
Temporal Concurrent Constraint Programming:

Applications and Behavior

Mogens Nielsen and Frank D. Valencia

BRICS�, Department of Computer Science, University of Aarhus,
Ny Munkegade, building 540, 8000 Århus C, Denmark

fvalenci@brics.dk

Abstract The ntcc calculus is a model of non-deterministic temporal
concurrent constraint programming. In this paper we study behavioral
notions for this calculus. In the underlying computational model, con-
current constraint processes are executed in discrete time intervals. The
behavioral notions studied reflect the reactive interactions between con-
current constraint processes and their environment, as well as internal
interactions between individual processes. Relationships between the sug-
gested notions are studied, and they are all proved to be decidable for a
substantial fragment of the calculus. Furthermore, the expressive power
of this fragment is illustrated by examples.

1 Introduction

Concurrent constraint programming [19] has been studied extensively as a
paradigm for specifying and programming reactive systems. One of the main
features of ccp is that it is based on a declarative as well as operational compu-
tational model.

The fundamental primitive of a constraint is a partial information on values
of variables (e.g. x + y > 5). The state of a computation (also called a store)
is simply a set of constraints, and during a computation, a process may modify
the state by telling information. Also, a process may condition its activity by
asking for certain information to be entailed by the present store - operationally
blocking its activity until other processes provide the requested information (if
ever). In this way concurrent processes may communicate via the common store
of constraints. Processes in ccp are built using the basic primitives of telling
and asking constraints, and the operators of parallel composition, hiding and
recursion.

The temporal ccp computational model introduced in [20] is an extension
aimed at specifying timed systems following the paradigms of Synchronous Lan-
guages ([2]). Time is conceptually divided into discrete intervals (or time units).
In a particular time interval, a ccp process receives a stimulus (i.e. a constraint)
from the environment, it executes with this stimulus as the initial store, and
� Basic Research in Computer Science, Centre of the Danish National Research Foun-

dation.

W. Brauer et al. (Eds.): Formal and Natural Computing, LNCS 2300, pp. 298–321, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Temporal Concurrent Constraint Programming: Applications and Behavior 299

when it reaches its resting point, it responds to the environment with the re-
sulting store. Also the resting point determines a residual process, which is then
executed in the next time interval.

This temporal ccp model is inherently deterministic. In [17] a nondeter-
ministic version of the calculus was introduced, adding e.g. (non-deterministic)
guarded choice and unbounded-finite delay as new operators in the language of
processes. The extension was argued to be consistent with the declarative flavor
of ccp, i.e. to free the programmer from over-specifying a deterministic solu-
tion, when a non-deterministic simple solution is more appropriate (following
the arguments behind Dijkstra’s language of guarded commands). Furthermore,
it was argued that a very important benefit of allowing the specification of
non-deterministic behavior arises when modeling the interaction among several
components running in parallel, in which one component is part of the environ-
ment of the others. These systems often need non-determinism to be modeled
faithfully.

In this paper we introduce and study various notions of behavior for the ntcc
calculus: the input-output and the language equivalence and their congruences,
all motivated operationally and/or logically. The notions are related, and they
are all proved to be decidable for a substantial fragment of the calculus. The
decidability for the complete calculus is left open.

Furthermore, we illustrate the expressive power of our fragment of ntcc by
modeling constructs such as cells and some applications involving the program-
ming of RCXTM controllers, and a version of a Predator/Prey (Pursuit) game.

2 The Calculus

In this section we present the syntax and an operational semantics of the ntcc
calculus. First we recall the notion of constraint system.

2.1 Constraint Systems

Concurrent constraint languages are parameterized by a constraint system. Ba-
sically, a constraint system defines the underlying universe of the particular
language. It provides a signature from which syntactically denotable objects in
language called constraints can be constructed, and an entailment relation speci-
fying interdependencies between such constraints. For our purposes it will suffice
to consider the notion of constraint system based on First-Order Predicate Logic,
as it was done in [24]1

Definition 1. A constraint system is a pair (Σ,∆) where Σ is a signature spec-
ifying functions and predicate symbols, and ∆ is a consistent first-order theory.

Given a constraint system (Σ,∆), let L be the underlying first-order language
(Σ,V ,S), where V is a countable set of variables and S is the set of logical

1 See [22] for a more general notion of constraints based on Scott’s information systems.

300 Mogens Nielsen and Frank D. Valencia

symbols ∧, ∨, ⇒, ¬, ∃, true and false which denote logical conjunction, dis-
junction, implication, negation, existential quantification and the always true
and false predicates, respectively. Constraints, denoted by c, d, . . . are first-order
formulae over L. We say that c entails d in ∆, written c 	 d, if the formula
c⇒ d holds in all models of ∆. We shall require 	 to be decidable. We say that
c is equivalent to d, written c ≈ d, iff c 	 d and d 	 c. We define the (relevant)
free-variables of c as fv(c) = {x ∈ V | ∃xc �≈ c} (e.g., fv(x = x ∧ y > 1) = {y}).

Henceforth, C is a set of constraints modulo ≈ in (Σ,∆). The set C is closed
wrt conjunction and existential quantification and it represents the constraints
under consideration in the underlying constraint system.

2.2 Process Syntax

Processes P , Q, . . . ∈ Proc are built from constraints c ∈ C and variables x ∈ V
in the underlying constraint system by the following syntax:

P,Q, . . . ::= tell(c) |
∑
i∈I

when ci doPi | P ‖ Q | local x inP

| nextP | unless c nextP | !P.

The only move or action of process tell(c) is to add the constraint c to the current
store, thus making c available to other processes in the current time interval. The
guarded-choice

∑
i∈I when ci do Pi, where I is a finite set of indexes, represents

a process that, in the current time interval, must non-deterministically choose
one of the Pj (j ∈ I) whose corresponding constraint cj is entailed by the store.
The chosen alternative, if any, precludes the others. If no choice is possible then
the summation is precluded. We use

∑
i∈I Pi as an abbreviation for the “blind-

choice” process
∑

i∈I when (true)doPi. We use skip as an abbreviation of the
empty summation and “+” for binary summations.

Process P ‖ Q represents the parallel composition of P and Q. In one time
unit (or interval) P and Q operate concurrently, “communicating” via the com-
mon store. We use

∏
i∈I Pi, where I is finite, to denote the parallel composition

of all Pi. Process local x in P behaves like P , except that all the information
on x produced by P can only be seen by P .

The process nextP represents the activation of P in the next time interval.
Hence, a move of nextP is a unit-delay of P . The process unless cnextP is
similar, but P will be activated only if c cannot be inferred from the current
store. The “unless” processes add (weak) time-outs to the calculus, i.e., they
wait one time unit for a piece of information c to be present and if it is not, they
trigger activity in the next time interval. We use nextn(P) as an abbreviation
for next(next(. . . (nextP) . . .)), where next is repeated n times.

The operator “!” is a delayed version of the replication operator for the
π−calculus ([15]): !P represents P ‖ nextP ‖ next2P ‖ . . ., i.e. unboundely
many copies of P but one at a time. The replication operator is the only way of
defining infinite behavior through the time intervals.

Our process language is essentially the language of the calculus ntcc from [17],
but in order to unify and to simplify the presentation of our technical results,

Temporal Concurrent Constraint Programming: Applications and Behavior 301

we have omitted the unbounded finite delay operator. As we shall clarify, it is
not clear to what extent all our results generalize to the full language of ntcc.

2.3 An Operational Semantics

Operationally, the current information is represented as a constraint c ∈ C,
so-called store. Our operational semantics is given by considering transitions
between configurations γ of the form 〈P, c〉. We define Γ as the set of all con-
figurations. Following standard lines, we extend the syntax with a construct
local (x, d) inP , which represents the evolution of a process of the form
localx inQ, where d is the local information (or store) produced during this evo-
lution. Initially d is “empty”, so we regard localx inP as local (x, true) in P .

We need to introduce a notion of free variables that is invariant wrt the
equivalence on constraints. We can do so by defining the “relevant” free variables
of c as fv (c) = {x ∈ V | ∃xc �≈ c}. For the bound variables, define bv (c) =
{x ∈ V |x occurs in c} − fv (c). Regarding processes, define fv(tell(c)) = fv(c),
fv (

∑
i when ci do Pi) =

⋃
i fv(ci)∪ fv (Pi), fv(local x inP) = fv (P)−{x}. The

bound variables and the other cases are defined analogously.

