On the Expressiveness of Infinite Behavior and
Name Scoping in Process Calculi

Pablo Giambiadi, Gerardo Schneid&?f*, and Frank D. Valencid*

1 KTH Royal Institute of Technology, IMIT, Electrum 229, 164 40 Kista, Sweden
{pgiamb@imit.kth.se }
2 IRISA/CNRS, Campus de Beaulieu F-35042 Rennes, France
Uppsala University, Dept. of Computer Systems, Box 337, 751 05 Uppsala, Sweden
{gerardos@it.uu.se; frankv@it.uu.se }

Abstract. In the literature there are several CCS-like process calculi differing in
the constructs for the specification of infinite behavior and in the scoping rules
for channel names. In this paper we study various representatives of these calculi
based upon both their relative expressiveness and the decidabitityesfience

We regard any two calculi as beirggjually expressivéf for every process in

each calculus, there existsveakly bisimilarprocess in the other.

By providingweak bisimilaritypreserving mappings among the various variants,
we show that in the context eélabeling-freeandfinite summatiorcalculi: (1)

CCS withparameterlesgor constan} definitions is equally expressive to the vari-

ant with parametricdefinitions. (2) The CCS variant witteplicationis equally
expressive to that witlecursive expressiorandstaticscoping. We also state that

the divergence problem is undecidable for the calculiin (1) but decidable for those
in (2). We obtain this from (un)decidability results by Busi, Gabbrielli and Za-
vattaro, and by showing the relevant mappings to be computable and to preserve
divergence and its negation. From (1) and the well-known fact that parametric
definitions can replace injective relabelings, we show that injective relabelings
are redundant (i.e., derived) in CCS (which has constant definitions only).

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. Undoubt-
edly CCS [9], a calculus for synchronous communication, remains a standard represen-
tative. In fact, many foundational ideas in the theory of concurrency have grown out of
this calculus.

Nevertheless, there are several variants of CCS in the literature. This is reasonable
as a variant may simplify the presentation of the calculus or be tailored to specific appli-
cations. Given two variants, a legitimate question is whether they are eguphgssive.

To answer this question one has to agree on what it means for one calculus to be as ex-
pressive as the other. A natural way of doing this in CCS is by comparing w.r.t. some
standard process equivalence suckvasak) bisimilarity If for every process” in one
calculus there is a proceésin the other calculus such thé@ is (weakly) bisimilar to

* Work supported by European project ADVANCE, Contract No. IST-1999-29082.
** Work supported by European project PROFUNDIS.

P then we say that the second calculus is at least as expressive as the first one. Another
legitimate question, given a variant, is whether some fundamental property sdich as
vergencg(i.e., the existence of divergent computations) becomes simpler or harder to
analyze.

In this paper, we study both the relative expressiveness w.r.t. weak bisimilarity and
the decidability of divergence for various CCS-like calculi. We shall focus upon two
sources of variation found in the CCS literature: The constructs used to express infinite
behavior and the way in which scoping of channel (port) names is dealt with. As for the
constructs for finite behavior, in all the calculi we confine our attention to prefix, finite
sums, restriction, and parallel composition. The calculi here studied can be described
as follows:

— CC%: Infinite behavior is given by dinite set of constant(i.e., parameterless)

definitions of the formA %' P. The calculus is essentially CCS [9] with neither
relabelings nor infinite summations.
def

— CCS;: Like CCS but usingparametric definitionsf the formA(x1,...,z,) =
P. The calculus is the variantin [10], Part I.

— CCS: Infinite behavior given byeplication of the form!P. This variant is pre-
sented in [3].

— CCS,: Infinite behavior given byecursive expressiorsf the formp X. P asin [9].
However, we adomtatic scopingf channel names in the sense discussed in [5].

In particular, we show that (1) CGSs exactly as expressive as GC®hile (2)

CCS, is exactly as expressive as CCB/e use recent work by Busi et al. [3] to also
state that (3) the divergence problem is undecidable for the calculi in (1) but decidable
for those in (2). The results (1-3) are summarized in Figure 1.

Also, as a consequence of (1), we prove that (4) injective relabelings, from the
expressiveness point of view, are redundant operators in CCS. More precisely, the be-
havior of any CCS process involving relabelings (all of them being injective) can be
expressed up to strong bisimilarity by a GCgocess. Furthermore, we also illustrate
that CC& exhibitsdynamic scopingf channel names and that it does not satisfy
conversion. By dynamic scoping we mean that, unlike the static case, the occurrence of
a name can get dynamically (i.e., during execution) captured under a restriction.

Let us now elaborate on the significance and implications of the above results. A
noteworthy aspect of (1) is that any finite set of parametric (possibly mutually recursive)
definitions can be replaced by an afisite set of parameterless definitions using neither
infinite summations nor relabelings. This arises as a result of the restricted nature of
communication in CCS (e.g., absence of mobility). Related to this result is that of [9]
which shows that, in the context of value-passing CCS, a parametric definition can be
encoded using aimfinite set of constant definitions and infinite sums.

