
On the Expressiveness of Infinite Behavior and
Name Scoping in Process Calculi

Pablo Giambiagi1, Gerardo Schneider2,3?, and Frank D. Valencia3??

1 KTH Royal Institute of Technology, IMIT, Electrum 229, 164 40 Kista, Sweden
{pgiamb@imit.kth.se }

2 IRISA/CNRS, Campus de Beaulieu F-35042 Rennes, France
3 Uppsala University, Dept. of Computer Systems, Box 337, 751 05 Uppsala, Sweden

{gerardos@it.uu.se; frankv@it.uu.se }

Abstract. In the literature there are several CCS-like process calculi differing in
the constructs for the specification of infinite behavior and in the scoping rules
for channel names. In this paper we study various representatives of these calculi
based upon both their relative expressiveness and the decidability ofdivergence.
We regard any two calculi as beingequally expressiveiff for every process in
each calculus, there exists aweakly bisimilarprocess in the other.
By providingweak bisimilaritypreserving mappings among the various variants,
we show that in the context ofrelabeling-freeandfinite summationcalculi: (1)
CCS withparameterless(orconstant) definitions is equally expressive to the vari-
ant withparametricdefinitions. (2) The CCS variant withreplication is equally
expressive to that withrecursive expressionsandstaticscoping. We also state that
the divergence problem is undecidable for the calculi in (1) but decidable for those
in (2). We obtain this from (un)decidability results by Busi, Gabbrielli and Za-
vattaro, and by showing the relevant mappings to be computable and to preserve
divergence and its negation. From (1) and the well-known fact that parametric
definitions can replace injective relabelings, we show that injective relabelings
are redundant (i.e., derived) in CCS (which has constant definitions only).

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. Undoubt-
edly CCS [9], a calculus for synchronous communication, remains a standard represen-
tative. In fact, many foundational ideas in the theory of concurrency have grown out of
this calculus.

Nevertheless, there are several variants of CCS in the literature. This is reasonable
as a variant may simplify the presentation of the calculus or be tailored to specific appli-
cations. Given two variants, a legitimate question is whether they are equallyexpressive.
To answer this question one has to agree on what it means for one calculus to be as ex-
pressive as the other. A natural way of doing this in CCS is by comparing w.r.t. some
standard process equivalence such as(weak) bisimilarity: If for every processP in one
calculus there is a processQ in the other calculus such thatQ is (weakly) bisimilar to

? Work supported by European project ADVANCE, Contract No. IST–1999–29082.
?? Work supported by European project PROFUNDIS.

P then we say that the second calculus is at least as expressive as the first one. Another
legitimate question, given a variant, is whether some fundamental property such asdi-
vergence(i.e., the existence of divergent computations) becomes simpler or harder to
analyze.

In this paper, we study both the relative expressiveness w.r.t. weak bisimilarity and
the decidability of divergence for various CCS-like calculi. We shall focus upon two
sources of variation found in the CCS literature: The constructs used to express infinite
behavior and the way in which scoping of channel (port) names is dealt with. As for the
constructs for finite behavior, in all the calculi we confine our attention to prefix, finite
sums, restriction, and parallel composition. The calculi here studied can be described
as follows:

– CCSk : Infinite behavior is given by afinite set of constant(i.e., parameterless)

definitions of the formA
def= P. The calculus is essentially CCS [9] with neither

relabelings nor infinite summations.
– CCSp: Like CCSk but usingparametric definitionsof the formA(x1, . . . , xn) def=

P. The calculus is the variant in [10], Part I.
– CCS!: Infinite behavior given byreplication of the form !P. This variant is pre-

sented in [3].
– CCSµ: Infinite behavior given byrecursive expressionsof the formµX.P as in [9].

However, we adoptstatic scopingof channel names in the sense discussed in [5].

In particular, we show that (1) CCSk is exactly as expressive as CCSp while (2)
CCSµ is exactly as expressive as CCS!. We use recent work by Busi et al. [3] to also
state that (3) the divergence problem is undecidable for the calculi in (1) but decidable
for those in (2). The results (1-3) are summarized in Figure 1.

Also, as a consequence of (1), we prove that (4) injective relabelings, from the
expressiveness point of view, are redundant operators in CCS. More precisely, the be-
havior of any CCS process involving relabelings (all of them being injective) can be
expressed up to strong bisimilarity by a CCSk process. Furthermore, we also illustrate
that CCSk exhibitsdynamic scopingof channel names and that it does not satisfyα-
conversion. By dynamic scoping we mean that, unlike the static case, the occurrence of
a name can get dynamically (i.e., during execution) captured under a restriction.

Let us now elaborate on the significance and implications of the above results. A
noteworthy aspect of (1) is that any finite set of parametric (possibly mutually recursive)
definitions can be replaced by an alsofiniteset of parameterless definitions using neither
infinite summations nor relabelings. This arises as a result of the restricted nature of
communication in CCS (e.g., absence of mobility). Related to this result is that of [9]
which shows that, in the context of value-passing CCS, a parametric definition can be
encoded using aninfiniteset of constant definitions and infinite sums.