Definition 2 (Structural Congruence). Let ≡ be the smallest congruence
over processes satisfying the following laws:

1. (Proc/≡, ‖, skip) is a symmetric monoid.
2. P ≡ Q if they only differ by a renaming of bound variables.
3. next skip ≡ skip next(P ‖ Q) ≡ nextP ‖ nextQ.
4. localx in skip ≡ skip localx y inP ≡ local y x inP .
5. localx in nextP ≡ next(localx inP).
6. localx in (P ‖ Q) ≡ P ‖ localx inQ if x �∈ fv(P).

We extend ≡ to configurations by defining 〈P, c〉 ≡ 〈Q, c〉 if P ≡ Q.

The reduction relations −→⊆ Γ ×Γ and =⇒⊆ Proc × C × C × Proc are the
least relations satisfying the rules appearing in Table 1. The internal transition
〈P, c〉 −→ 〈Q, d〉 should be read as “P with store c reduces, in one internal step,

to Q with store d ”. The observable transition P
(c,d)

====⇒ Q should be read as
“P on input c reduces, in one time unit, to Q with store d ”. As in tcc, the store
does not transfer automatically from one interval to another.

We now give a description of the operational rules. Rules TELL, CHOICE,
PAR and LOC are standard [22]. Rule UNLESS says that if c is entailed by the
current store, then the execution of the process P (in the next time interval) is
precluded. Rule REPL specifies that the process !P produces a copy P at the
current time unit, and then persists in the next time unit. Rule STRUCT simply
says that structurally congruent processes have the same reductions.

Rule OBS says that an observable transition from P labeled by (c, d) is ob-
tained by performing a terminating sequence of internal transitions from 〈P, c〉
to 〈Q, d〉, for some Q. The process to be executed in the next time interval,
F (Q) (“future” of Q), is obtained by removing from Q what was meant to be

302 Mogens Nielsen and Frank D. Valencia

executed only in the current time interval and any local information which has
been stored in Q, and by “unfolding” the sub-terms within nextR expressions.
More precisely:

Definition 3 (Future Function). The partial function F : Proc ⇀ Proc is
defined as follows:

F (P) =


Q if P = next Q or P = unless c next Q
F (P1) ‖ F (P2) if P = P1 ‖ P2

local x in F (Q) if P = local (x, c) in Q
skip if P =

∑
i∈I when ci do Pi

Remark: Function F does not need to be total since whenever we apply F to a
process P (Rule OBS in Table 1), all replications operators in P occur within a
next construction.

TELL 〈tell(c), d〉 −→ 〈skip, d∧̇c〉

CHOICE

P

i∈I when ci do Pi, d
� −→ 〈Pj , d〉 if d � cj , for j ∈ I

PAR
〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

LOC

D
P, c∧̇∃̇xd

E
−→ 〈Q, c′〉

〈local (x, c) in P, d〉 −→
D
local (x, c′) in Q, d∧̇∃̇xc′

E

UNLESS 〈unless c next P, d〉 −→ 〈skip, d〉 if d � c

REPL 〈! P, c〉 −→ 〈P ‖ next ! P, c〉

STRUCT γ1 ≡ γ′
1 γ′

1 −→ γ′
2 γ′

2 ≡ γ2

γ1 −→ γ2

OBS
〈P, c〉 −→∗ 〈Q,d〉 �−→

P
(c,d)

====⇒ F (Q)

Table 1. An operational semantics for ntcc. The upper part defines the internal
transitions while the lower part defines the observable transitions. The function
F , used in OBS, is given in Definition 3

Temporal Concurrent Constraint Programming: Applications and Behavior 303

Interpreting Processes Runs. Henceforward we use α, α′ to represent ele-
ments of Cω. Let us consider the sequence of observable transitions

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

This sequence can be interpreted as a interaction between the system P and
an environment. At the time unit i, the environment provides a stimulus ci and
Pi produces c′i as response. We then regard (α, α′) as a reactive observation of
P . If α = c1.c2.c3. . . . and α′ = c′1.c

′
2.c

′
3 . . ., we represent the above interaction

as P
(α,α′)
====⇒ ω. Given P we shall refer to the set of all its reactive observations

as the input-output behavior of P .
Alternatively, if α = trueω, we can interpret the run as an interaction among

the parallel components in P without the influence of an external environment
(i.e., each component is part of the environment of the others). In this case α
is called the empty input sequence and α′ is regarded as a timed observation of
such an interaction in P . We shall refer to the set of all timed observations of a
process P as the language of P .

In section 4 we study in detail input-output behavior and language of pro-
cesses.

Notation 1 Throughout the paper we use the following notation on transitions:
1) P −→ Q iff for some c, 〈P, c〉 −→ 〈Q, c′〉 .
2) P ==⇒ Q iff P −→∗ P ′ �−→ and Q = F (P ′).

3) P c==⇒ Q iff P
(true,c)
====⇒ Q.

4) P α==⇒ω iff P
(trueω,α)
====⇒ ω.

2.4 A Logic of ntcc Processes

A relatively complete formal system for proving whether or not an ntcc process
satisfies a linear-temporal property was introduced in [17]. In this section we
summarize these results.

We extend the ccp notion of strongest postcondition of a process P ([6]),
sp(P), to our setting. In ntcc, sp(P) denotes the set of all infinite sequences that
P can possibly output. More precisely,

Definition 4. Given P its strongest postcondition is defined as

sp(P) = {α′ | for some α : P
(α,α′)
====⇒ω}.

Temporal Logic. We define a linear temporal logic for expressing properties
of ntcc processes. The formulae A,B, ... ∈ A are defined by the grammar

A := c | A ⇒̇A | ¬̇A | ∃̇xA | ◦A | �A | ♦A,

304 Mogens Nielsen and Frank D. Valencia

where c denotes an arbitrary constraint. The intended meaning of the other
symbols is the following: ⇒̇, ¬̇ and ∃̇ represent linear-temporal logic implication,
negation and existential quantification. These symbols are not to be confused
with the symbols ⇒,¬ and ∃ in the underlying constraint system. The sym-
bols ◦, �, and ♦ denote the temporal operators next, always and sometime.
We use A ∨̇B as an abbreviation of ¬̇A ⇒̇B and A ∧̇B as an abbreviation of
¬̇(¬̇A ∨̇ ¬̇B).

The semantics of the logic is given in Definition 5. The standard interpre-
tation structures of linear temporal logic are infinite sequences of states [14].
In the case of ntcc, states are represented by constraints, thus we consider as
interpretations the elements of Cω.

Definition 5. We say that α ∈ Cω is a model of A, notation α |= A, if 〈α, 1〉 |=
A, where:

〈α, i〉 |= c iff α(i) 	 c
〈α, i〉 |= ¬̇A iff 〈α, i〉 �|= A
〈α, i〉 |= A1 ⇒̇A2 iff 〈α, i〉 |= A1 implies 〈α, i〉 |= A2

〈α, i〉 |= ◦A iff 〈α, i+ 1〉 |= A
〈α, i〉 |= �A iff for all j ≥ i 〈α, j〉 |= A
〈α, i〉 |= ♦A iff there exists j ≥ i s.t. 〈α, j〉 |= A
〈α, i〉 |= ∃̇xA iff there exists α′ ∈ Cω s.t. ∃xα = ∃xα

′ and 〈α′, i〉 |= A,

where ∃xα represents the sequence obtained by applying ∃x to each constraint in
α. Notation α(i) denotes the i-th element in α. We define [[A]] to be the collection
of all models of A, i.e, [[A]] = {α | α |= A}.

We shall say that P satisfies A iff every infinite sequence that P can possibly
output satisfies the property expressed by A, i.e. sp(P) ⊆ [[A]]. A relatively
complete proof system for assertions P 	 A, whose intended meaning is that P
satisfies A, can be found in [17]. We shall write P 	 A if there is a derivation
of P 	 A in this system.

3 Applications

Let us assume that the underlying constraint system is FD [max] which has
{succ, prd,+,×,=, <,>, 0, 1, . . .} as signature and the set of sentences valid
in arithmetic modulo max as theory. Henceforth, we designate Dom as the set
{0, 1,,max− 1} and use v and w to range over its elements.

