
(l
0
)

def
= (�b

1
l
1
)
�
!l
0
:Cons(b

1
; l

1
) j !b

1
:True jM

1
(l
1
)
�

(3)

M
1
(l
1
)

def
= (�b

2
l
2
)
�
!l
1
:Cons(b

2
; l

2
) j !b

2
:False jM

2
(l
2
)
�

M
2
(l
2
)

def
= !l

2
:Nil

Now let us see what happens when we interrogate M
0
(l
0
). Let C be the case-

analysis concretion at (2); we get

C jM0(l0) !
2

(�b1l1)
�
Pfb1l1=vlg j !l0:Cons(b1; l1) j !b1:True jM1(l1)

�
(4)

Thus P is now seeing the following structure, along the links l0, l1 and b1. Note

particularly the sharing of pointers:

Cons

-l0

6

-�
�l

1

�b1

True

Cons

6
�b

2

-�l2

False

Nil

We get a di�erent story if we apply replication, not to the nodes as we have just

done, but to the sublists. This is best done on the form (2); we consider the
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located list !l
0
:N

0
where

N0

def
= (�cn)c:(�bl)bdblce( !b:True j !l:N1)

N
1

def
= (�cn)c:(�bl)bdblce( !b:False j !l:N

2
)

N2

def
= Nil

def
= (�cn)n

Let us interrogate !l0:N0 as we did M0(l0). This time we get

C j !N0(l0) !
2

(�b1l1)(Pfb1l1=vlg j !l0:N0 j !b1:True j !l1:N1)

Comparing with (4) we see that there is no sharing of the pointers b1 and l1
{ because these names are not free in !l0:N0. So P is now seeing a di�erent

structure along the links l0, l1 and b1:

Cons

-l0

6
�b1

-�l1

True

Cons

6
�b2

-�l2

False

Nil

6

-�
�l

1

�b1

True

Cons

6
�b

2

-�l2

False

Nil

The diagram makes it clear that, each time the complete list is traversed from l0,
a new copy of each component is encountered.

We have taken some care to present this phenomenon, because it is the kind

of distinction which can give rise to subtle errors in programs { even sequential
programs. Of course the distinction is most likely to cause serious behavioural
di�erence when the list elements are not just values like True and False, but are

instead storage cells whose stored values may be updated. The distinction is that
in the second case the storage cell is copied by the replication, while in the �rst
case only the list nodes are copied. This is reminiscent of the distinction between

Pascal's call-by-value and call-by-name parameter-passing mechanisms, in the

case of scalar variables or arrays.
Burstall [7] addressed the problem of giving rigorous proofs about list-processing

and tree-processing, including the use of assignment. There are some interesting
features in common; he used names as locations of list segments, and carried out

succinct program proofs using terms like x
`
! y, standing for a list segment start-

ing at location x, �nishing at y, containing the element-sequence `, and with all

internal locations distinct. It would be intriguing to encode these entities and the

proofs into �-calculus using restriction.
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We have seen that the �-calculus can model re�ned phenomena of data storage.

For lack of space we shall not deal with updatable storage cells, though they

are quite straightforward { following the method of de�ning registers in CCS, in

Chapter 8 of [16].

Exercise We have seen that M0(l0) and !l0:N0 behave di�erently, and indeed

they are not bisimilar. Try to �nd a logical formula, in the logic of Section 5.5,

which is satis�ed by one but not the other. (Hint : test for sharing.)

6.4 Functions

In [17] it was shown how to translate the lazy �-calculus into �-calculus; the

translation was discussed fully there, and we shall not go into great detail here.

But it is worth repeating the translation in the polyadic setting { particularly

because we can present the sorting which it respects.

Recall that the terms M;N; : : : of �-calculus are given by

M ::= x j �xM j MN

where x ranges over variables. Just for this section we shall underline � in the
�-calculus to distinguish �-calculus abstractions from �-calculus abstractions.

There are many reduction relations! for the �-calculus, many of which satisfy
the rule

� : (�xM)N !MfN=xg

The relations di�er as to which contexts admit reduction. The simplest, in some
sense, is that which admits reduction only at the extreme left end of a term. This
is known as lazy reduction, and its model theory has recently been investigated in
detail by Abramsky [1]. Thus the lazy reduction relation ! over �-calculus terms
is the smallest which satis�es �, together with the rule

appl :
M !M

0

MN !M 0N

For our translation, we introduce a subject sort var in the �-calculus; we
take the names of sort var to be exactly the variables x; y; : : : of the �-calculus.