Regarding (1) some readers may feel that given a processP with a parametric def-
inition D, one could simply create as many constant definitions as permutations of
possible parameters w.r.t. the finite set of names inP andD. This would not work for
CCSp; an unfolding ofD within a restriction may needα-conversions to avoid name
captures, thus generating new names (i.e., names not inP norD) during execution.

The interesting point about (4) is that injective relabelings are perhaps the most used
kind of relabelings (e.g., injective relabelings are used in [9] to define linking operators,

CCSp CCSk

Undecidable

CCS! CCSµ

Decidable

Fig. 1. Classification of CCS variants. An arrow fromX to Y indicates thatY is at least as
expressive asX. (Un)decidability is understood w.r.t. the existence of divergent computations

buffers, counters and stacks). In fact, [9] points out that the CCS laws for equational rea-
soning with injective relabelings as side conditions can usually be applied as one mostly
works with this kind of relabeling. In the context of SCCS, another CCS variant where
interaction is synchronous,idempotent relabelingsare known to be redundant [8]. In
fact, under some natural assumptions, the same holds for general relabelings in SCCS.

Another noteworthy aspect of our results is the qualitative distinction between static
and dynamic name scoping for the calculi under consideration. Static scoping renders
the calculus decidable (w.r.t. the divergence problem) and as expressive as that with
replication. In contrast, dynamic scoping renders the calculus undecidable and as ex-
pressive as that with parametric definitions. This is interesting, since as we shall see,
the difference between the calculi with static or dynamic scoping is very subtle. Using
static scoping for recursive expressions was discussed in the context of ECCS [5], an
extension of CCS whose ideas lead to the design of theπ-calculus [10].

It should be noticed that preservation of divergence is not a requirement for equality
of expressiveness;weak bisimilarity does not preserve divergence. Hence, although the
results in [3] prove that divergence is decidable for CCS! (and undecidable for CCSp), it
does not follow directly from the arrows in Figure 1 that it is also decidable for CCSµ.

Finally, it is worth pointing out that, as exposed in [7], decidability of divergence
does not imply lack ofTuring expressiveness. In fact the authors in [2] show that CCS!

is Turing-complete. But this does not imply that CCS! is equally expressive to CCSp

either; the notions of expressiveness used in concurrency theory may not coincide with
those in computability. For example, [11] shows that under some reasonable assump-
tions the asynchronous version of theπ-calculus, which can certainly encode Turing
Machines, is strictly less expressive than the synchronous one.

Overall, the general contribution of this paper is to provide and clarify some quali-
tative and semantics distinctions among various CCS variants.

2 CCS-like Calculi

We shall classify CCS-like calculi that differ in their way of specifying infinite behavior
and name scope. Let us begin with their common finite fragment.

In CCS, processes can perform actions or synchronize on them. These actions can
be either offering portnamesfor communication, or the so-calledsilent actionτ. We
presuppose a countable setN of port names, ranged over bya, b, x, y . . . and their

SUM P
i∈I αi.Pi

αj−→ Pj

if j ∈ I RES
P

α−→ P ′

P\a α−→ P ′\a
if α 6∈ {a, a}

PAR1
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

PAR2

Q
α−→ Q′

P ‖ Q
α−→ P ‖ Q′ COM

P
l−→ P ′ Q

l−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

Table 1.An operational semantics for finite processes

primed versions. We then introduce a set ofco-namesN = {a | a ∈ N} disjoint from
N . The set oflabels, ranged over byl andl′, isL = N ∪ N . The set ofactionsAct ,
ranged over byα andβ, extendsL with a new symbolτ. Actionsa anda are thought
of ascomplementary, so we decree thata = a. We also decree thatτ = τ .

The processes specifying finite behavior are given by:

P, Q . . . ::=
∑

i∈I αi.Pi | P\a | P ‖ Q (1)

Intuitively
∑

i∈I αi.Pi, whereI is a finite set of indexes, represents a process able to
perform one–but only one–of itsαi’s actions and then behave as the correspondingPi.
We write the summation as0 if |I| = 0, and drop the “

∑
i∈I ” if |I| = 1. The restriction

P\a behaves asP except that it can offer neithera nor ā to its environment. The names
a andā in P are said to beboundin P\a. Thebound namesof P , bn(P), are those with
a bound occurrence inP , and thefree namesof P , fn(P), are those with a not bound
occurrence inP . Finally,P ‖ Q represents parallelism; eitherP or Q may perform an
action, or they can also synchronize when performing complementary actions.

The above description is made precise by the operational semantics in Table 1. A
transitionP

α−→ Q says thatP can performα and evolve intoQ.
In the literature there are at least four alternatives to extend the above syntax to

express infinite behavior. We describe them next.

2.1 Parametric Definitions: CCSp

A common way of specifying infinite behavior is by using parametric definitions [10].
In this case we extend the syntax of finite processes (Equation 1) as follows:

P, Q, . . . := . . . | A(y1, . . . , yn) (2)

HereA(y1, . . . , yn) is anidentifier(alsocall, or invocation) of arity n. We assume that

every such an identifier has a unique, possibly recursive,definitionA(x1, . . . , xn) def=
PA where thexi’s are pairwise distinct, and the intuition is thatA(y1, . . . , yn) behaves
as itsbodyPA with eachyi replacing theformal parameterxi. We denote byD the set
of all definitions. We often use the notation~x as an abbreviation ofx1, x2, . . . , xn.