Regarding (1) some readers may feel that given a praéesish a parametric def-
inition D, one could simply create as many constant definitions as permutations of
possible parameters w.r.t. the finite set of nameB iand D. This would not work for
CCS,; an unfolding of D within a restriction may need-conversions to avoid name
captures, thus generating new names (i.e., names fbhor D) during execution.

The interesting point about (4) is that injective relabelings are perhaps the most used
kind of relabelings (e.qg., injective relabelings are used in [9] to define linking operators,

" ces, ccs

Undecidable

Decidable

Q
o]
w
C\od
.87
i

Fig. 1. Classification of CCS variants. An arrow frod to Y indicates thaft” is at least as
expressive aX . (Un)decidability is understood w.r.t. the existence of divergent computations

buffers, counters and stacks). In fact, [9] points out that the CCS laws for equational rea-
soning with injective relabelings as side conditions can usually be applied as one mostly
works with this kind of relabeling. In the context of SCCS, another CCS variant where
interaction is synchronougjempotent relabelingare known to be redundant [8]. In

fact, under some natural assumptions, the same holds for general relabelings in SCCS.

Another noteworthy aspect of our results is the qualitative distinction between static
and dynamic name scoping for the calculi under consideration. Static scoping renders
the calculus decidable (w.r.t. the divergence problem) and as expressive as that with
replication. In contrast, dynamic scoping renders the calculus undecidable and as ex-
pressive as that with parametric definitions. This is interesting, since as we shall see,
the difference between the calculi with static or dynamic scoping is very subtle. Using
static scoping for recursive expressions was discussed in the context of ECCS [5], an
extension of CCS whose ideas lead to the design ofthalculus [10].

It should be noticed that preservation of divergence is not a requirement for equality
of expressivenessieak bisimilarity does not preserve divergertdence, although the
results in [3] prove that divergence is decidable for C@8d undecidable for CG it
does not follow directly from the arrows in Figure 1 that it is also decidable for CCS

Finally, it is worth pointing out that, as exposed in [7], decidability of divergence
does not imply lack offuring expressiveness. In fact the authors in [2] show that CCS
is Turing-complete. But this does not imply that GGS equally expressive to CGS
either; the notions of expressiveness used in concurrency theory may not coincide with
those in computability. For example, [11] shows that under some reasonable assump-
tions the asynchronous version of thecalculus, which can certainly encode Turing
Machines, is strictly less expressive than the synchronous one.

Overall, the general contribution of this paper is to provide and clarify some quali-
tative and semantics distinctions among various CCS variants.

2 CCS-like Calculi

We shall classify CCS-like calculi that differ in their way of specifying infinite behavior
and name scope. Let us begin with their common finite fragment.

In CCS, processes can perform actions or synchronize on them. These actions can
be either offering porhamesfor communication, or the so-calleilent actionr. We
presuppose a countable st of port names ranged over by, b, z,y ... and their

_ P-=p
SUM _ fjel RES ——— if a ¢ {a,a}
>ier @b — P P\a — P'\a
e , @ ’ P l P i ’
PAR, — L — I PARQQT—Q, CoM —— TQ,—>Q,
PlQ-—=P|Q PlQ-=P|Q PlQ—=P|Q

Table 1. An operational semantics for finite processes

primed versions. We then introduce a setofnamesV = {a | a € N} disjoint from
N. The set oflabels ranged over by and!’, is £L = N U N. The set ofactionsAct,
ranged over byy and 3, extendsC with a new symbol-. Actionsa anda are thought
of ascomplementaryso we decree that= a. We also decree that= 7.

The processes specifying finite behavior are given by:

PQ...:=Y,;0.P | P\a| P|Q (1)

Intuitively >, ; ;. P;, wherel is a finite set of indexes, represents a process able to
perform one—but only one—of itg;’s actions and then behave as the corresponéjng
We write the summation asif |I| = 0,and drop the 3, _,"if |I| = 1. The restriction
P\a behaves a® except that it can offer neithernora to its environment. The names
a anda in P are said to béoundin P\«. Thebound namesef P, bn(P), are those with
a bound occurrence i, and thefree namesf P, fn(P), are those with a not bound
occurrence inP. Finally, P || @ represents parallelism; eithéror may perform an
action, or they can also synchronize when performing complementary actions.

The above description is made precise by the operational semantics in Table 1. A
transitionP? —— @ says thatP can perform and evolve intap.

In the literature there are at least four alternatives to extend the above syntax to
express infinite behavior. We describe them next.