It will be convenient to specify our applications using defining equations of
the form q(x1, . . . , xm) def= Pq. In ntcc we encode definitions of this sort provided
that Pq contains at most one occurrence of q which must be within the scope of a
“next” and out of the scope of any “!”. The reason for such a restriction is that
we want to keep the response time of the system bounded: we do not want Pq

to make unboundely many recursive calls within a time interval. The intended
behavior of a call of q with arguments t1, . . . , tm, written pq(t1, . . . , tm)q, when

Temporal Concurrent Constraint Programming: Applications and Behavior 305

ti = vi in the current store, is that of Pq[v1/x1, . . . , vm/xm] 2. The encoding of a
process definition requires the use of replication and, if the definition is recursive
or it has at least one parameter, also hiding (see [18] for the exact details of the
encoding).

3.1 Cell Example

Cells provide a basis for the specification and analysis of mutable and persistent
data structures as shown for the π calculus. We assume that the signature is
extended with an unary predicate symbol change. A mutable cell x: (v) can be
viewed as a structure x which has a current value v and can, in the future, be
assigned a new value.

x: (z) def= tell(x = z) ‖ unless change(x) next x: (z)
gexch(x, y)

def=
∑

v when (x = v) do (tell(change(x)) ‖ tell(change(y)) ‖
next(px: (g(v))q) ‖ next(py: (v)q)).

Definition x: (z) represents a cell x whose value is z and it will be the same in
the next time interval unless it is to be changed next (i.e., change(x)). Definition
gexch(x, y) represents an exchange operation between the contents of x and y.
If v is x’s current value then g(v) and v will be the next values of x and y
respectively. In the case of functions that always return the same value (i.e.
constants), we take the liberty of using that value as its symbol. For example,
px: (3)q ‖ py: (5)q ‖ p7exch(x, y)q gives us the cells x: (7) and y: (3) in the next
time interval. The assignment of v to a cell x, written x := v, can then be
encoded as local y in pvexch(x, y)q where the local variable y is used as dummy
variable (cell).

The following temporal property states the invariant behavior of a cell, i.e.,
if it satisfies A now, it will satisfy A next unless it is changed.

Proposition 1. px: (v)q 	 (A ∧̇ ¬̇ change(x)) ⇒̇◦A.

3.2 The Zigzagging Example

An RCX is a programmable, controller-based LEGO r© brick used to create au-
tonomous robotic devices ([13]). Zigzagging [7] is a task in which an (RCX-based)
robot can go either forward, left, or right but (1) it cannot go forward if its pre-
ceding action was to go forward, (2) it cannot turn right if its second-to-last
action was to go right, and (3) it cannot turn left if its second-to-last action was
to go left. In order to model this problem, without over-specifying it , we use
guarded choice. We use cells a1 and a2 to “look back” one and two time units,

2 [v1/x1, . . . , vm/xm] is the operation of (syntactical) replacement of every occurrence
of the xi by vi

306 Mogens Nielsen and Frank D. Valencia

respectively. We use three distinct constants f,r,l ∈ Dom−{0} and extend the
signature with the predicate symbols forward,right,left.

GoF def= pfexch(a1 , a2)q ‖ tell(forward)
GoR def= prexch(a1 , a2)q ‖ tell(right)
GoL def= plexch(a1 , a2)q ‖ tell(left)
Zigzag def= ! (when (a1 �= f) do pGoFq

+ when (a2 �= r) do pGoRq
+ when (a2 �= l) do pGoLq)

GoZigzag def= pa1 : (0)q ‖ pa2 : (0)q ‖ pZigzagq.

Initially cells a1 and a2 contain neither f, r nor l. After a choice is made
according to (1), (2) and (3), it is recorded in a1 and the previous one moved to
a2 . The property below states that the robot indeed goes right and left infinitely
often.

Proposition 2. pGoZigzagq 	 �(♦right ∧̇ ♦left).

3.3 Multi-agent Systems: The Pursuit Game Example

The Predator/Prey (or Pursuit) game [1] has been studied using a wide vari-
ety of approaches [11] and it has many different instantiations that can be used
to illustrate different multi-agent scenarios [25]. As the Zigzagging example, in-
stances of the Predator/Prey game have been modeled using autonomous robots
[16]. Here we model a simple instance of this game.

The predators and prey move around in a discrete, grid-like toroidal world
with square spaces; they can move off one end of the board and come back on the
other end. Predators and prey move simultaneously. They can move vertically
and horizontally in any direction. In order to simulate fast but not very precise
predators and a slower but more maneuverable prey we assume that predators
move two squares in straight line while the prey moves just one.

The goal of the predators is to “capture” the prey. A capture position occurs
when the prey moves into a position which is within the three-squares line of a
predator current move; i.e. if for some of the predators, the prey current posi-
tion is either the predator current position, the predator previous position, or
the square between these two positions. This simulates the prey deadly moving
through the line of attack of a predator.

For simplicity, we assume that initially the predators are in the same row
immediately next to each other, while the prey is in front of a predator (i.e, in
the same column, above this predator) one square from it. The prey’s maneuver
to try to escape is to move in an unpredictable zigzagging around the world. The
strategy of the predators is to cooperate to catch the prey. Whenever one of the
predators is in front of the prey it declares itself as the leader of the attack and
the other becomes its support. Therefore depending on the moves of the prey

Temporal Concurrent Constraint Programming: Applications and Behavior 307

the role of leader can be alternated between the predators. The leader moves
towards the prey, i.e. if it sees the prey above it then it moves up, if it sees the
prey below it then it moves down, and so on. The support predator moves in
the direction the leader moves, thus making sure it is always next to leader.

In order to model this example we extend the signature with the predicates
symbols righti, lefti, upi, downi for i ∈ {0, 1}. For simplicity we assume there
are only two predators Pred0 and Pred1. We use the cells xi, yi and cells x, y
for representing the current positions of predator i and the prey, respectively, in
a max ×max matrix (with max = 2k for some k > 1) representing the world.
We also use the primed version of these cells to keep track of corresponding
previous positions and cell l to remember which predator is the current leader.
We can now formulate the capture condition. Predator i captures the prey with
a horizontal move iff

x′i = x = xi ∧ ((yi = y′i − 2 ∧ (y = y′i ∨ y = y′i − 1 ∨ y = y′i − 2))∨
(yi = y′i + 2 ∧ (y = y′i ∨ y = y′i + 1 ∨ y = y′i + 2)))

and with a vertical move iff

y′i = y = yi ∧ ((xi = x′i − 2 ∧ (x = x′i ∨ x = x′i − 1 ∨ x = x′i − 2))∨
(xi = x′i + 2 ∧ (x = x′i ∨ x = x′i + 1 ∨ x = x′i + 2))).

We define capturei as the conjunction of the two previous constraints.
The process below models the behavior of the prey. The preys moves as in the

Zigzagging example. Furthermore, the values of cells x, y and x′, y′ are updated
according to the zigzag move (e.g., if it goes right the value of x is increased and
x′ takes x’s previous value).

Prey def= pGoZigzagq ‖ !(when forward do psuccexch(y, y′)q
+ when right do psuccexch(x, x′)q
+ when left do pprdexch(x, x

′)q).

The process Pred i with i ∈ {0, 1} models the behavior of predator i. The
operator ⊕ denotes binary summation.

Pred i
def= ! (when xi = x do (pl := iq ‖ pPursuitiq)

+ when l = i ∧ xi⊕1 �= x do pPursuit iq

+ when l = i⊕ 1 ∧ xi �= x do pSupport iq).

Thus whenever Pred i is in front of the prey (i.e. xi = x) it declares itself as the
leader by assigning i to the cell l. Then it runs process Pursuit i defined below
and keep doing it until the other predator Pred i⊕1 declares itself the leader. If
the other process is the leader then Pred i runs process Support i defined below.

Process Pursuit i, whenever the prey is above of corresponding predator (yi <
y ∧ xi = x), tells the other predator that the move is to go up and increases by
two the contents of yi while keeping in cell y′i the previous value. The other cases
which correspond to going left, right and down can be described similarly.

308 Mogens Nielsen and Frank D. Valencia

Pursuit i
def= when (yi < y ∧ xi = x) do (psucc2

exch(yi, y
′
i)q ‖ tell(upi))

+when (yi > y ∧ xi = x) do (pprd2
exch(yi, y

′
i)q ‖ tell(downi))

+when (xi < x ∧ yi = y) do (psucc2
exch(xi, x

′
i)q ‖ tell(righti))

+when (xi > x ∧ yi = y) do (pprd2
exch(xi, x

′
i)q ‖ tell(lefti)).

