Voronoi tesselations in large random trees and random maps of finite excess

Éric Fusy (CNRS/LIX)

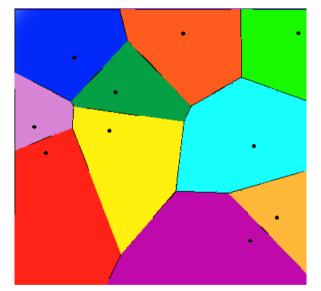
joint work with Louigi Addario-Berry, Omer Angel, Guillaume Chapuy and Christina Goldschmidt

Journées cartes, Février 2018

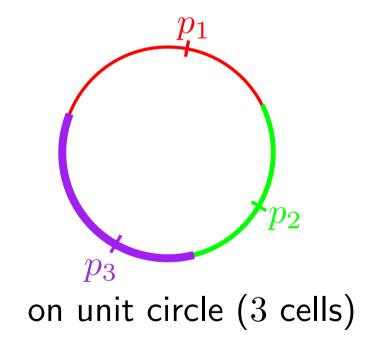
Voronoi tesselations in measured metric spaces Let $X = (E, d, \mu)$ be a measured metric space (with $\mu(E) = 1$) Consider k points p_1, \ldots, p_k in E

The space E is 'partitioned' into cells C_1, \ldots, C_k where

$$C_i = \{ p \in X, \ d(p, p_i) = \min \ d(p, p_j)_{j \in [1..k]} \}$$



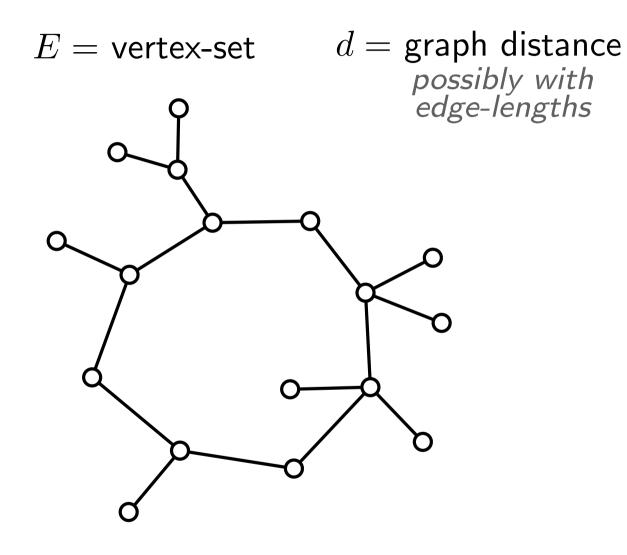
on unit square (10 cells)

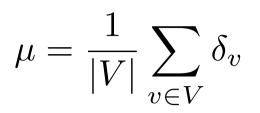


The corresponding Voronoi vector is $Vor^{(k)} := (\mu(C_1), \dots, \mu(C_k))$ (Rk: $\mu(C_1) + \dots + \mu(C_k) = 1$ when cell intersections have zero measure)

