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Abstract A constraintis a piece of (partial) information on the values of the
variables of a systenConcurrent constraint programmingecp) is a model of
concurrency in which agents (also called processes) interact by telling and ask-
ing information (constraints) to and from a shared store (a constraintgd(or
tempora) ccp (tccp) extends ccp by agents evolving over time. A distinguishing
feature of tcep, is that it combines in one frameworkagerational and alge-
braic view from process algebra with @eclarativeview based upon temporal
logic. Tcep has been widely used to specify, analyze and program reactive sys-
tems.

This note provides a comprehensive introduction to the background for and cen-
tral notions from the theory of tccp. Furthermore, it surveys recent results on a
particular tccp calculusitcc |, and it provides a classification of the expressive
power of various tccp languages.

1 Introduction

Saraswat’Toncurrent constraint programmin(@cp) [45] is a well-established formal-

ism for concurrency based upon the shared-variables communication model where in-
teraction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract byadding(or telling) partial information to a medium, a so-callstbre Partial
information is represented lonstraintg(i.e., first-order formulae such as> 42) on

the shared variables of the system. The other way in which agents can interact is by
askingpartial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8,12, 37], stochastic behavior [13], and most prominently time [5, 14,40, 42].
Timedccp extends ccp by allowing agents to be constrained by time requirements.

Modal extensions of logic study time in logic reasoning, and in the same way mature
models of concurrency have been extended with explicit notions of time. For instance,
neither Milner's CCS [25], Hoare’s CSP [19], nor Petri Nets [33], in their original form,
were concerned explicitly with temporal behavior, but they all have been extended to
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incorporate an explicit notion of time, e.g. Timed CCS [53], Timed CSP [35], and Timed
Petri Nets [54].

A distinctive feature of timed ccp is that it combines in one frameworloper-
ational and algebraioview based upon process calculi wittdaclarativeview based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae, and the combination in one framework of the alternative views
of processes, allows timed ccp to benefit from the large body of techniques of well
established theories.

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary
and concepts appropriate to tepecific domair{fof some application under consider-
ation), and (2) read and understood as temporal lspicifications This feature is
suitable for timed concurrent systems, since they often inveezific domainge.g.,
controllers, databases, reservation systems) and have time-consgpaioifyingtheir
behavior. Several timed extensions of ccp have been developed as settings for the mod-
eling, programming and specification of timed systems [5, 14,40, 43].

Organization. This note provides an overview of timed ccp with its basic background
and various approaches explored in the literature. Furthermore, the note offers an intro-
duction to a particular timed ccp process calculus caiked . In Sections 2 and 3 we

give a basic background on ccp and timed ccp. Section 4 is devoted to present the devel-
opments of the timed ccp calculogc [30]. In Section 5 we describe in detail several
timed ccp languages and provide a classification of their expressive power. Finally, in
Section 6 we discuss briefly some related and future work on timed ccp.

2 Background: Concurrent Constraint Programming

In his seminal PhD thesis [39], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in the next section, the
ccp model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [28] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [46]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [45] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp, whilst Montanari
and Rossi [36] gave a (true-concurrent) Petri-Net semantics (using the formalism of
contextual nets); De Boer, Gabrielli et al [7] developed an inference system for proving
properties of ccp processes; Smolka’'s Oz [48] as well as Haridi and Janson’s AKL [17]
programming languages are built upon ccp ideas.

The ccp model. A concurrent system is specified in the ccp model in termsooi
straintsover the variables of the system. A constraint is a first-order formula represent-
ing partial informationabout the values of variables. As an example, for a system with
variablesr andy taking natural numbers as values, the constrainty > 16 specifies
possible values far andy (those satisfying the inequation). The ccp model is parame-
terized by aconstraint systemwhich specifies the constraints of relevance for the kind
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of system under consideration, andeamailment relation= between constraints (e.g,
r+y>16Ez+y>0).

During a ccp computation, the state of the system is specified by an entity called
the storein which information about the variables of the system resides. The store is
represented as a constraint, and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g.x = 16 andy = 7), rather than a set of possible values.

The notion of store in ccp suggests a model of concurrency with a central memory.
This is, however, only an abstraction which simplifies the presentation of the model. The
store may be distributed in several sites according to the sharing of variables (see [39]
for further discussions about this matter). Conceptually, the store in ccp msabgim
through which agents interact with each other.

A ccp process can update the state of the system only by additedlifog) informa-
tion to the store. This is represented as the (logical) conjunction of the store representing
the previous state and the constraint being added. Hence, updating does not change the
values of the variables as such, but constrains further some of the previously possible
values.

Furthermore, ccp processes can synchronize by queryingsiong information
from the store. Asking is blocked until there is enough information in the stoemto
tail (i.e., answer positively) the query, i.e. the ask operation determines whether the
constraint representing the store entails the query.

A ccp computation terminates whenever it reaches a point, calkedtimgor a
guiescenpoint, in which no more information can be added to the store. The output of
the computation is defined to be the final store, also calledufescent store

Example 1.Consider the simple ccp scenario illustrated in Figure 1. We have four
agents (or processes) wishing to interact through an initially empty store. Let us hame
them, starting from the upper leftmost agent in a clockwise fashipnd,, Az and Ay,
respectively.

In this scenarioA; may move first and tell the others through the store the (par-
tial) information that the temperature value is greater than 42 degrees. This causes the
addition of the item “temperature42” to the previously empty store.

Now As may ask whether the temperature is exactly 50 degrees, and if so it wishes
to execute a proced3. From the current information in the store, however, the exact
value of the temperature can not be entailed. Hence, the agdatblocked, and so is
the agentds since from the store it cannot be determined either whether the temperature
is between 0 and 100 degrees.

However,A, may tell the information that the temperature is less than 70 degrees.
The store becomes “temperature42 A temperature< 70", and now processis can
executdy, since its query is entailed by the information in the store . The 2 agierg
doomed to be blocked forever unle@sadds enough information to the store to entalil
its query. a

In the spirit of process calculi, the language of processes in the ccp model is given by
a small number of primitive operators or combinators. A typical ccp process language
contains the following operators:
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temperature>42 temperature=50?.P

STORE

(MEDIUM)

temperature<70 O<temperature<100?.Q

Figurel. A simple ccp scenario

— Actell operator telling constraints (e.g., ageAt above).

— An ask operatarprefixing another process, its continuation (e.g. the agent
above).

— Parallel compositioncombining processes concurrently. For example the scenario
in Figure 1 can be specified as the parallel compositiaAQfA,, A; andAy.

— Hiding (also calledestrictionor locality), introducing local variables, thus restrict-
ing the interface through which a process can interact with others.

— Summationexpressing a nondeterministic combination of agents to allow alternate
courses of action.

— Recursiondefining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic, in
the sense that the final store is always the same, independently of the execution order
(scheduling) of the parallel components [45].

3 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [40] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This tcc model elegantly
combines ccp with ideas from the paradigms of Synchronous Languages [2, 15].

The tcc model takes the view of reactive computation as proceettitegminis-
tically in discrete time units (or timentervalg. In other words, time is conceptually
divided into discrete intervals. In each time interval, a deterministic ccp process re-
ceives a stimulus (i.e. a constraint) from the environment, it executes with this stimulus
as theinitial store, and when it reaches its resting point, it responds to the environment
with the final store. Furthermore, the resting point determines a residual process, which
is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The tcc model extends the standard ccp with fundamental operations for program-
ming reactive systems, e.delayandtime-outoperations. The delay operation forces
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the execution of a process to be postponed to the next time interval. The time-out (or
weakpre-emption operation waits during the current time interval for a given piece of
information to be present and if it is not, triggers a process iméxt time interval

In spite of its simplicity, the tcc extension to ccp is far-reaching. Many interesting
temporal constructs can be expressed, see [40] for details, As an example, tcc allows
processes to be “clocked” by other processes. This provides meaningful pre-emption
constructs and the ability of definingultiple forms of timenstead of only having a
unique global clock.

The tcc model has attracted a lot of attention recently. Several extensions have been
introduced and studied in the literature. One example can be found in [43], adding a
notion of strong pre-emption: the time-out operations can trigger activity in the current
time interval. Other extensions of tcc have been proposed in [14], in which processes
can evolve continuously as well as discretely.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of nondeterministic timed ccp. In [5] the authors advocate the need of
nondeterminism in the context of timed ccp. In fact, they use tccp to model interesting
applications involving nondeterministic timed systems (see [5]).

It would be hard to introduce all the tcc extensions in detail, and hence we focus
in the following on thentcc calculus, which is a generalization of the tcc model in-
troduced in [30] by Palamidessi and the present authors. The calculus is built upon
few basic ideas but it captures several aspects of timed systems. Adgdcc, can
model unit delays, time-outs, pre-emption and synchrony. Additionally, it can model
unbounded but finite delays, bounded eventuality, asynclameyondeterminismrhe
applicability of the calculus has been illustrated with several examples of discrete-time
systems involving , mutable data structures, robotic devices, multi-agent systems and
music applications [38].

The major difference between tccp model from [5] antdc is that the former
extends the original ccp while the latter extends the tcc model. More precisely, in tccp
the information about the store is carried through the time units, thus the semantic
setting is completely different. The notion of time is also different; in tccp each time
unit is identified with the time needed to ask and tell information to the store. As for
the constructs, unlikatcc , tccp provides for arbitrary recursion and does not have an
operator for specifying unbounded but finite delays.

4 Thentcc process calculus

This section gives a formal introduction to theec model. We introduce the syntax

and the semantics of thecc process language, and illustrate the expressiveness by
modeling robotic devices. Furthermore, we shall present some of the reasoning tech-
niques provided bytcc focusing on

1. Behavioural equivalencesvhich are characterized operationally, relating process
behavior much like the behavioral equivalences for traditional process calculi (e.g.,
bisimilarity and trace-equivalence).
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2. A denotational semantioghich interprets a given process as the set of sequences
of input/output behaviours it can potentially exhibit while interacting with arbitrary
environments.