The process Support i is defined according to the move decision of the leader.
Hence, if the leader moves up (e.g. upi⊕1) then the support predator moves up
as well. The other cases are similar.

Support i
def= when upi⊕1 do (psucc2

exch(yi, y
′
i)q ‖ tell(upi))

+when downi⊕1 do (pprd2
exch(yi, y

′
i)q ‖ tell(downi))

+when righti⊕1 do (psucc2
exch(xi, x

′
i)q ‖ tell(righti))

+when lefti⊕1 do (pprd2
exch(xi, x

′
i)q ‖ tell(lefti)).

We assume that initially Pred0 is the leader and that it is in the first row
in the middle column . The other predator is next to it in the same row. The
prey is just above Pred0 . The process Init below specifies these conditions. Let
p = max/2.

Init def=
∏

i∈0,1(pxi : (p+ i)q ‖ pyi : (0)q ‖ px′i : (p+ i)q ‖ py′i : (0))q
‖ px : (p)q ‖ py : (1)q ‖ px′ : (p)q ‖ py′i : (1)q ‖ pl : 0q.

The proposition states that the predators eventually capture the prey under
our initial conditions.

Proposition 3. Init ‖ Pred0 ‖ Pred1 ‖ Prey 	 ♦(capture0 ∨̇ capture1).

It is worth noticing that in the case of one single predator, say Pred0 , the prey
may sometimes escape under the same initial conditions, i.e.
Init ‖ Pred0 ‖ Prey �	 ♦capture0. A similar situation occurs if the predators
were not allowed to alternate the leader role.

4 Behavioral Equivalence

In this section we introduce notions of equality for our calculus. We wish to dis-
tinguish between the observable behavior of two processes if the distinction can
somehow be detected by a process interacting with them. A natural observation
we can make of a process is its input-output behavior, i.e. its infinite sequences
of input-output constraints.

Furthermore, in Section 2.3 we mentioned that we can model the behavior
of processes in which each component is part of the environment of the others.
Thus the only “external” input is the empty one, i.e., trueω . Therefore, another
interesting observation to make is the set of outputs on the empty sequence,
which we shall call the language of a process.

We now introduce the observables and the corresponding equivalences we are
interested in.

Temporal Concurrent Constraint Programming: Applications and Behavior 309

Definition 6. Given P , the input-output behavior of P and the language of P
are defined as

io(P) = {(α, α′) | P (α,α′)
====⇒ω} and L(P) = {α | P (trueω,α)

====⇒ ω},

respectively. For all P and Q, we define P ∼io Q iff io(P) = io(Q) and P ∼L Q
iff L(P) = L(Q).

Unfortunately, the equivalences ∼io and ∼L are not preserved by process
constructions, i.e. they are not congruences.

Example 1. Assume that a, b, c are non-equivalent constraints such that c 	 b 	
a. Let

P = when true do tell(a) + when (b) do tell(c)
Q = when true do tell(a) + when (b) do tell(c)

+
when true do (tell(a) ‖ when (b) do tell(c))

and let R = when ado tell(b). We leave it to the reader to verify that we can
distinguish P from Q if we make R to interact with them, i.e. although P ∼io Q
(and thus P ∼L Q) we have R ‖ P �∼L R ‖ Q (and thus R ‖ P �∼io R ‖ Q).

Therefore, we ought to consider the largest congruences included in ∼io and
∼L, respectively. More precisely,

Definition 7. For all P and Q, P ≈io Q iff for every process context C[.],
C[P] ∼io C[Q], and P ≈L Q iff for every process context C[.], C[P] ∼L C[Q].

As usual a process context C[.] is a process term with a single hole such that
placing a process in the hole yields a well-formed process. The relations ≈io and
≈L are then our first proper notion of equality for the calculus.

It is important to point out that the mismatch between ≈io and ∼io arises
from allowing nondeterminism. In fact, the following result follows from ([18],
Theorem 3).

Definition 8. A process P is said to be deterministic iff for every construct of
the form

∑
i∈I when ci do Pi in P , the ci’s are mutually exclusive.

Proposition 4. For all deterministic processes P and Q, P ≈io Q iff P ∼io Q.

The reason for using the name “deterministic process” is because given an input,
the output of a process of this kind is always the same independently of the
execution order of its parallel component [22].

Let us now see the relation between the different equivalences for arbitrary
processes. The relation ≡ denotes structural congruence (Definition 2). For tech-
nical purposes we consider the finite prefixes of the language of a process. Let
Li(P) = {αi|α ∈ L(P)} where αi is the i − th prefix of α and define P ∼i

L Q
iff Li(P) = Li(Q). Obviously, relation ∼L is weaker than ∼io, however, the
corresponding congruences coincide.

310 Mogens Nielsen and Frank D. Valencia

Theorem 1. ≡ ⊂ ≈io = ≈L ⊂ ∼io ⊂ ∼L =
⋂

n∈ω ∼n
L .

Proof. The proper inclusions are left for the reader to verify. The final equality
follows from the fact that our calculus is finitely branching. Here we prove ≈io =
≈L. The case ≈io ⊆ ≈L is trivial. We want to prove that P ≈L Q implies P ≈io

Q. Suppose that P ≈L Q but P �≈io Q. Then there must exist a context C[.] s.t
C[P] �∼io C[Q]. Consider the case io(C[P]) �⊃ io(C[Q]). Take an α = c1.c2 . . .
such that (α, α′) ∈ io(C[Q]) but (α, α′) �∈ io(C[P]). There must then be a prefix
of α′ which differs from all other prefixes of sequences α′′ s.t. (α, α′′) ∈ io(C[P]).
Suppose that this is the n−th prefix. One can verify that for the context

C′[.] = C[.] ‖
∏
i≤n

nexti tell(ci),

L(C′[P]) �= L(C′[Q]). This contradicts our assumption P ≈L Q. The case
io(C[Q]) �⊃ io([P]) is symmetric. Therefore P �≈L Q as required. 2

We next investigate the type of contexts C[.] in ntcc needed to verify P ≈io Q
and focus on relation ≈L as it is equivalent to ≈io. The proposition below allows
us to approximate the behavior of !P .

Proposition 5. For all P,Q, n ≥ 0: Q ‖ !P ∼n
L Q ‖

∏
i≤n nextiP.

The next proposition states that it is sufficient to consider parallel contexts.

Lemma 1. P ≈L Q iff for all R, R ‖ P ∼L R ‖ Q.

Proof. Suppose that for all R, P ‖ R ∼L Q ‖ R. We can prove that for all
contexts C[.], C[P] ‖ R ∼L C[Q] ‖ R for an arbitrary R. Here we outline
the proof of the next and replication context cases. The other cases are trivial.

For the next case we have nextP ‖ R
(c,c′)
====⇒ P ‖ R′ iff R

(c,c′)
====⇒ R′.

Similarly, nextQ ‖ R (c,c′)
====⇒ Q ‖ R′ iff R

(c,c′)
====⇒ R′. Thus, the result

follows immediately from the initial assumption. As for the replication case,
from the Prop. 5 for all n, R ‖ !P ∼n

L R ‖
∏

i≤n nextiP and R ‖ !Q ∼n
L R ‖∏

i≤n nextiQ. With the help of Theorem 1 (∼L =
⋂

n∈ω ∼n
L) we get that

R ‖ !P ∼L R ‖ !Q if for all n ≥ 0, R ‖!P ∼n
L R ‖ !Q. The result now follows

from the next and parallel cases. 2

Moreover, if C (i.e., the underlying set of constraints) is finite we have the
notion of a universal context, i.e., a context that can distinguish any two pro-
cesses iff they are not language (or input-output) congruent. Intuitively, the idea
is to provide a single process that can simulate all possible interactions that a
process can have with others.

Consider R ‖ P with P and R as in Example 1. By telling information,
process P provides information which influences the evolution of R, i.e., the
constraint a. Similarly, R influences the evolution of P by providing the con-
straint b. Thus asking a and then telling b is one possible interaction a process

Temporal Concurrent Constraint Programming: Applications and Behavior 311

can have with P while telling a and then asking b is a possible interaction a
process can have with R. In general, interactions can be represented as strictly
increasing and alternating sequences of ask and tell operations (see [22]).