The discrete case

Graph G = discrete metric space

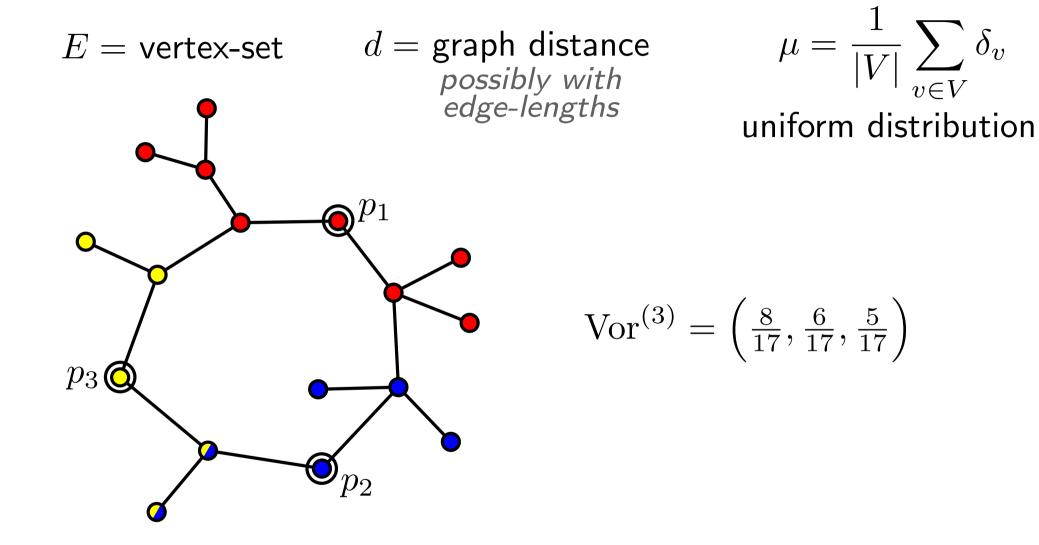




uniform distribution on vertex-set

The discrete case

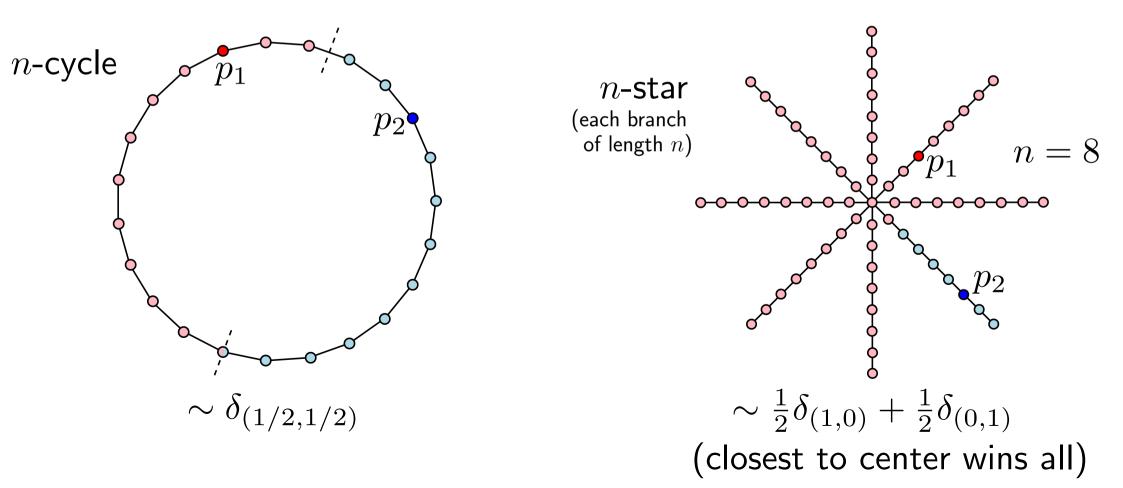
Graph G = discrete metric space



Voronoi vector for random points in a metric space Let $X = (E, d, \mu)$ be a fixed measured metric space Consider k random points p_1, \ldots, p_k in E (chosen under μ)

What is the distribution of the corresponding (random) vector $Vor^{(k)}$?

Examples: (for k = 2 and $n \to \infty$)



Voronoi vector for a random metric space

- Let $X = (E, d, \mu)$ be a random metric space
- For $k \geq 2$ fixed, let p_1, \ldots, p_k be random points of X

Consider the associated Voronoi vector $Vor^{(k)} = (\mu(C_1), \dots, \mu(C_k))$

Which distribution can we have for the (doubly) random vector $Vor^{(k)}$?

Voronoi vector for a random metric space

- Let $X = (E, d, \mu)$ be a random metric space
- For $k \geq 2$ fixed, let p_1, \ldots, p_k be random points of X

Consider the associated Voronoi vector $Vor^{(k)} = (\mu(C_1), \dots, \mu(C_k))$

Which distribution can we have for the (doubly) random vector $Vor^{(k)}$?

The model is called Voronoi-uniform if $Vor^{(k)}$ is uniformly distributed on

$$\Delta_k := \{ (x_1, \dots, x_k), \quad x_i \ge 0, \sum_{i=1}^k x_i = 1 \}$$

(for k = 2 each component of $Vor^{(2)}$ has uniform law on [0, 1])

Voronoi vector for a random metric space

- Let $X = (E, d, \mu)$ be a random metric space
- For $k \geq 2$ fixed, let p_1, \ldots, p_k be random points of X

Consider the associated Voronoi vector $Vor^{(k)} = (\mu(C_1), \dots, \mu(C_k))$

Which distribution can we have for the (doubly) random vector $Vor^{(k)}$?

