
The Chemical Abstract Machine

GCrard Berry*

Ecole des Mines
Sophia-Antipolis

06560 Valbonne, France

G6rard Boudol

INRIA
Sophia-Antipolis

06560 Valbonne, France

Abstract

We introduce a new kind of abstract machine based
on the chemical metaphor used in the l? language of
Ban%tre & al. States of a machine are chemical solu-
tions where floating molecules can interact according
to reaction rules. Solutions can be stratified by encap-
sulating subsolutions within membranes that force re-
actions to occur locally. We illustrate the use of this
model by describing the operational semantics of the
TCCS and CCS process calculi. We also show how
to extract a higher-order concurrent &calculus out of
the basic concepts of the chemical abstract machine.

The situation is much less clear in the field of con-
current programming. Models such as Petri Nets,
Communicating Automata, or Data Flow Networks
can be considered as abstract machines, but certainly
they lack expressive power. More expressive models
such as Algebraic Process Calculi (18,6] are intended
to be specification formalisms for distributed systems
rather than abstract machines. Implementation mod-
els of Concurrent Programming Languages such as
CSP [IS] are conceptually based on standard sequen-
tial machine models augmented with scheduling facil-
ities, not on specific abstract machines.

1 Introduction

We present the notion of a Chemical Abstract Ma-
chine, suited to model asynchronous concurrent com-
putations. We show that chemical abstract machines
can 5nplement” known models of concurrent com-
putation such as algebraic process calculi [18,6] and
a concurrent X-calculus similar to the one presented
in [7).

Abstract machines are widely used in the classical
theory of sequential computations. Turing Machines
or Random Access Machines are primary tools within
the theories of recursive functions and computational
complexity. The SECD machine 117) and the Cate-
gorical Abstract Machine [lo] are used to study and
implement the X-calculus, while the SMC machine
[19] may be used to describe the semantics of usual
imperative constructs.

Most available concurrency models are based on
architectural concepts, e.g. networks of processes
communicating by means of ports or channels. Such
concepts convey a rigid geometrical vision of concur-
rency. Our chemical abstract machine model is based
on a radically different paradigm, which originated
in the I’ language of Banstre and Le Metayer [2,3].
These authors pointed out that parallel programming
with control threads is more difficult to manage than
sequential programming, a fact that contrasts with
the common expectation that parallelism should ease
program design. They argued that a high-level par-
allel programming methodology should be liberated
from control management. A similar idea motivates

the UNITY model of Chandy and Misra [9]. Then
they proposed a model where the concurrent Comp+
nents are freely “moving” in the system and commu-
nicate when they come in contact.

*presently at LIX, Ecole Polytechnique, 91 128 Palaiseau,
France

Work supported by the french Programme de Rechercher
Coordonn&es C3.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise or to republish, requires a fee and/or specific permission.

@ 1990 ACM 089791-3434/90/0001/0081 $1.50 81

Intuitively, the state of a system is like a chemi-
cal solution in which floating molecules can interact
with each other according to reaction rules; a mag-
ical mechanism stirs the solution, allowing for pos-
sible contacts between molecules. In chemistry, this
is the result of Brownian motion, but we don’t insist
on any particular mechanism, this being an imple-
mentation matter not studied here, see (2,91. The so-
lution transformation process is obviously truly par-
allel: any number of reactions can be performed in

parallel, provided that they involve disjoint sets of
molecules. Notice that the tuple space model of Linda
!8] is based on very similar concepts and bears the
same degree of potential parallelism, as well as the
sets of assignments used in UNITY 191.

Let us give a simple but striking example from [2,3].
Assume the solution is originally made of all integers
from 2 to n, along with the rule that any integer
destroys its multiples. Then the solution will end
up containing the prime numbers between 2 and n.
See [2,3] for more examples and for implementation
techniques.

TechnicaUy, a I program is defined by the struc-
ture of the molecules it handles and by a set of re-
action rules. Solutions are represented by multisets
of molecules: this accounts for the associativity and
commutativity of parallel composition, that is the im-
plicit stirring mechanism. The reaction rules are mul-
tiset rewritings.

We keep the same basic notions for chemical ab-
stract machines, We elaborate on the original I’ lan-
guage by presenting molecules in a systematic way
as terms of algebras and refining the classification of
rules. Some molecules do not exhibit interaction ca-
pabilities; those which are ready to interact are called
ions. A solution can be heated to break complex
molecules into smaller ones up to ions. Conversely, a
solution can be coaled to rebuild heavy molecules from
components. Furthermore, to deal with abstraction
and hierarchical programming, we allow a molecule to
contain a subsolution enclosed in a membrane, which
can be somewhat porous to allow communication be-
tween the encapsulated solution and its environment.

The chemical abstract machines all obey a simple
set of structural laws. Each particular machine is
given by adding a set of simple rules that specify how
to produce new molecules from old ones. Unlike the
inference rules classically used in structural opera-
tional semantics, the specific rules have no premisses
and are purely local.

In this paper, we concentrate on the descriptive
power of chemical abstract machines. The strength
of the model lies in the membrane notion. Membranes
make it possible to build chemical abstract machines
that have the power of classical process calculi or that
behave as concurrent generalisations of the lambda-
calculus.

To familiarise the reader with our concepts, the
next section presents a simple machine for a subset
of CCS. Section 3 gives some formal definitions. In
Section 4, we treat the full TCCS 1131 calculus and
indicate how to handle other process calculi. Section
5 is devoted to a concurrent lambda-calculus similar
to that of [7]. We conclude in section 6.

2 Handling a Subset of CCS

Our first illustrative example is a fragment CCS-
of Milner’s process caIculus CCS (181, containing the
most basic operators 0 (inaction), ‘.’ (prefixing), and
‘ (’ (parallel), as well as the restriction operator ‘\’ to
make the example non-trivial.