Intuitively, such a name is the location of the argument to a function. We also
introduce a subject sort args, with names u; v; : : : ; these names locate argument-

sequences. Thus a termM of �-calculus is translated into a �-calculus abstraction

(�u)P ; if M reduces to a �-abstraction �xN , then correspondingly P will { after
reduction { receive its argument sequence at u, and will name the �rst of these

arguments x. In fact, an argument sequence is represented by a pair; the name x
of the �rst argument, and the name v of the ensuing sequence. This is re
ected

in the sorting

fvar 7! (args); args 7! (var;args) g
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and the translation [[�]], given below, is easily seen to respect this sorting:

[[�xM ]]
def
= (�u)u:(�x)[[M ]]

[[x]]
def

= (�u)x:bduce

[[MN ]]
def
= (�u)(�v)

�
[[M ]]v j (�x)(v:bdxuce j !x:[[N ]])

�

Note, in the third equation, how M and its argument-list are \co-located" at v.

Note also the replication of N ; this is because M may use its (�rst) argument

repeatedly.

It is important to note that this translation is speci�c to the lazy reduction

strategy. The theorems in [17] show that lazy reduction is closely simulated by �-

calculus reduction of the translated terms. In [17] a di�erent translation was also

given for Plotkin's call-by-value �-calculus; it is striking that the latter translation

respects a di�erent sorting.
We shall now outline the proof that �-reduction is equationally valid in our

�-calculus interpretation of lazy �-calculus. First, we prove that if M is any term
of �-calculus, then to provide [[M ]] with a replicable resource consisting of [[N ]]
located at x is behaviourally equivalent to [[MfN=xg]]:

Lemma If x is not free in N then

(�x)([[M ]] j !x:[[N ]]) � [[MfN=xg]]

Proof First, we note that the set of equations of this form can be shown to be
closed under substitutions; therefore it will be enough to prove the result with

:
�

in place of �. Note also that the equation is between abstractions; applying both
sides to arbitrary u :args, we need to show (�x)([[M ]]u j !x:[[N ]])

:
� [[MfN=xg]]u.

The proof proceeds by induction on the structure of M . We shall not give
details, but only draw attention to one important step. In the case M � M1M2,
the last two propositions about replication in Section 5.4 justify the creation of
two copies of the private resource !x:[[N ]], for use by M

1
and M

2
separately. All

the other cases only involve a little reduction, and use of the inductive hypothesis.

We can now sketch a proof of the main result.

Theorem [[(�xM)N ]] � [[MfN=xg]].

Proof We assume w.l.o.g. that x does not occur free in N . This is justi�ed
because our translation respects change of bound variables in �-calculus. Next,

for the same reasons as before, we need only demonstrate weak bisimilarity
:
� to

conclude the theorem.
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Now by doing a single reduction we show that, for any u :args,

[[(�xM)N ]]u
:
� �:(�x)([[M ]]u j !x:[[N ]])
:
� (�x)([[M ]]u j !x:[[N ]])

and it only remains to apply the lemma.

7 Higher-order �-calculus

Recall from Section 6.1 that pure CCS [16], in which communication carries no

data, corresponds to the sorting fname 7! ()g in �-calculus. Without 
ow of

data in communication, one cannot { except in a very indirect way { represent

mobility among processes; that is, the dynamic change of neighbourhood. The

�-calculus allows names to 
ow in communication, and this achieves mobility in

a rather concrete way. Another approach is to allow processes themselves to 
ow
in communication; a process P may send to process Q a message which consists
of a third process R. Various authors have studied process 
ow. In particular,
Thomsen [27] has developed an algebra of higher-order processes, CHOCS, based

upon a natural extension of the operational semantics of CCS.
In what follows we shall describe the �rst component of a concretion as a

datum. Thus e�ectively CHOCS allows processes as data, while �-calculus allows
only names.

7.1 Processes as data

Part of the motivation of the �-calculus was that one should get all the e�ect of
processes as data, simply by using names as data. Crudely speaking: Instead of
sending you a process R, I send you a name which gives you access to R. As a
simple example consider P jQ, where

P
def
= x:bdRceP 0 and Q

def
= x:(�X)(X j Q

0
)

This is not �-calculus as we have de�ned it, because the concretion has a process

R as datum, and X in the abstraction is not a name but a variable over processes.

