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Voronoi tesselations in measured metric spaces
Let X = (E, d, µ) be a measured metric space

Consider k points p1, . . . , pk in E

The space E is ‘partitioned’ into cells C1, . . . , Ck where

Ci = {p ∈ X, d(p, pi) = min d(p, pj)j∈[1..k]}

The corresponding Voronoi vector is

(Rk: µ(C1) + · · ·+ µ(Ck) = 1 when cell intersections have zero measure)

p1

p2

p3
on unit square (10 cells) on unit circle (3 cells)

Vor(k) := (µ(C1), . . . , µ(Ck))

(with µ(E) = 1)



The discrete case
Graph G = discrete metric space

d = graph distance µ =
1

|V |
∑
v∈V

δv

uniform distribution

E = vertex-set
possibly with
edge-lengths

on vertex-set
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Voronoi vector for random points in a metric space
Let X = (E, d, µ) be a fixed measured metric space

Consider k random points p1, . . . , pk in E (chosen under µ)

What is the distribution of the corresponding (random) vector Vor(k) ?

Examples: (for k = 2 and n→∞)

n-cycle
n-star

p1

p2

∼ δ(1/2,1/2)

n = 8p1

p2

(closest to center wins all)

∼ 1
2δ(1,0) + 1

2δ(0,1)

(each branch
of length n)



Voronoi vector for a random metric space

For k ≥ 2 fixed, let p1, . . . , pk be random points of X
• Let X = (E, d, µ) be a random metric space

Consider the associated Voronoi vector Vor(k) = (µ(C1), . . . , µ(Ck))

Which distribution can we have for the (doubly) random vector Vor(k) ?



Voronoi vector for a random metric space

For k ≥ 2 fixed, let p1, . . . , pk be random points of X

∆k := {(x1, . . . , xk), xi ≥ 0,
∑k

i=1 xi = 1}
(for k = 2 each component of Vor(2) has uniform law on [0, 1])

• Let X = (E, d, µ) be a random metric space

Consider the associated Voronoi vector Vor(k) = (µ(C1), . . . , µ(Ck))

Which distribution can we have for the (doubly) random vector Vor(k) ?

The model is called Voronoi-uniform if Vor(k) is uniformly distributed on



Voronoi vector for a random metric space

For k ≥ 2 fixed, let p1, . . . , pk be random points of X

is said to be Voronoi-uniform as n→∞ if the Voronoi vector V
(k)
n

∆k := {(x1, . . . , xk), xi ≥ 0,
∑k

i=1 xi = 1}

V
(k)
n

proba
Uniform law on ∆k

(for k = 2 each component of Vor(2) has uniform law on [0, 1])

As it turns out, several models of random graphs have this behaviour

• Let X = (E, d, µ) be a random metric space

Consider the associated Voronoi vector Vor(k) = (µ(C1), . . . , µ(Ck))

Which distribution can we have for the (doubly) random vector Vor(k) ?

The model is called Voronoi-uniform if Vor(k) is uniformly distributed on

• Similarly a sequence Xn of random discrete metric spaces

satisfies



Example for the complete graph
Consider the complete graph Kn with Exp(1) edge-lengths,

∀e ∈ Kn, P(`(e) ≥ t) = e−t

Then this model is Voronoi-uniform as n→∞

cf Pólya urn model

- Grow the cells C1, . . . , Ck (at unit speed) from p1, . . . , pk

?
2/7

1/7
4/7

- at each time t where a new vertex v gets absorbed,

it gets absorbed by cell Ci with probability
|Ci|

|C1|+ · · ·+ |Ck|
- convergence of urn composition (as n→∞) to uniform law on ∆k

starting with one ball
in each bag

p1

p2

p3



Results for random maps and trees
• For random maps:

Conjecture: [Chapuy’16]

For g ≥ 0 let Q
(g)
n be the random bipartite quadrangulation

of genus g with n faces. Then Q
(g)
n is Voronoi-uniform when n→∞

⇔ continuum limit (Brownian map in genus g) is Voronoi-uniform
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• For random trees and random unicellular maps:

Theorem: [Addario-Berry,Angel,Chapuy,F,Goldschmidt’18]
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⇔ the continuum limit is Voronoi-uniform (CRT for genus 0)

For g ≥ 0 let U
(g)
n be the random unicellular map of genus g with n edges



Results for random maps and trees
• For random maps:

Conjecture: [Chapuy’16]

For g ≥ 0 let Q
(g)
n be the random bipartite quadrangulation
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• For random trees and random unicellular maps:

Theorem: [Addario-Berry,Angel,Chapuy,F,Goldschmidt’18]

