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Abstract. In this paper we shall survey and discuss in detail the work on
the relative expressiveness of recursion and replication in various process
calculi. Namely, CCS, the mw-calculus, the Ambient calculus, Concurrent
Constraint Programming and calculi for Cryptographic Protocols. We
shall give evidence that the ability of expressing recursive behaviour via
replication often depends on the scoping mechanisms of the given calculus
which compensate for the restriction of replication.

1 Introduction

Process calculi such as CCS [Mil89], the 7-calculus [Mil99] and Ambients [CG9S]
are among the most influential formal methods for modelling and analyzing the
behaviour of concurrent systems; i.e. systems consisting of multiple computing
agents, usually called processes, that interact with each other. A common fea-
ture of these calculi is that they treat processes much like the A-calculus treats
computable functions. They provide a language in which the structure of terms
represents the structure of processes together with an operational semantics to
represent computational steps. Another common feature, also in the spirit of the
A-calculus, is that they pay special attention to economy. That is, there are few
process constructors, each one with a distinct and fundamental role.
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For example, a typical process term is the parallel composition P | @Q, which
is built from the terms P and @ with the constructor | and it represents
the process that results from the parallel execution of the processes P and Q.
Another typical term is the restriction (va)P which represents a process P with
a private resource x—e.g., a location, a link, or a name. An operational semantics
may dictate that if P can reduce to (or evolve into) P’, written P — P’, then
we can also have the reductions P | Q@ — P’ | @ and (vz)P — (vax)P'.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process terms.
Two standard term representations of them are recursive process expressions and
replication.

Recursive process expressions are reminiscent of the recursive expressions used
in other areas of computer science, such as for example Functional Program-
ming. They may come in the form pX.P where P may have occurrences of X.
The process uX.P behaves as P with the (free) occurrences of X replaced by
1 X.P. Another presentation of recursion is by using parametric processes of the
form A(y,...,yn) each assumed to have a unique, possibly recursive, definition

Az, ..., zp) 4 P where the x;’s are pairwise distinct, and the intuition is that
A(y1,...,yn) behaves as its P with each y; replacing z;.

Replication, syntactically simpler than recursion, takes the form !P and it is
reminiscent of Girard’s bang operator; an operator used to express unlimited
number of copies of a given resource in linear-logic [Gir87]. Intuitively, ! P means
P | P | ---; an unbounded number of copies of the process P.

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other.
For example, the m-calculus was originally presented with recursive expressions
and later with replication [MPW92]|. The Ambient calculus was originally pre-
sented with replication and later with recursion [LS03]. This is reasonable as a
variant may simplify the presentation of the calculus or be tailored to specific
applications.

From the above intuitive description it should be easy to see that pX.(P | X)
expresses the unbounded parallel behaviour of !P. It is less clear, however,
whether replication can be used to express the unbounded behaviour of uX.P.
In particular, processes that allows for unboundedly many nested restrictions as,
for example, in pX.(vz)(P | X) which behaves as (vz)(P | (vz)(P | (va)(P |
-++))). In fact, the ability of expressing recursive behaviours via replication de-
pends on the particular process calculus under consideration. We shall see that
typically that scoping mechanisms such as restriction (or hiding) and name pass-
ing play a key role in the recursion vs replication expressiveness question.

The above discussion raises the issue of expressiveness. What does it mean for
one variant to be as expressive as another 7 The answer to this question is definite
in the realm of computability theory via the notion of language equivalence. In
concurrency theory, however, this issue is not quite settled.

One approach to comparing expressiveness of two given process calculus vari-
ants is by comparing them w.r.t. some standard process equivalence, say ~. If
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for every process P in one variant there is a @) in the other variant such that
Q@ ~ P then we say that the latter variant is at least as expressive as the former.

Another approach consists in telling two variants apart by showing that in
one variant one can solve some fundamental problem (e.g., leader election) while
in the other one cannot. It should be noticed that, unlike computability theory,
the capability of two variants of simulating Turing Machines does not imply
equality in their expressiveness. For example, [Pal97] shows that under some
reasonable assumptions the asynchronous version of the mw-calculus, which can
certainly encode Turing Machines, is strictly less expressive than the original
calculus.

In this paper, we shall survey and discuss the work on the relative expressive-
ness of recursion and replication in various process calculi. In particular, CCS,
the m-calculus, and the Ambient calculus. We shall begin with the w-calculus,
then CCS and then the Ambients calculus. For the simplicity of the presentation
we shall consider the polyadic variant of the m-calculus [Mil93]. Finally, we shall
also overview the work on this subject in related calculi such as tcc [SJG94]
and calculi for Cryptographic Protocols [HS05]|. This paper is the extended and
revised version of the survey in [PV05].

2 The Polyadic Pi Calculus: pm

One of the earliest discussions about the relative expressiveness between repli-
cation and recursion was in the context of the polyadic w-calculus [Mil93]; one
of the main calculi for mobility. It turns out that in this calculus replication is
just as expressive as recursion. This result is rather surprising since replication
seems such an elementary construct without much control power.

In what follows we shall introduce the polyadic w-calculus and the variants
relevant for this paper. The various CCS and Ambients variants will be presented
in the next sections as extension/restrictions of the polyadic m-calculus.