3. A process logiexpressing specifications of behaviors of processes, and an associ-
atedinference systemroviding proofs of processes fulfilling specifications.

Informal Description of ntcc Processes

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavour of the range of applicatitotof.

As for the tcc model, theatcc model is parameterized by @nstraint system.

A constraint system providessignaturefrom which syntactically denotable objects
called constraintscan be constructed, and antailment relation= specifying inter-
dependencies between these constraints.

We can set up the notion of constraint system by using first-order logic. Let us
suppose thal is a signature (i.e., a set of constants, functions and predicate symbols)
and thatA is a consistent first-order theory over (i.e., a set of sentences ove&r
having at least one model). Constraints can be thought of as first-order formulae over
Y. We can then decree that= d if the implicationc = d is valid in A. This gives us
a simple and general formalization of the notion of constraint system as @pat).

In the examples below we shall assume that, in the underlying constraint system,
Y isthe set{=,<,0,1...} andA is the set of sentences ovErvalid for the natural
numbers.

We now proceed to describe with examples the basic ideas underlying the behavior
of ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC's are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [21]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and actuators like motors, lights or alarms to
the output ports. Typically PLC’s and RCX bricks operate in a cyclic fashion. Each
cycle consists of receiving an input from the environment, computing on this input, and
returning the corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided disarete in-
tervals (or time units)In a particular time interval, a proce$$ receives astimulus
¢; from the environment. The stimulus is some piece of information, i.e., a constraint.
The procesd’; executes with this stimulus as the initial store, and when it reaches its
resting point (i.e., a point in which no further computation is possiblegsipondgo
the environment with a resulting stosie. Also the resting point determines a residual
processP; .1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputs;, co, . . . and a process that outputs, ds, . . . on such inputs
as described above.

(c1,d1)

P p, L), p led) p o esidin) ®
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Telling and Asking Information. Thentcc processes communicate with each other
by posting and reading partial information about the variables of system they model.
The basic actions for communication provide te#ing andaskingof information. A
tell action adds a piece of information to the common store. An ask action queries the
store to decide whether a given piece of information is present. The store is a constra-
int itself. In this way, addition of information corresponds to logical conjunction, and
determining the presence of information corresponds to logical entailment.

The tell and ask processes have the syntactic forms respectively

tell(c) andwhen c do P. 2

The only action of a tell procesell(c) is to add, within a time unit; to the current
stored. The store then becomésh c. The addition ot is carried out even if the store
becomes inconsistent, i.éd A ¢) = false , in which case we can think of such an
addition as generatingfailure.

Example 2.Suppose thad = (motor ;_speed > motor o_speed ). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
the specific speed values. The execution in stia@é&process

tell(motor ,_speed > 10)

causes the store to becoimeotor ;_speed > motor o_speed > 10)inthe current
time interval, thus increasing the information we know about the system.

Notice that in the underlying constraint systéni= motor ;_speed > 0, there-
fore the process

tell(motor ;_speed =0)

in stored causes a failure. O

The processvhen ¢ do P performs the action of asking If during the current
time intervalc can eventually be inferred from the stafgi.e.,d = ¢ ) thenP is
executed within the same time interval. Otherwigghen ¢ do P is precluded from
execution (i.e., it becomes permanently inactive).

Example 3.Suppose thatt = (motor ;_speed > motor o_speed ) is the store.
The process

P = when motor ;_speed > 0do Q

will execute@ in the currenttime interval sineé}= motor ;_speed > 0, by contrast
the process

P’ = when motor ;_speed > 10do @

will not execute@, unless more information is added to the store during the current
time interval entailingnotor ;_speed > 10.
O
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Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values of variables. In concurrent systems it is often convenient to model
behavior foralternative coursesf action, i.e., nondeterministic behavior.

We generalize the processes of the favilnen ¢ do P described above to guarded-
choice summation processes of the form

Z when ¢; do P, (3)
iel

where is a finite set of indices. The expressidn,.; when c¢; do P; represents

a process that, in the current time intervalpndeterministicallychooses a process

P; (j € I) whose corresponding constraint is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution. In the following example we
shall use “+” for binary summations.

Example 4.0ften RCX programs operate in a set of simple stimulus-response rules of
the formIF E THEN C. The expressiofy is a condition typically depending on the
sensor variables, ard is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set

(IF sensor ; >0 THEN motor ;_speed :=2)
(IF sensor , > 99 THEN motor ;_speed :=0)

corresponds to the summation process

when sensor ; > 0 do tell(motor ;_speed = 2)
P= +
when sensor 5 > 99 do tell(motor ;_speed = 0).

In the stored = (sensor ; > 10), the processP causes the store to become
d A (motor ;_speed = 2) sincetell(motor ;_speed = 2) is chosen for execution
and the other alternative is precluded. In the stare , P cannot add any information.
In the storee = (sensor ; = 10 A sensor , = 100), P causes the store to become
eithere A (motor ;_speed = 2)ore A (motor ;_speed = 0). O

Parallel Composition. Given P and Q we denote their parallel composition by the
process

PQ (4)

In one time unit processeB and ) operate concurrently, “communicating” via the
common store by telling and asking information.
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Example 5.Let P be defined as in Example 4 and

when motor ;_speed = 0 do tell(motor 5_speed =0)
Q=+

when motor ,_speed = 0 do tell(motor ;_speed = 0).

Intuitively @ turns off one motor if the other is detected to be off. The parallel
compositionP || @ in the stored = (sensor 5 > 100) will, in one time unit, cause
the store to becoméA (motor ;_speed = motor o_speed = 0). O

Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modeliogabf
(or hidden)behavior. We introduce processes of the form

(localz) P (5)

The procesglocal ) P declares a variable, private toP. This process behaves
like P, except that all the information aboutproduced byP is hidden from external
processes and the information abeytroduced by other external processes is hidden
from P.

Example 6.In modeling RCX or PLC’s one uses “global” variables to represent ports
(e.g., sensor and motors). However, one often also uses variables, which represent some
local (or private) computational data.

Suppose thaR? is a given process modeling some controller task. Furthermore,
suppose thaR uses a variable, which is set at random to a valaec {0, 1} in the
processP, i.e.

P= Z when true dotell(z =v)) | R
ve{0,1}

representing the behavior & underP’s random assignment af

We may want to declare in P to be local since it does not represent an input or
output port. Moreover, notice that if we need to run two copieB dfe., proces® || P,
afailure may arise as each copy can assign a different vatludtwerefore, the behavior
of R under the random assignmenti@an be best represented By = (local z) P.
In fact, if we run two copies of’, no failure can arise from the random assignment to
thez's as they are private to eadh. a

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-OutsAs in the Synchronous Languages [2] we have constructs

whose actions can delay the execution of processes. These constructs are needed to

model time dependency between actions, e.g., actions depending on preceding actions.
The unit-delay operators have the form

next P and unless ¢ next P (6)
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The processiext P represents the activation éf in the next time interval. The
procesainless c next P is similar, butP will be activated only ifc cannot be inferred
from the resulting (or final) storéin the currenttime interval, i.ed, j= c¢. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of informatiomr to be present and if it is not, they trigger activity in the next
time interval.

Notice thatunless ¢ next P is not equivalent tevhen —c do next P sinced |~ ¢
does not necessarily implyy = —c. Notice also thaty = unless false next P is
not the same aR = next P, sinceR (unlike Q) always activate$’ in the next time
interval, even if the store entailalse

Example 7.Let us consider the following process:
P = when false do next tell(motor ;_speed = motor o_speed = 0).

P turns the motors off by decreeing thabtor ;_speed = motor ,_speed = 0in
the next time interval if a failure takes place in the current time interval. Similarly, the
process

unless false next (tell(motor ;_speed > 0) || tell(motor ,_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. a

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operatok" which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [26]. The process

* P (7)

represents an arbitrary long but finite delay for the activatioR of hus,x tell(c) can
be viewed as a messagthat is eventually delivered but there is no upper bound on the
delivery time.

Example 8.Let S = x tell(malfunction  (motor ;_status )). The proces$ can
be used to specify thahotor ;, at some unpredictable point in time, is doomed to
malfunction O

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator!” as a delayed version of the replication operator forthealculus [27].
Given a proces®, the process

'P (8)

represent®’ || (next P) || (nextnext P) || --- ||! P, i.e., unboundedly many copies
of P, but one at a time. The procelsB executes” in one time unit and persists in the
next time unit.
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Example 9.The process$ below repeatedly checks the statenaftor ;. If a malfunc-
tion is reportedR tells thatmotor ; must be turned off.

R =!when malfunction  (motor ;_status ) do tell(motor ;_speed =0)

Thus,R || Swith S = xtell(malfunction  (motor ;_status )) (Example 8) even-
tually tells thatmotor ; is turned off. O

Some Derived Forms

We have informally introduced the basic process constructgeyf and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit when true do” if no confusion arises. The
“blind-choice” process) .., when true do P;, for example, can be written as
> icr Pi-Weshallusd [,.; P;, wherel is finite, to denote the parallel composition of
all the P;'s. We usenext™(P) as an abbreviation fonext(next(. .. (next P)...)),
wherenext is repeated: times.

Inactivity. The process doing nothing whatsoewdip can be defined as an abbrevia-
tion of the empty summatiop_, _, P;. This process corresponds to the inactive proce-
sses0 of CCS andSTOP of CSP. We should expect the behaviorf|| skip to be

the same as that df under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the procesisort which is somehow to the
opposite extreme afkip. Whilst havingskip in a system causes no change whatso-
ever, havinghbort can make the whole system fail. Herglaort corresponds to the
CHAOS operatorin CSP. In Section 4 we mentioned that a tell process causes a failure,
at the current time interval, if it leaves the store inconsistent. Therefore, we can define
abort as!tell(false ), i.e., the process that once activated causes a constant fail-
ure. Therefore, any reasonable notion of behavioral equivalence should not distinguish
betweenP | abort andabort.