The model is called Voronoi-uniform if $\operatorname{Vor}^{(k)}$ is uniformly distributed on $\Delta_k := \{(x_1, \dots, x_k), x_i \ge 0, \sum_{i=1}^k x_i = 1\}$ (for k = 2 each component of $\operatorname{Vor}^{(2)}$ has uniform law on [0, 1])

• Similarly a sequence X_n of random discrete metric spaces is said to be Voronoi-uniform as $n \to \infty$ if the Voronoi vector $V_n^{(k)}$

satisfies
$$V_n^{(k)}$$
 proba Uniform law on Δ_k

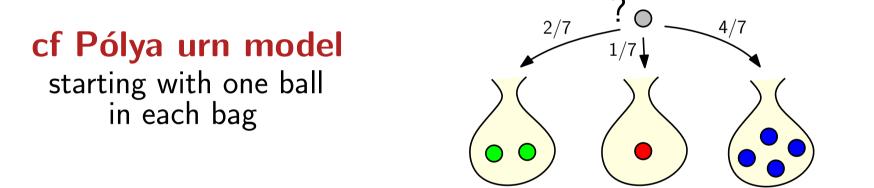
As it turns out, several models of random graphs have this behaviour

Example for the complete graph

Consider the complete graph K_n with Exp(1) edge-lengths,

 $\forall e \in K_n, \quad \mathcal{P}(\ell(e) \ge t) = e^{-t}$

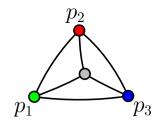
Then this model is Voronoi-uniform as $n \to \infty$



- Grow the cells C_1, \ldots, C_k (at unit speed) from p_1, \ldots, p_k
- at each time t where a new vertex v gets absorbed,

it gets absorbed by cell C_i with probability $\frac{|C_i|}{|C_1| + \cdots + |C_k|}$

- convergence of urn composition (as $n o \infty$) to uniform law on Δ_k



- For random maps:
 - **Conjecture:** [Chapuy'16]
 - For $g \ge 0$ let $Q_n^{(g)}$ be the random bipartite quadrangulation
 - of genus g with n faces. Then $Q_n^{(g)}$ is Voronoi-uniform when $n \to \infty$
 - \Leftrightarrow continuum limit (Brownian map in genus g) is Voronoi-uniform

• For random maps:

Conjecture: [Chapuy'16]

For $g \ge 0$ let $Q_n^{(g)}$ be the random bipartite quadrangulation

of genus g with n faces. Then $Q_n^{(g)}$ is Voronoi-uniform when $n \to \infty$

 \Leftrightarrow continuum limit (Brownian map in genus g) is Voronoi-uniform supported by proof (using the " t_g -recurrence") that for all $g \ge 0$ $\mathbf{E}(\operatorname{Vor}_1^{(2)} \cdot \operatorname{Vor}_2^{(2)}) = 1/6$ $\mathbf{E}(\operatorname{Vor}_1^{(3)} \cdot \operatorname{Vor}_2^{(3)} \cdot \operatorname{Vor}_2^{(3)}) = 1/60$

• For random maps:

Conjecture: [Chapuy'16]

For $g \ge 0$ let $Q_n^{(g)}$ be the random bipartite quadrangulation of genus g with n faces. Then $Q_n^{(g)}$ is Voronoi-uniform when $n \to \infty$ \Leftrightarrow continuum limit (Brownian map in genus g) is Voronoi-uniform supported by proof (using the " t_g -recurrence") that for all $g \ge 0$ $\mathbf{E}(\operatorname{Vor}_1^{(2)} \cdot \operatorname{Vor}_2^{(2)}) = 1/6$ $\mathbf{E}(\operatorname{Vor}_1^{(3)} \cdot \operatorname{Vor}_2^{(3)} \cdot \operatorname{Vor}_3^{(3)}) = 1/60$

Recent proof for g = 0 and k = 2 [Guitter'17]

• For random maps:

Conjecture: [Chapuy'16]

For $g \ge 0$ let $Q_n^{(g)}$ be the random bipartite quadrangulation of genus g with n faces. Then $Q_n^{(g)}$ is Voronoi-uniform when $n \to \infty$ \Leftrightarrow continuum limit (Brownian map in genus g) is Voronoi-uniform supported by proof (using the " t_g -recurrence") that for all $g \ge 0$ $\mathbf{E}(\operatorname{Vor}_1^{(2)} \cdot \operatorname{Vor}_2^{(2)}) = 1/6$ $\mathbf{E}(\operatorname{Vor}_1^{(3)} \cdot \operatorname{Vor}_2^{(3)} \cdot \operatorname{Vor}_3^{(3)}) = 1/60$