2.1 Finite Pi-Calculus

Names are the most primitive entities in the m-calculus. We presuppose a count-
able set of (port, links or channel) names, ranged over by x,y,.... For each
name x, we assume a co-name T thought of as complementary, so we decree that
T = x. We shall use [,I’,... to range over names and co-names. We use x to
denote a finite sequence of names x1xs - - - . The other entity in the 7-calculus
is a process. Process are built from names by the following syntax:

PQ,...=Y P | )P | P|Q (1)
el
o =Ty ‘ x(y)

where [ is a finite set of indexes.
Let us recall briefly some notions as well as the intuitive behaviour of the
various constructs.
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The construct ), ; «;.P; represents a process able to perform one-but only
one—of its «;’s actions and then behave as the corresponding P;. The actions
prefixing the P;’s can be of two forms: An output Ty and an input z(y). In
both cases x is called the subject and y the object. The action Ty represents the
capability of sending the names y on channel z. The action z(y), with no name
occurring twice in y, represents the capability of receiving the names on channel
x, say z, and replacing each y; with z; in its corresponding continuation.

Furthermore, in z(y).P the input actions binds the names y in P. The other
name binder is the restriction (vz)P which declares a name x private to P, hence
bound in P. Given @) we define in the standard way its bound names bn(Q) as
the set of variables with a bound occurrence in @, and its free names fn(Q) as
the set of variables with a non-bound occurrence in Q.

Finally, the process P | @ denotes parallel composition; P and @ running in
parallel.

Convention 1. We write the summation as 0 if |I| = 0, and drop the <), ;”
if |[I| = 1. Also we write ay.Py + -+ + ap. Py, for Zie{l,...,n} o;.P;.

For simplicity, we omit “()” in processes of the form x().P as well as the
“07 in processes of the form x(y).0. We use (vaxix2---2,)P as an abbreviation
(voy)(vag) -+ (van)P and [[;c; P, where I = {i1,...,in}, as an abbreviation
of P, | -+ | Pi, . Furthermore, Po, where 0 = {z1/y1,...,2n/Yn}, denotes
the process that results from the substitution in P of each z; for y;, applying

a-conversion wherever necessary to avoid captures.

Reduction Semantics of Finite Processes. The above intuition about proc-
ess behaviour is made precise by the rules in Table 1. The reduction relation
— is the least binary relation on processes satisfying the rules in Table 1. The
rules are easily seen to realize the above intuition.

We shall use —™ to denote the reflexive, transitive closure of —. A re-
duction P — (@ basically says that P can evolve, after some communication
between its subprocesses, into ). The reductions are quotiented by the structural
congruence relation = which postulates some basic process equivalences.

Definition 1 (Structural Congruence). Let = be the smallest congruence
over processes satisfying the following axioms:

1. P=Q if P and Q differ only by a change of bound names (a-equivalence).
2. P|0=P P|Q=Q|P.P|(Q|R=(P]|Q]|R

3. If x & fn(P) then (vz)(P | Q) =P | (vz)Q

4. (vx)0 =0, (vz)(vy)P = (vy)(vz)P.

2.2 Infinite Processes in the Polyadic Pi-Calculus

In the literature there are at least two alternatives to extend the above syntax
to express infinite behavior. We describe them next.
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Table 1. Reductions Rules

REACT:
(ot TzrznP) | (oot 2y 9a)Q) — P | Q{z1/y1, s 2a/yn}
P — P P —P
PAR: - o P10 RES: P — o)

P=P —Q=Q

STRUCT: J—

Pi with Parametric Recursive Definitions: pmp

A typical way of specifying infinite behavior is by using parametric recursive def-
initions [Mil99]. In this case we extend the syntax of finite processes (Equation 1)
as follows:

PQ,....=...| A(y1,---,Yn) (2)
Here A(yi,...,yn) is an identifier (also call, or invocation) of arity n. We
assume that every such an identifier has a unique, possibly recursive, definition
Az, ..., 2p) 4* P where the x;’s are pairwise distinct, and the intuition is that
A(y1,...,yn) behaves as its P with each y; replacing x;. We shall presuppose
finitely many such definitions. Furthermore, for each A(z1,...,z,) P owe
require
(P) C{z1,..., s} (3)

The reduction semantics of the extended processes is obtained simply by ex-
tending the structural congruence = in Definition 1 with the following axiom:

AW, oyn) = Plys, . yn/a1, .. xn] if Az, ... 20) = P. (4)

As usual Ply;...yn/x1 ... 2] results from syntactically replacing every free
occurrence of x; with y; and by applying name a-conversion, wherever needed
to avoid capture.

We shall use pmp to denote the polyadic w-calculus with parametric recursive
definitions with the above syntactic restrictions.

Pi with Replication: pm,

A simple way of expressing infinite behaviour in the 7-calculus is by using repli-
cation. We shall use pm, to denote the polyadic m-calculus with replication.

In the pm case, the syntax of finite processes (Equation 1) is extended as
follows:

PQ,....=...]P. (5)
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Intuitively !P behavesas P | P | ... | P | !P; unboundedly many copies
of P.

The reduction semantics for pmy is obtained simply by extending the structural
congruence = in Definition 1 with the following axiom:

P = P | IP. (6)

Barbed Bisimilarity

We shall often state expressiveness results by claiming the existence of a process
in one calculus which is equivalent to some given process in another calculus.
For this purpose, here we recall a standard way of comparing processes. We shall
use pm to denote the calculus with replication.

Let us begin by recalling a basic notion of observation for the m-calculus.
Intuitively, given | = z (I = T) we say that (the barb) I can be observed at P,
written P |;, iff P can have an input (output) with subject z. Formally,

Definition 2 (Barbs). Define P |z iff 3z,y,R: P = (vz)(zy.Q | R)
and x is not in z. Similarly, P |, iff 3z,y,Q,R: P = (vz)(z(y).Q | R) and
x is not in z. Furthermore, Pl iff 3Q : P —* Q |; .