Asynchronous Parallel CompositionNotice that inP || @ both P and@ are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous versjbisof “
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can defin@adr) asynchronouparallel composition
PlQas

Pl*Q) + P Q)
A move of P | ) is either one ofP or one of@ (or both). Moreover, bott® and@

are eventually executed (i.e. a fair executiorPof Q). This process corresponds to the
asynchronous parallel operator described in [26].
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We should expect operato}”to enjoy properties of parallel composition. Namely,
we should expecP | Q to be the same a§@ | P andP | (Q | R) to be the same
as(P | @) | R. Unlike in P | skip, however, inP | skip the execution ofP may
be arbitrary postponed, therefore we may want to distinguish betéepskip and
P. Similarly, unlike in P | abort, in P | abort the execution ohbort may be
arbitrarily postponed.

Bounded Eventuality and InvarianceWe may want to specify that a certain behavior

is exhibited within a certain number of time units, ilgounded eventualityr during a
certain number of time units, i.dopunded invarianceAn example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of! P andx P, which can be derived using summation and parallel composition
in the obvious way. We defing P andx; P, wherel is a closed interval of the natural
numbers, as an abbreviation for

H next’P and Z next'P

i€l el
respectively. Intuitivelyx ., ,) P means thaP is eventually active between the next
andm + n time units, while!},, ,,; P means thaP is always active between the next
andm + n time units.

4.1 The Operational Semantics oftcc

Following the informal description aftcc above, we now proceed with a formal def-
inition. We shall begin by formalizing the notion of constraint system and the syntax
of ntcc . We shall then give meaning to titcc processes by means of an oper-
ational semantics. The semantics, which resembles the reduction semanticsrof the
calculus [27], providemternal andexternaltransitions describing process evolutions.
The internal transitions describe evolutions within a time unit, and they are considered
to be unobservable. The external transitions describe evolution across the time units,
and they are considered to be observable.

Constraint SystemsFor our purposes it will suffice to consider the notion of constraint
system based on first-order logic, following e.g. [47].

Definition 1 (Constraint System).A constraint system (c$3 a pair (X', A) whereX
is a signature of function and predicate symbols, ahis a decidable theory over
(i.e., a decidable set of sentences a¥ewith a least one model).

Given a constraint systefi’, A), let (X, V,S) be its underlying first-order lan-
guage, wher@’ is a countable set of variablesy, .. ., andS is the set of logic sym-
bols -, A, Vv,=-,3,V,true andfalse . Constraintsc,d,... are formulae over this
first-order language. We say thaentailsd in A, writtenc |= d, iff ¢ = d is true in
all models ofA. The relatiorn=, which is decidable by the definition af, induces an
equivalencex given byc =~ d iff ¢ = d andd = c.
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Convention 1 Henceforth( denotes the set of constraints modsiaunder consider-
ation in the underlying constraint system.

Let us now give some examples of constraint systems. The classical example is the
Herbrand constraint system [39].

Definition 2 (Herbrand Constraint System). The Herbrand constraint system is such
that:

— XY'is a set with infinitely many function symbols of each arity and equality
— Ais given by Clark’s Equality Theory with the schemas
f(xla'"amn):f(yla"'ayn):>3:1 = N...NTp =Yy
flz1,...,zn)=g(y1,...,yn) = false | if f, g are distinct symbols
x=f(...xz...) = false

The importance of the Herbrand constraint system is that it underlies conventional
logic programming and many first-order theorem provers. Its value lies in the Herbrand
Theorem, which reduces the problem of checking unsatisfiability of a first-order for-
mula to the unsatisfiability of a quantifier-free formula interpreted over finite trees.

Another widely used constraint system is the finite-domain constraint syisIam
defined in [18]. INFD variables are assumed to range over finite domains and, in ad-
dition to equality, we may have predicates that restrict the range of a variable to some
finite set. The following is a simplified finite-domain constraint system.

Definition 3 (A Finite-Domain Constraint System).Letn > 0. DefineFD|n] as the
constraint system such that:

— X is given by the constants symbold, ....,n — 1 and the equality=.
— Alis given by the axioms of equational theary- x,x =y => y=x,x = yAy =
z = x = z,andv = w = false for each two different constantsw in X.

Intuitively FD[n] provides a theory of variables ranging over a finite domain of
values{0, ...,n — 1} with syntactic equality over these values.
The following is a somewhat more complex finite-domain constraint system.

Definition 4 (Modular Arithmetic Constraint System). Letn > 0. DefineA|[n] as
the constraint system such that:

— XYisgivenby{0,1,.....,n — 1,succ pred +, x, =, >}.
— Ais the set of sentences valid in arithmetic modulo

The intended meaning Ak [n] is the natural numbers interpreted as in arithmetic
modulon. Due to the familiar operations it provides, we shall often assumeAfat
is the underlying constraint system in our examples and applications.

Other examples of constraint systems include: Rational intervals, Enumerated type,
the Kahn constraint system and the Gentzen constraint system (see [45] and [39] for
details).
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Process Syntax and Semantics.

Following the informal description above, the process constructions imte calcu-
lus are given by the following syntax:

Definition (ProcessesProc). Processed, @, ...€ Proc are built from constraints
¢ € C and variablest € V in the underlying constraint system by:

PQ,... = tell(c) | > . whenc¢;doP; | P || Q | (localz)P
i€l
| nextP |unlesscnextP | xP |!P

The informal semantic meaning provided above of the constructs is formalized in
terms of the following structural operational semantics (SO®faf . This semantics
definegransitionsbetween process-stocenfigurationf the form(P, ), with stores
represented as constraints and processes quotiented by the congtlmiow.

Let us define precisely what we mean by the term “congruence” of processes, a key
conceptin the theory of process algebra. First, we need to introduce the standard notion
of process contextnformally speaking, a process context is a process expression with
a single hole, represented by, such that placing a process in the hole yields a well-
formed process. More precisely,

Definition 5 (Process Context)Process contextS are given by the syntax

C:u= [] |whencdoC+M |C || P |P | C |(localz)C
| nextC |unlesscnextC | «C |IC

whereM stands for summations. The procégg)] results from the textual substitution
of the holgf-] in C with Q.

An equivalence relation is a congruence if it respects all contexts:

Definition 6 (Process Congruence)An equivalence relatio® on processes is said to
be a processongruencdf for all contextsC, P = @ impliesC[P] = C[Q)].

We can now introduce the structural congrueacdntuitively, the relation= de-
scribes irrelevant syntactic aspects of processes. It state6Rhat/ =, ||, skip) is a
commutative monoid.

Definition 7 (Structural Congruence).Let= be the smallest congruence over proce-
sses satisfying the following axioms:

1. P|skip=P
2.PQ=Q|P
3. PR =(F]Q) IR

We extend: to configurations by decreeing thé@®, ¢) = (Q, ¢) iff P = Q.

Convention 2 Following standard notation, we extend the syntax with a construct
local (z,d) in P, to represent the evolution of a process of the fdonal zin @,
whered is the local information (or store) produced during this evolution. Initially
d is “empty”, so we regardocal z in P aslocal (z,true )in P.



Notes on Timed CCP 15

The transitions of the SOS are given by the relatiersand— defined in Table 1.

Theinternaltransition(P,d) — (P’,d’) should be read as” with stored reduces, in

one internal step, t&’ with stored’ . The observable transitior? 9. g should

be read as P on inputc, reduces in onéme unitto R and outputs!”.

Intuitively, the observable reduction is obtained from a sequence of internal reduc-
tions starting inP with initial storec and terminating in a procesg with final store
d. The processk, which is the one to be executed in the nérte interval(or time
unit), is obtained by removing fro@ what was meant to be executed only during the
current time interval. Notice that the stafés not transferred to the next time interval,
i.e. information ind can only be transfered to the next time unitBytself.

TELL SUM dEcjjel
(tell(c),d) — (skip,d A c) (3 ;er whenc; do Pi,d)y — (Pj,d)
(P,c)y — (P',d) (P,c A 3pd)y — (P, c)
PAR S C N ;
(Pl Q) — (P'] Q,d) ((localz,c) P,d) — ((localz,c’) P',d A 3.c")
UNL ifd=c
(unless c next P,d) — (skip, d)
REP STAR ifn>0
(!P,d) — (P || next!P,d) (x P,d) — (next"P,d)

—
STRu if v1 =~y andy2 = ~4

’ ’
Y1 V2

opg e —" (@ d)

P (c,d) R

it R=F(Q)

Tablel.Rules for internal reductior— (upper part) and observable reducties- (lower part).
~v—/ in OBS holds iff for no+’, v — +’. = and F' are given in Definitions 7 and 8.

Most of the rules in Table 1 should be straightforward from the informal description
of the intended semantics given above. For detailed comments we refer to [30], and
here we only comment on two of the rules: the rule for local variable§ andOBS
(covering the seemingly missing rules for “next” and “unless” processes).

Consider the process

Q = (localz,c) P

in Rule LOC. The global store igl and the local store is. We distinguish between
theexternal(corresponding td@)) and theinternal point of view (corresponding t&).
From the internal point of view, the information about possibly appearing in the
“global” stored, cannot be observed. Thus, before redudihge should first hide the
information about: that@ may have ind. We can do this by existentially quantifying

x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal ageft may produce (i.e.¢’) cannot be observed.
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Thus we hide it by existentially quantifyingin ¢’ before adding it to the global store
corresponding to the evolution ¢f. Additionally, we should make’ the new private
store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition frétabeled with(c, d) is obtained
from a terminating sequence of internal transitions fidimc) to a(@, d). The process
R to be executed in the next time interval is equivalenfi@)) (the “future” of Q).
F(Q) is obtained by removing fror® summations that did not trigger activity and any
local information which has been storedn and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 8 (Future Function). Let F' : Proc — Proc be defined by

skip if Q=73 ,c;whenc;do Q;
F(Q) _ F(Ql) H F(Q2) if Q=1 H Q2
) (localz) F(R) if Q= (localz,c)R
R if @ = next R or Q = unless c next R

Remark 1.F need no to be total since whenever we need to apply a @ (OBS in Table 1),
everytell(c), x R and! R in Q will occur within a “next” or “unless” expression.