Then U
(g)
n is Voronoi-uniform when n→∞

⇔ the continuum limit is Voronoi-uniform (CRT for genus 0)

For g ≥ 0 let U
(g)
n be the random unicellular map of genus g with n edges

(also holds for random unicellular maps on non-orientable surfaces)
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Distance between 2 random points in random trees

1 2 distance Dn = 3

where an,` = # trees on n edges with 2 marked corners at distance `

And Lagrange inversion ⇒ an,` =
`+1

n

(2n+ 2

n+`

)
for √̀

n
→ x

Then an = Catn · (2n− 1) ∼ 2·4n√
πn

⇒
an,`

an
∼

1
√
n
2xe−x

2
hence

Dn√
n proba

law of density 2xe−x
2

Consider a random plane tree on n edges with two marked corners

• Distribution of Dn:

∼ 4n+1

n
√
π
xe−x

2

(Rayleigh law)

P (Dn = `) =
an,`

an

an = # trees on n edges with 2 marked corners
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n2π
·

x2
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exp
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−

x2

α(1− α)

)
⇒ convergence to joint density f(α, x) = 4x2√
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Joint law for the distance and Voronoi masses

1 2

` `

n1 vertices n2 vertices

n1 + n2 = n
n1 = α · n
` = x ·

√
n

# such configurations = an1,` · an2,`

∼
4n

n2π
·

x2

(α(1− α))3/2
exp

(
−

x2

α(1− α)

)
⇒ convergence to joint density f(α, x) = 4x2√

π(α(1−α))3/2
exp

(
− x2

α(1−α)

)
Rk: ∀α ∈ (0, 1),

∫+∞
−∞ f(α, x)dx = 1 cf change of variable u = x√

α(1−α)

⇒ marginal law in α is uniform on [0, 1]
uniformity for random trees⇒ case k = 2

∼ 4n

πn1n2
x1x2 e−x

2
1−x

2
2 with

x1 = `√
n1

= x√
α

x2 = `√
n2

= x√
(1−α)



Bijective approach
Let A(k)

n := set of trees on n edges with k marked corners

Idea: Find a bijection Φ from A(k)
n to itself such that

for T ′ = φ(T ) one has Int(k)(T ′) = Vor(k)(T ) (up to o(1) corrections)

Voronoi partition Contour partition

This will prove uniformity, since clearly for T ′ taken at random in A(k)
n

Int(k)(T ′)
proba

Uniform law on ∆k

Vor(k) = (µ(C1), . . . , µ(Ck)) Int(k)= 1
2n

(length(I1), . . . , length(Ik))

1
2

3
4

1
2

3
4

I1
I2

I3I4



Bijection for k = 2

The bijection φ permutes the attached subtrees

a b c d e

j i h g f
1 2

i j a b c

h g f e d
1 2

C<
1

C<
2

φ
even

distance

I2

I1

a b c d

h g f e
1 2

g h a b

f e d c
1 2

C1

C2

φ

I2

I1

odd
distance

For i ∈ {1, 2} each attached subtree in C<
i gets moved to Ii

⇒ In proba we have µ(Ci) ∼ µ(Ii) ∼ 1
2n length(Ii)→ Unif(0, 1)



Bijection for k ≥ 3 (induction on k)
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Bijection for k ≥ 3 (induction on k)

6
1

2
3

4

5

d=2
mind=4

d=4
d=3

d=3

d=5

if min=0 or min is not unique, the bijection fails

skeleton
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Bijection for k ≥ 3 (induction on k)

6
1

2
3

4

5

3′

61

2

3′′
4

6

5

φ

I1

I2

I3′ I3′′

I4

I5

I6

I3

I4

I5I1

I2

smaller k I6



Summary of the results for trees

6
1

2
3

4

5

3

4

5
6

1

2
φ

so that for i ∈ [1..k] each attached subtree in C<
i gets moved to Ii

⇒ For T random in Ak
n, Vor(k)(T ) ∼ Int(k)(T ) ∼ Uniform law on ∆k

for any fixed k ≥ 2

Let Ak
n be the set of trees with n edges and k marked corners

Then there is a subfamily Bkn ⊂ Ak
n (no-failure case) such that

|Bkn| = |Ak
n| · (1−O(n−1/2))

and a bijection φ from Bkn to itself that permutes the attached subtrees



Induced results

The CRT is the continuum limit

So the CRT is Voronoi-uniform

of random trees
(with edge lengths /

√
n)