Let us now recall the notion of barbed (weak) bisimilarity and congruence. Re-
member that a process contexrt C' in a given calculus is an expression with a hole
[[] such that placing a process in the hole produces a well-formed process term
in the calculus. If C is a context and P a process, we write C[P] for the process
obtained by replacing the [-] in C by P.

For technical purposes, we shall use pmp1 as the calculus whose process syn-
tax arises from extending the syntax of finite processes (Equation 1) with both
replication and recursive definitions. The reduction semantics of pmp;y of the
extended processes is obtained by extending the structural congruence = in Def-
inition 1 with the axioms in Equations 4 and 6.

Definition 3 (Barbed Bisimilarity). A (weak) barbed-simulation is a binary
relation R satisfying the following: (P, Q) € R implies that:

1. if P — P then3Q' : Q —" Q' AN (P',Q") € R.
2. if P|; then Q.

The relation R is a barbed bisimulation iff both R and its converse R™' are
barbed -simulations. We say that P and Q are (weak) barbed bisimilar, written
P~ Q, iff (P,Q) € R for some barbed bisimulation R. Furthermore, we say
that P and @ are barbed congruent, written P =~ @, iff for each context C' in
pmo1, C[P] ~ C[Q)].

2.3 Recursive Definitions vs. Replication in Pi

Here we recall a result stating that the variants pm, and pmp can be regarded as
being equally expressive w.r.t (weak) barbed congruence = given in Definition 3.
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More precisely, the expressiveness criteria w.r.t barbed congruence we shall use
in this section can be stated as follows.

Criteria 2. We say that a m-calculus variant is as expressive as another iff for
every process P in the second variant one can construct a process [P] in the
first variant such that [P] is (weakly) barbed congruent to P.

All the results presented in this section are consequences of the expressiveness
results in [SWO1].

From pmp to pm, and Back: Encodings

We shall now provide encodings from one variant into the other and state their
correctness. We shall say that a map [] is a homomorphism for parallel com-
position iff [P | Q] = [P] | [Q]. The notion of homomorphism for the other
operators is defined analogously.

Definition 4. Let [-]o be the map from pmp processes and recursive definitions
into pmy processes given by:

def

[Ai(zi) = PiJo =" ai(z:).[Pi]o,
[4i(yi)lo =iy,
and for all other processes [-]o is a homomorphism.

Let P be an arbitrary pmp process with { Aj(x;) def Py, Ay () def P, }

as the set of recursive definitions of its process identifiers. The encoding of P,
denoted [P], is defined as

[P]=(ar--a)([Plo | ] [Ai(z:) = Pio)

ie{l,...,n}
where ay,...,a, & fn(P).

Intuitively, each A(y), with A(x) et P, is translated into a particle ay which
excites a copy of P (with y substituted for ) by interacting with a replicated
resource, a provider of instances of P, of the form ! a(x).[P]. The correctness of
the encoding is stated below.

Theorem 3. Let [-] be the encoding in Definition 4. For each P in pmp, P =~
[P]-

Let us now give an encoding of pm, into pmp. The idea is simple: Each P is

translated into a process Ap, recursively defined as Ap(z) = P | Ap(x) which

can provide an unbounded number of copies of P.

Definition 5. Let [-]o be the map from pm, processes into pmp processes given
by:

def

['P] = Ap(x) where Ap(x) = P | Ap(x) and fn(P) C {x}

and for all other processes [-]o is a homomorphism.
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We can now state the correctness with respect to barbed congruence.

Theorem 4. Let [-] be the encoding in Definition 5. For each P in pm, P ~

[P]-

2.4 Recursion vs. Replication in the Private Pi Calculus

The Private m-calculus [SWO01] is a sub-calculus with a restricted form of com-
munication. The idea is that only bound-outputs are allowed; i.e, outputs of the
form (vz)ZTz.P. Such bound-outputs are usually abbreviated as Z(z) assuming
that no name occur more than once in z.

The above syntactic restriction results in a pleasant symmetry between inputs
and outputs in that they both can be seen as binders. Moreover, the restriction
ensures that a-conversion is the only kind of substitution required in the cal-
culus. In fact, the rule REACT in Table 1, which applies a substitution to the
continuation of the input, can be replaced by the following rule:

T(2).P | x(2).P — (v2)(P | Q) (7)

Let us denote by Privpm, the calculus that results from applying to pm, the
syntactic restriction mentioned above. The Privpmp calculus is analogously de-
fined as a restriction on pmp except that we need an extra-condition to ensure
that a-conversion is the only substitution needed in the calculus: In every invo-
cation A(z), no name may occur more than once in the vector z.

Now, if we wish an encoding [-] from Privpm, into Privpmp such that [P] ~
P, we can simply take that of Definition 5 restricted to the Privpm, case. As
shown below, however, the above restriction makes impossible the existence of
an encoding from Privpmp into Privpm,.

Consider for example the process P = A(zy) where

The process P, in parallel with a suitable R, can perform a sequence of actions
where the object of an action is the subject of the next one. Sequences of this
form are called logical threads [SWO1]. Moreover, P can perform the infinite
logical thread Zg(z1).z1(22). . . ..

Interestingly, as an application of the type theory for Privpm,, the results
in [SWO01] state that no process in Privpm, can exhibit an infinite logical thread.
Together with P above, this property of Privpm, can be used to prove the fol-
lowing result.