But in a higher-order calculus which allows this, we would expect the reduction

P j Q ! P
0
j R j Q

0

Now, we can get the same e�ect by locating R at a new name z, and sending z:

bP j bQ � x:(�z)bdzce(z:R j P
0) j x:(�z)(z j Q

0
)

! (�z)
�
(z:R j P

0
) j (z j Q

0
)
�

! P
0
j R j Q

0
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There are two issues about such an encoding. First, can it be made to work in

general? (The above is a special case, and ignores some complications.) Second {

and independently { what pleasant properties may be found for the higher-order

calculus which are not enjoyed by the �rst-order �-calculus? One such property

may be clarity of expression; even though the encoding may work, the encoded

expressions may be obscure.

Here we address the �rst question: Does the encoding work? Thomsen �rst

examined this. He gave a translation { which we shall write (b) { from Plain

CHOCS into �-calculus; then he exhibited a detailed correspondence between the

operational behaviours of P and bP . Ideally, one would like to prove the double

implication

P ' Q () bP ' bQ
for some natural congruence ' . Thomsen came close to proving this for � ,

observation congruence; but unfortunately the double implication appears to fail
in both directions, for subtle reasons. However, stimulated by Thomsen's work,
Sangiorgi has been able to show that the implication does indeed hold in both

directions, when ' is taken as weak reduction congruence �r ; this is a natural
analogue of the strong reduction congruence �r introduced in Section 5.1. Fur-
thermore the results holds not only for processes as data, but also { under a sorting
constraint { when data may be process abstractions of arbitrary high order.

7.2 Syntax and commitment rules

To extend our syntax to higher order we must �rst decide what data to allow.

We could admit just processes as data, as in CHOCS. But we prefer to go further
and admit parametrized processes, i.e. abstractions, as data. This adds consider-
able expressive power even if we only admit processes with name parameters; for
example, we can de�ne the chaining combinator of Section 4.1 as an abstraction,
which we could not do if only processes were admitted as data, as follows:

_
def
= (�XY )(�xy)(�z)(Xxz j Y zy)

Here, X and Y stand for processes abstracted upon two names; one can see how
this parameterization does {among other things { the job of the renaming operator

of CCS.

But we can go further and allow the parameters themselves to be abstractions;
thus we may proceed directly from �rst-order �-calculus (with just names as data)

to !-order �-calculus.
The change needed from the syntax of Section 4.3 is slight. Here we give the

unsorted version; we treat higher-order sorts in Section 7.3 below. First we must

introduce abstraction variables X;Y; : : : ; then the syntax of abstractions becomes

Abstractions : F ::= P j (�x)F j (�X)F j (�x)F

j X j Fx j FG
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Notice that application is now introduced explicitly; this is needed because ab-

straction variables are now present (see the example above). Next, concretions

may now contain abstractions as data, so they become

Concretions : C ::= P j bdxceC j bdF ceC j (�x)C

Finally, processes remain unchanged except that we must admit an abstraction

expression (e.g. Xxz in the example) as a process, so we add a clause:

Processes : P ::= � � � j F

The structural congruence rules of Section 4.3 only need obvious extensions;

for example we add the following to rule 8 (for concretions):

(�y)bdF ceC � bdF ce(�y)C (y =2 fn(F ))

We leave it to the reader to supply the obvious rule for the application FG of
one abstraction to another, and the obvious extension to the de�nition of pseudo-
application, F rC.

Then no change at all is needed to the reduction rules (Section 4.3), nor to

the de�nitions of observability #� (Section 2.4), reduction equivalence
:
�r and

congruence �r(Section 5.1), and commitment � (Section 5.2). (A minor point: It
is natural to con�ne these de�nitions to agents with no free abstraction variables.)

By stark constrast, a subtle and di�cult question arises in trying to generalize
the de�nition of strong bisimilarity

:
� in Section 5.2. We shall content ourselves

here with an intuitive description of the problem. The issue is to do with concre-
tions, and it is this: If P � z:C , then for P

:
� Q to hold we must require that

Q � z:D for some concretion D which corresponds suitably to C. What should
the correspondence be? In Section 5.2 we demanded that they have identical data;
that is, C � (�~x)bd~yceP

0 and D � (�~x)bd~yceQ
0 where P 0 :

� Q
0 . This is appropriate

for data names, but not for data abstractions. In the latter case, it is more ap-

propriate to ask that they be bisimilar , not identical. Indeed, Thomsen took this
course.

This is a plausible requirement, but one can argue that it is too strong. Con-
sider for example C � (�x)bdx:0ceP

0 and D � (�x)bd0ceQ
0 . Certainly x:0 6

:
� 0 ; but

because x:0 is in some sense \bound to P 0" by the restriction (�x) , its x-action

cannot be observed directly. Moreover if we now take P 0
� Q

0
� 0 then there

is no way in which this action can ever be complemented, and in this case it is

reasonable to take C and D to be equivalent. (This example is due to Eugenio
Moggi.)