Example 10.Recall Example 9. ProcessBsand.S were defined as:

R =!when c do tell(e)
S = xtell(c)
wherec = malfunction  (motor ;_status ) ande = (motor ;_speed = 0).
LetP = R | S,S = tell(c) and R’ = when c do tell(e). One can verify

that for anarbitrary m > 0, the following is a valid sequence of observable transitions
starting withP:

R H g (e,ene) R ” next ™S’ (true ,true ) R ” next ™19 (true ,true

true ,true true ,cAe true ,true
(e e ) o g ey p (e twe)

)

Intuitively, in the first time interval the environment teligi.e., ¢ is given as input
to P) thusR’, which is created byR, tellse. The output is them A e. FurthermoreS
creates arp’ which is to be triggered in an arbitrary number of time umits+ 1. In
the following time units the environment does not provide any input whatsoever. In the
m + 1-th time unitS’ tells c and thenR’ tellse. O

4.2 Observable Behavior

In this section we recall some notions introduced in [31pafcess observation¥Ve
assume that what happens within a time unit cannot be directly observed, and thus
we abstract from internal transitions, and focus on observations in terms of external
transitions.

Notation 1 Throughout this pape€“ denotes the set of infinite sequences of con-
straints in the underlying set of constrairiisWe usey, ;. . . to range overC*.
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(CRON

Leta = c¢1.co.... anda’ = ¢}.c. .. .. We use the notatio® —==*“ to denote

(c1,¢1)

the existence of an infinite sequence of observable transitiongr{jpr? = P,

P2 (c2,c3)

10 and Output Behavior.Consider a run of as above. At the time unit the environ-
mentinputse; to P;, which then responds with an outptjt As observers, we can see

that onq, P responds withe/. We refer to the set of alloe, o’) such that? Loed) v
as theinput-output (io) behavioof P. Alternatively, if « = true “, we interpret the
run as an interaction among the parallel componenif without the influence of any
(external) environments observers what we see is tliaproducesy on its own. We

(true ¢ ,a’

refer to the set of all’ such that? ‘=%« as theoutputbehavior ofP.

Quiescent Sequences and SRs a third alternative, we may observe the quiescent
input sequences of a process. These are sequences of input onfvtachrun without

(@, @))

adding any information; we observe whethet o’ wheneverr —==<.

In [30] it is shown that the set of quiescent sequences of a givean be char-
acterized ashe set of infinite sequences thatcan possibly output under arbitrary
environmentsthe strongest postcondition (sp) Bf

Summing up, we have the following notions of observable behavior.

Definition 9 (Observable Behavior).The behavioral observations that can be made
of a process are:

1. Theinput-output (or stimulus-response) behawdP, written, io(P), defined as

i0(P) = {(a,) | P 2200y,

2. The(default) output behaviasf P, written o(P), defined as

o(P) = {o/ | p ") vy
3. Thestrongest postconditidmehavior ofP, written sp(P), defined as

sp(P) = {a | P 2220w for somen’}.
Given these notions of observable behaviors, we have the following naturally in-
duced equivalences and congruences (recall the notion of congruence given in Defini-
tion 6.)

Definition 10 (Behavioral Equivalences).Let! € {io, 0, sp}. DefineP ~; Q iff
I(P) = I(Q). Furthermore, let~; the congruence induced by, i.e., P ~; Q iff
C[P] ~; C[Q] for every process contekt

We shall refer to equivalences defined abovelservational equivalenceblo-
tice, that they identify processes whose internal behavior may differ widely. Such an
abstraction from internal behavior is essential in the theory of several process calculi;
most notably in weak bisimilarity for CCS [25].
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Example 11.Leta, b, ¢, d ande mutually exclusive constraints. Consider the processes
P and@ below:
when b do nexttell(d) when a do next when b do next tell(d)
when a do next + , +
when c do next tell(e) when a do next when ¢ do next tell(e)

P Q
The reader may verify tha® ~, Q sinceo(P) = o(Q) = {true “}. However,
P i, Q NOrP g, Q since ifa = a.c.true ¢ then(a, o) € i0(Q) anda € sp(Q)
but(a, ) & i0(P) anda & sp(P). O

Congruence and Decidability Issuedn [30] it is proven that none of the three obser-
vational equivalences introduced in Definition 10 are congruences. Howeygis a
congruence if we confine our attention to the so-cdbedlly-independerfragment of

the calculus, i.e. the fragment without non-unary summations and “unless” operations,
whose guards depend on local variables.

Definition 11 (Locally-Independent Processes)P is locally-independeniff for ev-
eryunless c next Q and) ., when ¢; do Q; (|I| > 2) in P, neitherc nor thec;'s
contain variables irv(P) (i.e., the bound variables d¥).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in this
fragment [51]. Moreover, the applicability of this fragment is witnessed by the fact all
thentcc applications we are aware of [30,31,51] can be model as locally-independent
processes. Also, the (parameterless-recursion) tcc model can be expressed in this frag-
ment as, from the expressiveness point of view, the local operator is redundant in tcc
with parameterless-recursion [29]. Furthermore, it allows us to express infinite-state
processes (i.e., there are processes that can evolve into infinitely many other processes).
Hence, it is rather surprising that,, is decidable for the local-independent fragment
as recently proved in [52]. In 5 below we shall present a number of other seemingly
surprising decidability results for other fragmentstéc

* Kk Kk

4.3 Denotational Semantics

In the previous section we introduced the notion of strongest-postconditinttof
processes in operational terms. In the following we show the abstract denotational
model of this notion, first presented in [32].

The denotational semantics is defined as a fundtipassociating with each pro-
cess a set of infinite constraint sequendds; Proc — P(C*). The definition of this
function is given in Table 2. Intuitively,P] is meant to capture the set of all sequences
P can possibly output. For instance, the sequences associatedellith) are those
for which the first element is stronger tharfgsee DTELL, Table 2). Process:xt P
has not influence on the first element of a sequence,thuss a possible output if
« is a possible output oP(see DNEXT, Table 2). The other cases can be explained
analogously.
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DTELL: [tell(c)] = {d.o | d |= c}

DSUM: [ ;c;whenc;do P ] = J{da|dcandd.a € [P]}UN;c{da|dEc}
iel

DPAR: [P || Q] = [PIN[Q]

DLOC: [(localz)P] = {a|thereexistex’ € [P]s.t.3,a’ = I, a}
DNEXT: [nextP] = {d.a|a € [P]}

DUNL: [unlesscnext P] = {d.a | d|=c} U{d.a | d £ canda € [P]}
DREP: ['P] = {a| forall 3,a’ st.a = 3., we havea’ € [P]}

DSTAR: [xP] = {B.a| a € [P]}

Table2. Denotational semantics oitcc . Symbolsa anda’ range over the set of infinite se-
guences of constraint3”; 3 ranges over the set of finite sequences of constraintdotation
J.« denotes the sequence resulting by applyindo each constraint in.

From [7] we know that there cannot befa: Proc — P(C¥), compositionally
defined, such thaf(P) = sp(P) for all P. Nevertheless, as stated in the theorem
below, Palamidessi et al [32] showed that the sp denotational semantics matches its
operational counter-part for the locally-independent fragment 11.

Theorem 1 (Full Abstraction, [32]). For everyntcc processP, sp(P) C [P] and if
P is locally-independent thefP] C sp(P).

The full-abstraction result above has an important theoretical value; i.e., for a signif-
icant fragment of the calculus we can abstract away from operational details by working
with [P] rather tharsp(P). Furthermore, an interesting corollary of the full-abstraction
result is that~, is a congruence, if we confine ourselves to locally-independent pro-
cesses.

4.4 LTL Specification and Verification

Processes intcc denote observable behavior of timed systems. As with other such
formalisms, it is often convenient to express specifications of such behaviors in logical
formalisms. In this section we present thtec logic first introduced in [32]. We start

by defining a linear-time temporal logic (LTL) expressing temporal properties over in-
finite sequences of constraints. We then define what it means for a process to satisfy a
specification given as a formula in this logic. Finally, we present an inference system
aimed at proving processes satisfying specifications.

A Temporal Logic. Thentcc LTL expresses properties of infinite sequences of con-
straints, and we shall referto it &.TL .

Definition 12 (CLTL Syntax). The formulaeF, G, ... € F are built from constraints
¢ € C and variablest € V in the underlying constraint system by:

F,G,...:=c| true |false |FAG|FVG|~F|3,F|oF|0F|F



20 Mogens Nielsen and Frank D. Valencia

Herec is a constraint (i.e., a first-order formula in the underlying constraint system)
representing atate formulac. The symboldrue ,false ,A,V,-,3 represent linear-
temporal logic true, false, conjunction, disjunction, negation and existential quantifica-
tion. As clarified later, the dotted notation is introduced sinc€lifiL these operators
may have different interpretations from the symbiiee ,false ,A,V,—, 3 in the
underlying constraint system. The symbols], and<> denote the temporal operators
next alwaysandsometime

The standard interpretation structures of linear temporal logic are infinite sequences
of states [22]. In the case aftcc , it is natural to replace states by constraints, and
hence our interpretations are element€of

The CLTL semantics is given in Definition 14. Following [22] we introduce the
notion of z-variant

Notation 2 Given a sequence = c¢j.ce...., We used,« to denote the sequence
dzc13zc2 . ... We shall usex(i) to denote the — ¢th element ofv.

Definition 13 (x-variant). A constraintd is anx-variantof ¢ iff 3,¢ = 3,d. Similarly
o' is anz-variantof o iff 3, = 3,.0.

Intuitively, d anda’ arez-variants ofc anda, respectively, if they are logically the
same except for information abowut For examplez = 0 A y = 0 is anz-variant of
r=1ANy=0.