Theorem 5. There is a process P in Privpmp such that P % Q for every @ in
Privpm,.

Therefore, we cannot have an expressiveness result of the kind we have for pmp
and pm, in the previous section. Le., there is no encoding [-] from Privpmp proc-
esses into Privpm, processes such that [P] ~ P.
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3 The Calculus of Communicating Systems (CCS)

Undoubtedly CCS [Mil89], a calculus for synchronous communication, remains
as a standard representative of process calculi. In fact, many foundational ideas
in the theory of concurrency have sprung from this calculus. In the following we
shall consider some variants of CCS without relabelling operations.

3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes
of the Polyadic w-calculus by requiring all inputs and outputs to have empty
subjects only. Intuitively, this means that in CCS there is no sending/receiving
of links but synchronization on them. (Notice that the ability of transmitting
names is used for the encoding of recursion into replication in Definition 4.)
More, precisely, the syntax of finite CCS processes is obtained by replacing the
second line of Equation (1) with

a:=T |x ‘7’ (8)

where 7 represents a distinguished action; the silent action, with the decree that
T=T.

The (unlabelled) reduction relation — for finite CCS processes can be ob-
tained from that for the 7-calculus given in the previous section. However, since
a-conversion does not hold for one of the CCS variants we consider next, we
find it convenient to define — in terms of labelled reduction of CCS given in

Table 2. A transition P —— @ says that P can perform an action o and evolve

into ). The reduction relation is then defined as NN

3.2 Infinite CCS Processes

Both recursion and replication are found in the CCS literature in the forms we
saw for the polyadic m-calculus. Nevertheless, as recursion in CCS comes in other
forms. Some forms of recursion exhibit dynamic name scoping while others, as
in the 7-calculus, have static name scoping. By dynamic scoping we mean that,
unlike the static case, the occurrence of a name can get dynamically (i.e., during
execution) captured under a restriction. Surprisingly, this will have an impact
on their relative expressiveness.

In the literature there are at least four alternatives to extend the above syntax
to express infinite behavior. We describe them next.

CCS with Parametric Definitions: CCS,

The processes of CCS;, calculus are the finite CCS processes plus recursion using
parametric definition exactly as in pmp. So in particular we have the restriction
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Table 2. An operational semantics for finite CCS

PP
SUM _ ifjel RES _ if a ¢ {z,7)
>ier @i — P (vz)P — (vx)P'

a f [ / P~ p a /

PAR, — L —7F PAR, — 29 coy L= €0

PIQ-=P|Q PlQ-=P|Q PlQ=P |Q
P-5Q
REDm

on parametric definitions in Equation 3. The calculus is the variant in [Mil99].
The rules for CCS;, are those in Table 2 plus the rule:

Palyi, .. yn/T1,. .. 2n] — P’ .
CALL if Az, .. a0) E Py (9)

Ay, -, Yn) 2, p

As usual Plyy ...yn/x1 ... xy,] results from syntactically replacing every free oc-
currence of x; with y; renaming bound names, i.e., name a-conversion, wherever
needed to avoid capture. (Of course if n =0, Plyy ...yn/x1...25] = P).

As shown in [Mil99] in CCS; we can identify process expression differing only
by renaming of bound names; i.e., name a-equivalence—hence (vz)P is the same

as (vy)Ply/x].

Constant Definitions: CCS,

We now consider the CCS alternative for infinite behavior given in [Mil89]. We
refer to identifiers with arity zero and their corresponding definitions as constant
and constant (or parameterless) definitions, respectively. We omit the “( )” in
A().

Given A & P, requiring all names in fn(P) to be formal parameters, as we did
in pmp (Equation 3), would be too restrictive—P would not have visible actions.
Consequently, let us drop the requirement to consider a fragment allowing only
constant definitions but with possible occurrence of free names in their bodies.
The rules for this fragments are those of CCS;. We shall refer to this fragment
as CCSk. In this case Rule CALL, which for CCSy we prefer to call CONS, takes
the form

P i) P/ def
CONS —— ifA=P (10)
AP
i.e., there is no a-conversion involved; thus allowing name captures. As illustrated
in the next section, this causes scoping to be dynamic and a-equivalence not to
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hold. This is also the reason we cannot just take the reduction relation — of the
m-calculus restricted to CCSk processes as such a relation assumes a-conversion
due to the structural rule.

Recursion Expressions: CCS,,

Hitherto we have seen process expressions whose recursive behavior is specified
in an underlying set of definitions. It is often convenient, however, to have ex-
pressions which can specify recursive behavior on their own. Let us now extend
the finite CCS processes to include such recursive expressions. The extended
syntax is given by:

PQ,...:.=...| X | uX.P (11)

Here pX.P binds the occurrences of the process wvariable X in P. As for
bound and free names, the bound variables of P, bu(P) are those with a bound
occurrence in P, and the free variables of P, fv(P) are those with a non-bound
occurrence in P. An expression generated by the above syntax is said to be a
process (expression) iff it is closed (i.e., it contains no free variables). The process
1 X.P behaves as P with the free occurrences of X replaced by uX.P. Apply-
ing variable a-conversions wherever necessary to avoid captures. The semantics
uX.P is given by the rule:

P[uX.P/X] - P!
pX.P -2 P/ (12)

REC

We call the resulting calculus CCS,,. From [EN86] it follows that in CCS,, we
can identify processes up-to name a-equivalence.