Induced results

The CRT is the continuum limit

So the CRT is Voronoi-uniform

⇒ any model of random graphs converging to the CRT

This includes

is Voronoi-uniform as n→∞

- random dissections of an n-gon

Gromov-Hausdorff-Prokhorov topology

- random stacked triangulations of n vertices

- random graphs of size n from a subcritical family
(outerplanar graphs, series-parallel graphs)

- random outerplanar maps with n edges

of random trees

[Caraceni’16]

[Albenque,Marckert’08]

[Panagiotou,Stufler,Weller’14]

[Curien,Haas,Kortchemski’14] [Bettinelli’17]

[Stufler’17]

(with edge lengths /
√
n)



Proof of uniformity directly on the CRT
Let T be a CRT with k random points p1, . . . , pk
To prove that T is Voronoi-uniform, we have to prove that

(i) for every k ≥ 2, Vor(k)(T ) and Int(k)(T ) are equidistributed
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Proof of uniformity directly on the CRT
Let T be a CRT with k random points p1, . . . , pk

Let S be the skeleton of T (k-leaf binary tree with random edge-lengths)

To prove that T is Voronoi-uniform, we have to prove that
(i) for every k ≥ 2, Vor(k)(T ) and Int(k)(T ) are equidistributed

To prove (i), it is enough to prove
(ii) for every k ≥ 2, 2Vor(k)(S) and Int(k)(S) are equidistributed

Voronoi-partition Interval-partition

Proof for k = 2

Vor(2) Int(2)



Proof of uniformity directly on the CRT

Rk: can rescale S so that the edge-lengths are independent Exp(1)-laws
Proof (by induction on k) that 2Vor(k)(S) and Int(k)(S) are equidistributed

induction
on k

xx

x

x
x

x
xx

x
x

x
x



Extension to maps of finite excess
For g ≥ 0 and k = (k1, . . . , kr)

M(k,g)
n := set of maps of genus g with n edges and r faces f1, . . . , fr

where in each face fi there are ki marked corners ci,1, . . . , ci,ki

f1
f2 1

2

1

2

3

g = 0, r = 2, k = (2, 3)

with ki ≥ 1



Extension to maps of finite excess
For g ≥ 0 and k = (k1, . . . , kr)

M(k,g)
n := set of maps of genus g with n edges and r faces f1, . . . , fr

where in each face fi there are ki marked corners ci,1, . . . , ci,ki

f1
f2 1

2

1

2

3

f1

f2 1

2

1

2

3

Voronoi partition Contour partition

N = k1 + · · · + kr
{pi}1≤i≤N = {vertices at marked corners in f1, . . . , fr}

Voronoi vector Vor := (µ(C1), . . . , µ(CN))

(total number of marked corners)

I2,1
I2,2

I2,3

I1,1I1,2

Ii,j := jth interval in fi
vector Ui :=

1
2n(length(Ii,1), . . . , length(Ii,ki))

Interval vector Int := concatenate U1;U2; . . . ;Ur

with ki ≥ 1



Extension to maps of finite excess
Result: For g ≥ 0 and k = (k1, . . . , kr)

there is a subfamily B(g,k)n ⊂M(g,k)
n with |B(g,k)n | ∼ |M(g,k)

n |
and a bijection φ from B(g,k)n to itself such that for M ′ = φ(M)
we have Int(M ′) = Vor(M) up to o(1) error terms
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Extension to maps of finite excess
Result: For g ≥ 0 and k = (k1, . . . , kr)

there is a subfamily B(g,k)n ⊂M(g,k)
n with |B(g,k)n | ∼ |M(g,k)

n |
and a bijection φ from B(g,k)n to itself such that for M ′ = φ(M)
we have Int(M ′) = Vor(M) up to o(1) error terms

• Random maps in M(g,k)
n have a scaling limit called the CRM(g,k)

The bijection implies that Vor and Int are equidistributed in the CRM(g,k)

• This can be proved directly, on the associated skeleton and using induction

cut mergesplit

3 cases for the skeleton (surrounded the leaf with shortest incident edge)



Induced results
For g ≥ 0 and k = (k1, . . . , kr)

the 2 vectors Vor and Int are equidistributed in the CRM(g,k)

• Case r = 1 (unicellular maps)
Int is uniformly distributed on ∆k, hence so is Vor

• Case k1 = 1, . . . , kr = 1 (one marked corner in each face)

for a random map in M(g,k)
n , Vor ∼ 1

2n · (deg(f1), . . . ,deg(fr))

g=0: Tutte’s slicings formula gives Vor ∼ density ∝ x1/21 · · ·x1/2r on ∆r

(Dirichlet ( 1
2 , . . . ,

1
2 ))

⇒ the CRUMg is Voronoi-uniform