Let U= {a,b,...} b e a set of namea and
L = (a,?i] a f U} be the set of labels built on U.
We use the symbols cy, /3, etc., to range over labels,
with ?% z CY. The CCS- agents p, q, etc., are given
by the syntax:

P ::= 0 I a.~ I (P I P) I p\a

2.1 The Semantics of TCCS

Process calculi semantics are usually defined by in-
ference rules in Plotkin’s structural operational se-
mantics style, called SOS for short. Milner’s origi-
nal rules involve an additional T label representing
internal communication. This happens to be quite
unnatural with respect to abstract machine execu-
tions, where internal transitions should not be visible
to the user. We prefer to use the De Nicola - Hen-
nessy TCCS rules [13] that define two kinds of transi-
tions between agents: the internal transitions p ----) p’
and the labelled transitions p 4 p’. Intuitively, p -+ p’
means that p can become p’ by executing an internal
action, and p 3 p’ means that p can offer its environ-
ment to accept the action a and then become pt.

Both transitions systems are defined in a structural
way: the behavior of an agent is deduced from the
behaviors of its components. Since internal commu-
nications generate internal transitions, the inference
systems for -+ invokes the one for 5:

a.p 4 p

P-+P
I

PIti--+ p’lq and ~lp--vld

p-s, t

plq~:‘(q and qlp~:lp’
a t ?i t

ii!? + P’i+cf

fi

P s P’ a fZ {a,5

p\a 4 $\a

a2

2.2 Basic Chemistry: Concurrency
and Communication

We now take the chemical abstract machine point of
view, limiting us to internal transitions of restriction-
free agents in this section. Restriction and external
communication will be treated in the next section.

Instead of composing their behaviors, we make the
agents or molecules directly react with each other
within a solution, that is a multiset S = {Ip, Q, . . . 5.
There are only two basic rules:

The final solution (1 O,O,O b only contains the in-
ert molecule 0. It is natural to clean it up by using
the following rule, which says that 0 evaporates when
heated:

parallel:

reaction:

PIQ “P, 4

a.p, if*q --+ p, q

The rules apply to molecules present in the solution;
they do not apply inside molecules.

The first rule is reversible. It says that any
molecule of the form p 1 q that floats in the solution
can be heated up (symbol -) to decompose it into
its components p and q, and conversely that any pair
p, q of molecules can be cooled down (symbol -) to
rebuild a compound molecule p 1 q. The comma ‘,’
appearing in the right-hand side expresses that the
heating and cooling rule respectively yield and take
a pair of molecules.

The reaction rule deals with iona, i.e. molecules
of the form a.p. Since a is the ion’s communication
capability, we calI it its valence. Whenever two com-
plementary ions float in the solution, they can react
with each other and release their bodies in the solu-
tion. The valences simply vanish. Unlike the parallel
rule, the reaction rule is irreversible,

To execute an agent p, we start from the solution
So = {I p D. Heating the solution exhibits the poten-
tial communications, which can then be performed
using the reaction rule. Notice that a hot solution
obtained by heating an agent as much as possible con-
tains only ions. Conversely, any solution obtained by
transitions from So can be frozen by cooling rules into
a solution {IqD consisting of a single CCS- term, or
into the empty solution, analogous to the term 0.

To see the chemical abstract machine at work, let
us consider an execution of the agent a.b.0 1~0 I b.0.

(la.b.0 (2X.0 16.0 D

2 (I a.b.0, Z.0, b.0 D (parallel)

-+ ub.0, 0, b.OD (reaction)

+ ao, 0, OD (reaction)

inaction cleanup:

o-

A last cleaning step yields the empty solution {ID.
Generally speaking, chemical executions are non-

deterministic. For example, in the solution
{Ia.O, ‘ii.b.0, E.c.OD, the a.0 ion can react with any

of the two others ions, yielding either {I b.0, Ti.c.0) or
(IE.b.0, c.0 D after cleanup.

The reader will appreciate the simplicity of the
chemical executions compared to the sequence of
proofs and simplifications involved in the SOS seman-
tics. The use of the structural rules for ‘ I ’ is factored
throughout an execution by the heating process, since
we directly chain reactions by keeping the solution
hot. The SOS evaluation involves structural rules at
each computation step.

In fact, the simplification comes from the abandon
of the rigid algebraic syntax. Chemical concurrency
is nukrally associative and commutative, since mul-
tisets are intrinsically unordered. The notion of syn-
tactic position disappears even for the standard syn-
tactic parallel construct ‘ I’: it is impossible to know

whether Op, q D was obtained by heating ()p I q D or

MpD. On th e contrary, the SOS semantics need
to first introduce behaviors to recover concurrency
out of the fixed syntax, then to define what it means
for processes to be equivalent, and finally to prove
equivalences such as p 1 q - q 1 p. SOS also involves
inference rules with non-trivial premisses, which are
certainly more complex than the naive cham rewrite
rulea.

Furthermore, we treat structural simplifications in
the same way as reactions: to suppress a 0, we simply
evaporate it. In SOS semantics, one needs to prove
that pi0 is equivalent to p, and one performs tran-
sitions and simpltications in separate steps and by
separate techniques.

However, the notion of behavior that underlies the
SOS semantics has advantages. In particular, p 5 p’
also tells that p can perform an a when requested by
some ezternal observer, thus defining at once how an
agent communicates with its environment. We must
define the same notion in our setting.

A solution should be able to perform a visible a ac-
tion whenever it contains an ion cr.p. This ion should
then export the a valence and become p. One could
imagine to let it disintegrate into p and emit an cy-
particle to the environment. However, such a tech-
nique would violate MiIner’s most useful principle,

83

which states that there should be no difference in na-
ture between internal and external communications.
The right solution is to make the observer react with
the valence of any molecule of the solution. This re-
quires a richer machinery developped in the next sec-
tion.