Remark 1 (Static and Dynamic Scope: Preservation of a-Equivalence).
An interesting issue of the substitution [pX.P/X] applied to P is whether it
also requires the renaming of bound names in P to avoid captures (i.e., name
a-conversion). Such a requirement seems necessary should we want to identify
process up-to a-equivalence. In fact, the requirement gives CCS,, static scope of
names. Let us illustrate this with an example.

Ezample 1. Consider uX.P with P = (z | (vz)(Z.t | X)). First, let us assume
we perform name a-conversions to avoid captures. So, [uX.P/X] in P renames
the bound z by a fresh name, say z, thus avoiding the capture of P’s free x in
the replacement: I.e,

PuX.P/X] = (x| (v2)(2.t | pX.P)) = (z | (v2)(2t | pX.(x | (va)(@t | X))))

The reader may care to verify (using the rules in Table 2 plus Rule REC) that
t will not be performed; i.e., there is no pX.P -5 P; =2 .. s.t. a; = t.

Now let us assume that the substitution makes no name a-conversion, thus
causing a free occurrence of z in P, shown in a box below, to get bound, dynam-
ically in the scope of the outermost restriction: L.e.,

P[uX.P/X] = (x| (va)(z.t | uX.P)) = (& | (va)(@.t | uX.(] | (var) (.t | X)))).
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The reader can verify that now ¢ can eventually be performed. Such an execution
of t cannot be performed by puX.Q where Q is (z | (vz)(Z.t | X)) i.e, P with
the binding and bound occurrence of x syntactically replaced with z. This shows
that name a-equivalence does not hold in this dynamic scope case. ]

It should be pointed out that using recursive expressions with no name a-
conversion is in fact equivalent to using instead constant definitions as in the
previous calculus CCSy. In fact, in presenting CCS, [Mil89] uses alternatively
both kinds of constructions; using Rule REC, with no name a-conversion, for
one and Rule CONS for the other. For example, by taking A 4 P with P as
in Example 1 one can verify that in CCSy, A exhibits exactly the same dyna-
mic scoping behavior illustrated in the above example. So, name «a-equivalence
does not hold in CCS. Notice that the above observations imply some semantics
differences between CCS and the m-calculus. The former does not satisfy name
a-equivalence because of the dynamic nature of name scoping—see Example 1.
The latter uses static scoping and satisfies a-equivalence. ]

Replication: CCS;

The processes of CCS; are those finite CCS processes plus replication exactly
as in pm . This variant is presented in [BGZ03]. In the context of CCS, this
operators are studied in [BGZ03,BGZ04, GSV04].

The operational rules for CCS; are those in Table 2 plus the following rule:

P | PSP

REP =

P = p (13)

From [Mil99] we know that in CCS, one can identify processes up to name
a-equivalence.

3.3 Expressiveness Results for CCS

In this section we report results from [BGZ03,BGZ04, GSV04] on the expres-
siveness for the CCS variants above.

The following theorem summarizes the expressiveness of the various calculi
and it is an immediate consequence of the results in [BGZ03] and [GSV04]. As
for the m-calculus we compare expressiveness w.r.t. barbed congruence with the
obvious restriction to CCS contexts (see Criteria 2).

Theorem 6. The following holds for the CCS variants:

1. CCS s exactly as expressive as CCS, w.r.t barbed congruence.

2. CCS, 1is exactly as expressive as CCS w.r.t barbed congruence.

3. The divergence problem (i.e., whether a given process P has an infinite se-
quence of — reductions) is undecidable for the calculi in (1) but decidable
for those in (2).
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The results (1-3) are summarized in Figure 1. Let us now elaborate on the
significance and implications of the above results. A noteworthy aspect of (1)
is that any finite set of parametric (possibly mutually recursive) definitions can
be replaced by a set, finite as well, of parameterless definitions . This arises
as a result of the restricted nature of communication in CCS (e.g., absence of
mobility). Related to this result is that of [Mil89] which shows that, in the
context of value-passing CCS, a parametric definition can be encoded using an
set of constant definitions and infinite sums. However, this set is infinite.

Regarding (1) some readers may feel that given a process P with a parametric
definition D, one could simply create as many constant definitions as permuta-
tions of possible parameters w.r.t. the finite set of names in P and D. This would
not work for CCSp; the unfolding of call to D within a restriction may need a-
conversions to avoid name captures, thus generating new names (i.e., names not
in P nor D) during execution.

Regarding (2), we wish to recall the encoding [-] of CCS,, into CCS; which
resembles that of Definition 4 in the context of the w-calculus.

Definition 6. The encoding [-] of CCS, processes into CCS is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise
defined as follows:

Xl ==

[nXi.P] = (va) (i [P] | i)

where the names x;’s are fresh.

The above encoding is correct w.r.t. barbed congruence, i.e., [P] ~ P. It is
important to notice that it would not be correct had we adopted dynamic scoping
in the Rule REC for CCSy (see Remark 1). The uX.P in Example 1 actually
gives us a counter-example.

Another noteworthy aspect of the results mentioned above is the distinction
between static and dynamic name scoping for the calculi under consideration.
Static scoping renders the calculus with recursion decidable, w.r.t. the diver-
gence problem, and no more expressive than the calculus with replication. In
contrast, dynamic scoping renders the calculus with constant definitions unde-
cidable and as expressive as that with parametric definitions. This is interesting
since as discussed in Section 3.2 the difference between the calculi with static
or dynamic scoping is very subtle. Using static scoping for recursive expressions
was discussed in the context of ECCS [EN86], an extension of CCS whose ideas
lead to the design of the m-calculus [Mil99].

