October 13, 1999

BRICS, University of Aarhus
Frank D. Valencia

Saraswat,

Concurrent Constraint Programming & La Semantic Foundations of Determinate
Concurrent Programming (CP):

Motivation
Operations Read/Write replaced by Ask/Tell.

von Neumann's store replaced by store with partial information.

Basic Ideas of CCP:

Programming (ConLP). CCP generalizes the basic ideas of ConLP.

Extending Logic Programming (LP) gave rise to Concurrent Logic Programming (CCP).

Motivation
Motivation: CCP Scenario & Concurrency

\[tell(X > 10) \quad \text{ask}(X < 50) \rightarrow P \]

\[tell(X < 20) \quad \text{ask}(X = 15) \rightarrow Q \]

▷ Concurrent Executions of Agents.

▷ Synchronization: Via Blocking-Ask.
\((Z)f = X \forall \in \mathcal{E} \leftarrow ((X)f = X^X)_{\forall \mathcal{E} \in \mathcal{E}} = \emptyset \) and \(((W)f = X) \forall \in \mathcal{E} = \mathcal{P} \)

\(W = Z \) then \((Z)f = X : Z^X \) if \((W)f = X \)

Suppose \(f \) is injective: Given \(f \) is injective send message \(d \) through channel \(W \)

Communication channels are embeddable: e.g. sending message \(d \) through channel \(W \)

Open Communication: By adding information to the store.

Motivation: Concurrency.
Agenda
Syntax for the cc-model.

Let X, \ldots, ψ be variables and χ, \ldots, η be subsets of atomic propositions.

Agent definition

Definition call

Guarded choice (\(*\))

Parallel execution

Hide X

Ask α

Tell ρ

do nothing

true

\[\begin{align*}
\text{Progs} & \colon= \emptyset \\
\text{Agents} & \colon= D \triangleq A \land D
\end{align*} \]
\[(\ast) \text{ If } X \text{ is fresh } \quad \frac{\forall (X \alpha)}{\forall (X \alpha)} \quad \text{HIDE}\]

\[
\frac{\forall (X \alpha) \land \forall (Y \beta)}{\forall (X \alpha) \land \forall (Y \beta)}
\quad \frac{\forall (X \alpha) \land \forall (Y \beta)}{\forall (X \alpha) \land \forall (Y \beta)}
\quad \text{PAIR}
\]

\[(\ast) \quad \frac{\forall (X \alpha)}{\forall (X \alpha)} \quad \text{ASK}\]

\[
\forall (\text{true}) \quad \text{TELL}
\]

\[
\forall \text{ means: } A \land (\alpha \land \beta) \Rightarrow \text{Initiated in store } \beta
\]
is eventually executed.

\(X = Z \) \(\forall t \in T \) \(\wedge (\exists agent\ as\ \text{initiated\ in\ any\ store}) \)

\(\forall \) \(\forall t \in T \)

\((Z', X)_{\text{max}} \mid (10 > \bar{X}) \forall t \Rightarrow (20 < X) \forall t \) = \(\forall \)

\((Z', X)_{\text{max}} \mid (10 < \bar{X}) \forall t \Rightarrow (20 < X) \forall t \) = \(\forall \)

\(((\bar{X} = Z) \forall t \Rightarrow (X < \bar{X}) \forall s) \mid ((X = Z) \forall t \Rightarrow (\bar{X} < X) \forall s) \) \(\Rightarrow (Z, X)_{\text{max}} \) = \(\forall \)

A program example

A program example
Coming up: A formal definition of Constraint Systems.

- CCP languages are parameterized in an underlying Constraint System.
- These assumptions.
- Notion of Constraint System generalizes and provides conditions for making
- Assumptions: Built-in relations on integers like $<$ and their decidability.

Roadmap I.
Relation \(\rightarrow \) is extended to \((d)^f \times (d)^f \) in the obvious way.

\[q \rightarrow q \quad \text{if} \quad q \perp a \quad \text{for all} \quad a \in \perp \quad \text{and} \quad \perp \rightarrow \quad q \]

\[q \rightarrow q \quad \text{if} \quad a \in \perp \]

validating primitive constraints and \((d)^f \rightarrow (d)^f \) is a compact entailment relation

A constraint system is a structure \(\langle D, \rightarrow \rangle \) where \(D \) is set of constraint systems à la Scott.
\{X > 7, X > 6, X > 5\} ... is represented as \{X > 7, X > 6, X > 5\}.