2.3 More Advanced Chemistry:
Membranes and Airlocks

Consider a restriction agent p\a floating in a solution.
lf p is already of the form a.q, a +! (a,?i}, we can build
a new ion by the following simple rule:

restriction ion:

(a.p)\a * a .(p\a) if a $ (a,+

But this does not work if p is compound. In this
case, p should be able to freely perform internal re-
actions and to also propose communications to other
ions floating in the main solution, using its own ions
of unrestricted valences. To let p evolve on its own,
we put it in a new local solution contained within a
membrane (I, D:

restriction membrane:

P\” = {IP D\a

The new subsolution obeys the same rules as the
global solution. To realize global communications,
we need to make the membrane porous to valences.
A first simple idea would be to use an heavy ion for-
mation rule such as:

WP, Plr P2,**.Pnlb+4P, p1, pa ,... pnI)

We reject such a rule for two reasons. First, it
does not involve only simple molecules as did pre-
vious rules; on the contrary, it involves finding an ion
within a solution, which is neither simple nor gen-
eral. Second, it is irreversible, since the informa-
tion of where Q comes from is lost. If a wrong va-
lence is chosen, the heavy ion can stay forever in the
main solution, like a precipitate. Consider for exam-
ple (Ia.0, (IZi.0, b.OD\c D when choosing b: we are
stuck with the inert solution (la.0, b.t(lZ.0, 0 D\c) b

The technique we propose is in two steps. First,
we introduce a new mechanism at the general chemi-
cal machine level: the airlock mechanism. It extracts
any molecule from a solution (not necessarily an ion),
puts the rest of the solution within a membrane, and
isolates the extracted molecule within an airlock at-
tached to the membrane. The airlock construct is
written tnaS where m is the isolated molecule and S

the remaining solution; it is a single molecule. The
reversible (meta) rule is:

airlock:

The solution Qml, ma,. . . m, I} contained in the new
molecule is allowed to freely continue internal reac-
tions (see the formal definitions in the next section).

Second, we build an heavy ion from any ion in the
airlock, using the rule:

heavy ion:

bp) as + a.(paS)

In this way, we guarantee reversibility by preserv-
ing the attachment between a! and p. A restriction
molecule can propose several valences in succession to
its environment until a communication takes place.

Let us give a simple example of communication in-
volving an heavy ion:

U a.0 I @P I 4 \b 0
_r, Qa.0, @.P, qD\bU

- Ua.0, (I(~.d4lqDD\bD
- Ua.0, WMIqD) D\bD
- b-0, WwMHNI~
- ho, W4qD)\b)D
- (IO9 (P4m\o

U~lP4l~DD\4
IHIPS qD\cD

(par., restr. membr.)

(airlock)

(heavy ion)

(restr. membrane)

(restriction ion)

(reaction)

(restr. membrane)

(airlock)

Notice how we guarantee reversibility by putting or
removing membranes. Once the heavy ion ?i.(pa(l q D)
has been constructed, it is not possible to put back p
into q’s solution, since the airlock molecule is not con-
tained within a membrane. It is not possible to build
such a membrane, since the membrane rule cannot be
applied inside an ion.

The airlock technique makes it now easy to define
what it means for an external observer to observe a
solution. If the solution is reduced to a single ion,
then the observer can pick up the ion’s valence and
release its body. More precisely, let S, S’ denote solu-
tions. We set S % S’ if there exist a molecule m such
that S $ 4 a.m D and {I m 0 A S’. For example, one
has

(Ja.0, b.OD s flb.Of’j

taking m = Oq(l b.0 b.
The relation between this new kind of behavior and

the standard TCCS one will be precisely stated in
section 4.

84

3 Formal Definitions

3.1 Chemical Abstract Machines

A chemical abstract machine or chum C is specified
by defining moIecufea m, m’, etc., solutions S, S’,
etc., and transformation rules. Molecules are terms
of algebras, with specific operations for each cham.
Solutions are finite multisets of molecules, written

{I ml,m2,..., mk D. Furthermore, in each cham,
any solution S can itself be be considered as a single
molecule and can therefore appear as a aubaolution of
another molecule. The corresponding 4. D operator
is called the membrane operator. For instance, if 0
and + are the molecule building operations, then 0,

o+fJ, o+ufJI), and {IO, {IO + 0, OD D are molecules,
the latter also being a solution.

The transformation rules have the form

ml,m2 ,..., mb-rn\,& ,... ml

where the mi and ml. are molecules. As usual, the
rules will be presented by means of rule schemata,
the actual rules being the instances of these schemata.
To avoid ‘multiset matching”, we require the eubsolu-
tions appearing in rule schemata to be either a single
solution variable S that generates all solutions, or of
the form {]mD where m is a single molecule.

To state how reaction rules apply to solutions, we
need some notation. The multiset union of S and S’
is written S &J 5”. As in the &calculus [4], we use the
context notation C[] to denote a molecule with a hole
[] in which to place other molecule.

The transformation rules determine a transforma-
tion relation S + S’ between solutions, according to
the following three laws:

l The Reaction Law. An instance of the right-
hand-side of a rule can replace the corresponding
instance of its left-hand-side. if

ml,m2 ,..., rnk +m:,rn$,... ml

is a rule and MI, Ms, . . ., Mk, M;, M;, . . ., MI,
are instances of the T’S and the mj’s, then

OW&f2,.-, Mkb 4 W:,M:,-%‘D

l The Chemical Law. Reactions can be per-
formed freely within any solution:

s ---) S’

s t.3 s” -+ S’ L-Y S”

l The Membrane Law. A subsolution can
evolve freely in any context:

s -4 s’

u WI D 3 (I VI D

The chemical and membrane laws are the only ones to
involve premisses. They factor what is usually called
“structural rules” in particular calculi. All other laws
and rules are purely local.

Some chams, but not all of them, use the addi-
tional airlock construct. An airlock is a molecule of
the form md S where m is a molecule and S is a
solution. Airlocks are built and suppressed by the
following reversible law:

l The Airlock Law

{ImD l?J s ++ {b-w
A cham is an intrinsically parallel machine: one can

simultaneously apply several rules to a solution pro-
vided that no molecuIe is involved in more than one
rule; one can also transform subsolutions in parallel.
In this paper, we only study the expressive power of
chams; it does not depend on using parallel evalu-
ation, since a non-confticting parallel application of
rules is equivalent to any sequence of the individual
rules. See [2] for a practical use of parallel reductions.

3.2 A Classification of Rules

We usually distinguish between three kinds of rules:
heating rules -, cooling rules y, and reaction rules
-+. The distinction is merely a matter of taste. As a
rule of thumb, we present all structural rules as heat-
ing rules, possibly paired with inverse cooling rules.
Heating rules decompose a single molecule into sin+
pler ones, and cooling rules recompose a compound
molecule from its components. We generally write the
heating and cooling rules together, using the symbol
*. We say that a solution is hot (resp. frozen) if
no heating (resp. cooling) rule applies to it. In the
sequel, we shall always consider that the transitions
given by the airlock law are heating and cooling ones.