It should be noticed that preservation of divergence is not a requirement
for equality of expressiveness w.r.t barbed congruence since barbed congruence
does not preserve divergence. Hence, although the results in [BGZ03] prove that
divergence is decidable for CCS; (and undecidable for CCSy), it does not fol-
low directly from the arrows in Figure 1 that it is also decidable for CCS,.
The decidability of the divergency problem for CCS,, is proven in [GSV04].

Finally, it is worth pointing out that, as exposed in [MPO03|, decidability of
divergence does not imply lack of Turing expressiveness. In fact a remarkable
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Undecidable

Decidable

|

Fig. 1. Classification of CCS variants. An arrow from X to Y indicates that for ev-
ery P in Y one can construct a process [P] in X which is barbed congruent to P.
(Un)decidability is meant w.r.t. the existence of divergent computations.

result in [BGZ04] states that CCS, is Turing-complete. We shall discuss this at
length in the following section.

3.4 CCS; in the Chomsky Hierarchy

The work in [BGZ04] shows that CCS; is Turing powerful by encoding Random
Access Machines (RAM) in CCS;. The encoding is said to be non-deterministic,
or non-faithful because it may introduce non-terminating computations which
do not correspond to the expected behaviour of the modeled machine. Further-
more, the authors in [BGZ04| also show the non-existence of deterministic (or
faithful) encodings of Turing Machines—i.e., encodings which do not exhibit such
additional non-terminating computations.

In [ADNVO07] the authors study the expressiveness of CCS; w.r.t. the existence
of faithful encodings of models of computability strictly less expressive than
Turing Machines. Namely, (non-deterministic) Linear-bounded, Pushdown and
Finite-State Automata.

In this section we shall single out the fundamental non-deterministic element
for the Turing-expressiveness of CCS, shown in [BGZ04]. Following [ADNV07]
we define a class CCS;“ of those processes which do not exhibit such kind of
non-determinism and discuss their expressiveness w.r.t the Chomsky Hierarchy.
First we need a little notation.

Notation 7. Define =, with s = ai....a, € L*, as

() 2 () () 2 ()
For the empty sequence s = €, == is defined as (—)*.
We say that a process generates a sequence of non-silent actions s if it can per-
forms the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 7 (Sequence and language generation). The process P gener-
ates a sequence s € L* if and only if there exists Q such that P == Q and Q-
for any a € Act. Define the language of (or generated by) a process P, L(P), as
the set of all sequences P generates.
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Strong non-termination plays a fundamental role in the expressiveness of CCS;.
We borrow the following terminology from rewriting systems:

Definition 8 (Termination). We say that a process P is (weakly) terminating
(or that it can terminate) if and only if there exists a sequence s such that P
generates s. We say that P is (strongly) non-terminating, or that # cannot
terminate if and only if P cannot generate any sequence.

As previously mentioned, [BGZ04] provides an encoding [-] from Random Ac-
cess Machines (RAM) into CCS;. The encoding is called non-deterministic in the
sense that given a machine M, [M] may evolve into states (processes) which do
not correspond to any configuration of M. Nevertheless such states are guaran-
teed to be strongly non-terminating. Therefore, they may be thought of as being
configurations which cannot lead to a halting configuration in a non-deterministic
Turing machine M’ that computes the same function as M.

Now rather than recalling the full encoding of RAMs from [BGZ04], let us
use a simpler example which illustrates the same non-deterministic technique.
Below we encode a typical context sensitive language in CCS;.

Ezxample 2. Consider the following processes:

P = (ykl,kg,kg,ub,uc)(la | ko | Qa | Qv | Qo)
Qa ='kr.a.(ky | ks | up | uc)

Qv = k1.ks.ko.up.b s

Qc = ka.(luc.c | up.DIV)

where DIV is the non-terminating process (vw)(@w | !w.w). It can be verified
that L(P) = {a"b™c"}.

Intuitively, in the process P above, @, performs (a sequence of actions) a™ for
an arbitrary number n (and also produces n wuy’s). Then @} performs ™ for an
arbitrary number m < n and each time it produces b it consumes a u;. Finally,
Q. performs ¢™ and diverges if m < n by checking if there are u;’s that were not
consumed. a

The Power of Non-Termination. Let us underline the role of strong non-
termination in Example 2. Consider a run

P a™ b
Observe that the name uy is used in Q. to test if m < n, by checking whether
some up were left after generating 0. If m < n, the non-terminating process
DIV is triggered and the extended run takes the form

a”b"ce" T T
P — —_—— ...

Hence the sequence a™b™c™ arising from this run (with m < n) is therefore not
included in L(P).
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The tau move. It is crucial to observe that there is a 7 transition arising from
the moment in which ko chooses to synchronize with Q. to start performing the
c actions. One can verify that if m < n then the process just before that 7 tran-
sition is weakly terminating while the one just after is strongly non-terminating.

The non-deterministic technique of using non-terminating processes in com-
puting illustrated above is essentially the same given in [BGZ04] for encoding
RAM’s. Since we want to prevent the use of the above technique, we define a class
which avoids moving with a 7 transition from a terminating to a non-terminating
evolution.

Definition 9 (Weak Termination Preservation and CCS; ). A process
P is said to be (weakly) termination-preserving (after T moves) if and only if
whenever P == Q —— R:if Q is weakly terminating then R is weakly terminat-
ing. Henceforth we use CCS,* to denote the set of those CCS) processes which
are termination-preserving.