Recent proof for g = 0 and k = 2 [Guitter'17]

• For random trees and random unicellular maps:

Theorem: [Addario-Berry, Angel, Chapuy, F, Goldschmidt'18] For $g \ge 0$ let $U_n^{(g)}$ be the random unicellular map of genus g with n edges Then $U_n^{(g)}$ is Voronoi-uniform when $n \to \infty$

 \Leftrightarrow the continuum limit is Voronoi-uniform (CRT for genus 0)

• For random maps:

Conjecture: [Chapuy'16]

For $g \ge 0$ let $Q_n^{(g)}$ be the random bipartite quadrangulation of genus g with n faces. Then $Q_n^{(g)}$ is Voronoi-uniform when $n \to \infty$ \Leftrightarrow continuum limit (Brownian map in genus g) is Voronoi-uniform supported by proof (using the " t_g -recurrence") that for all $g \ge 0$

 $\mathbf{E}(\operatorname{Vor}_{1}^{(2)} \cdot \operatorname{Vor}_{2}^{(2)}) = 1/6 \qquad \mathbf{E}(\operatorname{Vor}_{1}^{(3)} \cdot \operatorname{Vor}_{2}^{(3)} \cdot \operatorname{Vor}_{3}^{(3)}) = 1/60$

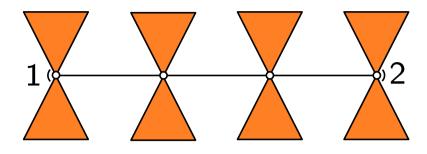
Recent proof for g = 0 and k = 2 [Guitter'17]

• For random trees and random unicellular maps:

Theorem: [Addario-Berry, Angel, Chapuy, F, Goldschmidt'18] For $g \ge 0$ let $U_n^{(g)}$ be the random unicellular map of genus g with n edges Then $U_n^{(g)}$ is Voronoi-uniform when $n \to \infty$

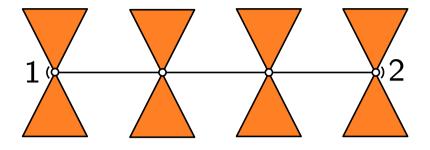
 \Leftrightarrow the continuum limit is Voronoi-uniform (CRT for genus 0) (also holds for random unicellular maps on non-orientable surfaces)

Consider a random plane tree on n edges with two marked corners



distance $D_n = 3$

Consider a random plane tree on n edges with two marked corners

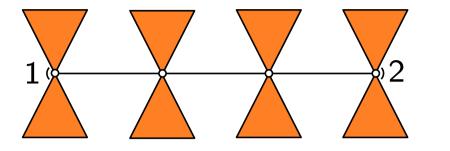


distance $D_n = 3$

• Distribution of D_n : $P(D_n = \ell) = \frac{a_{n,\ell}}{a_n}$

where $a_{n,\ell} = \#$ trees on n edges with 2 marked corners at distance ℓ $a_n = \#$ trees on n edges with 2 marked corners

Consider a random plane tree on n edges with two marked corners

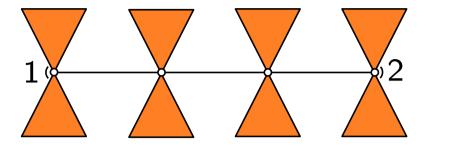


distance $D_n = 3$

• Distribution of D_n : $P(D_n = \ell) = \frac{a_{n,\ell}}{a_n}$

where $a_{n,\ell} = \#$ trees on n edges with 2 marked corners at distance ℓ $a_n = \#$ trees on n edges with 2 marked corners Then $a_n = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$ And Lagrange inversion $\Rightarrow a_{n,\ell} = \frac{\ell+1}{n} \binom{2n+2}{n+\ell}$