The reflexive, symmetric, and transitive closure of

(- U -) is written ;. According to our conventions,
it usually represents structural equivalence.

The reaction rules usually involve several mole-
cules. These molecules are often in a particular form
in which they cannot be heated further; we call them
iona. A solution is inert if no reaction rule applies to
it, nor to any sobrtion obtained by heating it.

4 Process Calculi Chams

In this section, we finish the treatment of the TCCS
process calculus, we establish the semantical equiv-
alence between the cham semantics and the original
structural semantics, and we briefly indicate how to
handle other process calculi.

85

4.1 The Full TCCS Calculus

We finish the description of the TCCS calculus [13]
and of its SOS semantics. We have already seen the
inaction ‘O’, parallel ‘] ‘, prefixing ‘.‘, and restriction
‘\’ operators, We now add the remaining operators:
the relabelling operator ‘[.I’, the two sum operators
‘a’ (internal sum) and ‘0’ (external sum), and the
fixpoint definition f iq(j2 = g), which is a shorthand
for:

letrec ZI = p1 and . . . and x,, = p,, in 2;

The final syntax is as follows:

P ::= 0 I a-P I (PI q) I P\” I PI4

I p@q I Pllq I fixi(P= 9)

We give the semantics of the new operators. A rela
belling is a mapping # : N H L, extended to labels
by setting 4(Z) = m. The relabelling operator
takes an agent p and a relabelling 4 and produces a
new agent p[4) that b h e aves like p except that all its
visible actions are relabelled by 4:

Sums represent non-deterministic choices. There are
several possible sums, see (131 for an extensive discus-
sion. The simplest sum is the internal sum @, which
non-deterministically chooses a component:

In an external sum plq, the agents p and g can freely
perform internal actions and can also propose com-
munications to the environment. The choice is made
only when such a communication is performed:

P+P
I

dlq + p’llq and qb + dip’

p4p I

Ah 5 P’ and qOp 4 P’

Finally, the fixpoint operation is a simple unfolding.
Let p[if/~?] denote the result of the simultaneous sub-
stitution of the q; to the zi in p:

fixi(z’= 3) * Pi[fxX(z'= 3)/S?]

4.2 Handling the New Operators

We first explain how to handle the new operators.
Then we give the exact syntax of molecules and the
complete set of rules of the TCCS cham.

The relabelling operator can be handled just as the
restriction operator, by building a membrane and ex-
porting relabelled names as heavy ion valences. In-
ternal sum is handled by the same rules as in the SOS
semantics; since the rules are not structural, we call
them reaction rules and not heating rules. The fix-
point expansion rule is also as in the SOS semantics,
and it is clearly a heating rule. See the exact rules in
the rule summary below.

External sum needs more care. Since the sum-
mands p and q should each be able to freely perform
internal transitions, we open one membrane for each
of them. We therefore introduce a new molecule pair-
ing operator < ., . > and the expansion rule:

Assume that the left subsolution S produces an ion
a.m and that we want to export CL Then we can
give S the form Q a.n D, either by taking n = m
if S only contains the given ion, or by building an
airlock (a.m)dSl and then an heavy ion cu.(maSl).
To export the valence, we can use the rule:

<(la.nD,S’>- a. <n,S’>

However, as discussed in section 2, we must be care-
ful to avoid precipitates and to make the above rule
reversible. The reverse cooling rule must recognize
that the valence belongs to n and not to S’ when
it is given a pair < n, S’ >. Furthermore, once the
a valence is consumed by some reaction, we are left
with a pair < n, S’ > that we must transform into n
to realize the summand selection; we need a cooling
rule of the form:

Cn,S’>- n

Here again, we must recognize which is n and which
is S’.

We can use several techniques to solve this prob-
lem. The one we choose is to tag the internal pair
when the heavy ion is built to directly remember the
valence attachment, The rules for the left-hand-side
choice are:

<{]a.mD,S>* a.(Z :cm,S>)

I:< m,m’>--. m

86

The rules for the right-hand-side choice are symmet-
ric with a label r.

An alternative technique would be to always force
n to be an airlock, noticing that a solution {I a.m b
containing a single ion can always be heated into {I
a.(ma{lD), and to use the following rules:

< {I a.(maS) D, S’ >* 01. < maS, S’ >

emaS,S’,- maS

This technique would decrease the number of
molecule constructors, but ia rather ad-hoc and we
don’t uge it here. This discussion might look a bit
tedious, but it shows two things: first, deeigning a
cham has much to do with standard programming;
second, the external aum operator is not very natural
in concurrent abstract machines.

Let us give a simple external sum evaluation exam-
ple:

{I a.?;.0 1 ((X0 1 b.O)[q) D

2% (Icd.0, <{Ia, b.oD,{IqD>D

2. ad.0, <{I’i.~Oa(lb-OD)D,{1qD>D

2 (ja.8.0, 7i.t :<Oa{lb.UD,{Igfi>D

--b 05.0, 1 :<Oa{(b.OD,(IqI}>/)

u&O, Oa{l b.0 /) D

(j&o, 0, b.cq)

Notice the last step: when an airlock maS floats in a
solution, one can cool it down and release m and all
the molecules of S in the containing solution. This
requires to use both the airlock law and the chemical
law.

4.3 The Complete TCCS Cham

We summarise the syntax and rules of the final TCCS
cham.

Syntax

Agents:

P ::= 0 I &*P I (P I d I P\a I PI41

I P @ q I Pllq I fix42 = 3

Molecules:

m::=p 1 a.m 1 m\a (m[d] 1 S 1 maS

1 <m,m> Il:<m,m> 1 r:<m,m>

Notice that parallel and sums are agent operators,
not molecules operators.

Rules

parallel:

PIF=P, Q

reaction:

a.m, Zn -3 m, n

restriction membrane:

m\a + UmD\a

restriction ion:

(a.m)\a * a. (m\a) if 0 $ (a, El

relabel&q membrane:

mldl = @4I~1
rellabelling ion:

(-4141 * 9W4441)
@-leftz

P@(I--,P

e-tight:

P@8q--*(?