Let us now survey the expressiveness result w.r.t formal language generation (see
Definition 7) of the above termination-preserving class of processes CCS, .

Language expressiveness of CCS,; “. We assume that the reader is famil-
iar with the notions and notations of formal grammars. A grammar G can be
specified as a quad-tuple (X, N, S, P) where X' is the set of terminal symbols,
N is the set of non-terminals symbols, S the initial symbol and P the set of
production rules. The language of (or generated by) a formal grammar G, de-
noted as L(G), is defined as all those strings in X* that can be generated by
starting with the start symbol S and then applying the production rules in P
until no more non-terminal symbols are present. We recall also that in a strictly
decreasing expressive order, Types 0, 1, 2 and 3 in the Chomsky hierarchy corre-
spond, respectively, to unrestricted-grammars (Turing Machines), Context Sen-
sitive Grammars (Non-Deterministic Linear Bounded Automata), Context Free
Grammars (Non-Deterministic PushDown Automata), and Regular Grammars
(Finite State Automata).

The following theorem illustrated in Figure 2 classifies the expressiveness of
CCS;“ in the Chomsky Hierarchy.

Theorem 8. The following holds for the CCS,* wvariant:

1. For every Type 3 Grammar G we can construct a CCS,* process Pg such
that L(G) = L(Pg).

2. There exists a Type 2 Grammar G such that for every CCS;“ process Pg
L(G) # L(Pe).

3. For every CCS, ™ process Pg there exists o Type 1 Grammar G such that
L(Pg) = L(G).

Let us conclude this section by giving more details on the above classification
results. The first point of Theorem 8 follows from a rather straightforward trans-
lation from regular expressions.
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CSL

Fig. 2. CCS;“ in the Chomsky Hierarchy

The second one is based on a fundamental property of CCS;“: If P € CCS,
can perform an action c after zero or more steps then it can always perform it
after a number of steps which depends on the size of P. With the help of this
property one can prove that the Type 2 language a™b"c cannot be encoded in
CCS,~.

The last point follows from a CCS,;“ property on the number of 7 moves
needed to generate any given sequence of size n: It is linearly bounded. More
precisely, for every P € CCS;“, there exists a constant k such that if s =
aq ..oy € L(P) then there must be a sequence

P(==)m0 S5 (=)™ () S ()

with X7 ym; < kn. Using the above property, given P, one can define a non-
deterministic machine that simulates the runs of P using as many cells as the
total number of performed actions, silent or visible, multiplied by a constant
associated to P. Hence L(P) is by definition a Type 1 language.

4 The Mobile Ambients Calculus

The calculus of Mobile Ambients is a formalism for the description of distributed
and mobile systems in terms of ambients; i.e. a named collection of active proc-
esses and nested sub-ambients.

The work in [BZ04] studies the expressiveness of recursion versus replication in
Mobile Ambients. In particular, the authors of [BZ04] study the expressive power
of ambient mobility in the (Pure) Mobile Ambients variants with replication and
recursion.

4.1 Finite Processes of Ambients

The Pure Ambient Calculus focuses on ambient and processes interaction. Unlike
the m-calculus, it abstracts away from process communication.
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The syntax of the finite processes can be derived from those of the pr-calculus
by (1) introducing ambients, and the actions for ambient and processes inter-
action, (2) eliminating the action for process communication and (3) restricting
summations to have arity at most one. In summary, we obtain the following
syntax:

PQ,....=0 | aP | n[P] | )P | P|Q (14)
a:=1inzc | out T | open x

The intuitive behaviour of the ambient n[P] and « actions is better explained
after presenting the reduction semantics of Ambients. The intuitive behaviour
of the others constructs can be described exactly as in the m-calculus.

Reduction Semantics of Finite Processes. The reduction relation — for
Ambients can be obtained by adding the axiom (vn)(m[P]) = m[(vn)P]ifm #n
to the structural congruence in Definition 1 and the following rules for ambients
and process interaction to the rules of the pr-calculus in Table 1 (without the
REACT rule):

L nfin m.P | Q| | m[R] — m[n[P | Q] | R]
2. m[nfout m.P | Q]|R] — n[P | Q] | m[R)]
3. open n.P | n[Q] — P | Q

P—Q
4. n[P]— @)

Rules (1-3) describe ambients and their actions and Rule (4) simply says that
reduction can occur underneath ambients. Rule (1) describes how, by using the
in action, an ambient named n can enter another ambient named m. Similarly,
Rule (2) describes how an ambient named n can exit another ambient named m
by using the out action. Finally Rule (3) describes how a process can dissolve
an ambient boundary to access its contents by performing the open action over
the name n of the ambient.

4.2 Infinite Process of Ambients
Infinite behaviour in Ambients can be represented by using replication as in pm,
or recursive expressions of the form pX.P.

The MA, Calculus

The calculus MA, extends the syntax of the finite Ambients processes with !P. Its
reduction semantics — is obtained by adding the structural axiom !P = P | IP
to the structural axioms of finite Ambients processes.

The MA, Calculus

The calculus MA, extends the syntax of the finite Ambients processes with
recursive expression of the form pX.P exactly as in CCS, (Section 3.2). Its
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reduction semantics — is obtained by adding the structural axiom puX.P =
P[puX.P/X] to the structural axioms of finite Ambients processes.

