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Abstract A constraint is a piece of (partial) information on the values of the
variables of a system.Concurrent constraint programming(ccp) is a model of
concurrency in which agents (also called processes) interact by telling and ask-
ing information (constraints) to and from a shared store (a constraint).Timed(or
temporal) ccp (tccp) extends ccp by agents evolving over time. A distinguishing
feature of tccp, is that it combines in one framework anoperational and alge-
braic view from process algebra with adeclarativeview based upon temporal
logic. Tccp has been widely used to specify, analyze and program reactive sys-
tems.
This note provides a comprehensive introduction to the background for and cen-
tral notions from the theory of tccp. Furthermore, it surveys recent results on a
particular tccp calculus,ntcc , and it provides a classification of the expressive
power of various tccp languages.

1 Introduction

Saraswat’sconcurrent constraint programming(ccp) [45] is a well-established formal-
ism for concurrency based upon the shared-variables communication model where in-
teraction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract byadding(or telling) partial information to a medium, a so-calledstore. Partial
information is represented byconstraints(i.e., first-order formulae such asx > 42) on
the shared variables of the system. The other way in which agents can interact is by
askingpartial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8,12,37], stochastic behavior [13], and most prominently time [5,14,40,42].
Timedccp extends ccp by allowing agents to be constrained by time requirements.

Modal extensions of logic study time in logic reasoning, and in the same way mature
models of concurrency have been extended with explicit notions of time. For instance,
neither Milner’s CCS [25], Hoare’s CSP [19], nor Petri Nets [33], in their original form,
were concerned explicitly with temporal behavior, but they all have been extended to
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incorporate an explicit notion of time, e.g. Timed CCS [53], Timed CSP [35], and Timed
Petri Nets [54].

A distinctive feature of timed ccp is that it combines in one framework anoper-
ational and algebraicview based upon process calculi with adeclarativeview based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae, and the combination in one framework of the alternative views
of processes, allows timed ccp to benefit from the large body of techniques of well
established theories.

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary
and concepts appropriate to thespecific domain(of some application under consider-
ation), and (2) read and understood as temporal logicspecifications. This feature is
suitable for timed concurrent systems, since they often involvespecific domains(e.g.,
controllers, databases, reservation systems) and have time-constraintsspecifyingtheir
behavior. Several timed extensions of ccp have been developed as settings for the mod-
eling, programming and specification of timed systems [5,14,40,43].

Organization. This note provides an overview of timed ccp with its basic background
and various approaches explored in the literature. Furthermore, the note offers an intro-
duction to a particular timed ccp process calculus calledntcc . In Sections 2 and 3 we
give a basic background on ccp and timed ccp. Section 4 is devoted to present the devel-
opments of the timed ccp calculusntcc [30]. In Section 5 we describe in detail several
timed ccp languages and provide a classification of their expressive power. Finally, in
Section 6 we discuss briefly some related and future work on timed ccp.

2 Background: Concurrent Constraint Programming

In his seminal PhD thesis [39], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in the next section, the
ccp model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [28] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [46]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [45] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp, whilst Montanari
and Rossi [36] gave a (true-concurrent) Petri-Net semantics (using the formalism of
contextual nets); De Boer, Gabrielli et al [7] developed an inference system for proving
properties of ccp processes; Smolka’s Oz [48] as well as Haridi and Janson’s AKL [17]
programming languages are built upon ccp ideas.

The ccp model.A concurrent system is specified in the ccp model in terms ofcon-
straintsover the variables of the system. A constraint is a first-order formula represent-
ing partial informationabout the values of variables. As an example, for a system with
variablesx andy taking natural numbers as values, the constraintx + y > 16 specifies
possible values forx andy (those satisfying the inequation). The ccp model is parame-
terized by aconstraint system, which specifies the constraints of relevance for the kind
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of system under consideration, and anentailment relation|= between constraints (e.g,
x + y > 16 |= x + y > 0).

During a ccp computation, the state of the system is specified by an entity called
the store in which information about the variables of the system resides. The store is
represented as a constraint, and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g.,x = 16 andy = 7), rather than a set of possible values.

The notion of store in ccp suggests a model of concurrency with a central memory.
This is, however, only an abstraction which simplifies the presentation of the model. The
store may be distributed in several sites according to the sharing of variables (see [39]
for further discussions about this matter). Conceptually, the store in ccp is themedium
through which agents interact with each other.

A ccp process can update the state of the system only by adding (ortelling) informa-
tion to the store. This is represented as the (logical) conjunction of the store representing
the previous state and the constraint being added. Hence, updating does not change the
values of the variables as such, but constrains further some of the previously possible
values.

Furthermore, ccp processes can synchronize by querying (orasking) information
from the store. Asking is blocked until there is enough information in the store toen-
tail (i.e., answer positively) the query, i.e. the ask operation determines whether the
constraint representing the store entails the query.

A ccp computation terminates whenever it reaches a point, called aresting or a
quiescentpoint, in which no more information can be added to the store. The output of
the computation is defined to be the final store, also called thequiescent store.

Example 1.Consider the simple ccp scenario illustrated in Figure 1. We have four
agents (or processes) wishing to interact through an initially empty store. Let us name
them, starting from the upper leftmost agent in a clockwise fashion,A1, A2, A3 andA4,
respectively.

In this scenario,A1 may move first and tell the others through the store the (par-
tial) information that the temperature value is greater than 42 degrees. This causes the
addition of the item “temperature>42” to the previously empty store.

Now A2 may ask whether the temperature is exactly 50 degrees, and if so it wishes
to execute a processP . From the current information in the store, however, the exact
value of the temperature can not be entailed. Hence, the agentA2 is blocked, and so is
the agentA3 since from the store it cannot be determined either whether the temperature
is between 0 and 100 degrees.

However,A4 may tell the information that the temperature is less than 70 degrees.
The store becomes “temperature> 42 ∧ temperature< 70”, and now processA3 can
executeQ, since its query is entailed by the information in the store . The 2 agentA2 is
doomed to be blocked forever unlessQ adds enough information to the store to entail
its query. ut

In the spirit of process calculi, the language of processes in the ccp model is given by
a small number of primitive operators or combinators. A typical ccp process language
contains the following operators:



4 Mogens Nielsen and Frank D. Valencia

temperature=50?.Ptemperature>42

temperature<70 0<temperature<100?.Q

S T O R  E
(MEDIUM)

Figure1. A simple ccp scenario

– A tell operator, telling constraints (e.g., agentA1 above).
– An ask operator, prefixing another process, its continuation (e.g. the agentA2

above).
– Parallel composition, combining processes concurrently. For example the scenario

in Figure 1 can be specified as the parallel composition ofA1, A2, A3 andA4.
– Hiding (also calledrestrictionor locality), introducing local variables, thus restrict-

ing the interface through which a process can interact with others.
– Summation, expressing a nondeterministic combination of agents to allow alternate

courses of action.
– Recursion, defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic, in
the sense that the final store is always the same, independently of the execution order
(scheduling) of the parallel components [45].

3 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [40] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This tcc model elegantly
combines ccp with ideas from the paradigms of Synchronous Languages [2,15].

The tcc model takes the view of reactive computation as proceedingdeterminis-
tically in discrete time units (or timeintervals). In other words, time is conceptually
divided into discrete intervals. In each time interval, a deterministic ccp process re-
ceives a stimulus (i.e. a constraint) from the environment, it executes with this stimulus
as theinitial store, and when it reaches its resting point, it responds to the environment
with the final store. Furthermore, the resting point determines a residual process, which
is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The tcc model extends the standard ccp with fundamental operations for program-
ming reactive systems, e.g.delayandtime-outoperations. The delay operation forces
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the execution of a process to be postponed to the next time interval. The time-out (or
weakpre-emption) operation waits during the current time interval for a given piece of
information to be present and if it is not, triggers a process in thenext time interval.

In spite of its simplicity, the tcc extension to ccp is far-reaching. Many interesting
temporal constructs can be expressed, see [40] for details, As an example, tcc allows
processes to be “clocked” by other processes. This provides meaningful pre-emption
constructs and the ability of definingmultiple forms of timeinstead of only having a
unique global clock.

The tcc model has attracted a lot of attention recently. Several extensions have been
introduced and studied in the literature. One example can be found in [43], adding a
notion of strong pre-emption: the time-out operations can trigger activity in the current
time interval. Other extensions of tcc have been proposed in [14], in which processes
can evolve continuously as well as discretely.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of nondeterministic timed ccp. In [5] the authors advocate the need of
nondeterminism in the context of timed ccp. In fact, they use tccp to model interesting
applications involving nondeterministic timed systems (see [5]).

It would be hard to introduce all the tcc extensions in detail, and hence we focus
in the following on thentcc calculus, which is a generalization of the tcc model in-
troduced in [30] by Palamidessi and the present authors. The calculus is built upon
few basic ideas but it captures several aspects of timed systems. As tcc,ntcc can
model unit delays, time-outs, pre-emption and synchrony. Additionally, it can model
unbounded but finite delays, bounded eventuality, asynchronyandnondeterminism. The
applicability of the calculus has been illustrated with several examples of discrete-time
systems involving , mutable data structures, robotic devices, multi-agent systems and
music applications [38].

The major difference between tccp model from [5] andntcc is that the former
extends the original ccp while the latter extends the tcc model. More precisely, in tccp
the information about the store is carried through the time units, thus the semantic
setting is completely different. The notion of time is also different; in tccp each time
unit is identified with the time needed to ask and tell information to the store. As for
the constructs, unlikentcc , tccp provides for arbitrary recursion and does not have an
operator for specifying unbounded but finite delays.

4 The ntcc process calculus

This section gives a formal introduction to thentcc model. We introduce the syntax
and the semantics of thentcc process language, and illustrate the expressiveness by
modeling robotic devices. Furthermore, we shall present some of the reasoning tech-
niques provided byntcc focusing on

1. Behavioural equivalences, which are characterized operationally, relating process
behavior much like the behavioral equivalences for traditional process calculi (e.g.,
bisimilarity and trace-equivalence).
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2. A denotational semanticswhich interprets a given process as the set of sequences
of input/output behaviours it can potentially exhibit while interacting with arbitrary
environments.

3. A process logicexpressing specifications of behaviors of processes, and an associ-
atedinference systemproviding proofs of processes fulfilling specifications.

Informal Description of ntcc Processes

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavour of the range of application ofntcc .

As for the tcc model, thentcc model is parameterized by aconstraint system.
A constraint system provides asignaturefrom which syntactically denotable objects
calledconstraintscan be constructed, and anentailment relation|= specifying inter-
dependencies between these constraints.