In the following we write c′ ≺ c iff c 	 c′ and c �	 c′. The assertion S ⊆fin S
′

holds iff S is a finite subset of S′. Given S ⊆fin C, ic(S) denotes the set of
strictly increasing sequences in S∗, i.e., ic(S) = {c1 . . . cn ∈ S∗ | c1 ≺ c2 ≺ . . . ≺
cn}. Furthermore, we extend the underlying constraint system signature Σ to
a signature Σ′ with unary predicates trβ for each β ∈ C∗. These predicates are
“private” in the sense that they are only allowed to occur in the process contexts
US [.] defined below.

Definition 9. The distinguishing context wrt S ⊆fin C, written US [.], is defined
as

! (
∑

β∈ic(S)

tell(trβ) ‖ Tβ) ‖ [.]

where for each β ∈ S∗, Tc.β = tell(c) ‖ Wβ and Wc.β = when c do Tβ with
Tε =Wε = skip.

Theorem 2. Suppose that C is finite. Then P ≈L Q iff UC [P] ∼L UC [Q].

Proof. The “only if” direction is trivial. Here we outline the proof of the “if”
direction. From Lemma 1 it is sufficient to prove that UC [P] ∼L UC [Q] implies
R ‖ P ∼L R ‖ Q for all R. Suppose that R is such that R ‖ P �∼L R ‖ Q. We
want to prove that UC [P] �∼L UC [Q].

Consider the case L(R ‖ P) �⊂ L(R ‖ Q). Take an α = d0.d1 . . . such that
α ∈ L(R ‖ P) and α �∈ L(R ‖ Q). Furthermore, suppose that R0 ‖ P0

d0==⇒
R1 ‖ P1

d1==⇒ . . . with P = P0 and R = R0.
We can represent the internal reduction of each Ri ‖ Pi which gives us

di and Ri+1 ‖ Pi+1, as a sequence of internal transitions (or interactions)〈
R0

i ‖ P 0
0 , c

0
i

〉
−→∗ 〈Rn

i ‖ Pn
i , c

n
i 〉 �−→, withRi = R0

i , Pi = P 0
i , c

0
i = true, Pi+1 =

F (Pn
i), Ri+1 = F (Rn

i) and di = cni , satisfying

〈
P 0

i , a
0
i

〉
−→∗ 〈

P 1
i , a

1
i

〉〈
P 1

i , a
1
i ∧ b1i

〉
−→∗ 〈

P 2
i , a

2
i

〉
...〈
P j

i , a
j
i ∧ b

j
i

〉
−→∗

〈
P j+1

i , aj+1
i

〉
〈
R0

i , b
0
i

〉
−→∗ 〈

R1
i , b

1
i

〉〈
R1

i , a
1
i ∧ b1i

〉
−→∗ 〈

R2
i , b

2
i

〉
...〈
Rj

i , a
j
i ∧ b

j
i

〉
−→∗

〈
Rj+1

i , bj+1
i

〉

312 Mogens Nielsen and Frank D. Valencia

where for each j ≤ n, cji = a
j
i ∧ b

j
i . Let σi = b1i .c

1
ib

n
i .c

n
i . It is easy to see that〈

Tσi ‖ P 0
i , c

0
i

〉
−→∗ 〈Tε ‖ Pn

i , c
n
i 〉 �−→ (see Definition 9). Note that sequence σi is

increasing, thus by removing all constraint repetitions we get a strictly increasing
sequence. Let βi be such a sequence. One can verify that Tβi can “mimic” R0

i

interacting with P 0
i . More precisely,

〈
Tβi ‖ P 0

i , c
0
i

〉
−→∗ 〈Tε ‖ Pn

i , c
n
i 〉 �−→. This

implies:〈
!(

∑
β∈ic(C)

tell(trβ) ‖ Tβ) ‖ P 0
i , true

〉
−→∗ 〈Tε ‖ Pn

i , di ∧ trβi〉 �−→ (1)

By observing that last(βi) = di (where last(βi) denotes the last element of βi),
one can show that Ri can mimic Tβi interacting with any P ′ provided that the
result is di. More precisely,:

For all P ′, if 〈Tβi ‖ P ′, true〉 −→∗ 〈Tε ‖ P ′′, di〉 �−→, where P ′ −→∗ P ′′,
then

〈
R0

i ‖ P ′, true
〉
−→∗ 〈Rn

i ‖ P ′′, di〉 �−→ (2)

From (1), α′ = (d0 ∧ trβ0).(d1 ∧ trβ1) . . . ∈ L(!(
∑

β∈ic(C) tell(trβ) ‖ Tβ) ‖ P)
where βi corresponds to the internal Tβi selected to “mimic” Ri. We want to
show α′ is not in L(!(

∑
β∈ic(C) tell(trβ) ‖ Tβ) ‖ Q). Suppose it is. Then at time

i, Tβi must be selected in the execution of !(
∑

β∈ic(C) tell(trβ) ‖ Tβ) ‖ Q that
outputs α′. By using Property (2) (and observing our restriction on the use of
trβi predicates), one can inductively construct a sequence R0 ‖ Q0

d0==⇒ R1 ‖
Q1

d1==⇒ . . . with Q = Q0, R = R0. We conclude that α ∈ L(R ‖ Q) thus
contradicting the assumption about α.

The case of L(R ‖ Q) �⊂ L(R ‖ P) is symmetric. 2

Therefore context UC [.] is the universal distinguishing context, provided that
C is finite, as it can distinguish any two processes P andQ which are not language
congruent.

It is interesting that even if C is not finite, we can construct specialized
distinguishing contexts for arbitrary processes as stated in the following result.
The idea is to choose a suitable finite set of constraints.

Definition 10. Let Λ ⊂fin Proc. Define C(Λ) ⊆fin C as the set whose elements
are true, false and all constraints resulting from the closure under conjunction
and existential quantification of the constraints occurring in Λ’s processes.

Theorem 3. For all P,Q ∈ Λ ⊂fin Proc, P ≈L Q iff UC(Λ)[P] ∼L UC(Λ)[Q].

Proof. The proof is the same as that of Theorem 2 except for the role of βi which
is now played by a sequence βi, defined below, that depends only on constraints
in Λ’s processes. More precisely, let consq(c, S) = {d ∈ S | c 	 d}. Define e as the
conjunction of all constraints in consq(e, C(Λ)) and let s be the sequence that

Temporal Concurrent Constraint Programming: Applications and Behavior 313

results from replacing each constraint e in a sequence s with e. By definition
every constraint in C(Λ) which can be inferred from e, can also be inferred from
e ∈ C(Λ). We proceed exactly as in the proof of Theorem 2 until properties (1)
and (2), which we re-state as:〈

!(
∑

β∈ic(C(Λ))

tell(trβ) ‖ Tβ) ‖ P 0
i , true

〉
−→∗

〈
Tε ‖ Pn

i , di ∧ trβi

〉
�−→ (3)

and

For all P ′ ∈ Λ, if
〈
Tβi

‖ P ′, true
〉
−→∗ 〈

Tε ‖ P ′′, di

〉
�−→, where P ′ −→∗ P ′′,

then
〈
R0

i ‖ P ′, true
〉
−→∗ 〈Rn

i ‖ P ′′, di〉 �−→ (4)

We then proceed as in the proof of Theorem 2; getting a contradiction out
of (3) and (4). 2

Therefore UC(Λ) is an universal context for Λ’s processes. The ability of
constructing distinguishing contexts for arbitrary processes is important as it
can be used for proving decidability results for ≈io (note that P ≈L Q iff
UC({P,Q})[P] ∼L UC({P,Q})[Q]). It turns out that ∼L is decidable for a significant
fragment of the calculus. The languages of these processes can be recognized by
automata over infinite sequences, more precisely Büchi Automata ([3]). We will
elaborate on this in the next section.

4.1 Decidability and Characterization of Processes Languages

In this section we will characterize processes languages in terms of ω-regular
languages (i.e., the languages accepted by Büchi automata). Recall that Büchi
automata are ordinary nondeterministic finite-state automata equipped with
an acceptance condition that is appropriate for ω-sequences: an ω-sequence is
accepted if the automaton can read it from left to right while visiting a sequence
of states in which some final state occurs infinitely often. This condition is called
Büchi acceptance ([3]).