Convention 1 (Finitary D) Similar to [13], we shall require any process to depend
only on finitely many definitions. Below we formalize this requirement.

GivenA(~x) def= PA andB(~y) def= PB in D, we say thatA (directly)dependsonB,
written A B, if there is an invocationB(~z) in PA. The above requirement can be
then formalized by requiring the strict order induced by ∗ (the reflexive and transitive
closure of)1 to be well-founded. We also stipulate the following requirement.

Convention 2 For eachA(x1, . . . , xn) def= PA, we requirefn(PA) ⊆ {x1, . . . , xn}.
We shall use CCSp to denote the calculus with parametric definitions with the above

syntactic restrictions. The rules for CCSp are those in Table 1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (3)

As usualP [y1 . . . yn/x1 . . . xn] results from syntactically replacing every free occur-
rence ofxi with yi renaming bound names, i.e., performingnameα-conversion, wher-
ever needed to avoid capture. It follows from [10] that in CCSp we can identify process
expressions obtained by renaming bound names (soP\a is the same asP [b/a]\b). We
then say that CCSp satisfiesnameα-equivalence.

2.2 Constant Definitions: CCSk

We now consider the alternative for infinite behavior given in CCS [9]. We refer to
identifiers with arity zero and their corresponding definitions asconstantsandconstant
(or parameterless) definitions, respectively. We omit the “()” in A().

GivenA
def= P , requiring all names infn(P) to be formal parameters, as we did for

CCSp (Convention 2), would be too restrictive—P would have no visible actions. Con-
sequently, let us drop the requirement in Convention 2 to consider a fragment allowing
only constant definitions butwith possible occurrence of free names in their bodies.
The rules for this fragment, which we call CCSk , are simply those of CCSp. In this case
Rule CALL (which for CCSk we prefer to call CONS) takes the form

CONS
PA

α−→ P ′

A
α−→ P ′

if A
def= PA (4)

i.e., noα-conversion involved; thus allowing name captures. As illustrated in the next
section, this causes scoping to be dynamic andα-equivalence not to hold.

Relabelings. The reader familiar with process algebras may have noticed that CCSk

is basically CCS except for the absence ofrelabeling. A relabelingf : Act → Act
is the identity for all but finitely many actions. Furthermore,f satisfiesf(a) = f(a),
f(a) 6= τ andf(τ) = τ . For each actionα performed byP , the relabeled processP (f)
executesf(α). More precisely:

REL
P

α−→ P ′

P (f)
f(α)−→ P ′(f)

1 The relation ∗ is a preorder. By induced strict order we mean the strict component of ∗

modulo the equivalence relation obtained by taking the symmetric closure of ∗.

Remark 1.It is well known that the behavior specified by any process involving onlyin-
jectiverelabelings can be equivalently specified (up to strong bisimilarity) by a relabel-
ing-free process with the help of parametric definitions [12]. This is important since, as
pointed out in [9], one usually works with injective relabelings. ut

2.3 Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behaviors are specified by
an underlying set of definitions. It is often convenient, however, to have expressions
which can specify recursive behavior on their own. Let us now extend our set of finite
processes (Equation 1) with such recursive expressions:

P, Q, . . . := . . . | X | µX.P (5)

HereµX.P binds the occurrences of theprocess variableX in P . As for bound and
free names, we define thebound variablesof P , bv(P) are those with a bound occur-
rence inP , and thefree variablesof P , fv(P) are those with a not bound occurrence
in P . An expression generated by the above syntax is said to be aprocess (expression)
iff it is closed (i.e., it contains no free variables). The processµX.P behaves asP with
the free occurrences ofX replaced byµX.P applyingvariableα-conversions wherever
necessary to avoid captures. The semanticsµX.P is given by the rule:

REC
P [µX.P/X] α−→ P ′

µX.P
α−→ P ′ (6)

We call CCSµ the resulting calculus. From [5] it follows that in CCSµ we can iden-
tify processes up to nameα-equivalence. Furthermore, we make a typical assumption on
CCSµ process variables; they need to be guarded. We say that an expression isguarded
in P iff it lies within some sub-expression ofP of the formα.Q.

Convention 3 (Guarded Recursion)We shall confine ourselves to CCSµ processes
where all variables are guarded.

Static and Dynamic Scope.An interesting issue regarding expressionP [µX.P/X]
(cf. rule REC) is whetherbound namesin P should be renamed to avoid captures (i.e.,
nameα-conversion). Such a requirement seems necessary should we want to identify
processes up toα-equivalence. In fact, the requirement gives CCSµ static scoping of
names. Let us illustrate this with an example.