We can set up the notion of constraint system by using first-order logic. Let us
suppose thatΣ is a signature (i.e., a set of constants, functions and predicate symbols)
and that∆ is a consistent first-order theory overΣ (i.e., a set of sentences overΣ
having at least one model). Constraints can be thought of as first-order formulae over
Σ. We can then decree thatc |= d if the implicationc ⇒ d is valid in∆. This gives us
a simple and general formalization of the notion of constraint system as a pair(Σ, ∆).

In the examples below we shall assume that, in the underlying constraint system,
Σ is the set{=, <, 0, 1 . . .} and∆ is the set of sentences overΣ valid for the natural
numbers.

We now proceed to describe with examples the basic ideas underlying the behavior
of ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC’s are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [21]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and actuators like motors, lights or alarms to
the output ports. Typically PLC’s and RCX bricks operate in a cyclic fashion. Each
cycle consists of receiving an input from the environment, computing on this input, and
returning the corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided intodiscrete in-
tervals (or time units). In a particular time interval, a processPi receives astimulus
ci from the environment. The stimulus is some piece of information, i.e., a constraint.
The processPi executes with this stimulus as the initial store, and when it reaches its
resting point (i.e., a point in which no further computation is possible), itrespondsto
the environment with a resulting storedi. Also the resting point determines a residual
processPi+1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputsc1, c2, . . . and a process that outputsd1, d2, . . . on such inputs
as described above.

P1
(c1,d1)====⇒ P2

(c2,d2)====⇒ . . . Pi
(ci,di)====⇒ Pi+1

(ci+1,di+1)======⇒ . . . (1)
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Telling and Asking Information. Thentcc processes communicate with each other
by posting and reading partial information about the variables of system they model.
The basic actions for communication provide thetelling andaskingof information. A
tell action adds a piece of information to the common store. An ask action queries the
store to decide whether a given piece of information is present. The store is a constra-
int itself. In this way, addition of information corresponds to logical conjunction, and
determining the presence of information corresponds to logical entailment.

The tell and ask processes have the syntactic forms respectively

tell(c) andwhen c do P. (2)

The only action of a tell processtell(c) is to add, within a time unit,c to the current
stored. The store then becomesd ∧ c. The addition ofc is carried out even if the store
becomes inconsistent, i.e.,(d ∧ c) = false , in which case we can think of such an
addition as generating afailure.

Example 2.Suppose thatd = (motor 1_speed > motor 2_speed ). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
the specific speed values. The execution in stored of process

tell(motor 2_speed > 10)

causes the store to become(motor 1_speed > motor 2_speed > 10) in the current
time interval, thus increasing the information we know about the system.

Notice that in the underlying constraint systemd |= motor 1_speed > 0, there-
fore the process

tell(motor 1_speed = 0)

in stored causes a failure. ut

The processwhen c do P performs the action of askingc. If during the current
time intervalc can eventually be inferred from the stored (i.e., d |= c ) thenP is
executed within the same time interval. Otherwise,when c do P is precluded from
execution (i.e., it becomes permanently inactive).

Example 3.Suppose thatd = (motor 1_speed > motor 2_speed ) is the store.
The process

P = when motor 1_speed > 0 do Q

will executeQ in the current time interval sinced |= motor 1_speed > 0, by contrast
the process

P ′ = when motor 1_speed > 10 do Q

will not executeQ, unless more information is added to the store during the current
time interval entailingmotor 1_speed > 10.

ut



8 Mogens Nielsen and Frank D. Valencia

Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values of variables. In concurrent systems it is often convenient to model
behavior foralternative coursesof action, i.e., nondeterministic behavior.

We generalize the processes of the formwhen c do P described above to guarded-
choice summation processes of the form

∑
i∈I

when ci do Pi (3)

whereI is a finite set of indices. The expression
∑

i∈I when ci do Pi represents
a process that, in the current time interval,nondeterministicallychooses a process
Pj (j ∈ I) whose corresponding constraintcj is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution. In the following example we
shall use “+” for binary summations.

Example 4.Often RCX programs operate in a set of simple stimulus-response rules of
the formIF E THEN C. The expressionE is a condition typically depending on the
sensor variables, andC is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set

{
(IF sensor 1 > 0 THEN motor 1_speed := 2),
(IF sensor 2 > 99 THEN motor 1_speed := 0)

}

corresponds to the summation process

P =
when sensor 1 > 0 do tell(motor 1_speed = 2)
+
when sensor 2 > 99 do tell(motor 1_speed = 0).

In the stored = (sensor 1 > 10), the processP causes the store to become
d ∧ (motor 1_speed = 2) sincetell(motor 1_speed = 2) is chosen for execution
and the other alternative is precluded. In the storetrue , P cannot add any information.
In the storee = (sensor 1 = 10 ∧ sensor 2 = 100), P causes the store to become
eithere ∧ (motor 1_speed = 2) or e ∧ (motor 1_speed = 0). ut

Parallel Composition. Given P andQ we denote their parallel composition by the
process

P ‖ Q (4)

In one time unit processesP and Q operate concurrently, “communicating” via the
common store by telling and asking information.
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Example 5.Let P be defined as in Example 4 and

Q =
when motor 1_speed = 0 do tell(motor 2_speed = 0)
+
when motor 2_speed = 0 do tell(motor 1_speed = 0).

Intuitively Q turns off one motor if the other is detected to be off. The parallel
compositionP ‖ Q in the stored = (sensor 2 > 100) will, in one time unit, cause
the store to becomed ∧ (motor 1_speed = motor 2_speed = 0). ut

Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modeling oflocal
(or hidden)behavior. We introduce processes of the form

(localx)P (5)

The process(localx)P declares a variablex, private toP . This process behaves
like P , except that all the information aboutx produced byP is hidden from external
processes and the information aboutx produced by other external processes is hidden
from P .

Example 6.In modeling RCX or PLC’s one uses “global” variables to represent ports
(e.g., sensor and motors). However, one often also uses variables, which represent some
local (or private) computational data.

Suppose thatR is a given process modeling some controller task. Furthermore,
suppose thatR uses a variablez, which is set at random to a valuev ∈ {0, 1} in the
processP , i.e.

P = (
∑

v∈{0,1}
when true do tell(z = v)) ‖ R

representing the behavior ofR underP ’s random assignment ofz.
We may want to declarez in P to be local since it does not represent an input or

output port. Moreover, notice that if we need to run two copies ofP , i.e., processP ‖ P ,
a failure may arise as each copy can assign a different value toz. Therefore, the behavior
of R under the random assignment toz can be best represented byP ′ = (local z)P .
In fact, if we run two copies ofP ′, no failure can arise from the random assignment to
thez’s as they are private to eachP ′. ut

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-Outs.As in the Synchronous Languages [2] we have constructs
whose actions can delay the execution of processes. These constructs are needed to
model time dependency between actions, e.g., actions depending on preceding actions.

The unit-delay operators have the form

nextP and unless c nextP (6)
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The processnextP represents the activation ofP in the next time interval. The
processunless c nextP is similar, butP will be activated only ifc cannot be inferred
from the resulting (or final) stored in the current time interval, i.e.,d 6|= c. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of informationc to be present and if it is not, they trigger activity in the next
time interval.

Notice thatunless c next P is not equivalent towhen ¬c do nextP sinced 6|= c
does not necessarily implyd |= ¬c. Notice also thatQ = unless false nextP is
not the same asR = nextP , sinceR (unlike Q) always activatesP in the next time
interval, even if the store entailsfalse .

Example 7.Let us consider the following process:

P = when false do next tell(motor 1_speed = motor 2_speed = 0).

P turns the motors off by decreeing thatmotor 1_speed = motor 2_speed = 0 in
the next time interval if a failure takes place in the current time interval. Similarly, the
process

unless false next (tell(motor 1_speed > 0) ‖ tell(motor 2_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. ut

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operator “?” which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [26]. The process

? P (7)

represents an arbitrary long but finite delay for the activation ofP . Thus,? tell(c) can
be viewed as a messagec that is eventually delivered but there is no upper bound on the
delivery time.

Example 8.Let S = ? tell(malfunction (motor 1_status )). The processS can
be used to specify thatmotor 1, at some unpredictable point in time, is doomed to
malfunction ut

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator “!” as a delayed version of the replication operator for theπ−calculus [27].
Given a processP , the process

! P (8)

representsP ‖ (nextP ) ‖ (nextnext P ) ‖ · · · ‖! P , i.e., unboundedly many copies
of P , but one at a time. The process! P executesP in one time unit and persists in the
next time unit.
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Example 9.The processR below repeatedly checks the state ofmotor 1. If a malfunc-
tion is reported,R tells thatmotor 1 must be turned off.

R = !when malfunction (motor 1_status ) do tell(motor 1_speed = 0)

Thus,R ‖ S with S = ? tell(malfunction (motor 1_status )) (Example 8) even-
tually tells thatmotor 1 is turned off. ut

Some Derived Forms

We have informally introduced the basic process constructs ofntcc and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit “when true do ” if no confusion arises. The
“blind-choice” process

∑
i∈I when true do Pi, for example, can be written as∑

i∈I Pi. We shall use
∏

i∈I Pi, whereI is finite, to denote the parallel composition of
all thePi’s. We usenextn(P ) as an abbreviation fornext(next(. . . (nextP ) . . . )),
wherenext is repeatedn times.

Inactivity. The process doing nothing whatsoever,skip can be defined as an abbrevia-
tion of the empty summation

∑
i∈∅ Pi. This process corresponds to the inactive proce-

sses0 of CCS andSTOP of CSP. We should expect the behavior ofP ‖ skip to be
the same as that ofP under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the processabort which is somehow to the
opposite extreme ofskip. Whilst havingskip in a system causes no change whatso-
ever, havingabort can make the whole system fail. Henceabort corresponds to the
CHAOS operator in CSP. In Section 4 we mentioned that a tell process causes a failure,
at the current time interval, if it leaves the store inconsistent. Therefore, we can define
abort as ! tell(false ), i.e., the process that once activated causes a constant fail-
ure. Therefore, any reasonable notion of behavioral equivalence should not distinguish
betweenP ‖ abort andabort.

Asynchronous Parallel Composition.Notice that inP ‖ Q bothP andQ are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous version of “‖” is
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can define a(fair) asynchronousparallel composition
P | Q as

(P ‖ ? Q) + (? P ‖ Q)

A move ofP | Q is either one ofP or one ofQ (or both). Moreover, bothP andQ
are eventually executed (i.e. a fair execution ofP | Q). This process corresponds to the
asynchronous parallel operator described in [26].
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We should expect operator “|” to enjoy properties of parallel composition. Namely,
we should expectP | Q to be the same asQ | P andP | (Q | R) to be the same
as(P | Q) | R. Unlike in P ‖ skip, however, inP | skip the execution ofP may
be arbitrary postponed, therefore we may want to distinguish betweenP | skip and
P . Similarly, unlike inP ‖ abort, in P | abort the execution ofabort may be
arbitrarily postponed.