2.1 Parametric Definitions: CCS,

A common way of specifying infinite behavior is by using parametric definitions [10].
In this case we extend the syntax of finite processes (Equation 1) as follows:

PQ,....=...| Aly1,---,Yn) (2)

HereA(ya,...,y,) is anidentifier (alsocall, orinvocatior) of arity n. We assume that

every such an identifier has a unique, possibly recursiggnition A(x+, ..., z,) def

P4 where ther;’s are pairwise distinct, and the intuition is théy., . . ., v,,) behaves
as itsbody P4 with eachy; replacing theormal parameter:;. We denote byD the set
of all definitions. We often use the notatigras an abbreviation af;, zo, ..., z,.

Convention 1 (Finitary D) Similar to [13], we shall require any process to depend
only on finitely many definitions. Below we formalize this requirement.

Given A(Z) def P, andB(y) def Pg in D, we say thatd (directly) depend®sn B,

written A ~ B, if there is an invocatiorB(Z) in P4. The above requirement can be
then formalized by requiring the strict order induced-by (the reflexive and transitive
closure of+~)? to be well-founded. We also stipulate the following requirement.

Convention 2 For eachA(zq,...,x,) def Py, we requirefn(Pa) C {x1,...,2n}.

We shall use CCsto denote the calculus with parametric definitions with the above
syntactic restrictions. The rules for Cg8&re those in Table 1 plus the rule:

Palyt, -y yYn/T1, .. Tp)] = p
CALL ' ' it A(rr,...,00) 2 Py (3)

A(yla"'ayn)i)Pl

As usualP[y; ...yn/x1 ... 2,] results from syntactically replacing every free occur-
rence ofx; with y; renaming bound names, i.e., performimgmea-conversionwher-
ever needed to avoid capture. It follows from [10] that in G@& can identify process
expressions obtained by renaming bound name#{gois the same a®[b/a]\b). We
then say that CCSsatisfiesnamea-equivalence

2.2 Constant Definitions: CC{

We now consider the alternative for infinite behavior given in CCS [9]. We refer to
identifiers with arity zero and their corresponding definitions@sstantsandconstant
(or parameterlegsdefinitions respectively. We omit the(“)” in A().

GivenA P, requiring all names iin (P) to be formal parameters, as we did for
CCS, (Convention 2), would be too restrictive2would have no visible actions. Con-
sequently, let us drop the requirement in Convention 2 to consider a fragment allowing
only constant definitions buwith possible occurrence of free names in their bodies
The rules for this fragment, which we call C&re simply those of CGSIn this case
Rule CALL (which for CC{ we prefer to call CONS) takes the form

PA - P def
CONS—— if A = Py 4)
A% P
i.e., noa-conversion involved; thus allowing name captures. As illustrated in the next
section, this causes scoping to be dynamic@etjuivalence not to hold.

Relabelings. The reader familiar with process algebras may have noticed that CCS
is basically CCS except for the absencer@labeling A relabelingf : Act — Act

is the identity for all but finitely many actions. Furthermofesatisfiesf(a) = f(a),

f(a) # Tandf(r) = 7. For each action performed byP, the relabeled proces¥(f)
executes («). More precisely:

P2 p
P(f) 12 pry)

! The relation~~* is a preorder. By induced strict order we mean the strict component*of
modulo the equivalence relation obtained by taking the symmetric closur€ of

REL

Remark 1.Itis well known that the behavior specified by any process involving ioaly
jectiverelabelings can be equivalently specified (up to strong bisimilarity) by a relabel-
ing-free process with the help of parametric definitions [12]. This is important since, as
pointed out in [9], one usually works with injective relabelings. a

2.3 Recursion Expressions: CCS

Hitherto we have seen process expressions whose recursive behaviors are specified by
an underlying set of definitions. It is often convenient, however, to have expressions
which can specify recursive behavior on their own. Let us now extend our set of finite
processes (Equation 1) with such recursive expressions:

PQ,....=...| X |uX.P (5)

Herep X P binds the occurrences of teocess variableX in P. As for bound and
free names, we define thwund variableof P, bv(P) are those with a bound occur-
rence inP, and thefree variablesof P, fv(P) are those with a not bound occurrence
in P. An expression generated by the above syntax is said tqob&cass (expression)
iff it is closed (i.e., it contains no free variables). The proge&sP behaves a# with
the free occurrences of replaced by X. P applyingvariablea-conversions wherever
necessary to avoid captures. The semantisP is given by the rule:

P[uX.P/X] % P!
uX.P - p' (6)

REC

We call CCS§, the resulting calculus. From [5] it follows that in CC®e can iden-
tify processes up to nameequivalence. Furthermore, we make a typical assumption on
CCS, process variables; they need to be guarded. We say that an expresggiarcied
in P iff it lies within some sub-expression @t of the forma.Q.