We aim at proving decidability of the relation ∼L for a fragment of ntcc
which we call restricted-nondeterministic.

Definition 11. A process P is said to be restricted-nondeterministic iff for all
local x in Q in P , for every construct of the form

∑
i∈I when ci do Qi in Q,

the ci’s are mutually exclusive. We use Procr to denote the set of all restricted-
nondeterministic processes.

This fragment allows non-deterministic process (summations) out of the
scope of local variables. In fact, all application examples in this paper (Sec-
tion 3) belong to this fragment. Notice that each local x in P ∈ Procr is
deterministic in the sense of Definition 8.

314 Mogens Nielsen and Frank D. Valencia

We shall show that the languages of restricted-nondeterministic processes
are ω-regular. We will also show that given a P ∈ Procr we can construct
a Büchi automaton recognizing the language of P . Then using the fact that
language equivalence for Büchi automata is decidable [23], we conclude that ∼L
is decidable for restricted-nondeterministic processes and thus so are ≈L and
≈io (see Theorem 3).

To illustrate the problem in trying to use finite-state machines for represent-
ing processes let us consider the following example.

Example 2. Let Q = !!P with P =
∑

j∈J tell(cj). We have the following tran-
sition sequence (on input trueω):

Q
d1==⇒ Q ‖!P d2==⇒ Q ‖!P ‖!P d3==⇒ . . .

dn==⇒ Q ‖
∏
n

!P
dn+1==⇒ . . .

This example illustrates that in a transition system where states are the
elements of Proc it is possible to have infinite paths where all states are different
up to structural congruence (i.e., there can be an infinite set of derivatives).
Moreover, notice that in this particular example, the process at time i can output
everything the process at time i−1 can, but not necessarily the other way round.
This situation arises from the nondeterminism specified by P .

Nevertheless, we will show that after some time units the states can be iden-
tified up to ≈L. More precisely, the property we would like to have is that there
exists t such that for all k ≥ t,

∏
k!P ≈L

∏
k+1!P . In the above example for

any k ≥ |J | we have
∏

k!P ≈L
∏

k+1!P thus validating the property. Unfortu-
nately, the property does not hold for processes out of Procr. Let us define an
arbitrary-delay operation δP which delays P arbitrarily:

δP
def= P + δP.

The encoding in our calculus of the recursive definition of δP requires hiding
over non-mutually exclusive summations (see [18]) thus it is out of Procr. Assume
that P = tell(c). Then two copies of δP can output c at two (arbitrary) points
of time while a single copy cannot. In general one can prove that for any k > 1,
L(

∏
k δP) ⊂ L(

∏
k+1 δP), thus invalidating the property.

The following property is needed in the proof of Lemma 2 which implies the
property described above. It relates the language of processes with the language
of processes arising at intermediate steps of the internal computations.

Proposition 6. α ∈ L(P) iff there are Q and c such that 〈P, true〉 −→∗ 〈Q, c〉
and Q ‖ tell(c) α==⇒ω.

We now introduce the notion of multiplicity of a process.

Definition 12. Let m : Procr → Nat. The multiplicity of P , m(P) is defined
as
m(skip) = 0
m(tell(c)) = 1

Temporal Concurrent Constraint Programming: Applications and Behavior 315

m(
∑

i∈I when ci doPi) =
∑

i∈I m(Pi)
m(P ‖ Q) = max{m(P),m(Q)}
m(localx inP) = m(nextP) = m(unless cnextP) = m(!P) = m(P).

The valuem(P) is aimed to be the number of copies of P , after which, further
copies are redundant. This is stated in the following lemma which is the key for
decidability of ∼L.

Lemma 2. Let P ∈ Procr. For all k > m(P),
∏

k−1 P ≈L
∏

k P.

Proof. The proof proceeds by induction on the structure of P ∈ Procr. Here we
show some cases. Suppose k > m(P).
• Case P = P1 ‖ P2. From Theorem 1 we get

∏
k(P1 ‖ P2) ≈L

∏
k P1 ‖∏

k P2. Note that k > m(P) ≥ m(P1) and k > m(P) ≥ m(P2). Therefore, from
the hypothesis

∏
k P1 ‖

∏
k P2 ≈L

∏
k−1 P1 ‖

∏
k−1 P2 ≈L

∏
k−1(P1 ‖ P2) as

required.
• Case P = nextQ. We have

∏
k nextQ ≈L next

∏
k Q from Theorem 1.

From m(P) = m(Q), the hypothesis and Theorem 1, we get next
∏

k Q ≈L
next

∏
k−1Q ≈L

∏
k−1 nextQ.

• Case P = !Q. We verify that
∏

k!Q ≈L !
∏

kQ. From m(P) = m(Q) and
hypothesis we verify that !

∏
k Q ≈L!

∏
k−1Q ≈L

∏
k−1!Q.

• Case P =
∑

u∈I when cu doPu. From Lemma 1 we know that it is enough
to consider parallel contexts. Let E an arbitrary process and suppose that α =
c.α′ ∈ L(E ‖

∏
k P) (1). We want to show that α ∈ L(E ‖

∏
k−1 P). From (1) we

know that there exists sequence of internal transitions t = 〈E ‖
∏

k P, true〉 −→∗

γ1 −→∗,,−→∗ γn −→∗ 〈R, c〉 �−→ with α′ ∈ L(F (R)) which contains only the
initial and final configuration, and those configurations γ1,, γn in which a
reduction from a P takes place, if any. By monotonicity of the store if t contains
a configuration with store c s.t. 〈P, c〉 −→ then since a reduction of each P must
eventually take place n = k (I) otherwise n = 0 (II).

(I). Suppose n = k. Define E0 = E, P0 = skip. For 0 < j ≤ n, each γj can

be defined as
〈
Ej ‖ Pj ‖

∏
n−j P, cj

〉
, where 〈Ej−1 ‖ Pj−1, cj−1〉 −→∗ 〈

Ej , c
′
j

〉
for some c′j s.t.

〈
P, c′j

〉
−→ 〈Pj , cj〉 (a reduction from one of the k P ′s). Notice

k > m(P) = ΣQ:P−→Qm(Q), so from the pigeon-hole principle there must be
a process P ′, P −→ P ′ with r > m(P ′) configurations γj1 , . . . γjr such that each
corresponding Pj1 , . . . , Pjr is P ′. Let γi be the first among these configurations
and let Pi be the process in such a configuration, i.e., Ei ‖ P ′ ‖

∏
k−i P . From

Proposition 6, we have α ∈ L(Pi ‖ tell(ci)). As r copies of P ′ are eventually
triggered, one can verify that α ∈ L(Ei ‖

∏
r P

′ ‖
∏

k−(i+r−1) P ‖ tell(ci)).
Since P ′ is a subprocess of P , from the hypothesis α ∈ L(Qi ‖ tell(ci)) with
Qi = Ei ‖

∏
r−1 P

′ ‖
∏

k−(i+r−1) P . One can then construct the sequence

316 Mogens Nielsen and Frank D. Valencia〈
E ‖

∏
(k−1) P, true

〉
−→∗

〈
Ei ‖ P ′ ‖

∏
(k−1)−i P, ci

〉
−→

〈
Ei ‖

∏
2 P

′ ‖
∏

(k−1)−(i+1) P, ci

〉
...
−→

〈
Ei ‖

∏
r−1 P

′ ‖
∏

(k−1)−(i+r−2) P, ci

〉
= 〈Qi, ci〉 .

From Proposition 6, α ∈ L(E ‖
∏

(k−1) P) as required.
(II). Suppose n = 0. Then R = E′ ‖

∏
k P for some E′ s.t. 〈E, true〉 −→∗

〈E′, c〉 �−→. Trivially
〈
E ‖

∏
k−1 P, true

〉
−→ 〈R′, c〉 �−→ with R′ = E′ ‖∏

k−1 P . From the definition of F (.), F (P) ≡ skip, thus F (R) = F (E′) ‖∏
k F (P) ≡ F (E′) ≡ F (R′) = F (E′) ‖

∏
k−1 F (P). Hence F (R) ≈L F (R′)

by Theorem 1, thus α′ ∈ F (R′). We then conclude α ∈ L(E ‖
∏

k−1 P).
• Case P = local x in Q. In this case P is a deterministic process. It is easy
to verify that if P is a deterministic process then P ≈L

∏
k P for any k, thus

validating the property. 2

The lemma below states that every language transition sequence over Procr

ultimately contains two language congruent processes.