Bounded Eventuality and Invariance.We may want to specify that a certain behavior
is exhibited within a certain number of time units, i.e.,bounded eventuality, or during a
certain number of time units, i.e.,bounded invariance. An example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of! P and? P , which can be derived using summation and parallel composition
in the obvious way. We define!IP and?IP , whereI is a closed interval of the natural
numbers, as an abbreviation for∏

i∈I

nextiP and
∑
i∈I

nextiP

respectively. Intuitively,?[m,n]P means thatP is eventually active between the nextm
andm + n time units, while![m,n]P means thatP is always active between the nextm
andm + n time units.

4.1 The Operational Semantics ofntcc

Following the informal description ofntcc above, we now proceed with a formal def-
inition. We shall begin by formalizing the notion of constraint system and the syntax
of ntcc . We shall then give meaning to thentcc processes by means of an oper-
ational semantics. The semantics, which resembles the reduction semantics of theπ-
calculus [27], providesinternal andexternaltransitions describing process evolutions.
The internal transitions describe evolutions within a time unit, and they are considered
to be unobservable. The external transitions describe evolution across the time units,
and they are considered to be observable.

Constraint Systems.For our purposes it will suffice to consider the notion of constraint
system based on first-order logic, following e.g. [47].

Definition 1 (Constraint System).A constraint system (cs)is a pair (Σ, ∆) whereΣ
is a signature of function and predicate symbols, and∆ is a decidable theory overΣ
(i.e., a decidable set of sentences overΣ with a least one model).

Given a constraint system(Σ, ∆), let (Σ,V ,S) be its underlying first-order lan-
guage, whereV is a countable set of variablesx, y, . . ., andS is the set of logic sym-
bols ¬,∧,∨,⇒, ∃, ∀, true and false . Constraintsc, d, . . . are formulae over this
first-order language. We say thatc entailsd in ∆, written c |= d, iff c ⇒ d is true in
all models of∆. The relation|=, which is decidable by the definition of∆, induces an
equivalence≈ given byc ≈ d iff c |= d andd |= c.
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Convention 1 Henceforth,C denotes the set of constraints modulo≈ under consider-
ation in the underlying constraint system.

Let us now give some examples of constraint systems. The classical example is the
Herbrand constraint system [39].

Definition 2 (Herbrand Constraint System).The Herbrand constraint system is such
that:

– Σ is a set with infinitely many function symbols of each arity and equality=.
– ∆ is given by Clark’s Equality Theory with the schemas

f(x1, . . . , xn)=f(y1, . . . , yn) ⇒ x1 = y1 ∧ . . . ∧ xn = yn

f(x1, . . . , xn)=g(y1, . . . , yn) ⇒ false , if f, g are distinct symbols
x = f(. . . x . . .) ⇒ false .

The importance of the Herbrand constraint system is that it underlies conventional
logic programming and many first-order theorem provers. Its value lies in the Herbrand
Theorem, which reduces the problem of checking unsatisfiability of a first-order for-
mula to the unsatisfiability of a quantifier-free formula interpreted over finite trees.

Another widely used constraint system is the finite-domain constraint systemFD
defined in [18]. InFD variables are assumed to range over finite domains and, in ad-
dition to equality, we may have predicates that restrict the range of a variable to some
finite set. The following is a simplified finite-domain constraint system.

Definition 3 (A Finite-Domain Constraint System).Letn > 0. DefineFD[n] as the
constraint system such that:

– Σ is given by the constants symbols0, 1, ...., n− 1 and the equality=.
– ∆ is given by the axioms of equational theoryx = x, x = y ⇒ y = x, x = y∧y =

z ⇒ x = z, andv = w ⇒ false for each two different constantsv, w in Σ.

Intuitively FD[n] provides a theory of variables ranging over a finite domain of
values{0, . . . , n− 1} with syntactic equality over these values.

The following is a somewhat more complex finite-domain constraint system.

Definition 4 (Modular Arithmetic Constraint System). Let n > 0. DefineA[n] as
the constraint system such that:

– Σ is given by{0, 1, ...., n− 1, succ, pred, +,×, =, >}.
– ∆ is the set of sentences valid in arithmetic modulon.

The intended meaning ofA[n] is the natural numbers interpreted as in arithmetic
modulon. Due to the familiar operations it provides, we shall often assume thatA[n]
is the underlying constraint system in our examples and applications.

Other examples of constraint systems include: Rational intervals, Enumerated type,
the Kahn constraint system and the Gentzen constraint system (see [45] and [39] for
details).
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Process Syntax and Semantics.

Following the informal description above, the process constructions in thentcc calcu-
lus are given by the following syntax:

Definition (Processes,Proc). ProcessesP , Q, . . .∈ Proc are built from constraints
c ∈ C and variablesx ∈ V in the underlying constraint system by:

P, Q, . . . ::= tell(c) | ∑
i∈I

when ci do Pi | P ‖ Q | (localx)P

| nextP | unless c nextP | ? P | ! P
The informal semantic meaning provided above of the constructs is formalized in

terms of the following structural operational semantics (SOS) ofntcc . This semantics
definestransitionsbetween process-storeconfigurationsof the form〈P, c〉, with stores
represented as constraints and processes quotiented by the congruence≡ below.

Let us define precisely what we mean by the term “congruence” of processes, a key
concept in the theory of process algebra. First, we need to introduce the standard notion
of process context. Informally speaking, a process context is a process expression with
a single hole, represented by[·], such that placing a process in the hole yields a well-
formed process. More precisely,

Definition 5 (Process Context).Process contextsC are given by the syntax

C ::= [·] | when c do C + M | C ‖ P | P ‖ C |(localx)C
| nextC | unless c nextC | ? C | ! C

whereM stands for summations. The processC[Q] results from the textual substitution
of the hole[·] in C with Q.

An equivalence relation is a congruence if it respects all contexts:

Definition 6 (Process Congruence).An equivalence relation∼= on processes is said to
be a processcongruenceiff for all contextsC, P ∼= Q impliesC[P ] ∼= C[Q].

We can now introduce the structural congruence≡. Intuitively, the relation≡ de-
scribes irrelevant syntactic aspects of processes. It states that(Proc/ ≡, ‖, skip) is a
commutative monoid.

Definition 7 (Structural Congruence).Let≡ be the smallest congruence over proce-
sses satisfying the following axioms:

1. P ‖ skip ≡ P
2. P ‖ Q ≡ Q ‖ P
3. P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

We extend≡ to configurations by decreeing that〈P, c〉 ≡ 〈Q, c〉 iff P ≡ Q.

Convention 2 Following standard notation, we extend the syntax with a construct
local (x, d) in P , to represent the evolution of a process of the formlocalx inQ,
whered is the local information (or store) produced during this evolution. Initially
d is “empty”, so we regardlocalx inP aslocal (x, true ) in P .
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The transitions of the SOS are given by the relations−→ and=⇒ defined in Table 1.
The internal transition〈P, d〉 −→ 〈P ′, d′〉 should be read as “P with stored reduces, in

one internal step, toP ′ with stored′ ”. The observable transitionP
(c,d)

====⇒ R should
be read as “P on inputc, reduces in onetime unitto R and outputsd”.

Intuitively, the observable reduction is obtained from a sequence of internal reduc-
tions starting inP with initial storec and terminating in a processQ with final store
d. The processR, which is the one to be executed in the nexttime interval(or time
unit), is obtained by removing fromQ what was meant to be executed only during the
current time interval. Notice that the stored is not transferred to the next time interval,
i.e. information ind can only be transfered to the next time unit byP itself.

TELL
〈tell(c), d〉 −→ 〈skip, d ∧ c〉

SUM
d |= cj j ∈ I

˙

P

i∈I when ci do Pi, d
¸ −→ 〈Pj , d〉

PAR
〈P, c〉 −→ ˙

P ′, d
¸

〈P ‖ Q, c〉 −→ ˙

P ′ ‖ Q, d
¸ LOC

〈P, c ∧ ∃xd〉 −→ ˙

P ′, c′
¸

〈(localx, c) P, d〉 −→ ˙

(localx, c′) P ′, d ∧ ∃xc′
¸

UNL
〈unless c nextP, d〉 −→ 〈skip, d〉

if d |= c

REP
〈! P, d〉 −→ 〈P ‖ next ! P, d〉

STAR
〈? P, d〉 −→ 〈next nP, d〉

if n ≥ 0

STR
γ1 −→ γ2

γ′1 −→ γ′2
if γ1 ≡ γ′1 andγ2 ≡ γ′2

OBS
〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)
====⇒ R

if R ≡ F (Q)

Table1.Rules for internal reduction−→ (upper part) and observable reduction=⇒ (lower part).
γ 6−→ in OBS holds iff for noγ′, γ −→ γ′.≡ andF are given in Definitions 7 and 8.

Most of the rules in Table 1 should be straightforward from the informal description
of the intended semantics given above. For detailed comments we refer to [30], and
here we only comment on two of the rules: the rule for local variablesLOC andOBS
(covering the seemingly missing rules for “next” and “unless” processes).

Consider the process
Q = (local x, c)P

in Rule LOC. The global store isd and the local store isc. We distinguish between
theexternal(corresponding toQ) and theinternal point of view (corresponding toP ).
From the internal point of view, the information aboutx, possibly appearing in the
“global” stored, cannot be observed. Thus, before reducingP we should first hide the
information aboutx thatQ may have ind. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal agentP may produce (i.e.,c′) cannot be observed.
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Thus we hide it by existentially quantifyingx in c′ before adding it to the global store
corresponding to the evolution ofQ. Additionally, we should makec′ the new private
store of the evolution of the internal process for its future reductions.

RuleOBS says that an observable transition fromP labeled with(c, d) is obtained
from a terminating sequence of internal transitions from〈P, c〉 to a〈Q, d〉. The process
R to be executed in the next time interval is equivalent toF (Q) (the “future” of Q).
F (Q) is obtained by removing fromQ summations that did not trigger activity and any
local information which has been stored inQ, and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 8 (Future Function). LetF : Proc ⇀ Proc be defined by

F (Q) =




skip if Q =
∑

i∈I when ci do Qi

F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

(local x)F (R) if Q = (localx, c)R
R if Q = nextR or Q = unless c nextR

Remark 1.F need no to be total since whenever we need to applyF to aQ (OBS in Table 1),
everytell(c), ? R and ! R in Q will occur within a “next” or “unless” expression.