Definition 14 (CLTL Semantics). We say thaty € C¥ satisfies (or that it is a model
of) theCLTL formulaF, writtena =cir F, iff (o, 1) =cur F', where:

(a, ’L) 'ZCLTL true (a, ’L) F’éCLTL false
(a, ’L) 'ZCLTL & if'f a(z) ): C

(a, ’L) 'ZCLTL - F iff <a, Z) l?éCLTL F

<Oé, Z> ':CLTL FAG iff <OL, Z> ':CLTL F and <a,i> ':CLTL G

<Oé, Z> ':CLTL FvVvG iff <OL, Z> ':CLTL For <OL, Z> ':CLTL G

(a, ’L) 'ZCLTL OoF iff (a, 7+ 1) 'ZCLTL F

<Oé, ’L) ':CLTL OF iff forall j >1 <Oz,j> ':CLTL F

(o, i) Ecur, OF  iff thereisaj >4 suchthata, j) Ecit. F

(o, i) [=cirL 3. F - iff  there is anz-varianto/ of a such that(a, i) =ci1. F.

Define[F]={a | @ l=cir. F'}. We say thaf' is CLTL validiff [F] = C*, and thatF’
is CLTL satisfiableff [F] # 0.

State formulae as Constraints.Let us comment briefly on the role of constraints as
state formulae in our logic. A temporal formuléexpresses a property of sequences
of constraints. As a state formulagexpresses a property, which is satisfied by those
e.a’ such thak = c. Hence, the state formufalse (and consequentlyl false )is
satisfied byfalse . On the other hand, the temporal formédése has no model
whatsoever.

Similarly, the models of the temporal formula/ d are those:.o/ such that either
e E core [ d holds. Therefore, the formulav d and the atomic propositionV d
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may have different models since, in general, one can verifyethatc v d may hold
while neithere = cnore =dhold—e.g.take = (r =1Vva =2),c=(x=1)and
d=(z=2).

In contrast, the formulaA d and the atomic propositiat\ d have the same models
sincee = (¢ A d) holds if and only if bothe |= ¢ ande = d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operstarsd
V. This distinction does not make our logic intuitionistic. In fact, classically (but not
intuitionistically) valid statements such as4 vV A and- - A = A are also valid in our
logic.

Process Verification.
We are now ready to define what it means for a prodess satisfy a specification’.
Definition 15 (Verification). P satisfiesF’, written P |=c.r. F, iff sp(P) C [F].

Thus, the intended meaning &f =c.r. F' is that every sequencE can possi-
bly output on inputs from arbitrary environments satisfies the temporal foriiukor
examplex tell(c) = {c, since in every infinite sequence output-btell(c) on arbi-
trary inputs, there must be an element entaiting

Following the discussion above, notice that= tell(c) + tell(d) | (c¢Vd) as
every constraint output by P entails either or d. In contrastQ = tell(c Vv d) [
(¢ Vv d) in general sincé) can output a constraiatwhich entailsc v d, but neither: nor
d.

4.5 Proof System for Verification.

[32] introduces aroof (or inference) systefor assertions of the forn®? - F, where

P I Fis intended to be the “counterpart” 8f = F in the sense thaP + F should
approximate® =c .t F as closely as possible (ideally, they should be equivalent). The
system is presented in Table 3.

Definition 16 (P  F'). We say thatP - F' iff the assertionP - F' has a proof in the
system in Table 3.

Inference RulesLet us briefly comment on (the soundness of) some of the inference
rules of the proof system. The inference rule for the tell operator is given by

LTELL: tell(c) - ¢

Rule LTELL gives a proof reflecting the fact that every outputell(c) on arbitrary
input, indeed satisfies the atomic propositipne., tell(c) =citL c.
Consider now the rule for the choice operator:

Viel Pz-.F F; .
thenci dOPi H \/(CL/\FL)\//\ %Ci

el icl icl

LSUM:
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P-HF QFG

LTELL: tell(c) F ¢ LPAR:
P|lQ + FAG
viel P, v Fj P+ F
LSUM: a - LLo¢: ——8 ——
> whencidoP; + \/(ci AF)V \ “ei (localz) P + 3, F
el el el
P+ F PFF
LNEXT: ———— LUNL:
nextP + OF unless cnext P + ¢vOF
PFF PFF
LREP: ——— LSTAR: —
‘P + OF *P + OF

PFF
LCONS:
PF G

if F=G

Table3. A proof system for linear-temporal propertiesriéc processes

Rule LSUM can be explained as follows. Suppose thatfer } ,_; when c¢; do P;
we are given a proof that eadh satisfiesF;, i.e. (inductively)P;, =cir F;. Then we
may conclude that every output #fon arbitrary input will satisfy either: (a) some of
the guards; and their corresponding; (i.e., \/,.;(c: A F;)), or (b) none of the guards
(i.e., Ny —ci)

The inference rule for parallel composition is defined as

PFF QFQG
P||Q F FAG

LPAR:

The soundness of this rule can be justified as follows. Assume that each output of
under the influence of arbitrary environments, satisfiefAssume the same abot
andG. In P || @, the process) can be thought as one of those arbitrary environment
under whichP satisfiesF’. ThenP || Q must satisfyF. Similarly, P can be one of
those arbitrary environment under whi¢hsatisfiesG. Hence,P || Q must satisfyG
as well. We therefore have grounds to conclude thitQ satisfiesF" A G.

The inference rule for the local operator is

PrEF

LLOC: :
(localx) P + 3, F

The intuition is that since the outputs (@bcal z) P are outputs of? with = hidden
then if P satisfiesF’, (local ) P should satisfyF’ with = hidden, i.e.3, F.
The following are the inference rules for the tempartalc  constructs:

P+ F P+ F
LNEXT: ————  LUNL:
next P - OF unless cnext P + ¢VOF
P+ F P+ F
LREP———— LSTAR:

'P F OF *P F OF
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Assume tha’ F F, i.e. (inductively)P =cit. F. Rule LNEXT reflects that we may
then conclude that also the processct P satisfiesO F'. Rule LUNL is similar, except
that P can also be precluded from execution, if some environment providélus
unless ¢ next P satisfies eithet or OF'. Rule LREP says that if is satisfied byP,
then executing® in each time interval will implyF’ to be satisfied in each time interval,
i.e.! P satisfied 1F. Rule LSTAR reflects that i’ is executed in some time interval,
then in that time interval’ is satisfied, and heneeP satisfies( F'.

Finally, we have the rule:

P+ F

LCONS: if F=G

Notice that this rule refers to some unspecified way of inferring validit¢€IofL for-
mulae. We shall return to this point shortly. Rule LCONS simply says thasitisfies
a specificatior” then it also satisfies any weaker specificatianVe shall also refer to
LCONS aghe consequence rule

Notice that the inference rules reveal a pleasant correspondence bateeeap-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at WorkLet us now give a simple example illustrating a proof in
inference system.

Example 12.Recall Example 9. We have a procdssvhich was repeatedly checking
the state ofmotor ;. If a malfunction is reportedR would tell thatmotor ; must
be turned off. We also have a proceSsstating that motomotor ; is doomed to
malfunction. LetR =!when c do tell(e) and S = xtell(c) with the constraints
¢ = malfunction  (motor ;_status ) ande = (motor ;_speed = 0). We want
to provide a proof of the assertioR: | S + < e. Intuitively, this means that the par-
allel execution ofR and S satisfies the specification stating timabtor ; is eventually
turned off. The following is a derivation of the above assertion.

when cdo tell(e) - (cAe) Ve LSUM
when cdo tell(e) - c=>e LCONS tell(c) - ¢ LTELL
T Y LREP 5t 5o LSTAR
RISFO(coe)Ade LPAR
RISFGe LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [30]—in particular for proving properties of
mutable data structures. a

Let us now return to the issue of the relationship betweand}=cr .

Theorem 2 (Relative Completeness, [30])f P is locally-independent theR - F iff
P Ecam F.
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Notice that this is indeed a “relative completeness” result, in the sense that, as men-
tioned earlier, one of our proof rules refer to the validity of temporal implication. This
means that our proof system is complete, if we are equipped with an oracle that is guar-
anteed to provide a proof or a confirmation of each valid temporal implication. Because
of this, one may wonder about the decidability of the validity problem for our temporal
logic. We look at this issue next.

Decidability Results.In [52] it is shown that the verification problem (i.e., givéh
andF whetherP \=c. F) is decidable for the locally-independent fragmentiuic

and negation-fre€LTL formulae. Please recall that the locally-independent fragment
of ntcc admits infinite-state processes. Also note tBETL is first-order. Most first-
order LTL’'s in computer science are not recursively axiomatizable, let alone decidable
[1].

Furthermore, [52] proves the decidability of the validity problem for implication
of negation-freeCLTL formulae. This is done by appealing to the close connection
betweemtcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F and@, one can construct a proceBs such thatsp(Pr) = [F] and then it follows
that Pr =cir. G iff F'= G. As a corollary of this result, we obtain the decidability of
satisfiabilityfor the negation-free first-order fragment@IETL

A theoretical application of the theory afcc is presented in [52], stating a new
positive decidability result for a first-order fragment of Pnueli’s first-ondEr [22].

The result is obtained from a reduction@.TL satisfiability, and thus it also con-
tributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

5 A Hierarchy of Timed CCP Languages

In the literature several timed ccp languages have been introduced, differing in their way
of expressing infinite behavior. In this section we shall introduce a few fundamental
representatives of mechanisms introducing infinite behavior, expressed as variants of
thentcc calculus. We shall also characterize their relative expressiveness following
[29].

Since timed CCP languages are deterministic we shall confine our attention to the
deterministiqprocesses afitcc  as described in [30]. These are all the star-free proce-
sses with all summations having at most one guard. On top of this fragment we consider
the following variants:

— rep : deterministicntcc ; infinite behavior given by replication.

— rec p: obtained from deterministintcc replacing replication byparametric re-
cursion Inrec , each procedures bodiyas no free variablesther than its formal
parameters.

— rec ; : same asec p, but where the actual parameters in recursive callscne-
tical to the formal parameters; i.e., we do not vary the parameters in the recursive
calls.
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— rec 4: obtained by usingarameterless recursigmut including free variables in
procedure bodies witdynamic scope
— rec s: same asec 4 but with static scope

In the following, the expressive power of these process languages is compared with
respect to the notion of input-output behavior, as introduced in Section 4.2. More pre-
cisely, one language is considered at least as expressive as another, if any input-output
behavior expressed by a process in the latter can be expressed also by a process in the
former. The comparison results can be summarized as follows:

— rec p andrec ¢4 are equally expressive, and strictly more expressive than the other
languages,
— rep ,rec s andrec ; are equally expressive.