Indeed, Sangiorgi [26] has de�ned a natural version of strong bisimilarity which

achieves this equivalence, and whose induced congruence coincides with strong re-

duction congruence, �r . Furthermore, by suitably ignoring � actions, the corres-
ponding weak bisimilarity induces a congruence which coincides with weak reduc-

tion congruence, �r , as de�ned in Section 5.1. This alternative characterization
of the reduction congruences adds to their importance.
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Furthermore, it is up to weak reduction congruence that, in a precise sense,

higher-order processes can be encoded as �rst-order processes. In Section 7.4 we

give this encoding, though not the proof by Sangiorgi [26] of its faithfulness (which

is not immediate). But �rst we must extend sorting to higher order.

7.3 Higher-order sorts

In our extension to the syntax we ignored sorts, and the reader may have felt

uncomfortable { since there is so much more nonsense which can be written in

the unsorted �-calculus at higher order! For example, the application ((�x)x:0)0

is clearly nonsense, and our sorting discipline will forbid it.

Recalling the �rst-order sorting discipline of Section 6.1, we only have to make

a simple change. There, an object sort was a sequence of subject sorts, e.g.

(S1S2S3). Now, we must allow object sorts themselves to occur in such sequences,

e.g. we must allow (S1(S2S1)S3) and even (S1(S2(S1S2))S3). In other words each
element of such a sequence may be a data sort , where the data sorts Dat(S) are

Dat(S)
def
= S [Ob(S)

(a disjoint union), and we de�ne by mutual recursion

Ob(S)
def
= Dat(S)

�

We assume that there are in�nitely many abstraction variables X;Y; : : : at each
object sort s, and we write X : s.

With these new arrangements, the formation rules of Section 6.1 remain un-

changed, and we merely extend them with the following for abstractions:

X : s F : t

(�X)F : (s)bt
F : (S)bt x : S

Fx : t

F : (s)bt G : s

FG : t

and for concretions
F : s C : t

bdF ceC : (s)bt
As before, we say that A is well-sorted for ob if we can infer A : s for some s

from the formation rules.
Now we have introduced a rich sort discipline, comparable with the simple

type-hierarchy in �-calculus. It is important to see what is missing, and why.

First, note that we might naturally have used an arrow in our sort representation,

giving the following syntax for higher-order object sorts:

s ::= () j S ! s j s! s

44



With this syntax it is clear that every object sort has the form

d
1
! � � � ! dn ! ()

(n � 0) where each di is a data sort. Indeed, what we have done is to choose to

write this in the form

(d1 � � �dn)

Thus, in our formation rules, we have written (s)bt for the more familiar s! t.

We can now see what is missing; there are no sorts of the form

d1 ! � � � ! dn ! S

Why not? What would be an inhabitant of this sort? It would take n data

parameters and return a name. But in the presence of such calculation of names,

the simple but subtle behaviour of our restriction operator (�x), which is a scoping

device for names, appears irretrievably lost! For the essence of syntactic scoping
is that \scoped" or \bound" occurrences of a name are syntactically manifest, and
this would no longer be the case with name-calculation. This point is, of course,
equally relevant to the �rst-order �-calculus, and it deserves further examination.

Given a sorting, and knowing the sort of each name and variable, it is easy

enough to determine a unique sort { if it exists { for any agent. More intriguing
is the following problem: given an agent A, but no sorting or sort information,
�nd a sorting ob and an assignment of sorts to names and variables so that A is
well-sorted for ob. This is a non-trivial problem even at �rst order. It remains to
be seen whether there is in some sense a most general sorting, and how to �nd it.

Exercise Find a higher-order sorting ob, and sorts for the names x; y; z and the
variable X, such that P respects ob, where

P � x:bd(�z)z:0ce jx:(�X)(Xy)

7.4 Translating higher order to �rst order

Having generalized the notion of sort, we can now see the relationship between

the higher-order �-calculus and Thomsen's (Plain) CHOCS. It is rather clear.

Thomsen allows processes, but not names, to be transmitted in communication;
that is, every communicated datum in CHOCS has sort (). This corresponds to
the sorting

fname 7! (()) g

and we are therefore justi�ed in regarding CHOCS as second-order . Notice that

�rst-order �-calculus is not subsumed by CHOCS. But now let us de�ne the order
of a sorting as, simply, the maximum depth of nesting of parentheses in its object

sorts. With this de�nition, second order properly includes both the (�rst-order)
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�-calculus and CHOCS, since it admits both their sortings; it also admits other

sortings, containing object sorts such as (S(S)).