Example 10.Recall Example 9. ProcessesR andS were defined as:

R = !when c do tell(e)
S = ? tell(c)

wherec = malfunction (motor 1_status ) ande = (motor 1_speed = 0).
Let P = R ‖ S, S′ = tell(c) and R′ = when c do tell(e). One can verify

that for anarbitrary m > 0, the following is a valid sequence of observable transitions
starting withP :

R ‖ S
(c,c∧e)
====⇒ R ‖ next mS′

(true ,true )
====⇒ R ‖ next m−1S′

(true ,true )
====⇒ . . .

. . .
(true ,true )

====⇒ R ‖ S′
(true ,c∧e)
====⇒ R

(true ,true )
====⇒ . . . .

Intuitively, in the first time interval the environment tellsc (i.e.,c is given as input
to P ) thusR′, which is created by!R, tellse. The output is thenc ∧ e. Furthermore,S
creates anS′ which is to be triggered in an arbitrary number of time unitsm + 1. In
the following time units the environment does not provide any input whatsoever. In the
m + 1-th time unitS′ tells c and thenR′ tellse. ut

4.2 Observable Behavior

In this section we recall some notions introduced in [31] ofprocess observations. We
assume that what happens within a time unit cannot be directly observed, and thus
we abstract from internal transitions, and focus on observations in terms of external
transitions.

Notation 1 Throughout this paperCω denotes the set of infinite sequences of con-
straints in the underlying set of constraintsC. We useα, α′, . . . to range overCω.
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Let α = c1.c2. . . . andα′ = c′1.c
′
2. . . .. We use the notationP

(α,α′)
====⇒ω to denote

the existence of an infinite sequence of observable transitions (orrun): P = P1
(c1,c′1)
====⇒

P2
(c2,c′2)
====⇒ . . . .

IO and Output Behavior.Consider a run ofP as above. At the time uniti, the environ-
mentinputsci to Pi, which then responds with an outputc′i. As observers, we can see

that onα, P responds withα′. We refer to the set of all(α, α′) such thatP
(α,α′)
====⇒ω

as theinput-output (io) behaviorof P . Alternatively, if α = true ω, we interpret the
run as an interaction among the parallel components inP without the influence of any
(external) environment; as observers what we see is thatP producesα on its own. We

refer to the set of allα′ such thatP
(true ω ,α′)
====⇒ ω as theoutputbehavior ofP .

Quiescent Sequences and SP.As a third alternative, we may observe the quiescent
input sequences of a process. These are sequences of input on whichP can run without

adding any information; we observe whetherα = α′ wheneverP
(α,α′)
====⇒ω.

In [30] it is shown that the set of quiescent sequences of a givenP can be char-
acterized asthe set of infinite sequences thatP can possibly output under arbitrary
environments; the strongest postcondition (sp) ofP .

Summing up, we have the following notions of observable behavior.

Definition 9 (Observable Behavior).The behavioral observations that can be made
of a process are:

1. Theinput-output (or stimulus-response) behaviorof P , written,io(P ), defined as

io(P ) = {(α, α′) | P
(α,α′)
====⇒ω}.

2. The(default) output behaviorof P , writteno(P ), defined as

o(P ) = {α′ | P
(true ω ,α′)
====⇒ ω}.

3. Thestrongest postconditionbehavior ofP , writtensp(P ), defined as

sp(P ) = {α | P
(α′,α)
====⇒ω for someα′}.

Given these notions of observable behaviors, we have the following naturally in-
duced equivalences and congruences (recall the notion of congruence given in Defini-
tion 6.)

Definition 10 (Behavioral Equivalences).Let l ∈ {io, o, sp}. DefineP ∼l Q iff
l(P ) = l(Q). Furthermore, let≈l the congruence induced by∼l, i.e., P ≈l Q iff
C[P ] ∼l C[Q] for every process contextC.

We shall refer to equivalences defined above asobservational equivalences. No-
tice, that they identify processes whose internal behavior may differ widely. Such an
abstraction from internal behavior is essential in the theory of several process calculi;
most notably in weak bisimilarity for CCS [25].
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Example 11.Let a, b, c, d ande mutually exclusive constraints. Consider the processes
P andQ below:

when a do next
when b do next tell(d)
+
when c do next tell(e)

| {z }

,
when a do nextwhen b do next tell(d)
+
when a do nextwhen c do next tell(e)
| {z }

P Q

The reader may verify thatP ∼o Q sinceo(P ) = o(Q) = {true ω}. However,
P 6∼io Q norP 6∼sp Q since ifα = a.c. true ω then(α, α) ∈ io(Q) andα ∈ sp(Q)
but (α, α) 6∈ io(P ) andα 6∈ sp(P ). ut

Congruence and Decidability Issues.In [30] it is proven that none of the three obser-
vational equivalences introduced in Definition 10 are congruences. However,∼sp is a
congruence if we confine our attention to the so-calledlocally-independentfragment of
the calculus, i.e. the fragment without non-unary summations and “unless” operations,
whose guards depend on local variables.

Definition 11 (Locally-Independent Processes).P is locally-independentiff for ev-
eryunless c nextQ and

∑
i∈I when ci do Qi (|I| ≥ 2) in P , neitherc nor theci’s

contain variables inbv(P ) (i.e., the bound variables ofP ).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in this
fragment [51]. Moreover, the applicability of this fragment is witnessed by the fact all
thentcc applications we are aware of [30,31,51] can be model as locally-independent
processes. Also, the (parameterless-recursion) tcc model can be expressed in this frag-
ment as, from the expressiveness point of view, the local operator is redundant in tcc
with parameterless-recursion [29]. Furthermore, it allows us to express infinite-state
processes (i.e., there are processes that can evolve into infinitely many other processes).
Hence, it is rather surprising that∼sp is decidable for the local-independent fragment
as recently proved in [52]. In 5 below we shall present a number of other seemingly
surprising decidability results for other fragments ofntcc .

? ? ?

4.3 Denotational Semantics

In the previous section we introduced the notion of strongest-postcondition ofntcc
processes in operational terms. In the following we show the abstract denotational
model of this notion, first presented in [32].

The denotational semantics is defined as a function[[·]] associating with each pro-
cess a set of infinite constraint sequences,[[·]] : Proc → P(Cω). The definition of this
function is given in Table 2. Intuitively,[[P ]] is meant to capture the set of all sequences
P can possibly output. For instance, the sequences associated withtell(c) are those
for which the first element is stronger thanc (see DTELL, Table 2). ProcessnextP
has not influence on the first element of a sequence, thusd.α is a possible output if
α is a possible output ofP (see DNEXT, Table 2). The other cases can be explained
analogously.



Notes on Timed CCP 19

DTELL: [[tell(c)]] = {d.α | d |= c}

DSUM: [[
P

i∈I when ci do Pi ]] =
S

i∈I

{d.α | d |= ci andd.α ∈ [[Pi]]} ∪
T

i∈I{d.α | d 6|= ci}

DPAR: [[P ‖ Q]] = [[P ]]∩ [[Q]]

DLOC: [[(localx) P ]] = {α | there existsα′ ∈ [[P ]] s.t.∃xα′ = ∃xα}

DNEXT: [[nextP ]] = {d.α | α ∈ [[P ]]}

DUNL: [[unless c nextP ]] = {d.α | d |= c} ∪ {d.α | d 6|= c andα ∈ [[P ]]}

DREP: [[! P ]] = {α | for all β, α′ s.t.α = β.α′, we haveα′ ∈ [[P ]]}

DSTAR: [[? P ]] = {β.α | α ∈ [[P ]]}

Table2. Denotational semantics ofntcc . Symbolsα andα′ range over the set of infinite se-
quences of constraintsCω; β ranges over the set of finite sequences of constraintsC∗. Notation
∃xα denotes the sequence resulting by applying∃x to each constraint inα.

From [7] we know that there cannot be af : Proc → P(Cω), compositionally
defined, such thatf(P ) = sp(P ) for all P . Nevertheless, as stated in the theorem
below, Palamidessi et al [32] showed that the sp denotational semantics matches its
operational counter-part for the locally-independent fragment 11.

Theorem 1 (Full Abstraction, [32]).For everyntcc processP , sp(P ) ⊆ [[P ]] and if
P is locally-independent then[[P ]] ⊆ sp(P ).

The full-abstraction result above has an important theoretical value; i.e., for a signif-
icant fragment of the calculus we can abstract away from operational details by working
with [[P ]] rather thansp(P ). Furthermore, an interesting corollary of the full-abstraction
result is that∼sp is a congruence, if we confine ourselves to locally-independent pro-
cesses.

4.4 LTL Specification and Verification

Processes inntcc denote observable behavior of timed systems. As with other such
formalisms, it is often convenient to express specifications of such behaviors in logical
formalisms. In this section we present thentcc logic first introduced in [32]. We start
by defining a linear-time temporal logic (LTL) expressing temporal properties over in-
finite sequences of constraints. We then define what it means for a process to satisfy a
specification given as a formula in this logic. Finally, we present an inference system
aimed at proving processes satisfying specifications.

A Temporal Logic. Thentcc LTL expresses properties of infinite sequences of con-
straints, and we shall refer to it asCLTL .

Definition 12 (CLTL Syntax). The formulaeF, G, ... ∈ F are built from constraints
c ∈ C and variablesx ∈ V in the underlying constraint system by:

F, G, . . . := c | ˙true | ˙false | F ∧̇G | F ∨̇G | ¬̇F | ∃̇x F | ◦F | �F | ♦F
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Herec is a constraint (i.e., a first-order formula in the underlying constraint system)
representing astate formulac. The symbols ˙true , ˙false , ∧̇, ∨̇, ¬̇, ∃̇ represent linear-
temporal logic true, false, conjunction, disjunction, negation and existential quantifica-
tion. As clarified later, the dotted notation is introduced since inCLTL these operators
may have different interpretations from the symbolstrue , false ,∧,∨,¬, ∃ in the
underlying constraint system. The symbols◦, �, and♦ denote the temporal operators
next, alwaysandsometime.

The standard interpretation structures of linear temporal logic are infinite sequences
of states [22]. In the case ofntcc , it is natural to replace states by constraints, and
hence our interpretations are elements ofCω.

The CLTL semantics is given in Definition 14. Following [22] we introduce the
notion ofx-variant.

Notation 2 Given a sequenceα = c1.c2. . . ., we use∃xα to denote the sequence
∃xc1∃xc2 . . . . We shall useα(i) to denote thei− th element ofα.

Definition 13 (x-variant). A constraintd is anx-variantof c iff ∃xc = ∃xd. Similarly
α′ is anx-variantof α iff ∃xα = ∃xα′.