In fact, [29] shows a strong separation result between the languaggsrec ¢
andrep /rec s/rec ; : the input-output equivalence is undecidable for the languages in
the first class, but decidable for the languages in the second class.

The undecidability results holds even if we fix an underling constraint system with
a finite domain having at least one element. The undecidability result is obtained by
a reduction from Post's correspondence problem [34] and an input-output preserving
encoding betweerec p/rec 4.

The decidability results hold for arbitrary constraint systems, and follow from Buichi
automata [3] representation ofcc processes and input-output preserving encodings
between the languagesti@p /rec s/rec ;.

The expressiveness gaps illustrated above may look surprising to readers familiar
with the wr-calculus [27], since it is well known that thecalculus correspondents of
rep ,rec ; andrec , all have the same expressive power. The reason for these differ-
ences can be attributed to the fact that thealculus has some powerful mechanisms
(such as mobility), which compensate for the weakness of replication and the lower
forms of recursion.

We start by formally defining our five classes of process languages.

5.1 Replication

We shall useep to denote the deterministic fragmentrdtc . The processes in the
deterministic fragment are those star-free processes in which the cardinality of every
summation index set is at most one. Thus, the resulting syntax of procesp iis

given by:

PQ,... :=skip | tell(c)| whencdo P |P | Q| (localz)P )
| next P | unless cnext P |1 P

Infinite behavior inrep is provided by using replication. This way of expressing
infinite behavior is also considered in [43]. To be precise, [43] usdsdhee operator.
However,hence P is equivalent tonext ! P and, similarly! P is equivalent toP ||
hence P.
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5.2 Recursion

Infinite behavior in tcc languages may also be introduced by adding recursion, as e.g.
in [40,41,49]. Consider the process syntax obtained from replacing repli¢atiaith

procesgor procedurg calls A(y1, . . ., yn), i.€.:
PQ,... :=skip | tell(c)| whencdo P |P | Q| (localz)P (10)
| next P | unless cnext P | Aly1,---yYn)
The processi (v, . . ., yn) is anidentifierwith arity n. We assume that every identi-
fier has a (recursivgyrocess (or procedure) definitiaf the formA(xy, ..., z,) “p
where ther;’s are pairwise distinct, and the intuition is thafy, . .. ,y,) behaves as

P with y; replacingz; for each.

We declareD to be the set of recursive definitions under consideration. We shall
often use the notatiom as an abbreviation af, zo, ..., 2, if n is unimportant or
obvious. We shall sometimes say thHty) is aninvocationwith actual parametersg,

and givenA(x) %" p we shall refer taP as itsbodyand tox as itsformal parameters

Finite Dependency and Guarded RecursioRollowing [40], we shall require, for all
the forms of recursion defined next, the following: (1) any process to depend only on

finitely many definitions and (2) recursion to be “next” guarded. For example, given

A(x) © p, every invocationA(y) in P must occur within the scope of a “next”

or “unless” operator operator. This avoids non-terminating sequences of internal reduc-
tions (i.e., non-terminating computation within a time interval). Below we give a precise
formulation of (1) and (2).

GivenA; (x1) def Py andAx(x2) def P,, we say thatd; (directly)dependsn A,,
written A; ~ A, if there is an invocatios(y) in P;. Requirement (1) can be then
formalized by requiring the strict ordering induced-by" (the reflexive and transitive
closure of)! to be well founded.

To formalize (2), suppose that; ~ Ay ~ ... ~ A, ~ A,41 = A, where

Ai(x1) def P;. We shall require that for at least onel < i < n, the occurrences of

A,+1 In P; are within the scope of a “next” or an “unless” operator.

Parametric Recursion

We consider a further restriction for the case of recursion involving paramétetise
free variables in definitions’ bodies must be formal parametarse precisely, for each
Az, .., zp) ©" p, we decree thatv (P) C {z1,...,zn}.

We shall useec , to denote the tcc language with recursion with the above syntac-
tic restriction. The operational rules fogc |, are obtained from Table 1 by replacing
the rule for replicatioREP with the following rule for recursion:

def

REC Alx) = P (11)

(A(y),d) — (Ply/z],d)

! The relation~* is a pre-ordering. By induced strict ordering we mean the strict component of
~»* modulo the equivalence relation obtained by taking the symmetric closus€ of
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AsusualP[yy,...,yn/x1,. .., 2], with all thez;’s being pairwise distinct, is the pro-
cess that results from syntactically replacing every free occurrenge lo§ y; using
a-conversion wherever needed to avoid capture.

Identical Parameters RecursionAn interesting tcc language considered in [40] arises
fromrec , by restricting the parameters not to change through recursive invocations.
In ther-calculus this restriction does not cause any loss of expressive power since such
form of recursion can encode general recursion (see [27]).

An example satisfying the above restrictioni () © p || next Rp(x). Here

the actual parameters of the invocation in the body of the definition are the same as the

formal parameters aRk . An example not satisfying the restrictioni%, (x) ©p I

next (local ) R}, (x). Here the actual parameters are bound and therefore different
from those of the formal parameters.

One can formalize the identical parameters restriction on a set of mutually recursive
def

definitions as follows. Suppose thdf ~ A; and Ay ~* A; with Ay(x1) = P,

and As(x2) def P5 in the underlying set of definition®. Then for each invocation
As(y) in P; we should requirey = x5 andy ¢ bv(P;). In other words the actual
parameters of the invocatiofl, in P; (i.e.,y) should be syntactically the same as its
formal parameters (i.exz). Furthermore, they should not be boundinto avoid cases
such asR’,(x) above.

The processes of tcc with identical parameters are thosecof that satisfy this
requirement. We shall refer to this languageess; .

Parameterless Recursion.

Tcc with parameterless recursion have been studied in [40]. All identifiers have arity
zero, and hence, for convenience, we omit thgin A( ).

Given a parameterless definitioh def P, requiring all variables irfv(P) to be
formal parameters, as irec ,, would mean that the body has no free variables, and
the resulting class of process languages would be expressively weak. Hence, we now
suggest to allow free variables in procedure bodies.

Now. assuming that the operational rules for parameterless recursion are the same
as forrec ,, what are the resulting scope rules for free variables in procedure bodies?
Traditionally, one distinguishes betwedgnamicand static scoping, as illustrated in
the following example.

Example 13.Consider a constant identifigl with the following definition
A% tell(z = 1)
|| next (localz) (A | when z = 1 do tell(z = 1))

In the case of dynamic scoping, an outside invocatlorauses the executiaell(z =
1) in the second time interval. The reason is tflaical «) binds thex resulting from
the unfolding of theA inside the definition’s body. In fact, the telling of= 1, in the
second time unit, will not be visible in the store. In the case of static scoflingal x)
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does not bind the: of the unfolding ofA because such anis intuitively a “global’
variable, and henceell(z = 1) will not be executed. In fact, the telling of= 1, will
also be visible in the store in the second time interval. O

Parameterless Recursion with Dynamic Scopin@he ruleLOC in Table 1 combined
with REC causes the parameterless recursion to have dynamic séopmgjustrated
in the example below, the idea is that sirjbecal ) P reduces to a process of the form
(local x) Q, the free occurrences ofin the unfolding of invocations i get bounded.

Example 14.ConsiderA as defined in Example 13. Let us abbreviate the definition of

AasA ™ tell(z =1) | P. Also let@ = skip || P. We have the following reduction

of (localz) A in storetrue .

(tell(z = 1),true ) — (skip,z — 1) TDEA];{L
tell(z =1) || P,true ) — ,r=1
(tell( ) |l ) (Q ) REC

(A, true ) — (Q,z=1)
((local z,true ) A,true ) — ((localz,z = 1) Q,true )

LOC

Thus, (localz) A in storetrue reduces tq(localz,z = 1) (skip || P) in store
true . Notice that the free in A’s body become local tllocal z,xz = 1) (skip || P),
i.e, it now occurs in the local store but not in the global one. ad

We shall refer to the language allowing only parameterless recursion with free-
variables in the procedure bodiesras 4; parameterless recursion with dynamic scop-

ing.

Remark 2.1t should be noticed that, unlike nec ,, we cannot freelyx-convert proce-

sses irrec ¢ without changing behavior. For example, we coatdonvert the process
(localz) A in the above example intdocal z) A (sinceA|z/z] is syntactically equal

to A) but the behavior oflocal z) A would not be the same as that@bcal x) A.

Parameterless Recursion with Static Scopingrom the previous section it follows
that static scoping as in [40] requires an alternative to the rule for local be HaWiGr.

The ruleLOC’ defines locality for the parameterless recursion with static scoping
language henceforth referred toras s.

(Plyjald) — (PLd)y
LOC if y is fresh (12)
((localz) P,d) — (P',d)

As in [24], we use the notion dfesh variablemeaning that it does not occur else-
where in a process definition or in the store. It will be convenient to presuppose that the
set of variabled’ is partitioned into two infinite set§ and) — F. We shall assume
that the fresh variables are taken frofhand that no input from the environment or

2 RulesLOC andREC are basically the same in ccp, hence the observations made in this section
regarding dynamic scoping apply to ccp as well.
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processes, other than the ones generated when applgiag can contain variables in
F.

The fresh variables introduced BYOC’ are not to be visible from the outside. We
hide these fresh variables, as suggested in [43], by using existential quantification in the
output constraint of observable transitions. More precisely, we replace in Table 1 the
rule for the observable transitio@BS with the rule

(Pc) —* (@.d) =
P 22 F(Q) (13)

wheredzd represents the constraint resulting from the existential quantificatidoin
free occurrences of variables i
In order to see whi.OC’ causes static scoping iec s, suppose thaP in Rule

LOC' in Equation 12 contains an invocatighwhereA %" R.When replacing: with
y in P, A remains the same sincély/xz] is A. Furthermore, sincg is chosen from
F, there will be no capture of free variables ihwhen unfoldingA. This causes the

scoping to be static. Let us illustrate this by revisiting the previous example.