Convention 3 (Guarded Recursion)We shall confine ourselves to CCBrocesses
where all variables are guarded.

Static and Dynamic ScopeAn interesting issue regarding expressiBuX.P/X]

(cf. rule REC) is whethelbound names P should be renamed to avoid captures (i.e.,
namea-conversiof. Such a requirement seems necessary should we want to identify
processes up ta-equivalenceln fact, the requirement gives C¢Static scoping of
names. Let us illustrate this with an example.

Example 1.ConsideruX.P with P = (a || (a.b | X)\a). First, let us assume we
perform namex-conversions to avoid captures. $0X.P/X] in P renames the bound
a by a fresh name, say thus avoiding the capture éf s freea in the replacement: I.e,

PuX.P/X] = (a| (b || pX.P)\e) = (a || @b | pX.(a || @b || X)\a))\e)

The reader may care to verify (using the rules in Table 1 plus Rule REC) widtnot
be performed; i.e., thereis noX.P =5 P, =2 ... s.t.a; = b.

Now let us assume that the substitution makes no narenversion. This causes
a free occurrence af in P (indicated by the dashed circle) to get boudghamically
in the scopef the outermost restriction: l.e.,

PluX.P/X] = (a|l @b | pX-P)\a) = (a || @b || pX.(a: | @b || X)\a)\a).

The reader can verify that, in this casenay eventually be performed. Such an execu-
tion of b cannot be performed byX.Q whereQ is (a || (¢.b || X)\c) i.e, P with the
binding and bound occurrence @syntactically replaced with. This shows that name
a-equivalence does not hold when dynamic scoping is.used O

Remark 2.1t should be pointed out that using recursive expressions with no mname
conversion is in fact equivalent to using instead constant definitions as in the previous
calculus CC&. In fact, in presenting CCS, [9] uses alternatively both kinds of con-

structions: using Rule REC, with no hameconversion, for one and Rule CONS for

the other. For example, by taking 4 pwith P asin Example 1 one can verify that,

in CC&, A exhibits exactly the same dynamic scoping behavior illustrated by the ex-
ample. Sopamea-equivalence does not hold in CG&posing yet another semantic
difference between CCS and thecalculus as the latter uses static scoping and satisfies
a-equivalence). a

2.4 Replication: CCS

One simple way of expressing infinite behavior is by using replication. Although mostly
found in calculi for mobility, replication has also been studied in the context of CCS [3,
2]. In this case the syntax of finite processes (Equation 1) is extended with:

PQ,....=...|P ©)

Intuitively !P behavesa® || P || ... | P || !P;as many copies oP as you wish.
We call CCSthe calculus that results from the above syntax. The operational rules for
CCS are those in Table 1 plus the following rule:

PP P

REP -
P - p! (8)

From [10] we know that CCSrocesses can be identified undeequivalence.

2.5 Summary of Calculi

We described several calculi based on the literature of CCS. We havg th€$al-
culus with parametric definitions and CE$e calculus with constant (or parame-
terless) definitions. We also have CCfhe statically scoped calculus with recursive
expressions—the dynamically scoped version instead coincides with. E@@lly, we
have the calculus with replication, CCS

Convention 4 Henceforth, we us&' to denote the signaturfp, k, , !} of our calculi
sub-indexes. We shall uses’, . . . to range overX.. In the following sections, we shall
index sets and relations with the appropriate symbol fitorto make explicit the calcu-
lus under consideration. For exampl€r,, represents a transition @¥C'S,,. Similarly,

we shall useProc,, to denote the set af'C'S,, processes. However, we may omit the
indexes when these are unimportant or clear from the context.

3 Expressiveness and Classification Criteria
Here we introduce the means we shall use to compare and classify the various calculi.

Comparing Calculi: Bisimilarity. We wish to compare the behavior of two given pro-
cessed” and(@ w.r.t. the standard notion of (weak) bisimilarity [9]. HowevEBrandQ
may belong to two different calculi, s&yC'S, andCC'S,. We then find it convenient
to state the standard notion as below. First, recall thattiwerseof a binary relation
SisS~t={(,e) | (e,e) € S}

Definition 1 (Bisimilarity). A relationS C Proc, x Proc,, with o, ¢’ € X, is said
to be a(strong) simulatioriff for all (P, Q) € S:

whenever? %, P’ then, for som&’, Q %, Q" and(P’,Q’) € S.

The relationS is called a(strong) bisimulationf both S and its converse are simula-
tions. Furthermore, we say th& € Proc, and@ € Proc, are strongly bisimilar
(w.rt., c ando’), written P Ng' Q@ (or simply P ~ Q), iff there exists a bisimulation
S C Proc, x Proc,s, such that(P, @) € S. The relation~ is called (strong) bisimi-
larity. a

Let us now recall the weaker notion of bisimilarity which abstracts away from silent
(i.e.,7) actions. We need some little notation. Defige- with s = € £*, as
() 25 () . () 2 (-55)*. The notions ofweak (bi)simulatiorand
weak bisimilaritycan be derived from the strong versions by replacing in Definition 1
%, and~ with == and~, respectively (cf. [947.1]). We can now make precise our

criterion for expressiveness.