Intuitively, d andα′ arex-variants ofc andα, respectively, if they are logically the
same except for information aboutx. For example,x = 0 ∧ y = 0 is anx-variant of
x = 1 ∧ y = 0.

Definition 14 (CLTL Semantics).We say thatα ∈ Cω satisfies (or that it is a model
of) theCLTL formulaF , writtenα |=CLTL F , iff 〈α, 1〉 |=CLTL F , where:

〈α, i〉 |=CLTL ˙true 〈α, i〉 6|=CLTL ˙false
〈α, i〉 |=CLTL c iff α(i) |= c
〈α, i〉 |=CLTL ¬̇F iff 〈α, i〉 6|=CLTL F
〈α, i〉 |=CLTL F ∧̇G iff 〈α, i〉 |=CLTL F and〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL F ∨̇G iff 〈α, i〉 |=CLTL F or 〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL ◦F iff 〈α, i + 1〉 |=CLTL F
〈α, i〉 |=CLTL �F iff for all j ≥ i 〈α, j〉 |=CLTL F
〈α, i〉 |=CLTL ♦F iff there is aj ≥ i such that〈α, j〉 |=CLTL F

〈α, i〉 |=CLTL ∃̇x F iff there is anx-variantα′ of α such that〈α′, i〉 |=CLTL F.

Define[[F ]]={α | α |=CLTL F}. We say thatF is CLTL valid iff [[F ]] = Cω, and thatF
is CLTL satisfiableiff [[F ]] 6= ∅.

State formulae as Constraints.Let us comment briefly on the role of constraints as
state formulae in our logic. A temporal formulaF expresses a property of sequences
of constraints. As a state formula,c expresses a property, which is satisfied by those
e.α′ such thate |= c. Hence, the state formulafalse (and consequently� false ) is
satisfied byfalse ω. On the other hand, the temporal formula ˙false has no model
whatsoever.

Similarly, the models of the temporal formulac ∨̇ d are thosee.α′ such that either
e |= c or e |= d holds. Therefore, the formulac ∨̇ d and the atomic propositionc ∨ d
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may have different models since, in general, one can verify thate |= c ∨ d may hold
while neithere |= c nore |= d hold – e.g. takee = (x = 1 ∨ x = 2), c = (x = 1) and
d = (x = 2).

In contrast, the formulac ∧̇ d and the atomic propositionc∧d have the same models
sincee |= (c ∧ d) holds if and only if bothe |= c ande |= d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operators∨ and
∨̇. This distinction does not make our logic intuitionistic. In fact, classically (but not
intuitionistically) valid statements such as¬̇A ∨̇A and¬̇ ¬̇A ⇒̇A are also valid in our
logic.

Process Verification.

We are now ready to define what it means for a processP to satisfy a specificationF .

Definition 15 (Verification). P satisfiesF , writtenP |=CLTL F , iff sp(P ) ⊆ [[F ]].

Thus, the intended meaning ofP |=CLTL F is that every sequenceP can possi-
bly output on inputs from arbitrary environments satisfies the temporal formulaF . For
example,? tell(c) |= ♦c, since in every infinite sequence output by? tell(c) on arbi-
trary inputs, there must be an element entailingc.

Following the discussion above, notice thatP = tell(c) + tell(d) |= (c ∨̇ d) as
every constrainte output byP entails eitherc or d. In contrast,Q = tell(c ∨ d) 6|=
(c ∨̇ d) in general sinceQ can output a constrainte which entailsc∨d, but neitherc nor
d.

4.5 Proof System for Verification.

[32] introduces aproof (or inference) systemfor assertions of the formP ` F , where
P ` F is intended to be the “counterpart” ofP |= F in the sense thatP ` F should
approximateP |=CLTL F as closely as possible (ideally, they should be equivalent). The
system is presented in Table 3.

Definition 16 (P ` F ). We say thatP ` F iff the assertionP ` F has a proof in the
system in Table 3.

Inference Rules.Let us briefly comment on (the soundness of) some of the inference
rules of the proof system. The inference rule for the tell operator is given by

LTELL: tell(c) ` c

Rule LTELL gives a proof reflecting the fact that every output oftell(c) on arbitrary
input, indeed satisfies the atomic propositionc, i.e.,tell(c) |=CLTL c.

Consider now the rule for the choice operator:

LSUM:
∀i ∈ I Pi ` Fi∑

i∈I

when ci do Pi `
∨̇
i∈I

(ci ∧̇Fi) ∨̇
∧̇
i∈I

¬̇ ci
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LTELL: tell(c) ` c LPAR:
P ` F Q ` G

P ‖ Q ` F ∧̇G

LSUM:
∀i ∈ I Pi ` Fi

X

i∈I

when ci do Pi ` ˙_

i∈I

(ci ∧̇Fi) ∨̇ ˙^

i∈I

¬̇ ci

LLOC:
P ` F

(localx) P ` ∃̇x F

LNEXT:
P ` F

nextP ` ◦F
LUNL:

P ` F

unless c next P ` c ∨̇◦F

LREP:
P ` F

! P ` �F
LSTAR:

P ` F

? P ` ♦F

LCONS:
P ` F

P ` G
if F ⇒̇G

Table3.A proof system for linear-temporal properties ofntcc processes

Rule LSUM can be explained as follows. Suppose that forP =
∑

i∈I when ci do Pi

we are given a proof that eachPi satisfiesFi, i.e. (inductively)Pi |=CLTL Fi. Then we
may conclude that every output ofP on arbitrary input will satisfy either: (a) some of
the guardsci and their correspondingFi (i.e.,

∨̇
i∈I(ci ∧̇Fi)), or (b) none of the guards

(i.e.,
∧̇

i∈I ¬̇ ci).
The inference rule for parallel composition is defined as

LPAR:
P ` F Q ` G

P ‖ Q ` F ∧̇G

The soundness of this rule can be justified as follows. Assume that each output ofP ,
under the influence of arbitrary environments, satisfiesF . Assume the same aboutQ
andG. In P ‖ Q, the processQ can be thought as one of those arbitrary environment
under whichP satisfiesF . ThenP ‖ Q must satisfyF . Similarly, P can be one of
those arbitrary environment under whichQ satisfiesG. Hence,P ‖ Q must satisfyG
as well. We therefore have grounds to conclude thatP ‖ Q satisfiesF ∧̇G.

The inference rule for the local operator is

LLOC:
P ` F

(local x)P ` ∃̇x F

The intuition is that since the outputs of(localx)P are outputs ofP with x hidden
then ifP satisfiesF , (localx)P should satisfyF with x hidden, i.e.,̇∃x F .

The following are the inference rules for the temporalntcc constructs:

LNEXT:
P ` F

nextP ` ◦F

LUNL:
P ` F

unless c nextP ` c ∨̇ ◦F

LREP:
P ` F

! P ` �F

LSTAR:
P ` F

? P ` ♦F
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Assume thatP ` F , i.e. (inductively)P |=CLTL F . Rule LNEXT reflects that we may
then conclude that also the processnext P satisfies◦F . Rule LUNL is similar, except
that P can also be precluded from execution, if some environment providesc. Thus
unless c next P satisfies eitherc or◦F . Rule LREP says that ifF is satisfied byP ,
then executingP in each time interval will implyF to be satisfied in each time interval,
i.e. ! P satisfies�F . Rule LSTAR reflects that ifP is executed in some time interval,
then in that time intervalF is satisfied, and hence? P satisfies♦F .

Finally, we have the rule:

LCONS:
P ` F

P ` G
if F ⇒̇G

Notice that this rule refers to some unspecified way of inferring validity ofCLTL for-
mulae. We shall return to this point shortly. Rule LCONS simply says that ifP satisfies
a specificationF then it also satisfies any weaker specificationG. We shall also refer to
LCONS asthe consequence rule.

Notice that the inference rules reveal a pleasant correspondence betweenntcc op-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at Work.Let us now give a simple example illustrating a proof in
inference system.

Example 12.Recall Example 9. We have a processR which was repeatedly checking
the state ofmotor 1. If a malfunction is reported,R would tell thatmotor 1 must
be turned off. We also have a processS stating that motormotor 1 is doomed to
malfunction. LetR =!when c do tell(e) and S = ? tell(c) with the constraints
c = malfunction (motor 1_status ) ande = (motor 1_speed = 0). We want
to provide a proof of the assertion:R ‖ S ` ♦ e. Intuitively, this means that the par-
allel execution ofR andS satisfies the specification stating thatmotor 1 is eventually
turned off. The following is a derivation of the above assertion.

when c do tell(e) ` (c ∧̇ e) ∨̇ ¬̇ c
LSUM

when c do tell(e) ` c ⇒̇ e
LCONS

R ` � (c ⇒̇ e)
LREP

tell(c) ` c
LTELL

S ` ♦ c
LSTAR

R ‖ S ` � (c ⇒̇ e) ∧̇♦c
LPAR

R ‖ S ` ♦ e
LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [30]—in particular for proving properties of
mutable data structures. ut

Let us now return to the issue of the relationship between` and|=CLTL.

Theorem 2 (Relative Completeness, [30]).If P is locally-independent thenP ` F iff
P |=CLTL F.
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Notice that this is indeed a “relative completeness” result, in the sense that, as men-
tioned earlier, one of our proof rules refer to the validity of temporal implication. This
means that our proof system is complete, if we are equipped with an oracle that is guar-
anteed to provide a proof or a confirmation of each valid temporal implication. Because
of this, one may wonder about the decidability of the validity problem for our temporal
logic. We look at this issue next.

Decidability Results. In [52] it is shown that the verification problem (i.e., givenP
andF whetherP |=CLTL F ) is decidable for the locally-independent fragment ofntcc
and negation-freeCLTL formulae. Please recall that the locally-independent fragment
of ntcc admits infinite-state processes. Also note thatCLTL is first-order. Most first-
order LTL’s in computer science are not recursively axiomatizable, let alone decidable
[1].

Furthermore, [52] proves the decidability of the validity problem for implication
of negation-freeCLTL formulae. This is done by appealing to the close connection
betweenntcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F andG, one can construct a processPF such thatsp(PF ) = [[F ]] and then it follows
thatPF |=CLTL G iff F ⇒̇G. As a corollary of this result, we obtain the decidability of
satisfiabilityfor the negation-free first-order fragment ofCLTL

A theoretical application of the theory ofntcc is presented in [52], stating a new
positive decidability result for a first-order fragment of Pnueli’s first-orderLTL [22].
The result is obtained from a reduction toCLTL satisfiability, and thus it also con-
tributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

5 A Hierarchy of Timed CCP Languages

In the literature several timed ccp languages have been introduced, differing in their way
of expressing infinite behavior. In this section we shall introduce a few fundamental
representatives of mechanisms introducing infinite behavior, expressed as variants of
the ntcc calculus. We shall also characterize their relative expressiveness following
[29].