OBS’

Example 15.Let A, P andQ as in the previous example. We have the following reduc-
tion of (local z) A in storetrue .

(tell(z — 1),true ) — (skip,z — 1) ~oLb

telllz = 1) | Puue ) — (Q,a—1) AR
(A true ) — (Q,z=1) REC
: : LOC’

((localz) A true ) — (Q,z=1)

Thus,(local z) A in storetrue reduces tekip || P in store(z = 1) making the free
x in A’s body visible in the “global” store . a

Remark 3.Notice that, as imec 4, in rec s we do not needv-conversion since in the
reductions ofec s we only use syntactic replacements of variables by fresh variables.

5.3 Summary of TCC Languages

We have described five classes of tcc languages with infinite behabior, based on the
literature. We adopt the following convention.

Convention 3 We shall use to designate the set of tcc languages
{rep ,rec p,rec i ,rec g,rec s}.

Furthermore, we shall index sets and relations involving tcc processes with the appro-
priate tcc language name to make it clear what is the language under consideration.
We shall omit the index when it is unimportant or clear from the context.

For example;—rec , and %rec , refer to the (internal and observable) reduc-

tion of rec . Similarly, Procrec , denotes the set of processeses p, ~; * denotes

10
the input-output equivalence (Definition 10) for processeBiiorrec ,, and~-., ° de-
notes congruence induced by .
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5.4 The TCC Equivalences

In this section we relate the equivalences and their congruences for the various tcc lan-
guages. Each behavioral equivalence (and congruence) for a tcc lanfgaageained
by taking thentcc transitions given in Definition 9 (and thus in Definition 10) to be

those of? (i.e., replace% with %e)-

The theorem below states the relationship among the equivalences.
Theorem 3 (Equivalence Results, [29]¥or each/ € L,

_ ol ¢ 0
1. If¢{=rec thenw%o =~ C N%Oc N%_
2. If¢ #rec s thenx;, =~ =~}, C~.

o

The theorem says the input-output and output congruences coincide for all lan-
guages. It also states that the input-output behavior is a congruence for every tcc lan-
guage butec 5. This reveals a distinction betweesc s and the other tcc languages
and, in fact, betweerec s and the standard model of concurrent constraint program-
ming [45].

In the following sections we shall classify the tcc languages based on the decidabil-
ity of their input-output equivalence.

5.5 Undecidability Results

In [29] it is shown that~"." * is undecidable for processes with an underlying finite-
domain constraint system. Recall that a finite-domain constraint syEin| (see
Definition 3) provides a theory of variables ranging over a finite domain of values
D ={0,1,...,n — 1} with syntactic equality over these values. We shall also prove a
stronger version of this result establishing thg}’ * is undecidable even for the finite-
domain constraint system with one single consi@ht[1], i.e.,|D| = 1. In sections

5.7 we shall give an input-output preserving constructive encoding feany into the
parameterless recursion language 4, thus proving also the undecidability ef>° ©.

Theorem 4 (Undec. of~.. *, [29]). The problem of deciding giveR Q € Procrec ,

10
in a finite-domain constraint system, whether or Rot-> * Q, is undecidable.
We find it convinient to outline the proof of the above theorem given in [29] since
it decribes very well the computational powerret ,. The proof is a reduction from

Post’s correspondence problem (PCP) [34].

Definition 17 (PCP). A Post's Correspondence Problem (PCiRjtanceis a tuple
(V, W), whereV = {uvg,...,v,} andW = {wy,...,w,} are two lists of non-empty
words over the alphabef0, 1}. A solutionto this instance is a sequence of indexes
10y« 50m inl = {0,,7L}W|thl() =0s.t.

Vig-Vig «+ - Vi, = Wiy Wiy - .. Wy, -

PCP is the following problem: given a PCP instan@dé W), does it have a solu-
tion?

The Post’s Correspondence Problem is known to be undecidable [34]. We reduce
PCP to the problem of deciding input-output equivalence betwaen processes, thus
proving Theorem 4.
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The Post’s Correspondence Problem Reductidret (V, W) be a PCP instance where
V = {vg,..., v} andW = {wy,...,w,} are sets of non-empty words. LBD[m]
(Definition 3) be the underlying constraint system where= maz(|V],2) (i.e., we
need at least two constants in the encoding below).

Foreachi € I = {0,...,|V] — 1}, we shall a define process;(a, b, indez, x)
which intuitively behaves as follows:

1. It waits until is told that: = 1 to start writingwv;, one symbol per time unit. Each
such a symbol, say, will be written inz by telling xz = s. Similarly, it waits until
b = 1 to start writingw;, one symbol per time unit. Each such a symbol will also
be written inx.

2. It spawns a procesg;(a’, V', index,z) when the environment inputs an index
index = jin I.

3. It setsa = 0 anda’ = 1 when it finishes writingy;, i.e., |v;| time units later after
it started writingv; (this way it announces that its job of writing is done, and
allows A; to start writingu;). Similarly, it setsb = 0 andb’ = 1 when it finishes
writing w;.

4. It aborts unless the environment providesradexin 7. It also aborts if an incon-
sistency arises: Either two symbols (one fronvavord and another from &
word) are written inz in the same time unit and they do not match (thus generating
false ), or the environment itself inpufalse

Thus, intuitively theA;’s keep writingl” andW words, as the environment dictates, as
long as the symbols match and the environment keeps providing indeXeat ieach
time unit.

Auxiliary Constructs We use the following constructs:

We. p(x) " when cdo P | unless c next W, p(x)
def
Ro(y) = Q | next Ro(y)

wherefv(P) U fu(c) = {x} andfv(Q) = {y}. We use the more readable notation
wait ¢ do P andrepeat ) for W, p(x) andRq(y), respectively. We also define
whenever ¢ do P as an abbreviation afepeat when c do P.

We now defineA;(a, b, indez, x) for eachi € I according to ltems 1-4. The local
variableichosen is used as flag to check whether the environment inputs an index.

A;i(a, b, indez, ) = (locala’ V' ichosen) (
waita=1do V;
| wait b=1do W;
| [1,c; when indez = j do (tell(ichosen = 1)
|| next A;(a’,V, index, z))
|| Abort )
The proces¥; writes, one by one, the; symbols inz (notationv; (n) denotes the

n—th element ofy;). Furthermore it seta = 0 anda’ = 1 when it finishes writing;.
The proces$V; is defined analogously.
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Vi= [l next*tell(z =uv;(k)) | next ¥il(tell(a = 0) | tell(a’ = 1))

0<k<|v;|

W;= I next*tell(z =w;(k)) || next v (tell(b = 0) || tell(t' = 1))

0<k<|w;|

The processibort aborts, according to Item 4 above, by tellifadse thereafter
(thus creating a constant inconsistency).

Abort =
| unless ichosen = 1 next repeat tell(false )
|| when false do repeat tell(false )

Let us now define a proceds;(a, b, index, x, ok) for eachi € I that behaves
exactly like A;(a, b, indezx, x), but in addition it outpute9k = 1 whenever it stops
writing v; andw; exactly in the same time interval This happens when bothandb
are set to zero in the same unit and it will imply that a solution of the fagm . . .v; =
Wy, . . . .w; for the PCAV, W) has been found.

Bi(a, b, index, x, ok) g (locala’ V' ichosen) (
waita=1do V;
| wait b=1do W;
| [1,c; when indez = j do (tell(ichosen = 1)
|| next B;(a’,V, index, z, ok))
|| Abort
|| whenever a = 0 Ab=0do tell(ok = 1))

Since we require the first index in a solution for PGR V) to be 0, we define two
processes!(index, x) and B(indez, x, ok) which triggerA, and By as follows .
A(index, x) o (locala d) (
tell(a = 1) || tell(b = 1) || Ao(a, b, index,x))

B(index, z, ok) g (locala b) (
tell(a = 1) || tell(b = 1) || Bo(a, b, indez, x, ok))

One can verify that the only difference between the procegdesdez, z) and
B(index, z, ok) is that the latter eventually telilsk = 1 iff there is a solution to the
PCP(V, W).

Since the PCP problem is undecidable, from the lemma above it follows that given
P,Q € Prociec , in afinite-domain constraint system, the question of whether,,

@ or not is undecidable. This proves Theorem 4. O

% The reader may wonder why thg's do not have the formal parameist as well. This causes
no problem here, but you can think dfas having a dummyk formal parameter if you wish
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Undecidability Over Fixed Finite-Domains

Actually [29] gives a stronger version of the above theorem; input-output equivalence
in undecidable irrec , even if we fix the underlying constraint system toIBB|[1],
which is the finite-domain constraint system whose only constant is

Theorem 5 ([29]).Fix FD[1] to be the underlying constraint system. The question of
whetherP ~>°* @ or not is undecidable.

From Theorems 5 and 3, we also have that the input-output and default output con-
gruences are undecidable fec , over a fixed finite-domain constraint system.

Theorem 6. The input-output and output congruence” ® and~, _ * are undecid-
able for processes in the finite-domain constraint sySrnj1].

Notice thatFDJ1] is a very simple constraint system (i.e., only equality and one
single constant). So, the undecidability results for other constraint systems providing
theories with equality and an at least one constant symbol follow from Theorem 5. This
includes almost all constraint system of interest (e.g. the Herbrand constraint system
[39], the Kahn constraint system [45], Enumerated Types [39] and modular arithmetic
[32]).

5.6 Decidability Results

In sharp contrast to the undecidability resultfec , the equivalence okp processes
is decidable even faarbitrary constraint systemjg9].

Theorem 7. The following equivalences for processesdp over arbitrary constraint
system are decidable:

1. The input-outputequivalene€e:’ , default output equivalenee/®? and strongest-
postcondition equivalencey .
2. The output congruences:’ and~P .