I-ezpawion:

PuQ’=?4IPoAIQD>

left O-ion:

<{Ia.ml),S>- a.1 :<m,S>

right 0 -ion:

cS,ua.m()>- a.r :<S,m>

left projection:

1 :<m,m’>- m

rig?bt projection:

r :<m,m’>- m’

&point:

fiG(z’= p’) "pi\fiX(Z= p')/z']

Additional Cleanup Rules

inaction cleanup:

O-rL

rest& tion cleanup:

m\a -
relabelling cleanup:

ulH~l-

a7

4.4 Comparing the Cham and SOS

We define labeled transitions as explained in section
2.

Detiition: Given a solution S, we write S -% S’ if
there exists a molecule m’ such that S A 0 o.m’ D

and (1 m’ /) : S’.

Remember that the structural equivalence 5 be-
tween solutions is the reflexive, symmetric, and tran-
sitive closure of the heating and cooling relations. In
the sequel, we shall neglect the cleanup rules and con-
sider only the reversible heating/cooling rules. Then

S & S’ if and only if there exists a sequence of heat-
ing or cooling steps from S to S’.

The following result shows that the cham differs
from the original TCCS calculus only in the number
of internal steps involved in computations. As far as
labelled transitions are concerned, the solution 4 p D
can do whatever the term p can do, and it cannot do
more.

Theorem: Let p be a TCCS agent.
1) If p -+ p’ in TCCS, then (1 p I} A (I p’ D in the

TCCS cham. If p 3 p’ in TCCS, then {Ip 0 4 up’ I};
more precisely, there exists a molecule m’ such that

(IPD --) {I-Q and {Im’D s {IP’D.
W{/PD-+S’, then there exists a TCCS agent p’

such that S’ s (Ip’ I}. lf {jp D 4 S’, then there exists

a TCCS agent p’ such that p 2 p’ and S’ s (Ip’ I}.

Sketch of proof: To prove l), one shows how to
perform given TCCS derivations by chaining cham
transitions. The proof is by induction on the size
of p and by cases on the form of the given TCCS
transition. We show two typical cases.

First if p = p1 I p2 -+ pi 1 pk = p’ with p1 -5 pi

and p2 3 pa for some a, by induction, there exist ml

and ma such that {Ipl D -2 (la.m: D, {Irni 0 A {Ipi I},

(1~2 /) A (I a.4 D, and fl m!z 0 G {Ipi D. We build the
following transformation sequence:

{IPD
= {IPl IP-20

UP11 Pzo (patallel)

5 (la-m:, 5.m; D (cham laws)

-+ u mi, rnh I) (reaction)
*

e {IPL PhD (&am laws)

UPi IPkD (parallel)

= {I P’ II

which shows the required property of p.
Assume now p = q \ a 5 q’ \ a = p’, with

a $ {a,Z}. By induction, there exists n’ such that

{Iq D + (Icy.n’ D and {In’ k & {Iq’ D. Let m’ = nja.We
build the execution sequence:

{IPD
G?\aD

1 UG7D\4 (restriction membrane)

5 4 (1a.n’ D\a D (dam laws)

- Q (a.n’)\aD (restriction membrane)

- Ua.(n’\a) D (restriction ion)

Y.2 {I a-m’ D

Furthermore, one has:

{I m’ II
= WbD
- 4 (In’ D\a D (restriction membrane)

I {I (Iq’I)\a) I) (&am laws)

- (I q’\a D (restriction membrane)

= {IP’D

which shows the required property of p.
Proving 2) is harder and we just sketch of the proof

architecture. The properties of --) and s are proved
together by induction on the number of irreversible
rules applied in the given derivations.

If this number is 0, then the property of --t is obvi-
ous with p’ = p. To prove the property of 4, we use
a lemma about ion formation.

The lemma shows how ions a.m can be formed in
arbitrary subsolutions using only heating and cool-
ing rules. The valences of such ions always come
from label positions in TCCS terms that yield ob-
servable transitions. Furthermore, the ion bodies are
kept untouched in the heating-cooling process. More

formally, assume {I pi} s C[a.m] where the ion cr.m
floats in some subsolution. Then one can cool down
C(a.m] into C’[a.q] by using only ion cooling rules, in
such a way that a.q is exactly a subexpression of the
original agent p = C~[O.Q], with the additional prop

erties p 4 C,[q] in TCCS and {IC,[q] D G {IC’(q] b.

Now if {IpD s {I cr.m’D, one can use the lemma to

show that p has the form C[a.q] with C[q] & m’. This

show the required property of 5, taking p’ = C[q].
Assume now that the number of irreversible tran-

sitions in a given derivation is strictly positive. The

88

derivation can be put in the form S s Sr + 5’2 5 S’

with S s S, and where Si -+ Sa is irreversible.
The only difficult case is the one where the transi-
tion form Sr to Sa is a reaction. By a slight exten-
sion of the lemma to two-hole contexts, one can show
that p = C(a.q][Zr], p - p’ = C[q][r] in TCCS,

and (1 P’ I) f C’lq]Ir] with Sr A C[a.q][Z.r] and

sz * * C[q][r]. The global induction hypothesis ap
plies to p’ and gives the final result.

4.5 Handling Other Process Calculi

In Milner’s original calculus CCS, there is no notion
of an internal unlabelled transition. The special label
r is used to report transitions provoked by internal
communications. The sum p + q is defined by the
following rule: i:

P z P’

p+qzp’ and q+pJp’

n which one can take QL = r. Therefore, a summa&
can be chosen either by an external communication
or by an internal one.

To simulate CCS by a cham, we abandon the simple
reaction rule of TCCS and replace it by the following
rule:

7 - teat tion:

am, 7i.n - r.(tn 1 n)

Since a r-ion can neither be heated nor interact
with another molecule, the only thing it can do is to
traverse all membranes up to the external observer.
An observation by this observer consumes the r va-
lence, and frees the ion body that can be heated to
release the parallel components. With this new defi-
nition of reaction, the rules of + are simply the above
rules of 0.