Example 1.ConsiderµX.P with P = (a ‖ (a.b ‖ X)\a). First, let us assume we
perform nameα-conversions to avoid captures. So,[µX.P/X] in P renames the bound
a by a fresh name, sayc, thus avoiding the capture ofP ′s freea in the replacement: I.e,

P [µX.P/X] = (a ‖ (c̄.b ‖ µX.P)\c) = (a ‖ (c̄.b ‖ µX.(a ‖ (a.b ‖ X)\a))\c)
The reader may care to verify (using the rules in Table 1 plus Rule REC) thatb will not
be performed; i.e., there is noµX.P

α1−→ P1
α2−→ . . . s.t.αi = b.

Now let us assume that the substitution makes no nameα-conversion. This causes
a free occurrence ofa in P (indicated by the dashed circle) to get bound,dynamically,
in the scopeof the outermost restriction: I.e.,

P [µX.P/X] = (a ‖ (ā.b ‖ µX.P)\a) = (a ‖ (ā.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a).

The reader can verify that, in this case,b may eventually be performed. Such an execu-
tion of b cannot be performed byµX.Q whereQ is (a ‖ (c.b ‖ X)\c) i.e, P with the
binding and bound occurrence ofa syntactically replaced withc. This shows that name
α-equivalence does not hold when dynamic scoping is used. ut

Remark 2.It should be pointed out that using recursive expressions with no nameα-
conversion is in fact equivalent to using instead constant definitions as in the previous
calculus CCSk . In fact, in presenting CCS, [9] uses alternatively both kinds of con-
structions: using Rule REC, with no nameα-conversion, for one and Rule CONS for

the other. For example, by takingA
def= P with P as in Example 1 one can verify that,

in CCSk , A exhibits exactly the same dynamic scoping behavior illustrated by the ex-
ample. So,nameα-equivalence does not hold in CCS(exposing yet another semantic
difference between CCS and theπ-calculus as the latter uses static scoping and satisfies
α-equivalence). ut

2.4 Replication: CCS!

One simple way of expressing infinite behavior is by using replication. Although mostly
found in calculi for mobility, replication has also been studied in the context of CCS [3,
2]. In this case the syntax of finite processes (Equation 1) is extended with:

P, Q, . . . := . . . | !P (7)

Intuitively !P behaves asP ‖ P ‖ . . . ‖ P ‖ !P ; as many copies ofP as you wish.
We call CCS! the calculus that results from the above syntax. The operational rules for
CCS! are those in Table 1 plus the following rule:

REP
P ‖ !P α−→ P ′

!P α−→ P ′ (8)

From [10] we know that CCS! processes can be identified underα-equivalence.

2.5 Summary of Calculi

We described several calculi based on the literature of CCS. We have CCSp the cal-
culus with parametric definitions and CCSk the calculus with constant (or parame-
terless) definitions. We also have CCSµ the statically scoped calculus with recursive
expressions—the dynamically scoped version instead coincides with CCSk . Finally, we
have the calculus with replication, CCS!.

Convention 4 Henceforth, we useΣ to denote the signature{p, k , µ, !} of our calculi
sub-indexes. We shall useσ, σ′, . . . to range overΣ. In the following sections, we shall
index sets and relations with the appropriate symbol fromΣ to make explicit the calcu-
lus under consideration. For example,

α−→σ represents a transition ofCCSσ. Similarly,
we shall useProcσ to denote the set ofCCSσ processes. However, we may omit the
indexes when these are unimportant or clear from the context.

3 Expressiveness and Classification Criteria

Here we introduce the means we shall use to compare and classify the various calculi.

Comparing Calculi: Bisimilarity. We wish to compare the behavior of two given pro-
cessesP andQ w.r.t. the standard notion of (weak) bisimilarity [9]. However,P andQ
may belong to two different calculi, sayCCSσ andCCSσ′ . We then find it convenient
to state the standard notion as below. First, recall that theconverseof a binary relation
S is S−1 = {(e′, e) | (e, e′) ∈ S}
Definition 1 (Bisimilarity). A relationS ⊆ Procσ × Procσ′ , with σ, σ′ ∈ Σ, is said
to be a(strong) simulationiff for all (P, Q) ∈ S:

wheneverP
α−→σ P ′ then, for someQ′, Q α−→σ′ Q′ and(P ′, Q′) ∈ S.

The relationS is called a(strong) bisimulationif bothS and its converse are simula-
tions. Furthermore, we say thatP ∈ Procσ andQ ∈ Procσ′ are strongly bisimilar
(w.r.t., σ andσ′), written P ∼σ′

σ Q (or simplyP ∼ Q), iff there exists a bisimulation
S ⊆ Procσ × Procσ′ , such that(P, Q) ∈ S. The relation∼ is called (strong) bisimi-
larity. ut

Let us now recall the weaker notion of bisimilarity which abstracts away from silent
(i.e.,τ) actions. We need some little notation. Define

s=⇒,with s = α1.α2. . . . ∈ L∗, as
(τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗. The notions ofweak (bi)simulationand
weak bisimilaritycan be derived from the strong versions by replacing in Definition 1

α−→ and∼ with
s=⇒ and≈, respectively (cf. [9,§7.1]). We can now make precise our

criterion for expressiveness.