Definition 2. We say that CCSis as expressive a8CS,. iff for every P € Proc,,
there exists) € Proc,. such thatP and@ are weakly bisimilar (w.r.tc ands’). O

To prove equivalence on expressiveness, we shall pr@widak) bisimulation pre-
servingmappings|-], which we callencodingsfrom the processes of one calculus
into the processes of another. Some encodings will be chosen to preserve one further
property:divergencelt should be noticed that unlike strong bisimulation, weak bisim-
ulation identifies some divergent processes with non-divergent ones. Let us formalize
the notion of divergence.

Definition 3. We say thatP is divergent(or that it diverges) iffP(—)«, i.e., there
exists an infinite sequende= Py — P, — O

Classifying Calculi: Decidability of DivergenceWe shall classify the various calculi
according to whether divergence decidablefor the calculus. By divergence being
decidable for CC$, we mean that there exists an algorithm which can fully determine,
givenP € Proc,, whetherP is divergent.

4 Encodings

In this section we give the various encodings. Furthermore, in order to classify the
calculiw.r.t. to the decidability of divergence, we shall also prove the relevant encodings
to be divergence-preserving and computable.

4.1 Encoding CC$ into CCS

Here we give an encodinfj] : CCS, — CC. For the sake of presentation, we
consider only unary parametric definitions. The encoding can be easily generalized to
then-ary case by extending our concepts and definitions from names to vector of names.

For simplicity and w.l.0.g we assume there is a definition of the forfi(x) def
P ¢ Dp with M not occurring inP and Dp being thefinite set of definitions aris-
ing from the identifiers inP—think of M as the “main” procedure aP. Formally,

Dp is the set of definitions for the identifiers in the closure undeof { M} (See
Convention 1).

For the encoding we would like to associate to each profeissCCS, a process
in CC& substitutingB,, for each invocatioB(y) in P. How many invocations of this
form should be considered? Given that GG&tisfiesa-equivalence, there is poten-
tially an infinite number of such invocations—which means that a careful choice of
namegy is needed if we want to obtain a finite number of constant definitions. To com-
plicate things further, rule CALL may force arconversion anywhere in the execution
of a CC$ process.

Instead of presenting the encoding mapping right away, we proceed in a stepwise
fashion. We start with the set of all CgProcesses (because @fconversions) that
may be associated to a single G8ocess. In Def. 5, we identify sufficient conditions
for subsets of those processes to define a good encoding intp. E@&lly, we show a
procedure to effectively construct such an encoding.

Definition 4. The functiort: CCS, — P(CCS) is inductively defined over the struc-
ture of its parameter:

{o} if P=0
{a.Q|Qe P} if P—a.p

p_ {1 Q:1Qic P i=12 if P=P | Py
{Yicr1;. Qi | Qi € Py, i eI} if P=X;cro;.P;
{Q\B| 3P’ € Proc, . P =, P\B A Q € P'} if P=P"\a
{Ay} if P=A(y).

Example 2.If P = a.b.0 + B(b) thenP is the singleto{a.b.0 + By }. O

Example 3.If P = (z.2.0 || Z.0 || A(z))\z thenP contains (among many others) the
elementgz.2.0 | 7.0 || A.)\z and(y.z.0 || 7.0 || A,)\v. O

Remark 3.The definition of-is invariant under-conversions. More generally, it can
be shown thab =, Q iff P = Q. O

We now defing P] which requires specifying the spb] of (constant) definitions
induced by P].

Definition 5. Given a proces$’ € CCS, with associated definition sélp, anencod-
ing of P in CC is defined as the CGSonstant)/ ! (called [P]) together with an
underlying set of definitiongD p], satisfying the following two conditions:

() [Dp] contains a definitiorfid? " Py) for someP, € P.

(I If (A4, def Q4) € [Dp], B, occurs inQ 4 and (B(x) def Pg) € Dp , thenthereis

ef
Qp € Pglz/z] st.(B. € Qp) € [Dp].
We understand a set of definitions to contain at most one definition per process constant.
A set of definitions satisfying conditions (I) and (Il) is calledeartoding set O

Observe that, according to the definition, there are (infinitely) many encodings for
a given procesg’. Not only can an encoding be extended with definitions and still
remain an encoding, but also condition () allows for many different definitions for

constantB.. If, say,Qp, Qs € PB/[%], then an encodin§D p] may contain either

the definitionB. < Q5 or the definitionB. < Q' (but not both).