Consider a random plane tree on n edges with two marked corners



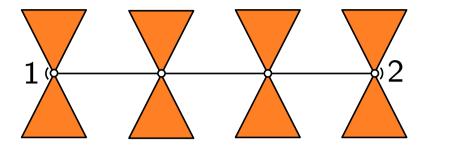
distance $D_n = 3$

• Distribution of D_n : $P(D_n = \ell) = \frac{a_{n,\ell}}{a_n}$

where $a_{n,\ell} = \#$ trees on n edges with 2 marked corners at distance ℓ $a_n = \#$ trees on n edges with 2 marked corners Then $a_n = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$ And Lagrange inversion $\Rightarrow a_{n,\ell} = \frac{\ell+1}{n} {2n+2 \choose n+\ell}$

$$\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2} \quad \text{for } \frac{\ell}{\sqrt{n}} \to x$$

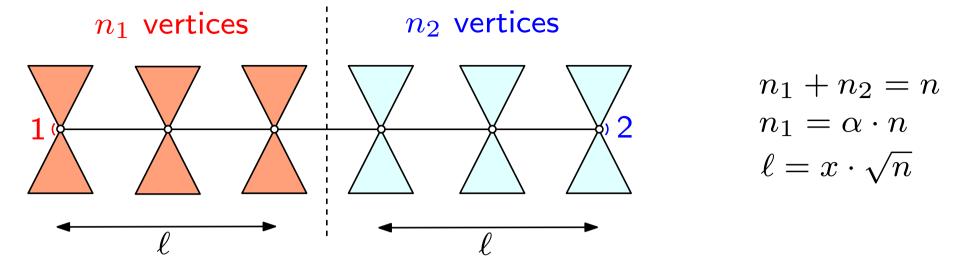
Consider a random plane tree on n edges with two marked corners

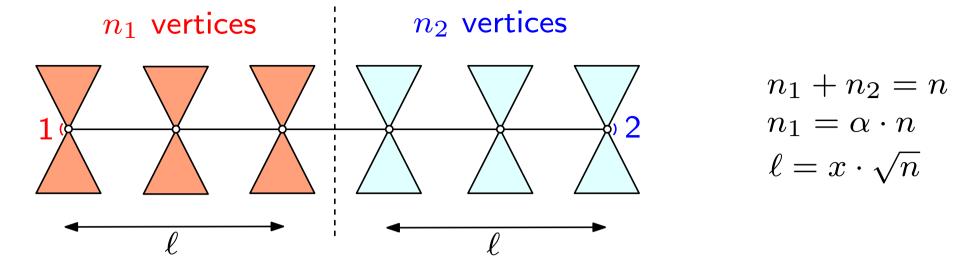


distance $D_n = 3$

• Distribution of D_n : $P(D_n = \ell) = \frac{a_{n,\ell}}{a_n}$

where $a_{n,\ell} = \#$ trees on n edges with 2 marked corners at distance ℓ $a_n = \#$ trees on n edges with 2 marked corners Then $a_n = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$ And Lagrange inversion $\Rightarrow a_{n,\ell} = \frac{\ell+1}{2} \binom{2n+2}{2\ell+\ell}$ $\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2}$ for $\frac{\ell}{\sqrt{n}} \to x$ $\Rightarrow \frac{a_{n,\ell}}{a_n} \sim \frac{1}{\sqrt{n}} 2x e^{-x^2} \quad \text{hence } \frac{D_n}{\sqrt{n}} \xrightarrow{\text{proba}} \quad \text{law of density } 2x e^{-x^2} \quad \text{(Rayleigh law)}$





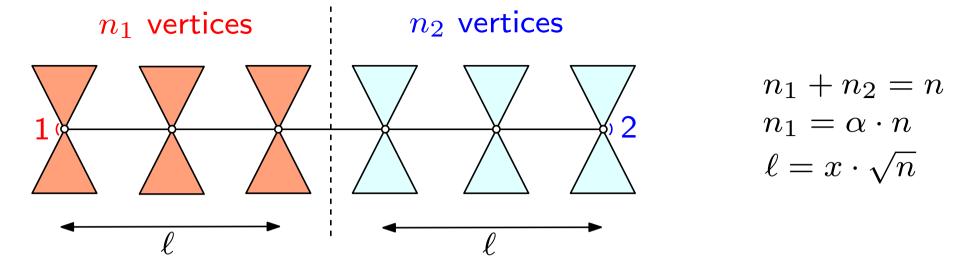
such configurations = $a_{n_1,\ell} \cdot a_{n_2,\ell}$

$$\sim \frac{4^n}{\pi n_1 n_2} x_1 x_2 e^{-x_1^2 - x_2^2} \quad \text{with} \begin{cases} x_1 = \frac{x}{\sqrt{n_1}} = \frac{x}{\sqrt{\alpha}} \\ x_2 = \frac{\ell}{\sqrt{n_2}} = \frac{x}{\sqrt{(1-\alpha)}} \end{cases}$$