In this section we introduce, by illustration rather than formally, a translation

from processes of arbitrarily high order to �rst order, e�ectively extending that

of Thomsen for Plain CHOCS. The translation, which we denote by (bb), operates
both upon sorts and upon processes. There is a close operational correspondence

between P and
bbP ; we shall only illustrate this correspondence rather than express

it as a theorem. But �rst, we wish to state the theorem which expresses the

faithfulness of the translation in terms of preserving congruence. The theorem

was proved by Sangiorgi [26]. It holds for processes which respect a �nite higher-

order sorting, and which contain no free abstraction variables. We shall call these

proper processes.

Theorem (Sangiorgi) Let ob be a �nite sorting of arbitrarily high order, and

let P;Q be proper processes which respect ob. Then

1.
bbP respects

ccob.
2. If ob is �rst-order then

ccob = ob and
bbP � P .

3. P �r Q i�
bbP �r

bbQ.
The translation (bb) is constructed iteratively. Each iteration applies a translation
(b) both to the sorting and to the process, and the proof of the theorem proceeds

by showing that the asserted results hold exactly for (b), except that cob and bP are

not necessarily �rst-order. But if ob is �nite then cob is lower than ob, according
to a clearly well-founded ordering; this completes the proof.

We illustrate (b). Suppose
ob = fS

1
7! (); S

2
7! (S

3
); S

3
7! (S

1
(S

2
(S

1
))((S

3
))) g

Since ob is not �rst-order, we �rst choose a highest-order data sort in a highest-

order object sort in the range of ob. Let us choose (S2(S1)). Then we \depress"
(S2(S1)), replacing it by a new subject sort S4, and adding S4 7! (S2(S1)) to the

sorting. Thus we obtain

cob = fS1 7! (); S2 7! (S3); S3 7! (S1S4((S3))); S4 7! (S2(S1)) g

It is clear that iterating (b) upon a �nite sorting will reach �rst order in a �nite
number of steps.

Exercise What measure is decreased by (b)?
Let us use a slightly simpler sorting

ob = fS
1
7! (); S

2
7! ((S

1
)) g
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to illustrate the translation of processes. First we have

cob = fS
1
7! (); S

2
7! (S

3
); S

3
7! (S

1
) g

Now let

P � x:bdF ceQ j x:(�X)(Xy j Xz)

Then P respects ob, provided x : S2, y; z : S1, X : (S1), F : (S1) and Q : (). We

describe bP in outline. The translation only a�ects those subexpressions �:A of P

whose subject is of sort S2, since the object sort ob(S2)=((S1)) has been changed

to (S
3
). In this case both x and x are involved. The appropriate changes are to

replace the datum F , of sort (S
1
), by a new restricted datum name u :S

3
, and to

abstract a new name v :S3 in place of the abstraction variable X : (S1):

bP � x:(�u)bduce( !u: bF j bQ) j x:(�v)(v:bdyce j v:bdzce)
The reader may at this point like to compare the simpler example at the beginning
of Section 7.1; here we are dealing with the extra complication thatX occurs twice,
and is moreover a variable over abstractions, not over processes. Note particularly
the use of replication; since (as here) the datum F may be \used" several times
by its recipient, the translation has to allow repeated access to it. This access is

via u, which becomes bound to v; note how the argument to which X was applied
is, in the translation, transmitted along u in a communication. One can indeed
check that the reduction

P ! Q j Fy j Fz

is matched by a triple reduction in the translation:

bP !
3

(�u)( !u: bF j bQ j bFy j bFz)
� (�u)( !u: bF) j bQ j bFy j bFz
� bQ j bFy j bFz

Note that this single application of (b) only deals with those subexpressions �:A in
F and Q for which � :S2. In this example, the translation will then be �rst-order
(because the sorting cob is �rst-order). In general, the new pre�xed expression u: bF
may need treatment in a further iteration of (b); noting that u :S

3
, this would be

the case if cob(S3) were still not �rst-order.

In conclusion, we can ask whether our theorem is su�ciently general. The

constraint of no free abstraction variables is of no great concern. Also, we have
elsewhere questioned whether there are any useful processes which respect no
sorting. There remains the constraint that the sorting should be �nite. There are

indeed interesting in�nite sortings; but we conjecture that, if a process respects

any sorting at all, then it respects a �nite sorting (and so is amenable to our
translation). If this is true, then indeed the theorem is quite general.
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