The following lemma characterizes the shape of minimal encoding sets.

Lemma 1. Given an encoding sdtDp], the setD = {(A4, e Qa) € [Dp] |

—

Qa4 € Paly/z]}, is an encoding set (included fiDp]). O

Recall thatD p contains finitely many definitions. We shall show that an encoding
can be effectively constructed (so that the resulting set of definifibng is also finite).
First let us illustrate the construction with the following example.

Example 4.Let P = A(z) with Dp = {A(z) & (2.2.0 | 7.0 || A(2))\z}. We

proceed to define an encoding by constructing d Bet] so that it satisfies conditions

(1) and (I1). To satisfy condition (1), lef/” of (z.2.0 || .0 || A,)\z € [Dp]. Then,

condition (I1) requires a definition such as; ' (21.2.0 || 2.0 || A.,)\z1 € [Dp].

Notice that due tav-conversion in equatiod, we have obtained a new namgand
hence we have to give a new definition fdr, . Of course because of theconversion

we could have chosen another fresh naméut that would only lead to a different but
equally useful encoding. Using condition (II) agait, of (2.21.0 || 1.0 || A)\z €

[Dp], and we are done; no other definition needs to be add¢dtd . It is easy to
check that the resulting set satisfies conditions (I) and (ll), and therefore constitutes an
encoding ofP in CC%. O

2 See [6] for the proof of the lemmas in this paper.

We now show that for any?, one can compute an encoding EBtp].

Theorem 1. For any P € CCS, with a finite setD p of associated definitions, one can
effectively construct an encoding $&ip].

Proof. Let Var(Dp) be the set of all the names occurringlin-. For eachA(z) def

P, € Dp and eachy € Var(Dp), choose aP¥ so thatP € Pm]. Define

S ={A, def Py | (A=) def Py) € Dp Ay € Var(Dp)}. Notice thatS is a finite set.

Proceed by defining = {z | 3 constantB... B, occurs inS A B, is not defined inS},

and notice thaf is a finite set too. Observe that, for each definitit) < pyeDp

and for eachy € F, the substitutionP4 [y/z] requires no alpha-conversion. Conse-

—

quently it is possible to choos®)| € P4[y/z] so that for each constaft. occurring

in P4, z € (Var(Dp) U F). We have now a candidatep, for the set of definitions

in the encoding of. It is simply defined as'p, = {4, dof P4 | (A(z) et Py) €

Dp Ay € (Var(Dp) U F)}. Since(MF def P)) € S C Xp,,with Py € P, our

candidate set satisfies condition (I) in Def. 5. It remains to be shown)ihat also

satisfies condition (Il). Assume now th@t,, def Qa) € Xp,, thatB, occurs inQ 4

and that(B(x) def Pg) € Dp. By constructiony € (Var(Dp) U F), and therefore

(B dof P}) € Xp,. This shows that’p, satisfies condition (Il). Therefore, our ef-

fectively constructed candidafep, . is indeed an encodinDp]. O

We now state the correctness of the encoding up to (strong) bisimilarity. The the-
orem actually says that parametric definitions are not more expressive than constant
definitions.

Theorem 2. Given a process” € CCS, with associated set of definition3p, any
encoding] P] with definition sef D p] satisfiesP ~% [P]. O

Remark 4.1t follows from Remark 1 and the above theorem that injective relabelings
are redundant in CCS (up to strong bisimilarity).

Now, [3] shows that divergence is undecidable for Gurthermore, we also showed
that the above encoding is computable. Since divergence is invariant under strong bisim-
ilarity, we can then conclude the following result.

Theorem 3. The divergence problem is undecidable for GCS a

4.2 Encoding CCg into CCS;

Intuitively, if the free names are treated dynamically, then they could equivalently be
passed as parameters. Thus, we can define the encoding as follows:

Definition 6. GivenP € CC% with a set of associated constant definitions of the form

AL P4 and given a strict total order over names, the encoding’ofto CCS is a

procesq] P] with associated set of definitions

{A(ml, o) S PAL | (A% Py) € Dp A fn(Pa) = {1, ... ,xn}} .

The encoding functiofi] : Proci, — Proc,, which is an homomorphism over all other
operators, satisfiefAd] = A(z1,...,x,) wherefn(Pa) = {1, ..., z,}. Both in defi-
nitions and in invocations, all lists of argument names are assumed sorted. O

(By homomorphism we mean thgP || Q] = [P] || [Q] and similarly for the other
operators.)

The following theorem states that constant definitions with dynamic scoping are not
more expressive than parametric definitions with static scoping.

Theorem 4. For every proces$ in CCK, [P] ~} P. O

4.3 Encoding CCS, into CCS,

The main idea behind this encoding is to associate a replicated prac£sgo each

occurrence of the recursion operatof(.P. In the past a similar approach has been

used to show that, in the-calculus, recursion can be expressed using replication [13].