Notice that performing an internal communication
is more than just building a r: the communication is
really performed only when the final observer accepts
it by consuming this r. Therefore, the machine’s be-
havior can no longer be defined independently of the
observation process. Furthermore, the r-reaction rule
reduces the potential parallelism of the execution ma-
chine to a bare minimum. The simulation of CCS is
rather unsatisfactory. We don’t believe that CCS can
be “implemented” in a more natural way, which is an
indication that r and + might not be good program-
ming primitives. This is quite well-known to CCS
simulator implementors.

Given a CCS agent p, we can show that the solu-
tion {I p D is in weak bisimulation with the agent p
w.r.t. our definition of observation. Strong bisimu-
lation can also be obtained by making the r-reaction

rule reversible, that is by allowing the machine to
undo all its internal operations. The details are be-
yond the scope of this paper.

Handling other process calculi raises no particular
problem. For example, the reader can easily write a
natural cham for MEIJE 161, which is universal among
the labelled process calculi. This tells that the cham
formalism have basically the same power as the SOS
one w.r.t. process calculi.

5 A Concurrent &calculus

5.1 Generalizing the A-calculus

Algebraic process calculi model concurrency but
have a limited expressive power compared to the X-
calculus, where one is able to express all possible
combinators and to code many types of data. On
the other hand, the X-calculus is intrinsically sequen-
tial [4,5] and cannot handle even the weakest form of
concurrency. Building new calculi that combine both
abilities is a goal of primary importance 17,211. In [7],
we introduced such a tentative concurrent lambda-
calculus called the 7-calculus. We could describe the
(lazy) evaluation in this calculus by means of a cham.
However, our formalism itself suggests a simpler, and
perhaps better calculus of the same kind. To intro-
duce this new calculus, let us first say a few words
about the A- and 7-calculi. Some familiarity with the
X-calculus will be assumed. We just recall the syntax:

M ::= 2 1 (Az.M) 1 (MM)

where z stands for any variable. We are interested
here in the kazy evaluation of X-terms (following [l]),
that is the reflexive and transitive closure of the re-
lation M D i&f’ inductively given by

(kz.M)N P M[N/Z]

MPM’ =+ MNPM’N

Intuitively, a X-calculus redex (Xz.M)N is like a val-
ued CCS communication of the form Az.M 1 X(N),
since both yield M[N/z] as a result. Hence one could
imagine treating the lambda-calculus as a CCS-like
process calculus where agents are communicable val-
ues, A becoming a particular label. In such a calculus,
functional application should appear as a particular
parallel combination of two agents, the function and
its argument, and &reduction should be just a par-
ticular case of communication. However, the above
simple redex translation would not take care of the
non-associative character of application and would
not treat double applications correctly. Consider, for

89

instance, the X-term ((Az.Ay.M)N)P. The trans-
lation would be Xs.Ay.M /X(N) IX(P). The asso-
ciative/commutative character of concurrency would
make the arguments N and P interchangeable, which
is clearly wrong. Thomsen solved this problem in 1211
using the CCS operators of restriction and renam-
ing. However in his higher order calculus, p-reduction
is performed in two steps, involving an intermediary
state which does not, represent a X-term. Then the
X-calculus is not exactly a sub-calculus of Thomaen’s
CHOCS calculus.

Another solution was presented in (71 using two
concurrency operators: an interleaving operator ‘I’
and a binary communication operator ‘0’. Commu-
nications arise as follows: in a term (M 0 N), all ‘I’
concurrent components of M can communicate with
all concurrent components of N, up to termination of
M or N, termination being written as a special sym-
bol 1. Then the 0 operator disappears by application
of the simplification rule (M o 1) = (1 @ M) = M,
and X-application can be represented by (M @X(N)).
For instance, the above double application works in
the following way (assuming z, y not free in N):

((Xz.Ay.M o I(N)) o x(P))

-) ((Ay.M[N/z] Q 1) 0 x(P)) (communication)

ZZ ((~YWV~) @UP’)) (simplification)

- wvv4l~IYl~ 1) (communication)

z wv4IPIYl (simplification)

A cham describing this calculus would treat the terms
X2-M and X(N) as ions, but the interpretation of the
concurrency operators of this calculus would be some-
what unnatural. In a cham, the paralhlism is always
commutative and associative and allows for commu-
nication, while (M 1 N) disallows communication and
@ is non-associative. As a matter of fact, the cham
framework indicates another possibility for represent-
ing properly the X-application, by means of an encap
sulated parallel combination of the function and its
argument.

5.2 The ycalculus

The key idea of our new higher-order concurrent cal-
culus is to intern&e the concepts of the chemical
abstract machine within the syntax. Let us review
these concepts:

l solutions: these are built by heating a parallel
combination of moIecules. Therefore the corre-
sponding syntactic construct is parallel compo-
sition (M 1 N). S ince solutions are multisets of
possibly interacting processes, this operator al-
lows communication.

membrane: encapsulating a subsolution within
a membrane forces reactions to occur locally.
Here we will introduce a corresponding locaha-
tion construct (M).

reactions: basically, these occur when opposite
ions float inside the same solution. We shall dis-
tinguish two kinds of reactive molecules, the neg-
ative ones, or receptors, and the positive ones, or
emitters.

Typically, a receptor in the X-calculus is an abstrac-
tion Xx.M. To emphasize the ion character, we shall
denote such an atomic receptor z-M, and an atomic
emitter sending the value M will be denoted M+.
Therefore the syntax of our calculus is:

M ::= XIX--MI(M)+ l(MIM))(M)

where x stands for any variable. As usual we shall
omit (or add) some parentheses in writing the terms,
which will be called processes or sometimes agents.
In what follows we shall call this concurrent calculus
the r-calculus, superseding the one proposed in 171.