Example: Provided a suitable class of natural numbers with \(N\), constraint \(X > 5\) is denoted by \(|D|\).

Definition 2: Constrained constraints are subsets of \(\mathbb{R}^n\). The set of all constraints is denoted by \(|D|\).
The Lattice

Structure \((\mathcal{P}(D), \subseteq)\) is a complete (algebraic) lattice:

\[
\begin{array}{c}
\text{false} = D \\
\vdots \\
\text{true} = \{a \in D | \emptyset \vdash a\}
\end{array}
\]

- Glbs (\(\sqcap\)) is given by intersection.
- Lubs (\(\sqcup\)) is given by closure of the union.

\(\uparrow\text{Set } |D|_0 \subseteq |D|\) denotes the set of finite elements of the lattice.
A Constraint System Example
Constraint systems for arithmetics.

The Herbrand constraint system.

Constraint systems of data structures (trees, arrays, enumerated types).

Constraint systems of names (e.g. \(\emptyset \neq a \) for any two different names).

Any first-order language vocabulary with countable many variables and countable entailment relation.
Towards Hiding in Constraint Systems
Semantics of the Process.

The underlying complete lattice $|\mathcal{D}|$ will be used as the domain from which elements $|\mathcal{D}|^0$. Constraint system \mathcal{D} generates a set of constraints (a lattice) $|\mathcal{D}|$. The notion of constraint system has been defined.

Road-map 2.
What observation can we make of a process?

A la Hoare:

A determinate cc-model Semantics
\[\{ X \leq 1 \} \] is not a Resting point for process \(p \).

\[\{ 10 > X \} \] is a Resting point for process \(p \).

Observation to make of a process: its set of Resting points.

- A Resting point for process \(p \) is a constraint on input of which \(p \) halts without adding any information.
3. If then \(\forall \delta \) more information, more information out.

\[
(\forall x \exists y \forall \delta) \delta f \subseteq (\forall \delta) \delta f
\]

2. Returns a resting point \(\beta \) such that:

\[
\beta \oplus \beta = (\forall \delta) \delta f
\]

1. Only adds information:

\[
\beta \oplus \beta
\]

Each process is associated to a function \(\beta \) such that:

Closure Operator
Closure Operator over complete lattices

▷ Function f_P is a closure operator.

▷ A closure operator over complete lattices (like $(|D|, \subseteq)$) can be represented by its range (i.e. its set of fixed points).

▷ To give the meaning of P by f_P we only need to specify the range of f_P.

قسمة علامة تبديل

▷ Coming up: Meaning of Processes and Revisited Operational Semantics.
Denotational Semantics: Tells

\[
\langle T \text{ell} \rangle (\tau, \tau') \leftarrow \text{true}
\]

Optionally:

\[
\{ \sigma \models \exists \, \tau \mid \tau \models \exists \, \sigma \} = \langle \text{tell} \rangle ^\| = \mathfrak{v} [\langle \text{tell} \rangle]
\]

Optionally, in terms of fixed points:

\[
\mathfrak{v} \left[\langle \text{tell} \rangle \right] \models \exists \, \tau \mid \tau \models \exists \, \sigma \, \models \sigma = \langle \text{tell} \rangle (\sigma, \tau) \models \text{asserts input with } \sigma', \text{ i.e., } \text{asserts input with } \sigma
\]
\{ \forall [A] \in \mathcal{L} \leftarrow \mathcal{O} \preceq \mathcal{L} \mid |P| \in \mathcal{L} \} = \forall [A] \leftarrow \mathcal{O} \preceq \mathcal{L} \]

In terms of fixed points:

\[\mathcal{O} (x) \forall f \text{ else } \mathcal{O} \preceq x \text{ if } \chi x = (\forall \mathcal{O} \leftarrow \mathcal{L}) f \]

Information as \(\mathcal{O} \), i.e.:

Agent \(\mathcal{O} \leftarrow \mathcal{L} \) blocks \(A \) until the store contains at least as much

Denotational Semantics: \(\mathcal{O} \leftarrow A \)
\[\varphi \vdash \bot \quad \forall \varphi \left(\forall \psi \varphi \right) \]

Optionally:

\[\forall \varphi \left(\land \psi \varphi \right) = \quad \forall \varphi \left(\exists \varphi \varphi \right) = \quad \forall \varphi \left(\forall \varphi \varphi \right) = \quad \forall \varphi \left(\exists \psi \varphi \right) = \quad \forall \varphi \left(\exists \psi \varphi \right) = \quad \forall \varphi \left(\exists \psi \varphi \right) = \]

It follows that:

Denotational Semantics: ASKS
The set of resting points of $A \parallel B$ is just $f_A \cup f_B$.