While in [13] eachr-calculus process and its encoding happen to be strongly bisimilar,

this is not the case for CCS Although in general a CGSprocess is only weakly

bisimilar to its encoding, we show that divergence properties are always preserved.
Our definition assumes that process variables are indexédiley { X; | i € I}:

Definition 7. Let[-]: Proc,, — Proc, be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined
as follows:

[X:] =7;.0

[1X;.P] = (2. [P] || 77.0)\x;

where the name§r; | i € I} are fresh. O

The freshness condition on the variablgss meant to guarantee that every time we
apply[P], P mentions none of them.

Remark 5.The above encoding would not work had we adopted dynamic scoping in
the Rule REC for CCS (see Remark 2). TheX.P in Example 1 actually gives us a
counter-example. a

The following example illustrates why a CC$rocess may not be strongly bisimilar
to its encoding.

Example 5.Consider the CCgprocessP = pX.a.X with corresponding encoding

[P] = (\z.a.z || Z)\x. They are clearly not strongly bisimilar, &has the single trace
pX.a.X %, pX.a.X %, pX.a.X ... while [P] only produce§!z.a.z || z)\z =,

(Ir.a.7 || a.z)\z %, (r.a.7 | #)\z =, ... Observe that each transition in the first
trace uses rule REC, and that every other step in the second one reflects explicitly, as an
internal transition, each recursive call. |

In comparing CCg and CCS, we find it convenient to consider yet another variant
calculus, as an intermediate step, which we call CG8 syntax agrees entirely with

CCS;’s (i.e. Proc; = Proc,), and its semantics differs from CCS only by a replace-
ment of REC with a rule in which the unfolding performs action—hence the name
CCs.:

REC' -
uX.P 5, PluX.P/X]

Example 6.Consider proces® as given in Example 5 but this time within CCS
(which is possible thanks t@roc, = Proc,). The only trace exhibited by’ is:

pX.a.X 5;a.(pX.a.X) %, pX.a.X =, ... and therefore® ~ [P]. O

In fact, the property illustrated by the previous example holds in general, as stated
in the following theorem. The proof is essentially an adaptation of the one given by
Sangiorgi and Walker in [13].

Theorem 5. If P € CCS,, thenP ~! [P]. O

Because strong bisimilarity is known to preserve expressiveness and divergence, the
above theorem lets us reduce the problem of studying the encoding to investigating the
relation between CCSand CCS.

We define a binary relatioR € (Proc,, x Proc,) as follows:P R (iff there exist
n > 0suchthatP = Qy =, Q1 =, ...Q, = Q, where each derivatiof; =, Qi1
involves the application of rule REC'.

We show that besides being a weak bisimulation relatiom)so relates processes
with equal divergence properties. As a first step, notice that é’a,g;hransition can
be mimicked byR-related processes in CC&fter possibly some transitions (which
correspond to recursive invocations involving rule REC’).

Lemma 2. If PR QandP =, P’ then there exist§)’ such tha)(~,)* <, Q" and
P'RQ. O

Remark 6.Notice that we have restricted our attention to processes where all variables
are guarded. Without this assumption divergence would not be preserved by our encod-
ing. For examplepX. X diverges in CC$ but deadlocks in CCS O

Lemma 3. If P R @ and there is a derivation af =, Q' which does not involve the
application of rule REC’, then there exisi® s.t. P %, P'and P’ R Q' 0

To show that two identical processes, interpreted in C@B8d resp. CCS are
weakly bisimilar we need to show two simulations: One is provided by Lemma 2 and
the other follows by a combination of Lemma 3 and the definitiofRafto cover the
case in which) =, @’ does use rule REC’). The result is summarized by our next
theorem.

Theorem 6. Given a proces#’ in CCS,, P ~j, P. O

Observe that this is still not enough to show tRatelates processes with the same
divergence properties. B R @ and@ diverges, Lemma 3 is not strong enough to show
that P may execute a singletransition. However, it turns out thét cannot diverge by
executing only recursive calls (again, a result of our assumptions on guarded summation

and guarded recursion; see Remark 6 and [6]). So, if after some finite execution trace,
Q performs ar transition that does not involve REC’, we can apply Lemma 3 to deduce
that P may also perform a transition. Since this process can be repeated endlessly it
must be concluded that divergence in CG6rces divergence in CCSThe converse
is an easy consequence of Lemma 2. That is, we have shown:
Proposition 1. For P € CCS,, P(5,,)« iff P(5,)~. O

Our journey from CCg to CCS through CC$ has rendered the following result.
Corollary 1. For P € Proc,, P =, [P]. Moreover,P diverges iff[P] diverges. O

From the above corollary, the fact that the encoding is computable, and the result of
[3] showing that divergence is decidable for G@& conclude the following:

Theorem 7. The divergence problem is decidable for GCS a

4.4 Encoding CCSinto CCS,,

Except for the syntax and our restriction to guarded recursion, this encoding is essen-
tially that given in [13] for ther-calculus.