Since timed CCP languages are deterministic we shall confine our attention to the
deterministicprocesses ofntcc as described in [30]. These are all the star-free proce-
sses with all summations having at most one guard. On top of this fragment we consider
the following variants:

– rep : deterministicntcc ; infinite behavior given by replication.
– rec p: obtained from deterministicntcc replacing replication byparametric re-

cursion. In rec p each procedures bodyhas no free variablesother than its formal
parameters.

– rec i : same asrec p, but where the actual parameters in recursive calls areiden-
tical to the formal parameters; i.e., we do not vary the parameters in the recursive
calls.
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– rec d: obtained by usingparameterless recursion, but including free variables in
procedure bodies withdynamic scope.

– rec s : same asrec d but with static scope.

In the following, the expressive power of these process languages is compared with
respect to the notion of input-output behavior, as introduced in Section 4.2. More pre-
cisely, one language is considered at least as expressive as another, if any input-output
behavior expressed by a process in the latter can be expressed also by a process in the
former. The comparison results can be summarized as follows:

– rec p andrec d are equally expressive, and strictly more expressive than the other
languages,

– rep , rec s andrec i are equally expressive.

In fact, [29] shows a strong separation result between the languagesrec p/rec d

andrep /rec s /rec i : the input-output equivalence is undecidable for the languages in
the first class, but decidable for the languages in the second class.

The undecidability results holds even if we fix an underling constraint system with
a finite domain having at least one element. The undecidability result is obtained by
a reduction from Post’s correspondence problem [34] and an input-output preserving
encoding betweenrec p/rec d.

The decidability results hold for arbitrary constraint systems, and follow from Büchi
automata [3] representation ofntcc processes and input-output preserving encodings
between the languages inrep /rec s /rec i .

The expressiveness gaps illustrated above may look surprising to readers familiar
with theπ-calculus [27], since it is well known that theπ-calculus correspondents of
rep , rec i andrec p all have the same expressive power. The reason for these differ-
ences can be attributed to the fact that theπ-calculus has some powerful mechanisms
(such as mobility), which compensate for the weakness of replication and the lower
forms of recursion.

We start by formally defining our five classes of process languages.

5.1 Replication

We shall userep to denote the deterministic fragment ofntcc . The processes in the
deterministic fragment are those star-free processes in which the cardinality of every
summation index set is at most one. Thus, the resulting syntax of process inrep is
given by:

P, Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP | ! P (9)

Infinite behavior inrep is provided by using replication. This way of expressing
infinite behavior is also considered in [43]. To be precise, [43] uses thehence operator.
However,henceP is equivalent tonext ! P and, similarly! P is equivalent toP ‖
henceP .
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5.2 Recursion

Infinite behavior in tcc languages may also be introduced by adding recursion, as e.g.
in [40,41,49]. Consider the process syntax obtained from replacing replication!P with
process(or procedure) callsA(y1, . . . , yn), i.e.:

P, Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (local x)P
| nextP | unless c nextP | A(y1, . . . , yn) (10)

The processA(y1, . . . , yn) is anidentifierwith arityn. We assume that every identi-

fier has a (recursive)process (or procedure) definitionof the formA(x1, . . . , xn) def= P
where thexi’s are pairwise distinct, and the intuition is thatA(y1, . . . , yn) behaves as
P with yi replacingxi for eachi.

We declareD to be the set of recursive definitions under consideration. We shall
often use the notationx as an abbreviation ofx1, x2, . . . , xn if n is unimportant or
obvious. We shall sometimes say thatA(y) is aninvocationwith actual parametersy,

and givenA(x) def= P we shall refer toP as itsbodyand tox as itsformal parameters.

Finite Dependency and Guarded RecursionFollowing [40], we shall require, for all
the forms of recursion defined next, the following: (1) any process to depend only on
finitely many definitions and (2) recursion to be “next” guarded. For example, given

A(x) def= P , every invocationA(y) in P must occur within the scope of a “next”
or “unless” operator operator. This avoids non-terminating sequences of internal reduc-
tions (i.e., non-terminating computation within a time interval). Below we give a precise
formulation of (1) and (2).

GivenA1(x1)
def= P1 andA2(x2)

def= P2, we say thatA1 (directly)dependsonA2,
written A1 ; A2, if there is an invocationA2(y) in P1. Requirement (1) can be then
formalized by requiring the strict ordering induced by;∗ (the reflexive and transitive
closure of;)1 to be well founded.

To formalize (2), suppose thatA1 ; A2 ; . . . ; An ; An+1 = A1, where

Ai(x1)
def= Pi. We shall require that for at least onei, 1 ≤ i ≤ n, the occurrences of

Ai+1 in Pi are within the scope of a “next” or an “unless” operator.

Parametric Recursion

We consider a further restriction for the case of recursion involving parameters.All the
free variables in definitions’ bodies must be formal parameters; more precisely, for each

A(x1, . . . , xn) def= P , we decree thatfv (P ) ⊆ {x1, . . . , xn}.
We shall userec p to denote the tcc language with recursion with the above syntac-

tic restriction. The operational rules forrec p are obtained from Table 1 by replacing
the rule for replicationREP with the following rule for recursion:

REC
〈A(y), d〉 −→ 〈P [y/x], d〉

A(x) def= P (11)

1 The relation;∗ is a pre-ordering. By induced strict ordering we mean the strict component of
;∗ modulo the equivalence relation obtained by taking the symmetric closure of;∗.
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As usualP [y1, . . . , yn/x1, . . . , xn], with all thexi’s being pairwise distinct, is the pro-
cess that results from syntactically replacing every free occurrence ofxi by yi using
α-conversion wherever needed to avoid capture.

Identical Parameters Recursion.An interesting tcc language considered in [40] arises
from rec p by restricting the parameters not to change through recursive invocations.
In theπ-calculus this restriction does not cause any loss of expressive power since such
form of recursion can encode general recursion (see [27]).

An example satisfying the above restriction isRP (x) def= P ‖ nextRP (x). Here
the actual parameters of the invocation in the body of the definition are the same as the

formal parameters ofRP . An example not satisfying the restriction isR′
P (x) def= P ‖

next (localx)R′
P (x). Here the actual parameters are bound and therefore different

from those of the formal parameters.
One can formalize the identical parameters restriction on a set of mutually recursive

definitions as follows. Suppose thatA1 ; A2 andA2 ;∗ A1 with A1(x1)
def= P1

andA2(x2)
def= P2 in the underlying set of definitionsD. Then for each invocation

A2(y) in P1 we should requirey = x2 andy 6∈ bv(P1). In other words the actual
parameters of the invocationA2 in P1 (i.e., y) should be syntactically the same as its
formal parameters (i.e.,x2). Furthermore, they should not be bound inP1 to avoid cases
such asR′

P (x) above.
The processes of tcc with identical parameters are those ofrec p that satisfy this

requirement. We shall refer to this language asrec i .

Parameterless Recursion.

Tcc with parameterless recursion have been studied in [40]. All identifiers have arity
zero, and hence, for convenience, we omit the “( )” in A( ).

Given a parameterless definitionA
def= P , requiring all variables infv (P ) to be

formal parameters, as inrec p, would mean that the bodyP has no free variables, and
the resulting class of process languages would be expressively weak. Hence, we now
suggest to allow free variables in procedure bodies.

Now. assuming that the operational rules for parameterless recursion are the same
as forrec p, what are the resulting scope rules for free variables in procedure bodies?
Traditionally, one distinguishes betweendynamicandstatic scoping, as illustrated in
the following example.

Example 13.Consider a constant identifierA with the following definition

A
def= tell(x = 1)

‖ next (local x) (A ‖ when x = 1 do tell(z = 1))

In the case of dynamic scoping, an outside invocationA causes the executiontell(z =
1) in the second time interval. The reason is that(local x) binds thex resulting from
the unfolding of theA inside the definition’s body. In fact, the telling ofx = 1, in the
second time unit, will not be visible in the store. In the case of static scoping,(localx)
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does not bind thex of the unfolding ofA because such anx is intuitively a “global”
variable, and hencetell(z = 1) will not be executed. In fact, the telling ofx = 1, will
also be visible in the store in the second time interval. ut

Parameterless Recursion with Dynamic Scoping.The ruleLOC in Table 1 combined
with REC causes the parameterless recursion to have dynamic scoping2. As illustrated
in the example below, the idea is that since(local x)P reduces to a process of the form
(localx)Q, the free occurrences ofx in the unfolding of invocations inP get bounded.

Example 14.ConsiderA as defined in Example 13. Let us abbreviate the definition of

A asA
def= tell(x = 1) ‖ P . Also letQ = skip ‖ P . We have the following reduction

of (localx)A in storetrue .

〈tell(x = 1), true 〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P, true 〉 −→ 〈Q, x = 1〉 PAR

〈A, true 〉 −→ 〈Q,x = 1〉 REC

〈(local x, true )A, true 〉 −→ 〈(local x, x = 1) Q, true 〉 LOC

Thus,(localx)A in store true reduces to(localx, x = 1) (skip ‖ P ) in store
true . Notice that the freex in A’s body become local to(localx, x = 1) (skip ‖ P ),
i.e, it now occurs in the local store but not in the global one. ut

We shall refer to the language allowing only parameterless recursion with free-
variables in the procedure bodies asrec d; parameterless recursion with dynamic scop-
ing.

Remark 2.It should be noticed that, unlike inrec p, we cannot freelyα-convert proce-
sses inrec d without changing behavior. For example, we couldα-convert the process
(localx)A in the above example into(local z)A (sinceA[z/x] is syntactically equal
to A) but the behavior of(local z)A would not be the same as that of(localx)A.

Parameterless Recursion with Static Scoping.From the previous section it follows
that static scoping as in [40] requires an alternative to the rule for local behaviorLOC .

The ruleLOC′ defines locality for the parameterless recursion with static scoping
language henceforth referred to asrec s .

LOC′
〈P [y/x], d〉 −→ 〈P ′, d′〉

〈(local x)P, d〉 −→ 〈P ′, d′〉
if y is fresh (12)

As in [24], we use the notion offresh variablemeaning that it does not occur else-
where in a process definition or in the store. It will be convenient to presuppose that the
set of variablesV is partitioned into two infinite setsF andV − F . We shall assume
that the fresh variables are taken fromF and that no input from the environment or

2 RulesLOC andREC are basically the same in ccp, hence the observations made in this section
regarding dynamic scoping apply to ccp as well.
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processes, other than the ones generated when applyingLOC′, can contain variables in
F .