Definition 2. We say that CCSσ is as expressive asCCSσ′ iff for everyP ∈ Procσ,
there existsQ ∈ Procσ′ such thatP andQ are weakly bisimilar (w.r.t.σ andσ′). ut

To prove equivalence on expressiveness, we shall provide(weak) bisimulation pre-
servingmappings[[·]], which we callencodings, from the processes of one calculus
into the processes of another. Some encodings will be chosen to preserve one further
property:divergence. It should be noticed that unlike strong bisimulation, weak bisim-
ulation identifies some divergent processes with non-divergent ones. Let us formalize
the notion of divergence.

Definition 3. We say thatP is divergent(or that it diverges) iffP (τ−→)ω , i.e., there
exists an infinite sequenceP = P0

τ−→ P1
τ−→ ut

Classifying Calculi: Decidability of Divergence.We shall classify the various calculi
according to whether divergence isdecidablefor the calculus. By divergence being
decidable for CCSσ, we mean that there exists an algorithm which can fully determine,
givenP ∈ Procσ, whetherP is divergent.

4 Encodings

In this section we give the various encodings. Furthermore, in order to classify the
calculi w.r.t. to the decidability of divergence, we shall also prove the relevant encodings
to be divergence-preserving and computable.

4.1 Encoding CCSp into CCSk

Here we give an encoding[[·]] : CCSp → CCSk . For the sake of presentation, we
consider only unary parametric definitions. The encoding can be easily generalized to
then-ary case by extending our concepts and definitions from names to vector of names.

For simplicity and w.l.o.g we assume there is a definition of the formMP (x) def=
P ∈ DP with MP not occurring inP andDP being thefinite set of definitions aris-
ing from the identifiers inP—think of MP as the “main” procedure ofP . Formally,
DP is the set of definitions for the identifiers in the closure under of {MP } (See
Convention 1).

For the encoding we would like to associate to each processP in CCSp a process
in CCSk substitutingBy for each invocationB(y) in P . How many invocations of this
form should be considered? Given that CCSp satisfiesα-equivalence, there is poten-
tially an infinite number of such invocations—which means that a careful choice of
namesy is needed if we want to obtain a finite number of constant definitions. To com-
plicate things further, rule CALL may force anα-conversion anywhere in the execution
of a CCSp process.

Instead of presenting the encoding mapping right away, we proceed in a stepwise
fashion. We start with the set of all CCSk processes (because ofα-conversions) that
may be associated to a single CCSp process. In Def. 5, we identify sufficient conditions
for subsets of those processes to define a good encoding into CCSk . Finally, we show a
procedure to effectively construct such an encoding.

Definition 4. The function̂· : CCSp → P(CCSk) is inductively defined over the struc-
ture of its parameter:

P̂ =




{0} if P = 0
{α.Q | Q ∈ P̂ ′} if P = α.P ′

{Q1 ‖ Q2 | Qi ∈ P̂i , i = 1, 2} if P = P1 ‖ P2

{Σi∈Iαi.Qi | Qi ∈ P̂i , i ∈ I} if P = Σi∈Iαi.Pi

{Q\β | ∃P ′ ∈ Procp . P ≡α P ′\β ∧ Q ∈ P̂ ′} if P = P ′′\α
{Ay} if P = A(y).

Example 2.If P = a.b.0 + B(b) thenP̂ is the singleton{a.b.0 + Bb}. ut

Example 3.If P = (z.x.0 ‖ x.0 ‖ A(z))\z thenP̂ contains (among many others) the
elements(z.x.0 ‖ x.0 ‖ Az)\z and(y.x.0 ‖ x.0 ‖ Ay)\y. ut
Remark 3.The definition of̂· is invariant underα-conversions. More generally, it can
be shown thatP ≡α Q iff P̂ = Q̂. ut

We now define[[P]] which requires specifying the set[[DP]] of (constant) definitions
induced by[[P]].

Definition 5. Given a processP ∈ CCSp with associated definition setDP , anencod-
ing of P in CCSk is defined as the CCSk constantMP

x (called [[P]]) together with an
underlying set of definitions[[DP]], satisfying the following two conditions:

(I) [[DP]] contains a definition(MP
x

def= P0) for someP0 ∈ P̂ .

(II) If (Ay
def= QA) ∈ [[DP]], Bz occurs inQA and(B(x) def= PB) ∈ DP , then there is

QB ∈ ̂PB [z/x] s.t.(Bz
def= QB) ∈ [[DP]].

We understand a set of definitions to contain at most one definition per process constant.
A set of definitions satisfying conditions (I) and (II) is called anencoding set. ut

Observe that, according to the definition, there are (infinitely) many encodings for
a given processP . Not only can an encoding be extended with definitions and still
remain an encoding, but also condition (II) allows for many different definitions for

constantBz. If, say,QB, Q′
B ∈ ̂PB [z/x], then an encoding[[DP]] may contain either

the definitionBz
def= QB or the definitionBz

def= Q′
B (but not both).

The following lemma2 characterizes the shape of minimal encoding sets.

Lemma 1. Given an encoding set[[DP]], the setD = {(Ay
def= QA) ∈ [[DP]] |

QA ∈ ̂PA[y/x]}, is an encoding set (included in[[DP]]). ut
Recall thatDP contains finitely many definitions. We shall show that an encoding

can be effectively constructed (so that the resulting set of definitions[[DP]] is also finite).
First let us illustrate the construction with the following example.