To formalise the execution mechanism, we need a
syntactic notion of stable state. Basically, a stable
term is made out of ions of the same valence (either
positive or negative), and will therefore represent an
inert solution. Formally, the syntax for pure emitters
or receptors and for stable terms is given by:

E ::= M+ 1 (El E) 1 (E)

R ::= s-M 1 (RI R) 1 (R)

W ::= E 1 R

Now we give the 7-cham describing the (lazy) evalu-
ation of terms. The molecules are given by the fol-
lowing grammar:

U ::= MlSl(U)U)l(U)

where M stands for any term and 5’ for any solution
(i.e. finite multiset of molecules). The transformation
rules are:

solution:

WV = u, v
membrane:

WF’WD
hatching:

(W)*W

/3-reaction:

90

z--M, N+ ---, M[N/x]

where U, V stand for molecules, M, iV for terms and
W for any stable term. Note that the reaction rule,
which is the only irreversible rule, embodies commu-
nication. The power of the calculus is essentially due
to the rules concerning the membrane construct. This
should not be confused with CCS restriction: if a
membrane encloses a stable state (i.e. emitter or re-
ceptor), then it may vanish. The hatching rule con-
veniently replaces the termination equations concern-
ing the cooperation operator of [7) (in our calculus, a
‘cooperation” operator would be (M] N)). In what

follows we shall use the notation M A N as an ab-
breviation for (1 MD 2+ (1 N I).

This ~-calculus contains the &calculus, since we
may now define the application (MN) as the combi-
nation (A4] N+). Let us see this point in some detail;
we define a translation B from the set of X-terms to
the set of terms given by the grammar:

M ::= x(x-MI(MIM+)

The translation is as follows:

e(Z) = 2

B(X2.M) = iv(M)

WW = (W) MN)‘)

Then we may show that there is a close
dence between lazy evaluation of J-terms
ation in the r-cham of their translation.
cisely, it is easy to prove that

correspon-
and evalu-
More pre-

and, moreover, that each intermediate state in the
evaluation of e(M) cools down to a X-term. For in-
stance, the above double application works as follow:

WY-M I N+) I P+>

2 (1 {Iz-y-M, N’ D, P+]} (membrane, solution)

-+ Q {I y-M]N/z] D, P* /‘) (reaction)
A {I Y- M[+], P+ D (hatching)

--b 4 MIv4l~/Yl II (reaction)

Since the ~-calculus is embedded in our q-calculus,
one can define arbitrary combinators such as a “repli-
cator”, D, that satisfies (DM) -% MI (DM) for all

M, or a ‘killer”, U, that satisfies (UM) A U. This is
easy using standard fixpoint combinators. Moreover,
our concurrent 7-calculus is more powerful than the

X-calculus. The most important non X-definable ob-
ject that can now be constructed is the internal choice
(or more accurately join) operator. To see this, let
us denote by K and F the two cancellators, i.e., re-
spectively AzJy.z and Ax.Xy.y (in our syntax x-y-x
and z-y-y). Then the choice operator is defined by

@ =def (K 1 K+ 1 F+>

This operator may be evaluated either into K, like
(KK)F, or into F, like (KF)K, therefore one easily

sees that @MN : A4 and @MN -i* N. Clearly
such a combinator is not X-definable since it does not
preserve the Church-Rosser property.

As in 171, we extend our syntax by defining con-
current ubstractions, that is sets of negative va-
lences. More precisely, we define receptors of the form
[zr I . . I z,]-M where 21,. . . , x, are distinct vari-
ables. Such a term is able to receive n unordered val-
ues, to be substituted for these variables in M. Obvi-
ously these terms can be incorporated in our calculus
with an additional rule:

choice:

Concurrent abstractions do not add power to the orig-
inal calculus, since we can also define an atomic re-
ceptor [zr] . . .] 2,1-M as a choice among all pos-
sible permutations zi, . . . z,LM. For instance, using
an infix notation for the choice:

b)yl-M =def z-y-M @ y-z-M

The concurrent abstraction feature allows us to define
combinators in a very compact way. For instance, the
choice operator can be redefined by $ = [z 1 yl- 2,
that is a parallel variant of the usual cancellator K.

We can also define a “parallel oP, which is a par-
allel variant of the usual “left-sequential or” (cf. 171).

Let us see this point in some detail. It is known
(see 14)) that K = x-y-z and F = z-y-y can be
regarded as the truth values, respectively true and
false. Then one may define a combinator for disjunc-
tion, namely V = z-y-(zK)y. This combinator is
such that VKX reduces to K and VFX reduces to
X. However, VXK (that is uX or true”) cannot be
in general reduced to K without evaluating X. For
instance if, as usual, !l denotes the non-terminating
term AA (where A = Z-(~2) is the duplicator) then
the evaluation of VCK does not terminate. This is
why V is ‘left-sequential”. Moreover from Berry’s se-
quential&y theorem (see]4]), one can show that there
is no X-definable combinator representing parallel dia-
junction, that is a combinator 0 such that both OKX

91

and OXK reduce to K, without evaluating X (and
obviously OFF reduces to F). This combinator exists
in the -y-calculus and is represented by:

0= CzJyl-(sK)y

that is a parallel variant of the left-sequential dis-
junction (or equivalently a choice between left-
sequential disjunction V and right-sequential disjunc-
tion y-z-(zK)y, see [lo]).

5.3 Semantics

It seems fair to say that we have not yet established
that ‘parallel disjunction is r-definable”. This is a
semantic statement, so we would have first to define
an equivalence relation II on r-terms such that (using
an infix notation for the “parallel disjunction” com-
binator 0):

KOnlrK=nOK

and

non4
In [7] it was proposed to adapt the notion of observa-
tional bisimulation w of CCS [18] (see also (21]), to
serve as the semantic equivalence. We could define
this notion here (with the idea that z- is an input
guard and M* an output action), but this does not
seem to be a good choice. For instance we would have
(K 0 0) + K since (K 0 n) may be reduced to RKK,
a term without any communication capability, which
is certainly different from K.

As a matter of fact, observational bisimulation has
often been criticized for being too discriminating,
and weaker Uextensional” equivalences have been pro-
posed (for a survey, see (121 and [15]). For instance
Darondeau in [ll] argued that Ua semantics which
stems from more sophisticated observers [than pro-
grams] is not really extensional”. In other words, the
semantics of processes should be derived from their
observation by means of program contezts Cl]. These
program contexts may be regarded as test3 over pro-
cesses, and there is a natural way to define an ass*
ciated testing equivalence (cf. 1141): two process are
equivalent if they pass the same tests. This is the kind
of semantical equality we propose for our 7-calculus.
However, we shall not follow [ll] and 1141 for what
concerns the result of experiments. To report the
success of a test we shall use, as in [I], the simplest
operational information, namely convergence, that iz
existence of a normal form: the agent M pass the test
C[] if CIM] converges.