 $\boldsymbol{\mathcal{C}}$

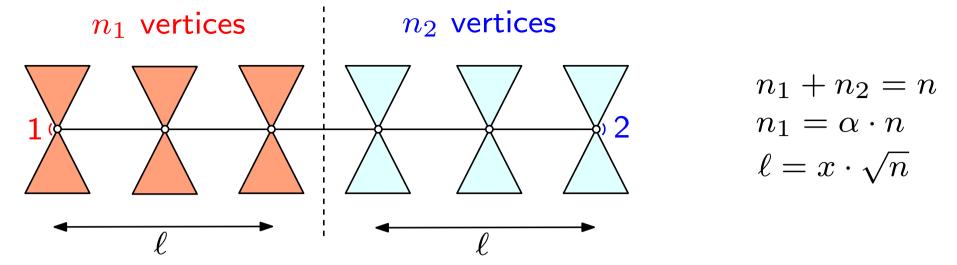
P

 \boldsymbol{r}



such configurations = $a_{n_1,\ell} \cdot a_{n_2,\ell}$

$$\sim \frac{4^{n}}{\pi n_{1} n_{2}} x_{1} x_{2} e^{-x_{1}^{2} - x_{2}^{2}} \quad \text{with} \begin{cases} x_{1} = \frac{\ell}{\sqrt{n_{1}}} = \frac{x}{\sqrt{\alpha}} \\ x_{2} = \frac{\ell}{\sqrt{n_{2}}} = \frac{x}{\sqrt{(1-\alpha)}} \end{cases}$$
$$\sim \frac{4^{n}}{n^{2} \pi} \cdot \frac{x^{2}}{(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{x^{2}}{\alpha(1-\alpha)}\right)$$



such configurations = $a_{n_1,\ell} \cdot a_{n_2,\ell}$

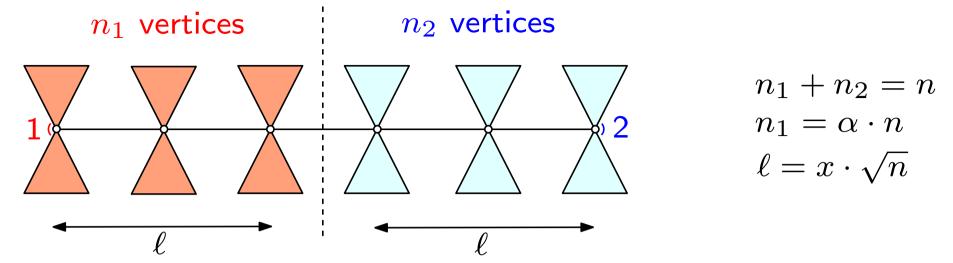
$$\sim \frac{4^{n}}{\pi n_{1}n_{2}} x_{1}x_{2} e^{-x_{1}^{2}-x_{2}^{2}} \quad \text{with} \begin{cases} x_{1} = \frac{\ell}{\sqrt{n_{1}}} = \frac{x}{\sqrt{\alpha}} \\ x_{2} = \frac{\ell}{\sqrt{n_{2}}} = \frac{x}{\sqrt{(1-\alpha)}} \end{cases}$$

$$\sim \frac{4^{n}}{n^{2}\pi} \cdot \frac{x^{2}}{(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{x^{2}}{\alpha(1-\alpha)}\right)$$
powergence to joint density $f(\alpha, x) = \frac{4x^{2}}{(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{x^{2}}{\alpha(1-\alpha)}\right)$

 $\boldsymbol{\mathcal{C}}$

P

 \Rightarrow conv ergence to joint density $J(\alpha, x) = \frac{1}{\sqrt{\pi}(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{1}{\alpha}(1-\alpha)\right)$



such configurations = $a_{n_1,\ell} \cdot a_{n_2,\ell}$

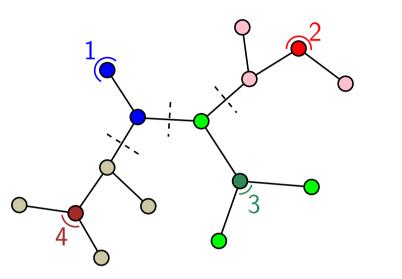
$$\sim \frac{4^n}{\pi n_1 n_2} x_1 x_2 e^{-x_1^2 - x_2^2} \quad \text{with} \begin{cases} x_1 = \frac{\ell}{\sqrt{n_1}} = \frac{x}{\sqrt{\alpha}} \\ x_2 = \frac{\ell}{\sqrt{n_2}} = \frac{x}{\sqrt{(1-\alpha)}} \end{cases} \\ \sim \frac{4^n}{n^2 \pi} \cdot \frac{x^2}{(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{x^2}{\alpha(1-\alpha)}\right) \end{cases}$$