Example 4.Let P = A(x) with DP = {A(x) def= (z.x.0 ‖ x.0 ‖ A(z))\z}. We
proceed to define an encoding by constructing a set[[DP]] so that it satisfies conditions

(I) and (II). To satisfy condition (I), letMP
x

def= (z.x.0 ‖ x.0 ‖ Az)\z ∈ [[DP]]. Then,

condition (II) requires a definition such as:Az
def= (z1.z.0 ‖ z.0 ‖ Az1)\z1 ∈ [[DP]].

Notice that due toα-conversion in equationAz we have obtained a new namez1 and
hence we have to give a new definition forAz1 . Of course because of theα-conversion
we could have chosen another fresh namez2, but that would only lead to a different but

equally useful encoding. Using condition (II) again:Az1

def= (z.z1.0 ‖ z1.0 ‖ Az)\z ∈
[[DP]], and we are done; no other definition needs to be added to[[DP]] . It is easy to
check that the resulting set satisfies conditions (I) and (II), and therefore constitutes an
encoding ofP in CCSk . ut

2 See [6] for the proof of the lemmas in this paper.

We now show that for anyP , one can compute an encoding set[[DP]].

Theorem 1. For anyP ∈ CCSp with a finite setDP of associated definitions, one can
effectively construct an encoding set[[DP]].

Proof. Let Var(DP) be the set of all the names occurring inDP . For eachA(x) def=
PA ∈ DP and eachy ∈ Var(DP), choose aP y

A so thatP y
A ∈ ̂PA[y/x]. Define

S = {Ay
def= P y

A | (A(x) def= PA) ∈ DP ∧ y ∈ Var(DP)}. Notice thatS is a finite set.
Proceed by definingF = {z | ∃ constantBz . Bz occurs inS ∧Bz is not defined inS},
and notice thatF is a finite set too. Observe that, for each definitionA(x) def= PA ∈ DP

and for eachy ∈ F , the substitutionPA[y/x] requires no alpha-conversion. Conse-

quently it is possible to chooseP y
A ∈ ̂PA[y/x] so that for each constantBz occurring

in P y
A, z ∈ (Var(DP) ∪ F). We have now a candidateΣDP for the set of definitions

in the encoding ofP . It is simply defined asΣDP = {Ay
def= P y

A | (A(x) def= PA) ∈
DP ∧ y ∈ (Var(DP) ∪ F)}. Since(MP

x
def= P0) ∈ S ⊆ ΣDP , with P0 ∈ P̂ , our

candidate set satisfies condition (I) in Def. 5. It remains to be shown thatΣDP also

satisfies condition (II). Assume now that(Ay
def= QA) ∈ ΣDP , thatBz occurs inQA

and that(B(x) def= PB) ∈ DP . By construction,z ∈ (Var(DP) ∪ F), and therefore

(Bz
def= P z

B) ∈ ΣDP . This shows thatΣDP satisfies condition (II). Therefore, our ef-
fectively constructed candidateΣDP is indeed an encoding[[DP]]. ut

We now state the correctness of the encoding up to (strong) bisimilarity. The the-
orem actually says that parametric definitions are not more expressive than constant
definitions.

Theorem 2. Given a processP ∈ CCSp with associated set of definitionsDP , any
encoding[[P]] with definition set[[DP]] satisfiesP ∼k

p [[P]]. ut
Remark 4.It follows from Remark 1 and the above theorem that injective relabelings
are redundant in CCS (up to strong bisimilarity).

Now, [3] shows that divergence is undecidable for CCSp. Furthermore, we also showed
that the above encoding is computable. Since divergence is invariant under strong bisim-
ilarity, we can then conclude the following result.

Theorem 3. The divergence problem is undecidable for CCSk . ut

4.2 Encoding CCSk into CCSp

Intuitively, if the free names are treated dynamically, then they could equivalently be
passed as parameters. Thus, we can define the encoding as follows:

Definition 6. GivenP ∈ CCSk with a set of associated constant definitions of the form

A
def= PA and given a strict total order over names, the encoding ofP into CCSp is a

process[[P]] with associated set of definitions{
A(x1, . . . , xn) def= [[PA]] | (A def= PA) ∈ Dp ∧ fn(PA) = {x1, . . . , xn}

}
.

The encoding function[[·]] : Prock → Procp, which is an homomorphism over all other
operators, satisfies[[A]] = A(x1, . . . , xn) wherefn(PA) = {x1, . . . , xn}. Both in defi-
nitions and in invocations, all lists of argument names are assumed sorted. ut
(By homomorphism we mean that[[P ‖ Q]] = [[P]] ‖ [[Q]] and similarly for the other
operators.)

The following theorem states that constant definitions with dynamic scoping are not
more expressive than parametric definitions with static scoping.