The fresh variables introduced byLOC′ are not to be visible from the outside. We
hide these fresh variables, as suggested in [43], by using existential quantification in the
output constraint of observable transitions. More precisely, we replace in Table 1 the
rule for the observable transitionsOBS with the rule

OBS′
〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,∃Fd)
====⇒ F (Q) (13)

where∃Fd represents the constraint resulting from the existential quantification ind of
free occurrences of variables inF .

In order to see whyLOC′ causes static scoping inrec s , suppose thatP in Rule

LOC′ in Equation 12 contains an invocationA whereA
def= R. When replacingx with

y in P , A remains the same sinceA[y/x] is A. Furthermore, sincey is chosen from
F , there will be no capture of free variables inR when unfoldingA. This causes the
scoping to be static. Let us illustrate this by revisiting the previous example.

Example 15.Let A, P andQ as in the previous example. We have the following reduc-
tion of (localx)A in storetrue .

〈tell(x = 1), true 〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P, true 〉 −→ 〈Q, x = 1〉 PAR

〈A, true 〉 −→ 〈Q, x = 1〉 REC

〈(local x)A, true 〉 −→ 〈Q, x = 1〉 LOC′

Thus,(localx)A in storetrue reduces toskip ‖ P in store(x = 1) making the free
x in A’s body visible in the “global” store . ut
Remark 3.Notice that, as inrec d, in rec s we do not needα-conversion since in the
reductions ofrec s we only use syntactic replacements of variables by fresh variables.

5.3 Summary of TCC Languages

We have described five classes of tcc languages with infinite behabior, based on the
literature. We adopt the following convention.

Convention 3 We shall useL to designate the set of tcc languages

{rep , rec p, rec i , rec d, rec s}.
Furthermore, we shall index sets and relations involving tcc processes with the appro-
priate tcc language name to make it clear what is the language under consideration.
We shall omit the index when it is unimportant or clear from the context.

For example,−→rec p and
(.,.)

====⇒rec p refer to the (internal and observable) reduc-
tion of rec p. Similarly,Procrec p denotes the set of processes inrec p,∼rec p

io denotes
the input-output equivalence (Definition 10) for processes inProcrec p , and≈rec p

io de-
notes congruence induced by∼rec p

io .



30 Mogens Nielsen and Frank D. Valencia

5.4 The TCC Equivalences

In this section we relate the equivalences and their congruences for the various tcc lan-
guages. Each behavioral equivalence (and congruence) for a tcc language` is obtained
by taking thentcc transitions given in Definition 9 (and thus in Definition 10) to be

those of̀ (i.e., replace
(.,.)

====⇒ with
(.,.,)

====⇒`).
The theorem below states the relationship among the equivalences.

Theorem 3 (Equivalence Results, [29]).For each` ∈ L,

1. If ` = rec s then≈`
io =≈`

o ⊂∼`
io⊂∼`

o.
2. If ` 6= rec s then≈`

io =≈`
o =∼`

io ⊂∼`
o.

The theorem says the input-output and output congruences coincide for all lan-
guages. It also states that the input-output behavior is a congruence for every tcc lan-
guage butrec s . This reveals a distinction betweenrec s and the other tcc languages
and, in fact, betweenrec s and the standard model of concurrent constraint program-
ming [45].

In the following sections we shall classify the tcc languages based on the decidabil-
ity of their input-output equivalence.

5.5 Undecidability Results

In [29] it is shown that∼rec p

io is undecidable for processes with an underlying finite-
domain constraint system. Recall that a finite-domain constraint systemFD[n] (see
Definition 3) provides a theory of variables ranging over a finite domain of values
D = {0, 1, . . . , n− 1} with syntactic equality over these values. We shall also prove a
stronger version of this result establishing that∼rec p

io is undecidable even for the finite-
domain constraint system with one single constantFD[1], i.e., |D| = 1. In sections
5.7 we shall give an input-output preserving constructive encoding fromrec p into the
parameterless recursion languagerec d, thus proving also the undecidability of∼rec d

io .

Theorem 4 (Undec. of∼rec p

io , [29]). The problem of deciding givenP, Q ∈ Procrec p

in a finite-domain constraint system, whether or notP ∼rec p

io Q, is undecidable.

We find it convinient to outline the proof of the above theorem given in [29] since
it decribes very well the computational power ofrec p. The proof is a reduction from
Post’s correspondence problem (PCP) [34].

Definition 17 (PCP). A Post’s Correspondence Problem (PCP)instanceis a tuple
(V, W ), whereV = {v0, . . . , vn} andW = {w0, . . . , wn} are two lists of non-empty
words over the alphabet{0, 1}. A solution to this instance is a sequence of indexes
i0, . . . , im in I = {0, . . . , n} with i0 = 0 s.t.

vi0 .vi2 . . . vim = wi0 .wi2 . . . wim .

PCP is the following problem: given a PCP instance(V, W ), does it have a solu-
tion?

The Post’s Correspondence Problem is known to be undecidable [34]. We reduce
PCP to the problem of deciding input-output equivalence betweenrec p processes, thus
proving Theorem 4.
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The Post’s Correspondence Problem Reduction.Let (V, W ) be a PCP instance where
V = {v0, . . . , vn} andW = {w0, . . . , wn} are sets of non-empty words. LetFD[m]
(Definition 3) be the underlying constraint system wherem = max (|V |, 2) (i.e., we
need at least two constants in the encoding below).

For eachi ∈ I = {0, . . . , |V | − 1}, we shall a define processAi(a, b, index , x)
which intuitively behaves as follows:

1. It waits until is told thata = 1 to start writingvi, one symbol per time unit. Each
such a symbol, says, will be written inx by tellingx = s. Similarly, it waits until
b = 1 to start writingwi, one symbol per time unit. Each such a symbol will also
be written inx.

2. It spawns a processAj(a′, b′, index , x) when the environment inputs an index
index = j in I.

3. It setsa = 0 anda′ = 1 when it finishes writingvi, i.e., |vi| time units later after
it started writingvi (this way it announces that its job of writingvi is done, and
allowsAj to start writingvj ). Similarly, it setsb = 0 andb′ = 1 when it finishes
writing wi.

4. It aborts unless the environment provides anindexin I. It also aborts if an incon-
sistency arises: Either two symbols (one from aV word and another from aW
word) are written inx in the same time unit and they do not match (thus generating
false ), or the environment itself inputsfalse .

Thus, intuitively theAi’s keep writingV andW words, as the environment dictates, as
long as the symbols match and the environment keeps providing indexes inI at each
time unit.

Auxiliary Constructs We use the following constructs:

Wc,P (x) def= when c do P ‖ unless c nextWc,P (x)
RQ(y) def= Q ‖ nextRQ(y)

wherefv(P ) ∪ fv (c) = {x} andfv(Q) = {y}. We use the more readable notation
wait c do P andrepeat Q for Wc,P (x) andRQ(y), respectively. We also define
whenever c do P as an abbreviation ofrepeat when c do P .

We now defineAi(a, b, index , x) for eachi ∈ I according to Items 1-4. The local
variableichosen is used as flag to check whether the environment inputs an index.

Ai(a, b, index , x) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 do Wi

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextAj(a′, b′, index , x))
‖ Abort )

The processVi writes, one by one, thevi symbols inx (notationvi(n) denotes the
n−th element ofvi). Furthermore it setsa = 0 anda′ = 1 when it finishes writingvi.
The processWi is defined analogously.
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Vi =
∏

0≤k<|vi|
next ktell(x = vi(k)) ‖ next |vi|(tell(a = 0) ‖ tell(a′ = 1))

Wi =
∏

0≤k<|wi|
next ktell(x = wi(k)) ‖ next |wi|(tell(b = 0) ‖ tell(b′ = 1))

The processAbort aborts, according to Item 4 above, by tellingfalse thereafter
(thus creating a constant inconsistency).

Abort =
‖ unless ichosen = 1 next repeat tell(false )
‖ when false do repeat tell(false )

Let us now define a processBi(a, b, index , x, ok) for eachi ∈ I that behaves
exactly like Ai(a, b, index , x), but in addition it outputsok = 1 whenever it stops
writing vi andwi exactly in the same time interval.3 This happens when botha andb
are set to zero in the same unit and it will imply that a solution of the formvi0 . . . . .vi =
wi0 . . . . .wi for the PCP(V, W ) has been found.

Bi(a, b, index , x, ok) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 do Wi

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextBj(a′, b′, index , x, ok ))
‖ Abort
‖ whenever a = 0 ∧ b = 0 do tell(ok = 1))

Since we require the first index in a solution for PCP(V, W ) to be 0, we define two
processesA(index , x) andB(index , x, ok ) which triggerA0 andB0 as follows .

A(index , x) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ A0(a, b, index , x))

B(index , x, ok) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ B0(a, b, index , x, ok))

One can verify that the only difference between the processesA(index , x) and
B(index , x, ok ) is that the latter eventually tellsok = 1 iff there is a solution to the
PCP(V, W ).

Since the PCP problem is undecidable, from the lemma above it follows that given
P, Q ∈ Procrec p in a finite-domain constraint system, the question of whetherP ∼rec p

io

Q or not is undecidable. This proves Theorem 4. ut
.

3 The reader may wonder why theAi’s do not have the formal parameterok as well. This causes
no problem here, but you can think ofA as having a dummyok formal parameter if you wish
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Undecidability Over Fixed Finite-Domains

Actually [29] gives a stronger version of the above theorem; input-output equivalence
in undecidable inrec p even if we fix the underlying constraint system to beFD[1],
which is the finite-domain constraint system whose only constant is0.

Theorem 5 ( [29]).Fix FD[1] to be the underlying constraint system. The question of
whetherP ∼rec p

io Q or not is undecidable.

From Theorems 5 and 3, we also have that the input-output and default output con-
gruences are undecidable forrec p over a fixed finite-domain constraint system.

Theorem 6. The input-output and output congruences≈rec p

io and≈rec p
o are undecid-

able for processes in the finite-domain constraint systemFD[1].

Notice thatFD[1] is a very simple constraint system (i.e., only equality and one
single constant). So, the undecidability results for other constraint systems providing
theories with equality and an at least one constant symbol follow from Theorem 5. This
includes almost all constraint system of interest (e.g. the Herbrand constraint system
[39], the Kahn constraint system [45], Enumerated Types [39] and modular arithmetic
[32] ).

5.6 Decidability Results

In sharp contrast to the undecidability result forrec p, the equivalence ofrep processes
is decidable even forarbitrary constraint systems[29].