By monotonicity of f_A and f_B and f is just $\exists o, \forall A \in f_A$, $\forall B \in f_B$.

Consider $A \parallel B$. Suppose o and ν are resting points of A and B, i.e. $o \in f_A$ and $\nu \in f_B$.

Denotational Semantics: Parallel Composition.
\[
\begin{array}{c}
\frac{\mathcal{B} \parallel \mathcal{A} \mathrel{\lll} \mathcal{B} \mathrel{\lll} \mathcal{A}}{\mathcal{B} \mathrel{\lll} \mathcal{A} \mathrel{\lll} \mathcal{B}} \quad \frac{\mathcal{B} \parallel \mathcal{A} \mathrel{\lll} \mathcal{B} \mathrel{\lll} \mathcal{A}}{\mathcal{A} \mathrel{\lll} \mathcal{B} \mathrel{\lll} \mathcal{A}}
\end{array}
\]

Operationally:

\[
\forall [\mathcal{B}] \cup \forall [\mathcal{A}] = \forall [\mathcal{B} \parallel \mathcal{A}]
\]

Denotationally:

\[
\forall [\mathcal{B}] \cup \forall [\mathcal{A}] = \forall [\mathcal{B} \parallel \mathcal{A}]
\]
\begin{align*}
\land \subseteq \land \subseteq \top \iff (\land) \text{tell} & \leftarrow (\land) \text{ask} \quad \forall \quad \text{ask} \quad (\land) \text{tell} \iff (\land) \text{ask} \\
(B \leftarrow (\land) \text{ask}) \| (A \leftarrow (\land) \text{ask}) &= \forall \quad \text{true} \\
\top \| (B \| A) &= \forall \quad (C \| B) \| A \\
\forall \| B &= \forall \quad B \| A
\end{align*}

From the denotational definition several equivalences follow, e.g.

Denotational Semantics: Parallel Composition.
\{0 < X\} X E X \notin \{0 < X\} X E X \notin \{0 > X\} X E X \notin \{0 \leq X\} X E X \notin \{0 \geq X\} X E X \notin

\begin{equation}
\begin{aligned}
\{0 > X\} \forall a (X_a) \quad \| \quad (0 < X) \forall a (X_a) = E \\
\end{aligned}
\end{equation}

Should we see from \(A \) on input \(a \) is e.g. the interactions on \(E \) from its environment \(F \). What Agent \(A \) hides the interactions on \(X \) from its environment \(E \). What

Denotational Semantics: Hiding.
\[(\varnothing X \in) BF X \in \cap \varnothing = BF (X^n)\]

In general:

\[\{0 < X\} X \in \{g > X\} \cap \{0 < X\} \quad \text{Alice sees:} \quad B \quad \text{\begin{Cases}
 \{0 < X\} X \in \{g > X\} = (\{0 < X\} X \in) BF
 \end{Cases}\]

Alice sees what Bob sees on input \(X\), i.e.:

\[\{0 < X\} X \in \{g > X\} \quad \text{\begin{Cases}
 Alice sees: \quad B of \text{Bob's sees from} \quad \text{Alice's, so we'd better hide it from her.}
 \end{Cases}\]
\[
\{ \forall X \in \exists [B] \in \forall \exists \text{ there exists } 0 | 0 \in V \} = \forall [B(X^n)]
\]

\[
\begin{array}{c}
\frac{B(X^n)}{(\exists X \in B(X^n))} \\
\frac{B(X^n)}{(\exists X \in B(X^n))} \\
\frac{B(X^n)}{(\exists X \in B(X^n))}
\end{array}
\]

Operations:

Denotation:

Semantic Semantics: Hiding.
Then any other output sequence is terminal with final store \(y \).