Theorem 4. For every processP in CCSk , [[P]] ∼p
k P . ut

4.3 Encoding CCSµ into CCS!

The main idea behind this encoding is to associate a replicated process!x.P ′ to each
occurrence of the recursion operator,µX.P . In the past a similar approach has been
used to show that, in theπ-calculus, recursion can be expressed using replication [13].
While in [13] eachπ-calculus process and its encoding happen to be strongly bisimilar,
this is not the case for CCSµ. Although in general a CCSµ process is only weakly
bisimilar to its encoding, we show that divergence properties are always preserved.

Our definition assumes that process variables are indexed byI, i.e.{Xi | i ∈ I}:
Definition 7. Let [[·]] : Procµ → Proc! be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined
as follows:

[[Xi]] = xi.0
[[µXi.P]] = (!xi.[[P]] ‖ xi.0)\xi

where the names{xi | i ∈ I} are fresh. ut
The freshness condition on the variablesxi is meant to guarantee that every time we
apply[[P]], P mentions none of them.

Remark 5.The above encoding would not work had we adopted dynamic scoping in
the Rule REC for CCSµ (see Remark 2). TheµX.P in Example 1 actually gives us a
counter-example. ut
The following example illustrates why a CCSµ process may not be strongly bisimilar
to its encoding.

Example 5.Consider the CCSµ processP = µX.a.X with corresponding encoding
[[P]] = (!x.a.x̄ ‖ x̄)\x. They are clearly not strongly bisimilar, asP has the single trace
µX.a.X

a→µ µX.a.X
a→µ µX.a.X . . . while [[P]] only produces(!x.a.x̄ ‖ x̄)\x τ→µ

(!x.a.x̄ ‖ a.x̄)\x a→µ (!x.a.x̄ ‖ x̄)\x τ→µ . . . Observe that each transition in the first
trace uses rule REC, and that every other step in the second one reflects explicitly, as an
internal transition, each recursive call. ut

In comparing CCSµ and CCS!, we find it convenient to consider yet another variant
calculus, as an intermediate step, which we call CCSτ : Its syntax agrees entirely with

CCSµ’s (i.e.Procτ = Procµ), and its semantics differs from CCSµ’s only by a replace-
ment of REC with a rule in which the unfolding performs aτ action—hence the name
CCSτ :

REC’
µX.P

τ→τ P [µX.P/X]

Example 6.Consider processP as given in Example 5 but this time within CCSτ

(which is possible thanks toProcτ = Procµ). The only trace exhibited byP is:
µX.a.X

τ→τ a.(µX.a.X) a→τ µX.a.X
τ→τ . . . and thereforeP ∼!

τ [[P]] . ut
In fact, the property illustrated by the previous example holds in general, as stated

in the following theorem. The proof is essentially an adaptation of the one given by
Sangiorgi and Walker in [13].

Theorem 5. If P ∈ CCSτ , thenP ∼!
τ [[P]]. ut

Because strong bisimilarity is known to preserve expressiveness and divergence, the
above theorem lets us reduce the problem of studying the encoding to investigating the
relation between CCSτ and CCSµ.

We define a binary relationR ∈ (Procµ×Procτ) as follows:P RQ iff there exist
n ≥ 0 such thatP = Q0

τ→τ Q1
τ→τ . . . Qn = Q, where each derivationQi

τ→τ Qi+1

involves the application of rule REC’.
We show that besides being a weak bisimulation relation,R also relates processes

with equal divergence properties. As a first step, notice that each
α→µ transition can

be mimicked byR-related processes in CCSτ after possibly someτ transitions (which
correspond to recursive invocations involving rule REC’).

Lemma 2. If P RQ andP
α→µ P ′ then there existsQ′ such thatQ(τ→τ)∗ α→τ Q′ and

P ′ R Q′. ut
Remark 6.Notice that we have restricted our attention to processes where all variables
are guarded. Without this assumption divergence would not be preserved by our encod-
ing. For example,µX.X diverges in CCSτ but deadlocks in CCSµ. ut

Lemma 3. If P R Q and there is a derivation ofQ
α→τ Q′ which does not involve the

application of rule REC’, then there existsP ′ s.t.P
α→µ P ′ andP ′ R Q′. ut

To show that two identical processes, interpreted in CCSµ and resp. CCSτ , are
weakly bisimilar we need to show two simulations: One is provided by Lemma 2 and
the other follows by a combination of Lemma 3 and the definition ofR (to cover the
case in whichQ

α→τ Q′ does use rule REC’). The result is summarized by our next
theorem.

Theorem 6. Given a processP in CCSµ, P ≈τ
µ P . ut

Observe that this is still not enough to show thatR relates processes with the same
divergence properties. IfP RQ andQ diverges, Lemma 3 is not strong enough to show
thatP may execute a singleτ transition. However, it turns out thatQ cannot diverge by
executing only recursive calls (again, a result of our assumptions on guarded summation

and guarded recursion; see Remark 6 and [6]). So, if after some finite execution trace,
Q performs aτ transition that does not involve REC’, we can apply Lemma 3 to deduce
thatP may also perform aτ transition. Since this process can be repeated endlessly it
must be concluded that divergence in CCSτ forces divergence in CCSµ. The converse
is an easy consequence of Lemma 2. That is, we have shown:

Proposition 1. For P ∈ CCSµ, P (τ→µ)ω iff P (τ→τ)ω. ut
Our journey from CCSµ to CCS! through CCSτ has rendered the following result.