Definition 8. Let[-]: Proci — Proc,, be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined

as follows:[!P] = uX.([P] || 7. X). O
In fact, the proof of the following theorem follows that in [13].
Theorem 8. For P € Proc), P ~{' [P]. O

Observe that, because of our restriction to guarded recursion, the encoding does not
preserve divergence. For instancePit=!0 then P is deadlocked in CCSbut

[P] = pX.(0 | 7.X) 5, 0| pX.(0 | 7.X) 5, 0] 0 || pX.(0 | 7.X) Dy

5 Concluding Remarks

We studied the relative expressiveness (w.r.t. weak bisimilarity) and the decidability
of divergence for some CCS-like calculi. The calculi differ on the constructs used to
express infinite behavior and on the treatment of scoping of channel names; the finite
core being the same. We showed that parameters can be removed from recursive defi-
nitions without loss of expressiveness provided dynamic name scoping is applied. We
also showed that the expressiveness of recursive expressions with static scoping corre-
sponds precisely to that of replication. We partitioned the calculi into two groups: For
one, divergence is undecidable (i.e., constant and parametric definitions), whereas it is
decidable for the other (i.e., replication and recursive expressions with static scoping).
Figure 1, in the Introduction, illustrates these results.

As a consequence of our results, we proved that a substantial family of relabelings,
the injective ones, is redundant in CCS (see Remark 4). We also showed that a slightly
different interpretation of Rule REC, namely performing also narenversions in
substitutions, can render decidable (w.r.t. divergence) an otherwise undecidable calculus
(see Remark 2). We illustrated that CCS exhibits dynamic name scoping and that it does
not preserver-equivalence.

Related Work. Most of the related work was already discussed in the Introduction.
The most closely related work is [3] which shows the (un)decidability of divergence
for CCS, and CCS. Here we extend these results to the corresponding equally expres-
sive calculi. The work on ECCS [5], perhaps the most immediate predecessor of the
m-calculus, advocates static scoping of names. In contrast, the work on CHOCS [14]
advocates dynamic name scoping in the context of higher-order CCS. Furthermore, the
CCS variant in [10] uses statically scoped parametric definitions while the Edinburgh
Concurrency Workbench tool [4] uses dynamic scoping for parametric definitions.

The work in [1] shows that that in CCS, non-injective relabelings lead to a sensible
different treatment of asynchrony w.r.t the injective ones. We believe that it would be
interesting to investigate more qualitative distinctions for these two kinds of relabelings.

AcknowledgmentsWe are indebted to Maurizio Gabbrielli, Jean-Jacquesyl Ser-
gio Maffeis, Catuscia Palamidessi, Joachim Parrow, Rosario Pugliese and Davide San-
giorgi, for insightful discussions on the topics of this paper.

References

1. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous
processeslnformation and Computatiori72(2):139-164, 2002.

2. N.Busi, M. Gabbrielli, and G. Zavattaro. The expressive power of replication in CCS. Dratft,
2003.

3. N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive definitions in channel
based calculi. IMCALP'03, volume 2719 oLNCS pages 133-144. Springer Verlag, 2003.

4. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics based
tool for the verification of concurrent system&CM Transactions on Programming Lan-
guages and Systeniss(1):36—-72, 1993.

5. U. Engberg and M. Nielsen. A calculus of communicating systems with label-passing. Tech-
nical report, University of Aarhus, 1986.

6. P. Giambiagi, G. Schneider, and F.D. Valencia. On the expressiveness of CCS-
like calculi. Technical report, Uppsala University, 2004. Postscript available from
http://www.sics.se/fdt/publications/GSV-Expr-TR04.ps

7. S. Maffeis and I. Phillips. On the computational strength of pure amblent calcuXin
PRESS’032003.

8. R. Milner. Calculi for synchrony and asynchrony. Technical Report CSR-104-82, University
of Edinburgh, 1982.

9. R. Milner. Communication and Concurrencirentice Hall, 1989.

10. R. Milner. Communicating and Mobile Systems: thecalculus Cambridge University
Press, 1999.

11. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous
m-calculus. In ACM Press, editodOPL'97, pages 256-265, 1997.

12. J. Parrow. An introduction to the-calculus. InHandbook of Process Algehrpages 479—
543. Elsevier, 2001.

13. D. Sangiorgi and D. WalkeThe r—calculus: A Theory of Mobile Processe€ambridge
University Press, 2001.

14. B. Thomsen. A calculus of higher order communicating systeniB30OIRAL'89, ACM, pages
143-154, 1989.