Theorem (Confluence) If \(D \) has a terminal \(o \) sequence, then any sequence of transitions from \(A \) is a sequence of transitions from \(D \).

Definition. A sequence for a program \(D \) is a sequence of transitions that leads to a terminal output.
Theorem. The function $\phi(p)$ is a closure operator.

\[
\begin{align*}
\text{Define operational observation function:} \\
\phi(p) &= \begin{cases}
\text{false} & \text{otherwise} \\
\text{true} & \text{if } p \text{ has a terminal } \sigma -\text{sequence with final store } y
\end{cases}
\end{align*}
\]
For \(([\emptyset]c) \cdot \emptyset = ([p]c) \cdot \emptyset \) and \(d[p] = d[p] \), which is the Full Abstraction theorem.

\[d[p] = (p) \cdot \emptyset \] is the Strong Adequacy theorem.

Correspondence.
Conclusions.
Research on CP includes:

- Logical view of CP
- Linear CP
- Mobility on CP
- Concurrent Objects qua CP
- True Concurrency in CP
Constraint Solvers.

Functional Programming with Constraints: Sccamer.

Domain Specific Languages: Patchwork.

Linear Janus, CORVIAL.

CCP (Visual Object Oriented Programming Languages: OZ, Pictorial Lanes).

Research on CP.
\[o \vdash (\{ \lambda x p \} \cap o) X \in \{ \lambda x p \} \]

3. If \(X \neq Z \) then \(\{ \lambda z p, \lambda x p \} Z \in \{ \lambda x p \} \)

1. \(\forall X p \vdash \emptyset \)

Set required to contain for every \(\lambda p \) a token of \(\lambda p \) satisfying:

\[\lambda = X \]

\(\phi \land (\lambda = X) X \in \text{Formula is just } [X/\lambda] \phi \)

Diagonal Elements (skip).

Towards Modeling Passing a la Tarski.

Concurrent Constraint Programming
No explicit representation of C_1 in denotation of A is needed.

The effect of C_1 on Y can be obtained by running the original A on Y.

What is its subsequent behavior on input Y?

quiescing leaving a "residual agent C_1"

Restarts ability: Suppose agent A is initiated in o and produces o' before (skip).

Denotational Semantics: Parallel Composition
The operational rule for calls is:

$$((d) \forall x \forall p)(x \forall)$$

$$\xrightarrow{(\exists D)} (X) D$$

$$((d) \forall X \forall p) \forall E = \forall [(X) D]$$

$$[(\forall \forall [V] \forall X \forall p) \forall E \xleftarrow{d} \forall \[d]] = \forall \[D \forall \forall : (X) D]$$

Using Tarski's diagonal elements for modeling parameter passing:

Using Tarski's diagonal elements for modeling parameter passing:

Procedure calls handled by looking up their name in the environment:

Denotational Semantics: Definition Call (skip)
\[\underbrace{\varphi[D] \times \varphi[A]}_{\text{Recursion is handled as usual}} = \varphi[A \cdot D] \]
Theorem. If \(A \) and \(B \) have the same normal form,

\[
\mathcal{A}[\mathcal{E}] = \mathcal{A}[\mathcal{E}] \iff \mathcal{B} = \mathcal{B}
\]

Lemma. Any agent \(A \) containing no \(X \), \(X \) has a normal form.

\[
\begin{align*}

\forall \, \forall \, A \subseteq B & \iff \forall \, \forall \, B \subseteq A \\
\forall \, \forall \, A \subseteq B & \iff \forall \, \forall \, B \subseteq A \\
\forall \, \forall \, A \subseteq B & \iff \forall \, \forall \, B \subseteq A \\
\end{align*}
\]

Definition. An agent \(A \) is normal form iff \(A \) is true or \(A \) is true or \(A \) is true or \(A \) is true.

Completeness Results (skip).
2. Vice versa with the roles of p and q exchanged.

Definition: Two process-store pairs (p, q) and (p', q') are bisimilar if

$$\mathcal{O}(\cdot, q') \approx_{\mathcal{O}(\cdot) \cap q} \mathcal{O}(\cdot, q) \cap p \approx_{\mathcal{O}(\cdot) \cap p} \mathcal{O}(\cdot, q') \cap q$$