Corollary 1. For P ∈ Procµ, P ≈!
µ [[P]]. Moreover,P diverges iff[[P]] diverges. ut

From the above corollary, the fact that the encoding is computable, and the result of
[3] showing that divergence is decidable for CCS! we conclude the following:

Theorem 7. The divergence problem is decidable for CCSµ. ut

4.4 Encoding CCS! into CCSµ

Except for the syntax and our restriction to guarded recursion, this encoding is essen-
tially that given in [13] for theπ-calculus.

Definition 8. Let [[·]] : Proc! → Procµ be the encoding function that is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise defined
as follows:[[!P]] = µX.([[P]] ‖ τ.X). ut

In fact, the proof of the following theorem follows that in [13].

Theorem 8. For P ∈ Proc!, P ≈µ
! [[P]]. ut

Observe that, because of our restriction to guarded recursion, the encoding does not
preserve divergence. For instance, ifP =!0 thenP is deadlocked in CCS!; but

[[P]] = µX.(0 ‖ τ.X) τ→µ 0 ‖ µX.(0 ‖ τ.X) τ→µ 0 ‖ 0 ‖ µX.(0 ‖ τ.X) τ→µ

5 Concluding Remarks

We studied the relative expressiveness (w.r.t. weak bisimilarity) and the decidability
of divergence for some CCS-like calculi. The calculi differ on the constructs used to
express infinite behavior and on the treatment of scoping of channel names; the finite
core being the same. We showed that parameters can be removed from recursive defi-
nitions without loss of expressiveness provided dynamic name scoping is applied. We
also showed that the expressiveness of recursive expressions with static scoping corre-
sponds precisely to that of replication. We partitioned the calculi into two groups: For
one, divergence is undecidable (i.e., constant and parametric definitions), whereas it is
decidable for the other (i.e., replication and recursive expressions with static scoping).
Figure 1, in the Introduction, illustrates these results.

As a consequence of our results, we proved that a substantial family of relabelings,
the injective ones, is redundant in CCS (see Remark 4). We also showed that a slightly
different interpretation of Rule REC, namely performing also nameα-conversions in
substitutions, can render decidable (w.r.t. divergence) an otherwise undecidable calculus
(see Remark 2). We illustrated that CCS exhibits dynamic name scoping and that it does
not preserveα-equivalence.

Related Work.Most of the related work was already discussed in the Introduction.
The most closely related work is [3] which shows the (un)decidability of divergence
for CCSp and CCS!. Here we extend these results to the corresponding equally expres-
sive calculi. The work on ECCS [5], perhaps the most immediate predecessor of the
π-calculus, advocates static scoping of names. In contrast, the work on CHOCS [14]
advocates dynamic name scoping in the context of higher-order CCS. Furthermore, the
CCS variant in [10] uses statically scoped parametric definitions while the Edinburgh
Concurrency Workbench tool [4] uses dynamic scoping for parametric definitions.

The work in [1] shows that that in CCS, non-injective relabelings lead to a sensible
different treatment of asynchrony w.r.t the injective ones. We believe that it would be
interesting to investigate more qualitative distinctions for these two kinds of relabelings.

Acknowledgments.We are indebted to Maurizio Gabbrielli, Jean-Jacques L´evy, Ser-
gio Maffeis, Catuscia Palamidessi, Joachim Parrow, Rosario Pugliese and Davide San-
giorgi, for insightful discussions on the topics of this paper.

References

1. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous
processes.Information and Computation, 172(2):139–164, 2002.

2. N. Busi, M. Gabbrielli, and G. Zavattaro. The expressive power of replication in CCS. Draft,
2003.

3. N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive definitions in channel
based calculi. InICALP’03, volume 2719 ofLNCS, pages 133–144. Springer Verlag, 2003.

4. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics based
tool for the verification of concurrent systems.ACM Transactions on Programming Lan-
guages and Systems, 15(1):36–72, 1993.

5. U. Engberg and M. Nielsen. A calculus of communicating systems with label-passing. Tech-
nical report, University of Aarhus, 1986.

6. P. Giambiagi, G. Schneider, and F.D. Valencia. On the expressiveness of CCS-
like calculi. Technical report, Uppsala University, 2004. Postscript available from
http://www.sics.se/fdt/publications/GSV-Expr-TR04.ps .

7. S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. InEX-
PRESS’03, 2003.

8. R. Milner. Calculi for synchrony and asynchrony. Technical Report CSR-104-82, University
of Edinburgh, 1982.

9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
10. R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge University

Press, 1999.
11. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous

π-calculus. In ACM Press, editor,POPL’97, pages 256–265, 1997.
12. J. Parrow. An introduction to theπ-calculus. InHandbook of Process Algebra, pages 479–

543. Elsevier, 2001.
13. D. Sangiorgi and D. Walker.Theπ−calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.
14. B. Thomsen. A calculus of higher order communicating systems. InPOPL’89, ACM, pages

143–154, 1989.