 $\Rightarrow \text{ convergence to joint density } f(\alpha, x) = \frac{4x^2}{\sqrt{\pi}(\alpha(1-\alpha))^{3/2}} \exp\left(-\frac{x^2}{\alpha(1-\alpha)}\right)$

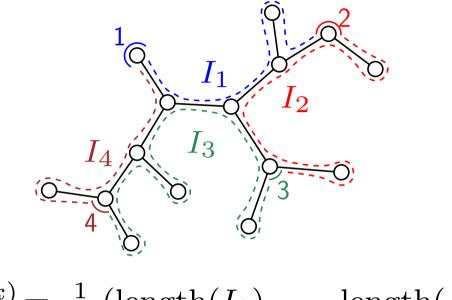
Rk: $\forall \alpha \in (0,1), \int_{-\infty}^{+\infty} f(\alpha, x) dx = 1$ cf change of variable $u = \frac{x}{\sqrt{\alpha(1-\alpha)}}$ \Rightarrow marginal law in α is uniform on [0,1] \Rightarrow uniformity for random trees case k = 2

Bijective approach

Let $\mathcal{A}_n^{(k)} :=$ set of trees on n edges with k marked corners Voronoi partition



Contour partition

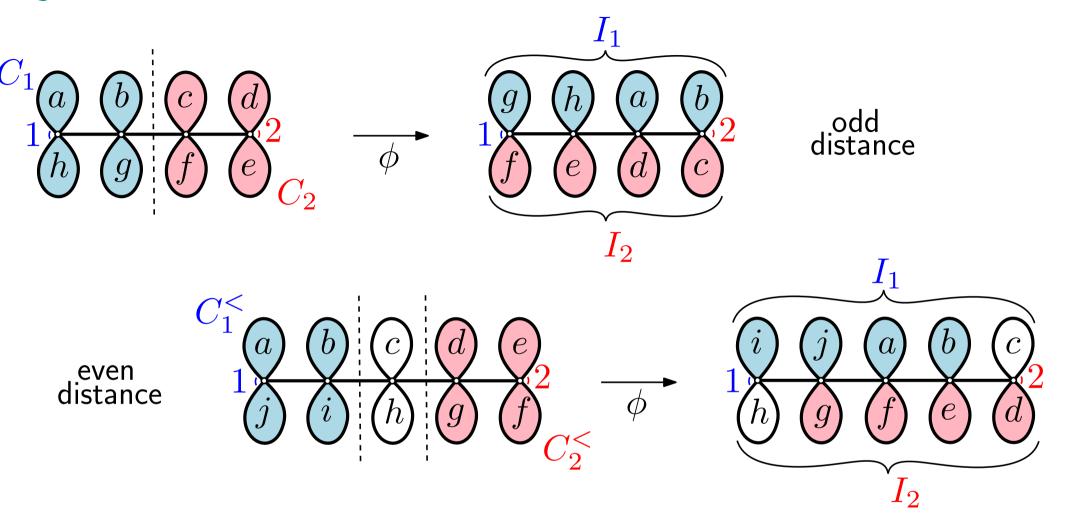


 $\operatorname{Vor}^{(k)} = (\mu(C_1), \dots, \mu(C_k)) \quad | \operatorname{Int}^{(k)} = \frac{1}{2n} (\operatorname{length}(I_1), \dots, \operatorname{length}(I_k)) |$