Formally, an agent M is said to converge, in nota-
tion MU, if and only if there exists an inert solution

S such that

Then the definition of the testing preorder (on closed
terms) is exactly the one of Morris’ preorder (cf. 141,
exercise 16.5.5, and [l]), that is:

M C N a&f vc. C[M]l) =c- C[N]Jj

As usual the associated equivalence c~ is given by

Let us see an example, showing that testing allows
to diztinguish divergent terms in the q-calculus (un-
like the lazy X-calculus). We still use MN to ab-
breviate application, that is (M 1 N+). As we saw,
the typically divergent X-term is fl = AA where A
is the duplicator z-(zz). It might be observed that
P = (A] A+) is also a divergent term, since it can
only be evaluated into 0. Similarly, we can define
a ‘triplicator” T = z-((zz)z), and it is easy to see
that Q = (TIT+) is again a divergent term. Now
there is a test separating P and Q, namely

c= Wb-PI+) In+>

(recall that F = z-y-y, hence FM : I = y-y).
It is not difficult to see that C[P] diverges, whereas

C[Q] A I, therefore P qi Q.
We shall not investigate here the properties of the

testing preorder. A first step would be to prove a
generalization of the well-known %ontext lemma” (cf.
[lo]), showing that observers of the form

(. . . ([-I I RI) * - - I Rk)

are enough to test the agents, that is

Such a result would allow us to give a simple proof of
the desired properties of the parallel-or combinator.

6 Conclusion

Unlike other models, the I’ [2] and cham models han-
dle (true) concurrency as the primitive built-in no-
tion. What the cham model adds to I’ is the structure
of molecules as terms and the notion of a subsolution.
The CCS and TCCS implementations give a simple
operational vision of these calculi. Inference rules are
replaced by standard rewrite rules. The difference
between internal and external transitions is made ob-
vious and so are the well-known difficulties with sums

92

considered as programming primitives. More power-
ful “universal” process calculi such as MEIJE [S] can
be handled as well. The concurrent X-calculus fully
exploits the ability of going back and forth between
terms and solutions. It can be viewed as a direct
extension of the lasy &calculus of [l]. ’

Of course, this is still a preliminary work. Other
concurrent computation paradigms should also be
modelled; we think in particular of modelling pro-
cess handling in operating systems, and of providing
a cham for the new calculus of mobile processes pro-
posed by Milner E al. in [20]. The theory of machine
executions should also be fully developed.

Acknowledgments

We are indebted to Ilaria Castellani, Philippe Daron-
deau, Matthew Hennessy, Robin Milner and
Serge Yoccos for helpful discussions about this work
and previous versions of the paper.

References

111 Samson Abramsky. The lazy X-calculus. In D.
Turner, editor, Declarative Programming, Addi-
son Wesley, 1988.

Jean-Pierre Ban&e, Anne Coutant, and Daniel
Le Metayer. A parallel machine for multi-
set transformation and its programming style.
In Future Generation Computer Systems 4,
pages 133-144, North-Holland, 1988.

Jean-Pierre Banbtre and Daniel Le Metayer. A
New Computational Model and Ita Discipline of
Programming. Technical Report INRIA Report
566, 1986.

Henk Barendregt. The Type-Free Lambda-
Calculus. Studies in Logic Volume 103, North-
Holland, 198 1.

GBrard Berry. SbquentialitC de l’evaluation
formelle des &expressions. In B. Robinet,
editor, Program Transformations 3rd Znterna-
tional Colloquium on Programming, pages 67-80,
DUNOD, Paris, 1978.

GBrard Boudol. Notes on algebraic calculi of
processes. In K. Apt, editor, Logic and Models
of Concurrent Syatems, NATO ASI Series F13,
1985.

I21

PI

[*I

151

PI

[‘I

PI

PI

IlO1

P11

I121
237, 1987.

GCrard Boudol, Towards a lambda-calculus
for concurrent and communicating systems. In
TAPSOFT 1989, Lecture Ntites in Computer
Science 351, pages 149-161, Springer-Verlag,
1989.

Nicholas Carrier0 and David Gelerntner. Linda
in context. Communications of the ACM,
32(4):444-458, 1989.

Mani Chandy and Jayadev Misra. Parallel Pro-
gram Design, a Foundation. Addison-Wesley,
1988.

Pierre-Louis Curien. Categorical Combinators,
Sequential Algorithms, and Functional Program-
ming. Research Notes in Theoretical Computer
Science, Pitman, London, John Wiley & Sons,
New York, Toronto, 1986.

Philippe Darondeau. About fair asynchrony.
Theoretical Computer Science, 37:305-336, 1985.

Rocco De Nicola. Extensional equivalences for
transition systems. Acta Znformatica, 24:211-

93

REFERENCES

1131 Rocco De Nicola and Matthew Hennessy. CCS
without 7’s. In TAPSOFT 87, Lecture Notes in
Computer Science 249, pages 138-152, Springer-
Verlag, 1987.

[141 Rocco De Nicola and Matthew Hennessy. Test-
ing equivalences for processes. Theoretical Com-
puter Science, 34~83-133, 1984.

[151 Matthew Hennessy. Observing processes. In
Linear Time, Branching Time and Partial Or-
ders in Logics and Models for Concurrency, Lec-
ture Notes in Computer Science $54, pages 173-
200, Springer-Verlag, 1989.

{16] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

[171 Peter Landin. The mechanical evaluation of ex-
pressions. Computer Journal, 6:308-320, 1964.

[18] Robin Milner. Communication and Concur-
rent y. International Series in Computer Sci-
ence, Prentice Hall, 1989.

[191 Robin Milner. Program Semantics and Mecha-
nized Proofa, pages 3-44. Mathematical Center
Tracts 82, Amsterdam, 1976.

[ZO] Robin Milner, Joachim Parrow, and David
Walker. A Calculus of Mobile Processes. Techni-
cal Report ECS-LFCS-89-85, LFCS, Edinburgh
University, 1989.

[2l] Bengt Thomsen. A calculus of higher-order com-
municating systems. In Proc. 16th ACM Annual
Symposium on Principles of Programming Lan-
guages, pages 143-154, 1989.

94

REFERENCES