Notice that the issue of the substitution [uX.P/X] applied to P we discussed
in Section 3.2 arises again: Whether the substitution also requires the renaming
of bound names in P to avoid captures (i.e., name a-conversion). Such a require-
ment seems necessary should we want to identify process up-to a-equivalence—
which is included in the structural congruence = for Ambients. The CCS exam-
ples in Section 3.2 (see Remark 1) can easily be adapted here to illustrate that
we obtain dynamic scoping of names if we do not perform the a-conversion in
the substitution.

It should be noticed that the above has not been completely clarified in the
literature of Ambients. In fact, it raises a technical issue in the results on ex-
pressiveness which we shall recall in the next section.

Expressiveness Results

To isolate the expressiveness of restriction and ambient actions in MA, and
MA,, [BZ04] considers the following fragments of MA, with ¢ € {!,r}: (1) MA_",
the MA, calculus without the restriction constructor (vz)P, (2) MA_ ™", the
MA. calculus without the in and out actions, and finally (3) MA_™"", the
corresponding calculus with no in/out action nor restriction.

The separation results in [BZ04] among the various calculi are given in terms
of the decidability of termination; i.e., the problem of whether given a process
P does not have any infinite sequence of reductions. Obviously, if the question
is decidable in a given calculus then we know that there is no termination-
preserving encoding of Turing Machines into the calculus. The results in [BZ04]
are summarized in Figure 3.

MA,

MA,

MA-™ MA ™"
MA, ™ MA;™ L. .
/ Termination Undecidable
‘\/l A L N
\ | Termination Decidable

MA; ™

Fig. 3. Hierarchy of Ambient Calculi

Remark 2. The undecidability of process termination for MA, ™" is obtained by
a reduction from termination of RAM machines, a Turing Equivalent formalism.
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First [BZ04] uses a CCS fragment with recursion and dynamic scope of names
to provide a termination-preserving encoding of RAMs. Then the CCS frag-
ment is claimed to be a sub-calculus of MA_™". The undecidability of process
termination for MA, ™" follows immediately.

Nevertheless, as illustrated in Section 3.2 Remark 1 such dynamic scope causes
a-equivalence not to be preserved. In principle, this may cause a technical prob-
lem in the proof of the result since MA,_ ™" requires a-equivalence to be pre-
served; i.e., the CCS fragment used to simulate RAMs is not a sub-calculus of
MA; ™.

One way to deal with the above problem is to use a more involved notion of
a-conversion in MA, ™" [BZ05|. Another way would be to consider parametric
recursion in MA,, as in CCS; or pmp, and then use CCS;, as the sub-calculus
of MA. ™" to encode RAMs. Nevertheless, either way we will be changing the
original semantics of MA, ™" given in [LS03| which treats a-conversion and
recursion as in CCS,, [San05].

5 Recursion vs. Replication in Other Calculi

Here, we shall briefly survey work studying the relative expressive power of
Recursion vs Replication in other process calculi.

In the context of calculi for security protocols, the work in [HS05| uses a
process calculus to analyze the class of ping-pong protocols introduced by Dolev
and Yao. The authors show that all nontrivial properties, in particular reach-
ability, become undecidable for a very simple recursive variant of the calculus.
The recursive variant is capable of an implicit description of the active intruder,
including full analysis and synthesis of messages. The authors then show that
the variant with replication renders reachability decidable.

In the context of calculi for Timed Reactive System, the work in [NPV02]
studies the expressive power of some variants of Timed concurrent constraint
programming (tcc). The tce model is a process calculus introduced in [STG94]
aimed at specifying timed systems, following the paradigms of Synchronous Lan-
guages [BG92]. The work states that: (1) recursive procedures with parameters
can be encoded into parameterless recursive procedures with dynamic scoping,
and vice-versa. (2) replication can be encoded into parameterless recursive proce-
dures with static scoping, and vice-versa. (3) the languages from (1) are strictly
more expressive than the languages from (2). Furthermore, it states that behav-
ioral equivalence is undecidable for the languages from (1), but decidable for the
languages from (2). The undecidability result holds even if the process variables
take values from a fixed finite domain.

The reader may have noticed the strong resemblance of the work on tcc and
that of CCS described in the previous section; e.g., static-dynamic scoping issue
w.r.t recursion. In fact, [NPV02] had a great influence in the work we described in
this paper for CCS. In particular, in the discovery of the dynamic name scoping
exhibited by the CCS presentation in [Mil89].
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6 Final Remarks

The expressiveness differences between recursion and replication we have sur-
veyed in this paper may look surprising to those acquainted with the 7-calculus
where recursion is a derived operation. Our interpretation of this difference is
that the link mobility of the m-calculus is a powerful mechanism which makes
up for the weakness of replication.

The expressiveness of the replication !P arises from unbounded parallel be-
haviour, which with recursion can be defined as uX.(P | X). The additional
expressive power of recursion arises from the unbounded nested scope of uX.P as
in R=pX.(vx)(P | X) which behaves as (vx)(P | (vz)(P | (vz)(P | ---))).
This, in general, cannot be simulated with replication. However, suppose that
the unfolding of recursion applies a-conversion to avoid captures as we saw in
Section 3.2. For example for the process R above we will have the unfolding
(va1)(Plx1/z] | (vaa)(Plra/x] | (vxs)---))) and each x; will only occur in
Plz;/z]. Tt is easy to see the replication !(vz)P captures the behaviour of R.
Therefore, R does not really exhibit (significant) unbounded nesting of scope.

All in all, the ability of expressing recursive behaviours via replication in a
given process calculus may depend on the mechanisms of the calculus to compen-
sate for the restriction of replication as well as on how meaningful the unbounded
nesting of the recursive expressions are.
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