
Concurrency: 2
nd partial examination

You may consult the slides of the lectures. No other document or electronic
device is allowed. Answers should be formulated in French or English, and
preferably in a rigorous and sharp style.

Please write the solutions to the two parts in separate sheets.

First part

Exercise 1 (traces, 4.5 points) Recall that in the context of CCS, the
traces of a process P are defined as

tr(P) = {s ∈ L∗ | P
s
⇒ ·}

and we write P =tr Q if tr(P) = tr(Q). Show that if P,Q,R are CCS
processes and P =tr Q then (P | R) =tr (Q | R).

Exercise 2 (confluence, 3 points) Suppose P is a CCS process that is
fully terminating and such that for every derivative Q of P we have:

Q
τ

→ Q1 Q
τ

→ Q2

Q1 ≈ Q2

Show that this implies that for every derivative Q of P we have:

Q
τ

⇒ Q1 and Q
τ

⇒ Q2

∃Q′

1
, Q′

2
(Q1

τ

⇒ Q′

1
, Q2

τ

⇒ Q′

2
, and Q′

1
≈ Q′

2
)

Exercise 3 (definability, 2.5 points) In the context of SCCS/Meije, we
specify a ternary operator rr (round robin) by the rule:

P0

α

→ P ′

0

rr(P0 ,P1 ,P2)
α

→ rr(P1 ,P2 ,P ′

0
)

Show that the operator rr is definable as a SCCS/Meije process. This
amounts to define a SCCS/Meije process RR(P0 ,P1 ,P2), parametric in
P0, P1, P2, which is strongly bisimilar to rr(P0 ,P1 ,P2).

Second part

Exercise 4 (testing semantics, 2 points) Given a process P and a test
T , i.e. a process containing the special action ω, remember that we say that

1

P must T if for every sequence of τ -transitions from P |T , we eventually
reach a state in which the action ω is enabled. Furthermore, we say that P ,
Q are must-equivalent if for every test T ,

P must T if and only if Q must T

• Give an example of two processes that are weak bisimilar, but not must
equivalent. (Hint: remember that weak bisimilarity is not sensitive to
divergency, while must equivalence is.)

• Give an example of two processes that are must equivalent, but not
weak bisimilar. (Hint: set one of the processes to be a.b.c.0+a.b.d.0 .)

Exercise 5 (output prefix encoding, 3 points) Consider Boudol’s en-
coding of the output-prefix construct into the asynchronous π-calculus, which
is:

[[x(y).P]] = x(z).(νw)(zw|w(y).[[P]])
[[xy.Q]] = (νz)(xz|z(w).wy|[[Q]])

and [[·]] homomorphic on all the other operators.
Say whether the encoding is fully abstract with respect to must equiva-

lence, or not. Justify formally yours answer.

Exercise 6 (dining philosophers, 5 points) Is it possible to code in the
π-calculus with full (or mixed) choice a solution to the dining philosophers
problem, without introducing randomization? By “solution” we mean that if
there are hungry philosophers, then some of them (not necessarily all) will
eventually eat, and we want the philophers to be be symmetric, i.e. to run the
same code modulo renaming, and to start in the same state. Furthermore,
we want the solution to be distributed, i.e. no central coordinator or memory.
You can assume that each philosophers can communicate directly with his
neighbors via two channels.

Justify formally your answer. Namely, if your answer is “yes”, then give
the code. If your answer is “no”, then prove that for any possible code the
scheduler can induce a computation in which nobody eats.

2