Lemma 3. Let P0
c1==⇒ P1

c2==⇒ . . . be an arbitrary language transition se-
quence where P0 ∈ Procr. Then there are two processes Pm, Pn with m < n such
that Pn ≈L Pm.

Proof. Let P0
c1==⇒ P1

c2==⇒ . . . be an arbitrary language transition sequence
where P0 ∈ Procr. It is sufficient to construct a sequence P ′

0
c1==⇒≈L P ′

1
c2==⇒≈L

. . . with Pi ≈L P ′
i for every i ≥ 0 and two processes P ′

m, P
′
n with m < n satis-

fying P ′
n ≡ P ′

m (Definition 2). We sketch such a construction next.
Every process P can be rewritten via ≡ as

∏
i∈I !Ri ‖ E where E is a

replication-free processes. Hence P0
c0==⇒ P1

c1==⇒ . . . can be rewritten as:∏
i∈I0

!Ri ‖ E0
c0==⇒

∏
i∈I1

!Ri ‖ E1
c1==⇒ . . . (5)

where each Eu is a non-replicated processes. It is easy to verify that I0 ⊆ I1 ⊆ . . .
since new replicated processes can move up to the top level. Assume that k is
such that satisfies

∏
i∈Ik

!Ri ≈L
∏

i∈Ij
!Ri for any j > k. Such a k is guaranteed

to exist from Lemma 2. Thus the sequence in (5) is point-wise ≈L-equivalent to
the sequence∏

i∈I0

!Ri ‖ E0
c1==⇒ . . .

∏
i∈Ik

!Ri ‖ Ek
ck==⇒≈L

∏
i∈Ik

!Ri ‖ Ek+1
ck+1==⇒≈L . . . (6)

Now notice that both the Ej ’s (j > k) and
∏

i∈Ik
Ri can have replicated processes

!R which can move up to the top level. However,
∏

i∈Ik
!Ri ‖!R ≈L

∏
i∈Ik

!Ri

from our assumption about k. Therefore we can replace such replications with

Temporal Concurrent Constraint Programming: Applications and Behavior 317

skip. Given Q let us use Q̂ to denote the processes resulting from replacing each
replicated process in Q with skip. We can then verify that the sequence∏

i∈I0

!Ri ‖ E0
c1==⇒ . . .

∏
i∈Ik

!R̂i ‖ Êk
ck==⇒≈L

∏
i∈Ik

!R̂i ‖ Êk+1
ck+1==⇒≈L . . . (7)

is point-wise ≈L-equivalent to the one in (6). We claim the following:

Claim. For some n > k there exists a m, with k ≤ m < n such that Êm ≡ Ên

Thus, form and n in the above claim, it follows
∏

i∈Ik
!R̂i ‖ Êm ≡

∏
i∈Ik

!R̂i ‖ Ên

thus proving the Lemma. Below we prove this claim.
Define the next-depth of a processQ, written nd(Q), as the maximum number

of nesting of next operations in Q. Let D(Q, i) = {Q′ | Q ==⇒i Q′}, i.e. the set
of all processes which Q can possibly evolve to in i times units. Trivially, if Q is
replication-free then for all u > nd(Q), D(Q, u) = {skip} (2).

Let R =
∏

i∈Ik
R̂i, Rr =

∏
i∈Ik

!R̂i and E = Êk. Without loss of generality
assume that nd(R) > nd(E) (by adding next-guarded skips we can always aug-
ment the next-depth of a process). Let h = nd(R). At time k the processes E
and R are the ones to be executed in parallel with Rr. At time k + 1, a process
in D(E, 1), a process in D(R, 1), and R which is a process in D(R, 0) are the
ones to be executed with Rr. In general, at time k+ n there are n+2 processes
E′ ∈ D(E, n), Qn ∈ D(R, n), Qn−1 ∈ D(R, n− 1), . . . , Q0 ∈ D(R, 0) to be exe-
cuted with Rr. If n ≥ h, however, we know from (2) that at each following time
unit it is enough to consider the process in the (finite) sets D(R, 0), . . . , D(R, h)
since D(R, u) = {skip} for u > h. The are w = |D(R, 0)|× . . .× |D(R, h)| many
choices of the h process in these sets. Thus after h + w time units at least one
choice must be repeated. 2

By using the Lemma 3 we can prove that the set of derivatives of P , which
we define as S(P) = {Q | P c1==⇒ . . .

cn==⇒ Q}, modulo ∼L is finite.

Lemma 4. For every P ∈ Procr, S(P)/ ∼L is finite.

Proof. Here we outline the proof. Consider the finitely-branching transition sys-
tem graph of P with labeled transitions c==⇒ modulo ∼L. One can verify that
if the transition graph were infinite then it would have to have an infinite path
P ∼L Q0

c0==⇒∼L Q1
c1==⇒∼L Q2 . . . , where all the Qi’s are different (modulo

∼L). But this would imply that there is a sequence P = P0
c0==⇒ P1

c1==⇒ P2 . . .
(with Pi ∼L Qi for all i ≥ 0) where all the Pi’s are different modulo ≈L which
is impossible according to Lemma 3 (Recall that from Theorem 1, ≈L⊂∼L).2

Given a restricted-nondeterministic process P , Lemma 4 above allows us
to define a Büchi automaton AP/∼L which accepts L(P). The set of states is
S(P)/ ∼L in Lemma 4. All states are accepting. The start state is P . There is
transition from Q to Q′ labeled by c iff Q c==⇒ Q′. It is easy to verify such an
automaton accepts L(P).

318 Mogens Nielsen and Frank D. Valencia

Theorem 4. For every P ∈ Procr, L(P) is an ω-regular language.

The definition of AP/∼L above does not give us an effective way of construct-
ing the automaton. In Algorithm 1 we describe a method which given P ∈ Procr

constructs a Büchi automaton AP accepting L(P).
First we need the following definitions: given Q and R let r(R,Q) be the

number of occurrences of R in Q at the top level. Let Q ↓R the process that
results from replacing with skip each non-top-level occurrence of !R in Q if
r(!R,Q) > m(!R) (See Definition 12). Let Q ↑R be the process that results from
replacing with skip, r(!R,Q) −m(!R) top-level occurrence of !R in Q in some
fixed order. Suppose that we enumerate all the replicated process in Q in some
fixed order R1, . . . , Rn. Let us define Q ↓ as the process Q ↓R1 . . . ↓Rn and Q ↑
as Q ↑R1 . . . ↑Rn . Recall that ≡ denotes the structural congruence (Definition 2).

Remark 1. For each permutation π on {1, . . . ,m},

Q ↑R1 . . . ↑Rm≡ Q ↑Rπ(1) . . . ↑Rπ(m) and Q ↓R1 . . . ↓Rm≡ Q ↓Rπ(1) . . . ↓Rπ(m)

The proposition below follows from Lemma 2.

Proposition 7. For all Q, Q ↓ ≈L Q ↑ ≈L Q.

Algorithm 1 Constructing the automaton AP

Start by creating the initial state and label it with (P ↓↑). (1) Choose a state p′ labeled
by P ′ from the current transition graph and a reduction P ′ c

==⇒ Q. The choice should
satisfy that there is not already an edge labeled with c from p′ to a state q with a label
structurally congruent to (Q ↓↑). If such a choice is not possible we stop. If there is
already a state q labeled with a process (structurally equivalent to) (Q ↓↑) then create
an edge from p′ to it with label c. Otherwise create a new state q with label (Q ↓↑)
and an edge from p′ to it with label c. Go to (1).

This algorithm assumes decidability of ≡ which basically follows from the
decidability of the π-calculus structural congruence without the replication axiom
[15]. The termination of Algorithm 1 is based on the proof of Lemma 3. Basically,
each path in the transition graph constructed by this method is constructed as
in the proof of the lemma; if the method did not terminate then the construction
would violate the claim in the proof. The partial correctness is easy to verify.

Theorem 5. For all P ∈ Procr, one can effectively construct a Büchi automa-
ton AP accepting the set L(P).