In section 5.7 we shall show via constructive encodingsriiat, rec i , rec s have
the same expressive power. We then conclude that the corresponding equivalences for
rec ; andrec s are also decidable. These decidability resultsep with arbitrary
constraint system are to be contrasted to the undecidability resules ip with the
simple finite-domain constraint systdfiD|1].

5.7 Classification of the Timed CCP Languages

In this section we discuss the relation between the various tcc languages, and we classify
them on the basis of their expressive power.

Figure 2 shows the sub-language inclusions and the encodings preserving the input-
output behaviour between the various tcc versions. To complete the picture, we have
included the classec (¢ denoting the language with neither parameters nor free vari-
ables in the bodies of definitions. Classes |, Il, lll represent a partition based on the
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——= Encoding

Seel 2T — Languageinclusion

Figure2. Classification of the various tcc languages: The tcc hierarchy.

expressive power: two languages are in the same class if and only if they have the same
expressive power. We will first discuss the separation results, and then the equivalences.

Given the input-output preserving encodings in [29], which we will recall in the next
section, the separation between Classes Il and Il is already suggested by the results in
Sections 5.6 and 5.5. From the proof of Theorem 4 it follows that, is capable of
expressing the "behavior” of Post’s correspondence problems, and hence clearly capable
of expressing output behavior not accepted by Bichi automata. It turns out that the
output (and input-ouput) behavior of every processéap can be represented as a
language accepted by a Blichi automata [29].

The separation between Classes | and Il, on the other hand, follows from the fact that
without parameters or free variables the recursive calls cannot communicate with the
external environment, hence iiec ( a process can produce information on variables
for a finite number of time intervals only.

The Encodings

Let us recall briefly the input-output preserving encodings among the various tcc lan-
guages in [29]. Hencefortf;] : ¢ — ¢ will represent the encoding function from
class/ to class?’ We shall say thaf-] is homomorphiavrt to the parallel operator if

[P || Q] =[P] | [Q], and similarly for the other operators.

Notation 3 We shall use the following notation:

— We usecall(z) as abbreviation of: = 1 and declare, for each identifiet, a fresh
variable z 4 uniquely associated to it.

— We denote by (P) the set of identifiers on whick depends, i.e. the transitive
closure of~ of the identifiers occurring iP (see Section 5.2).



Notes on Timed CCP 35

— We often us&®, to denote the set of recursive definitions under consideration for
processes ifi. As usual we omit when it is clear from the context.

Encodingrec s — rep . Here the idea is to simulate a procedure definition by a
replicated process that activates (the encoding of) its Bodgch time it is called. The
activation can be done by using a construct of the fevimen ¢ do P. The call, of
course, will be simulated btell(c).

The key case is the local operator, since we do not want to capture the free variables
in the bodies of procedures. Thus, we need-tonvert by renaming the local variables
with fresh variables.

First we need two auxiliary encodinf§, and[-], : given by :

[A def P]p = !'when call(z4) do [P],

[A], = tell(call(z4))

[(localz) PJo = (localy) ([Ply/«]],)
wherey is fresh

with [-]o being homomorphic on all the other operatorsesf .
We are now ready to give our encodingret s intorep .

Definition 18. The encoding-] : rec s — rep is given by:
[4] = (local z) ([Pl || I [Ai(x:) © P]o)
=1

withI(P) = {A1,..., Ay} andz = z4, ...24

n"

Encodingrec ; — rep . This encoding is similar to the encoding in the previous
section, except that now we need to encode the passing of parameters as well. Let us
give some intuition first.

A call A(y), whereA(x) %" p, canoccurina process or in the definition of iden-
tifier B (possibly A itself). Consider the case in which there is no mutual dependency
betweend and B or A is a call in a process. Then, the actual parametert wiay be
different from the formal ones (i.ey, # x). If so, we need to model the call by provid-
ing a copy of the replicated process that encodes the definitidneafd by making the
appropriate parameter replacements.

Now, consider the case in which there is a mutual dependency betdvee B
(i.e. if also A depends omB). From the restriction imposed on (the mutual) recursion
of rec ; (see Section 5.2), we know that the actual parameters must coincide with
the formal ones (i.ey = «) and therefore we do not need to make any parameter
replacement. Neither do we need to provide a copy of the replicated processes as it will
be available at the top level.



36 Mogens Nielsen and Frank D. Valencia

As for the previous encoding, we first define the auxiliary encodjrjgsand(-]o:
[A(x) g P]p = 'when call(z4) do [P],

[A(w)], = tell(call(z4))
if y=zandA(z) @ PeD

[A(y)], = (local z4) (
def

tell(call(z4)) || [A(z) € (Ply/z])]p)
if y £z andA(z)® PeD

with [-Jo homomorphic on all the other operatorset ; .
It worth noticing that if we did not have the restriction on the recursiorein;

mentioned above, the encodififip would not be well-defined. E.g., consider the defi-
nition A(x) © next (localy) A(y) which violates the restriction, and try to compute
[A(z) € (localy) A(y)]p.

We are now ready to give our encodingret ; intorep .

Definition 19. The encoding-] : rec i — rep is given by:

[A(y)] = (local 2) ([P]o || [[[Ai(z:) € Pip)

i=1

with I(P) = {A1,..., A} andz = z4, ... z4

n "

Encodingrep — rec ;. This encoding is rather simple. The idea is to replakey
a call to a new process identifi&p, defined as a process that expaitsnd then calls
itself recursively in the next time interval. The free variabled Bf x, are passed as
(identical) parameters.

Definition 20. The encoding-] : rep — rec ; is given by:
[' P] = Rp(x)
whereRp(z) © [P] || next Rp € Drec ., x = fu(P).

with [-] homomorphic on all the other operatorsre .

Encodingrec 4 — rec . Intuitively, if the free variables are treated dynamically, then
they could equivalently be passed as parameters.

Definition 21. The encoding-] : rec ¢ — rec , is given by

[A] = A(=)

whered ' p € Drec

andA(x) o [P] € Drec ,;x = fo(P)

with [-] homomorphic on all the other operatorsreftc 4
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Encodingrec , — rec 4. The idea is to establish the link between the formal pa-
rameterse and the actual parameteysby telling the constraink = y. However, this
operation has to be encapsulated withifl@cal ) in order to avoid confusion with
other potential occurrences fin the same context of the call.

Definition 22. The encoding-] : rec , — rec 4 is given by

[A(y)] = (localz) (A || Ey/a)
whereA(z) @ P € Die,, A [P] € Drec
and Ey/, = tellly = x) || next £/ € Drec

with [-] homomorphic on all the other operatorsrett .

Encodingrep — rec 5. Here we take advantage of the automata representation of
the input-output behavior aep processes given in [29]. Basically, the idea is to use
the recursive definitions as equations describing these input-output automata.

Let P be an arbitrary processiep . Let us recall the automatavip = A% in [29]
representing the input-output behavior/bn the inputs of relevance fdr. The start
state of Mp is P. Let T be the set of transitions df/. Each transition fron@ to

R with label (¢, d), written (Q, (¢,d), R) € Tp, represents an observable transition

0 2. p

So, for each stat€ of Mp we define an identified, as follows:
Ag def [I when cdo (tell(d) || O(Ue, R))
(Q,(c,d),RYETP
with Ue = \ .
eefc’ | ¢'#e, c'f=c, (Q.(¢',d),R')ETP}

whereO(Lc, R) takes the formunless Licnext Ay if ¢ # false , otherwise it takes
the formnext Ap.

Intuitively, Ap expresses that if we are in stafeandc is the strongest constra-
int entailed by the input, then the next state will Beand the output will bel, with
<Q7 (Ca d)a R> € Tp.

Definition 23. The encoding-] : rep — rec s is defined a§P] = Ap.

6 Related Work and Concluding Remarks

Saraswat el al proposed a proof system for tcc [40], based on an intuitionistic logic
enriched with a next operator. The system is complete for hiding-free and finite proce-
sses. Also Gabirielli et al [4] introduced a proof system for the tccp model (see Section
3). The underlying second-order linear temporal logic in [4] can be used for describing
input-output behavior. In contrast, tikcc logic can only be used for the strongest-
postcondition, but also it is semantically simpler and defined as the standard first-order
linear-temporal logic of [22].

The decidability results for thetcc equivalences here presented are based on
reductions frormtcc processes into finite-state automata [29,31,52]. The work in [43]
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also shows how to compile tcc into finite-state machines thus providing an execution
model of tcc.

In [49] Tini explores the expressiveness of tcc languages, focusing on the capability
of tcc to encode synchronous languages. In particular, Tini shows that Argos [23] and a
version of Lustre restricted to finite domains [16] can be encoded in tcc.

In the context of tcc, Tini [50] introduced a notion of bisimilarity with a complete
and elegant axiomatization for the hiding-free fragment of tcc. The notion of bisimilar-
ity has also been introduced fotcc by Valencia in his PhD thesis [51].

On the practical side, Saraswat el al introduced Timed Gentzen [41], a particular
tcc-based programming language for reactive-systems implemented in PROLOG. More
recently, Saraswat el al released jcc [44], an integration of timed (default) ccp into the
JAVA programming language. Rueda et al [38] demonstrated that essential ideas of
computer generated music composition can be elegantly represented inHurtado
and Mufioz [20] in joint work with Fernandez and Quintero [10] gave a design and
efficient implementation of antcc -based reactive programming language for LEGO
RCX robots [21]—the robotic devices chosen in Section 4 as motivating examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. In order to contribute to the development of timed ccp as a well-established
model of concurrency, a good research strategy could be to address those issues that are
central to other mature models of concurrency. In particular, the analysis and formaliza-
tion of thentcc behavioral equivalences, which at present time are still very immature
(e.g., axiomatizations of process equivalences and automatic tools for behavioral anal-
ysis).

Furthermore, the decision algorithms fatcc verification and satisfiability, are
very inefficient, and of theoretical interest only. For practical purposes, it is important
to conduct studies on the design and implementation of efficient algorithms for verifi-
cation.

AcknowledgmentsWe owe much to Catuscia Palamidessi for her contributions to the
development of thatcc calculus.
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