Theorem 7. The following equivalences for processes inrep over arbitrary constraint
system are decidable:

1. The input-output equivalence∼rep
io , default output equivalence∼rep

o and strongest-
postcondition equivalence∼rep

sp .
2. The output congruences≈rep

io and≈rep
o .

In section 5.7 we shall show via constructive encodings thatrep , rec i , rec s have
the same expressive power. We then conclude that the corresponding equivalences for
rec i and rec s are also decidable. These decidability results inrep with arbitrary
constraint system are to be contrasted to the undecidability results inrec p with the
simple finite-domain constraint systemFD[1].

5.7 Classification of the Timed CCP Languages

In this section we discuss the relation between the various tcc languages, and we classify
them on the basis of their expressive power.

Figure 2 shows the sub-language inclusions and the encodings preserving the input-
output behaviour between the various tcc versions. To complete the picture, we have
included the classrec 0 denoting the language with neither parameters nor free vari-
ables in the bodies of definitions. Classes I, II, III represent a partition based on the
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Figure2. Classification of the various tcc languages: The tcc hierarchy.

expressive power: two languages are in the same class if and only if they have the same
expressive power. We will first discuss the separation results, and then the equivalences.

Given the input-output preserving encodings in [29], which we will recall in the next
section, the separation between Classes II and III is already suggested by the results in
Sections 5.6 and 5.5. From the proof of Theorem 4 it follows thatrec p is capable of
expressing the "behavior" of Post’s correspondence problems, and hence clearly capable
of expressing output behavior not accepted by Büchi automata. It turns out that the
output (and input-ouput) behavior of every process inrep can be represented as a
language accepted by a Büchi automata [29].

The separation between Classes I and II, on the other hand, follows from the fact that
without parameters or free variables the recursive calls cannot communicate with the
external environment, hence inrec 0 a process can produce information on variables
for a finite number of time intervals only.

The Encodings

Let us recall briefly the input-output preserving encodings among the various tcc lan-
guages in [29]. Henceforth,[[·]] : ` → `′ will represent the encoding function from
class` to class`′ We shall say that[[·]] is homomorphicwrt to the parallel operator if
[[P ‖ Q]] = [[P ]] ‖ [[Q]], and similarly for the other operators.

.

Notation 3 We shall use the following notation:

– We usecall(x) as abbreviation ofx = 1 and declare, for each identifierA, a fresh
variablezA uniquely associated to it.

– We denote byI(P ) the set of identifiers on whichP depends, i.e. the transitive
closure of; of the identifiers occurring inP (see Section 5.2).
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– We often useD` to denote the set of recursive definitions under consideration for
processes iǹ. As usual we omit̀ when it is clear from the context.

Encoding rec s → rep . Here the idea is to simulate a procedure definition by a
replicated process that activates (the encoding of) its bodyP each time it is called. The
activation can be done by using a construct of the formwhen c do P . The call, of
course, will be simulated bytell(c).

The key case is the local operator, since we do not want to capture the free variables
in the bodies of procedures. Thus, we need toα-convert by renaming the local variables
with fresh variables.

First we need two auxiliary encodings[[·]]D and[[·]]0 : given by :

[[A def= P ]]D = !when call(zA) do [[P ]]0

[[A]]0 = tell(call(zA))

[[(local x)P ]]0 = (local y) ([[P [y/x]]]0)
wherey is fresh

with [[·]]0 being homomorphic on all the other operators ofrec s .
We are now ready to give our encoding ofrec s into rep .

Definition 18. The encoding[[·]] : rec s → rep is given by:

[[A]] = (local z) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} andz = zA1 . . . zAn .

Encoding rec i → rep . This encoding is similar to the encoding in the previous
section, except that now we need to encode the passing of parameters as well. Let us
give some intuition first.

A call A(y), whereA(x) def= P , can occur in a process or in the definition of iden-
tifier B (possiblyA itself). Consider the case in which there is no mutual dependency
betweenA andB or A is a call in a process. Then, the actual parameters ofA may be
different from the formal ones (i.e.,y 6= x). If so, we need to model the call by provid-
ing a copy of the replicated process that encodes the definition ofA and by making the
appropriate parameter replacements.

Now, consider the case in which there is a mutual dependency betweenA andB
(i.e. if alsoA depends onB). From the restriction imposed on (the mutual) recursion
of rec i (see Section 5.2), we know that the actual parameters must coincide with
the formal ones (i.e.,y = x) and therefore we do not need to make any parameter
replacement. Neither do we need to provide a copy of the replicated processes as it will
be available at the top level.
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As for the previous encoding, we first define the auxiliary encodings[[·]]D and[[·]]0:

[[A(x) def= P ]]D = !when call(zA) do [[P ]]0

[[A(y)]]0 = tell(call(zA))
if y = x andA(x) def= P ∈ D

[[A(y)]]0 = (local zA) (
tell(call(zA)) ‖ [[A(x) def= (P [y/x])]]D)
if y 6= x andA(x) def= P ∈ D

with [[·]]0 homomorphic on all the other operators ofrec i .
It worth noticing that if we did not have the restriction on the recursion inrec i

mentioned above, the encoding[[.]]D would not be well-defined. E.g., consider the defi-

nition A(x) def= next (local y)A(y) which violates the restriction, and try to compute

[[A(x) def= (local y)A(y)]]D.
We are now ready to give our encoding ofrec i into rep .

Definition 19. The encoding[[·]] : rec i → rep is given by:

[[A(y)]] = (local z) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} andz = zA1 . . . zAn .

Encodingrep → rec i . This encoding is rather simple. The idea is to replace! P by
a call to a new process identifierRP , defined as a process that expandsP and then calls
itself recursively in the next time interval. The free variables of! P , x, are passed as
(identical) parameters.

Definition 20. The encoding[[·]] : rep → rec i is given by:

[[! P ]] = RP (x)
whereRP (x) def= [[P ]] ‖ nextRP ∈ Drec i , x = fv (P ).

with [[·]] homomorphic on all the other operators ofrep .

Encodingrec d → rec p. Intuitively, if the free variables are treated dynamically, then
they could equivalently be passed as parameters.

Definition 21. The encoding[[·]] : rec d → rec p is given by

[[A]] = A(x)
whereA

def= P ∈ Drec d

andA(x) def= [[P ]] ∈ Drec p , x = fv(P )

with [[·]] homomorphic on all the other operators ofrec d
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Encoding rec p → rec d. The idea is to establish the link between the formal pa-
rametersx and the actual parametersy by telling the constraintx = y. However, this
operation has to be encapsulated within a(localx) in order to avoid confusion with
other potential occurrences ofx in the same context of the call.

Definition 22. The encoding[[·]] : rec p → rec d is given by

[[A(y)]] = (localx) (A ‖ Ey/x)
whereA(x) def= P ∈ Drec p , A

def= [[P ]] ∈ Drec d ,

and Ey/x
def= tell(y = x) ‖ next Ey/x ∈ Drec d

with [[·]] homomorphic on all the other operators ofrec d.

Encoding rep → rec s . Here we take advantage of the automata representation of
the input-output behavior ofrep processes given in [29]. Basically, the idea is to use
the recursive definitions as equations describing these input-output automata.

LetP be an arbitrary process inrep . Let us recall the automatonMP = Aio
P in [29]

representing the input-output behavior ofP on the inputs of relevance forP . The start
state ofMP is P . Let TP be the set of transitions ofMP . Each transition fromQ to
R with label (c, d), written 〈Q, (c, d), R〉 ∈ TP , represents an observable transition

Q
(c,d)

====⇒ R.
So, for each stateQ of MP we define an identifierAQ as follows:

AQ
def=

∏
〈Q,(c,d),R〉∈TP

when c do (tell(d) ‖ O(tc, R))

with t c =
∨

e∈{c′ | c′ 6=c, c′|=c, 〈Q,(c′,d′),R′〉∈TP }
e

whereO(tc, R) takes the formunless t c nextAR if c 6= false , otherwise it takes
the formnext AR.

Intuitively, AQ expresses that if we are in stateQ andc is the strongest constra-
int entailed by the input, then the next state will beR and the output will bed, with
〈Q, (c, d), R〉 ∈ TP .

Definition 23. The encoding[[·]] : rep → rec s is defined as[[P ]] = AP .

6 Related Work and Concluding Remarks

Saraswat el al proposed a proof system for tcc [40], based on an intuitionistic logic
enriched with a next operator. The system is complete for hiding-free and finite proce-
sses. Also Gabrielli et al [4] introduced a proof system for the tccp model (see Section
3). The underlying second-order linear temporal logic in [4] can be used for describing
input-output behavior. In contrast, thentcc logic can only be used for the strongest-
postcondition, but also it is semantically simpler and defined as the standard first-order
linear-temporal logic of [22].

The decidability results for thentcc equivalences here presented are based on
reductions fromntcc processes into finite-state automata [29,31,52]. The work in [43]
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also shows how to compile tcc into finite-state machines thus providing an execution
model of tcc.

In [49] Tini explores the expressiveness of tcc languages, focusing on the capability
of tcc to encode synchronous languages. In particular, Tini shows that Argos [23] and a
version of Lustre restricted to finite domains [16] can be encoded in tcc.

In the context of tcc, Tini [50] introduced a notion of bisimilarity with a complete
and elegant axiomatization for the hiding-free fragment of tcc. The notion of bisimilar-
ity has also been introduced forntcc by Valencia in his PhD thesis [51].

On the practical side, Saraswat el al introduced Timed Gentzen [41], a particular
tcc-based programming language for reactive-systems implemented in PROLOG. More
recently, Saraswat el al released jcc [44], an integration of timed (default) ccp into the
JAVA programming language. Rueda et al [38] demonstrated that essential ideas of
computer generated music composition can be elegantly represented inntcc . Hurtado
and Muñoz [20] in joint work with Fernández and Quintero [10] gave a design and
efficient implementation of anntcc -based reactive programming language for LEGO
RCX robots [21]—the robotic devices chosen in Section 4 as motivating examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. In order to contribute to the development of timed ccp as a well-established
model of concurrency, a good research strategy could be to address those issues that are
central to other mature models of concurrency. In particular, the analysis and formaliza-
tion of thentcc behavioral equivalences, which at present time are still very immature
(e.g., axiomatizations of process equivalences and automatic tools for behavioral anal-
ysis).

Furthermore, the decision algorithms forntcc verification and satisfiability, are
very inefficient, and of theoretical interest only. For practical purposes, it is important
to conduct studies on the design and implementation of efficient algorithms for verifi-
cation.

Acknowledgments.We owe much to Catuscia Palamidessi for her contributions to the
development of thentcc calculus.
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