Therefore ∼L is decidable for restricted-nondeterministic processes (Defini-
tion 6). Moreover, ≈L = ≈io is also decidable for these processes as we need to
consider only one context to check whether two processes are language congruent
(Theorem 3).

Corollary 1. Relations ∼L, ≈L and ≈io are decidable for restricted nondeter-
ministic processes.

Temporal Concurrent Constraint Programming: Applications and Behavior 319

5 Related Work and Concluding Remarks

Related Work. The work most closely related to our paper is that of tcc ([20]).
Our proposal is a strict extension of tcc, in the sense that tcc can be encoded in
(the deterministic fragment of) ntcc, while the vice-versa is not possible because
tcc does not have constructs to express non-determinism. The input-output be-
havior of tcc has been studied in [20]. In tcc the input-output equivalence and
congruence coincide as only deterministic processes are allowed. Therefore, there
is no need for the study of universal or distinguishing contexts as in the ntcc
case. In [20] it was shown that tcc processes can be compiled into (determinis-
tic) finite-state automata. Moreover such a compilation is compositional. This
result relies on determinacy of tcc processes. As shown in this paper, in ntcc the
non-deterministic constructs are the ones which present technical difficulties to
deal with when trying to represent them as finite-state machines. Other interest-
ing extensions of tcc have been proposed in [9, 10, 21]. None of these, however,
consider non-determinism.

The tccp calculus ([5]) is the only other proposal for a non-deterministic
timed extension of ccp that we know of. As such, tccp provides a declarative
language for the specification of (large) timed systems. One major difference
with our approach is that the information about the store is carried through
the time units, so the semantic setting is rather different. The notion of time
is also different; in tccp each time unit is identified with the time needed to
ask and tell information to the store. As for the constructs, unlike ntcc, tccp
provides for arbitrary recursion. Like ntcc, the deterministic fragment of tccp
can be used to program reactive systems. A store that grows monotonically,
however, may be inadequate for the kind of application we have in mind, like
RCX micro-controllers.

A proof system for reasoning about the correctness of tccp processes was
recently introduced in [4]. The underlying temporal logic in [4] can be used for
describing input-output behavior while the one in [17] for ntcc can only be used
for the strongest-postcondition. As such the temporal logic of ntcc processes is
less expressive than that one underlying the proof system of tccp, but it is also
semantically simpler and defined as the standard linear-temporal logic of [14].
This may come in handy when using the Consequence Rule present in the proof
systems of both [4] and [17].

Concluding Remarks. In this paper we introduced and studied different no-
tions of equality for ntcc. We showed that the languages of
restricted-nondeterministic processes can be characterized in terms of
ω-languages. Furthermore, we described how to construct Büchi automata ac-
cepting the language of restricted-nondeterministic processes. This allowed us
to prove decidability of language-equivalence for these processes. By proving the
existence of distinguishing contexts, and that the input-output and language
congruences coincide, we also proved decidability for these relations. On the
practical side we show applications examples illustrating the expressiveness of
(the restricted-nondeterministic fragment of) ntcc.

320 Mogens Nielsen and Frank D. Valencia

As an extension of this work, we have used the automata constructions in this
paper for characterizing the strongest postcondition and input-output behavior
of processes. This gives us some decidability results for these notions and also a
simple execution model for restricted-nondeterministic processes.

Our current research includes the study of the decidability of ≈L for arbitrary
ntcc processes as it remains an open question. The plan for future research
includes the extension of ntcc to a probabilistic model following ideas in [12]
and [8]. This is justified by the existence of RCX program examples involving
stochastic behavior which cannot be faithfully modeled with non-deterministic
behavior. In a more practical setting we plan to define a programming language
for RCX controllers based on ntcc.

Acknowledgments. We owe much to Catuscia Palamidessi, with whom we
have worked on ntcc, for her insight into ccp issues. We would also like to thank
Maurizio Gabbrielli, Paulo Oliva, Daniele Varacca, Pawel Sobocinski, Jesus Al-
mansa for helpful comments on different aspects of ntcc. Finally, we thank the
anonymous referees for their suggestions and remarks.

References

[1] M. Benda, V. Jagannathan, and R. Dodhiawala. On Optimal Cooperation of
Knowledge Sources - An Empirical Investigation. Technical Report BCS-G2010-
28, Boeing Advanced Technology Center, 1986.

[2] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19(2):87–
152, November 1992.

[3] J. R. Buchi. On a Decision Method in Restricted Second Order Arithmetic. In
Proc. Int. Cong. on Logic, Methodology, and Philosophy of Science, pages 1–11.
Stanford University Press, 1962.

[4] F. de Boer, M. Gabbrielli, and M. Chiara. A Temporal Logic for Reasoning about
Timed Concurrent Constraint Programs. In TIME 01. IEEE Press, 2001.

[5] F. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint
Language. Information and Computation, 1999. To appear.

[6] F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving Con-
current Constraint Programs Correct. ACM Transactions on Programming Lan-
guages and Systems, 19(5):685–725, 1997.

[7] J. Fredslund. The Assumption Architecture. Progress Report, Department of
Computer Science, University of Aarhus, November 1999.

[8] V. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic Processes as Concurrent
Constraint Programs. In Symposium on Principles of Programming Languages,
pages 189–202, 1999.

[9] V. Gupta, R. Jagadeesan, and V. Saraswat. Models for Concurrent Constraint
Programming. In Ugo Montanari and Vladimiro Sassone, Editors, CONCUR ’96:
Concurrency Theory, 7th International Conference, volume 1119 of Lecture Notes
in Computer Science, pages 66–83, 26–29 August 1996.

[10] V. Gupta, R. Jagadeesan, and V. Saraswat. Probabilistic Concurrent Constraint
Programming. In CONCUR ’97: Concurrency Theory, 8th International Confer-
ence, volume 1243 of LNCS, pages 243–257, 1–4 July 1997.

Temporal Concurrent Constraint Programming: Applications and Behavior 321

[11] T. Haynes and S. Sen. The Evolution of Multiagent Coordination Strategies.
Adaptive Behavior, 1997.

[12] O. Herescu and C. Palamidessi. Probabilistic Asynchronous Pi-calculus. FoSSaCS,
pages 146–160, 2000.

[13] H. H. Lund and L. Pagliarini. Robot Soccer with LEGO Mindstorms. Lecture
Notes in Computer Science, 1604, 1999.

[14] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
Specification. Springer, 1991.

[15] R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, 1999.

[16] S. Nolfi and D. Floreano. Coevolving Predator and Prey Robots: Do “Arms
Races” Arise in Artificial Evolution? Artificial Life, 4(4):311–335, 1998.

[17] C. Palamidessi and F. Valencia. A Temporal Concurrent Constraint Programming
Calculus. In Proc. of the Seventh International Conference on Principles and
Practice of Constraint Programming, 26 November 2001.

[18] C. Palamidessi and F. Valencia. A Temporal Constraint Programming Calculus.
Technical Report RS-01-20, BRICS, University of Aarhus, June 2001. availabe
via http://www.brics.dk/∼fvalenci/publications.html.

[19] V. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
MA, 1993.

[20] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of Timed Concurrent
Constraint Programming. In Proc. of the Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 71–80, 4–7 July 1994.

[21] V. Saraswat, R. Jagadeesan, and V. Gupta. Timed Default Concurrent Constraint
Programming. Journal of Symbolic Computation, 22(5–6):475–520, November–
December 1996.

[22] V. Saraswat, M. Rinard, and P. Panangaden. The Semantic Foundations of Con-
current Constraint Programming. In POPL ’91. Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages 333–
352, 21–23 January 1991.

[23] A. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for Buchi
Automata with Applications to Temporal Logic. Theoretical Computer Science,
49:217–237, 1987.

[24] G. Smolka. A Foundation for Concurrent Constraint Programming. In Constraints
in Computational Logics, volume 845 of Lecture Notes in Computer Science, Mu-
nich, Germany, September 1994. Invited Talk.

[25] P. Stone and M. Veloso. Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robots, 8:345–383, 2000.

	Introduction
	The Calculus
	Constraint Systems
	Process Syntax
	An Operational Semantics
	A Logic of ntcc Processes

	Applications
	Cell Example
	The Zigzagging Example
	Multi-agent Systems: The Pursuit Game Example

	Behavioral Equivalence
	Decidability and Characterization of Processes Languages

	Related Work and Concluding Remarks