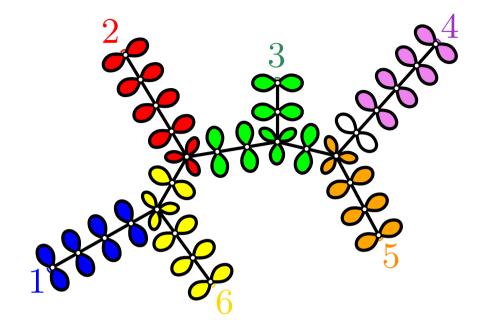
Idea: Find a bijection Φ from $\mathcal{A}_n^{(k)}$ to itself such that for $T' = \phi(T)$ one has $\operatorname{Int}^{(k)}(T') = \operatorname{Vor}^{(k)}(T)$ (up to o(1) corrections)

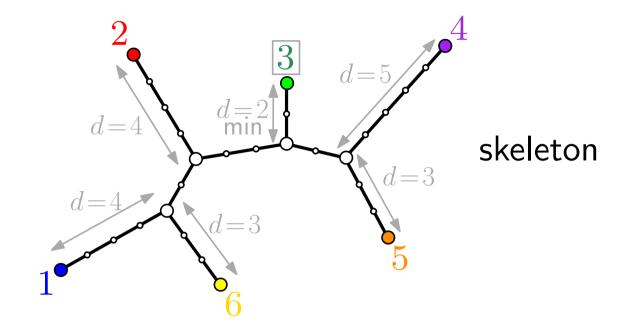
This will prove uniformity, since clearly for T' taken at random in $\mathcal{A}_n^{(k)}$ Int^(k)(T') proba Uniform law on Δ_k

Bijection for k = 2

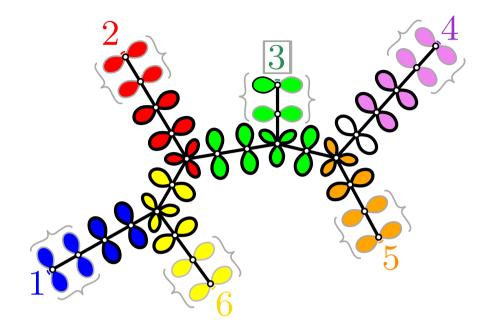


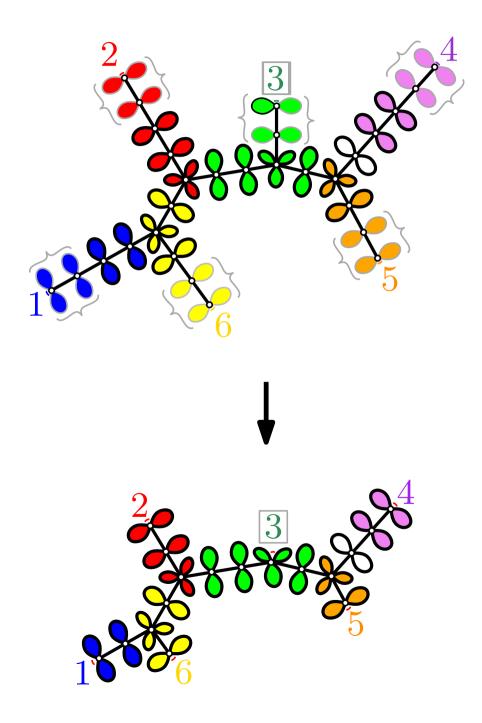
The bijection ϕ permutes the attached subtrees For $i \in \{1, 2\}$ each attached subtree in $C_i^<$ gets moved to I_i \Rightarrow In proba we have $\mu(C_i) \sim \mu(I_i) \sim \frac{1}{2n} \text{length}(I_i) \rightarrow \text{Unif}(0, 1)$

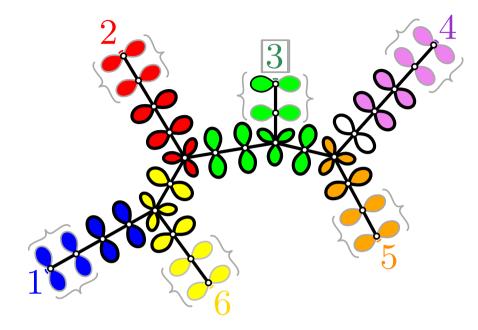


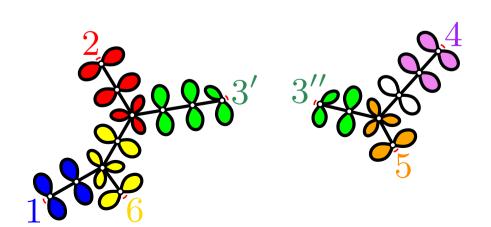


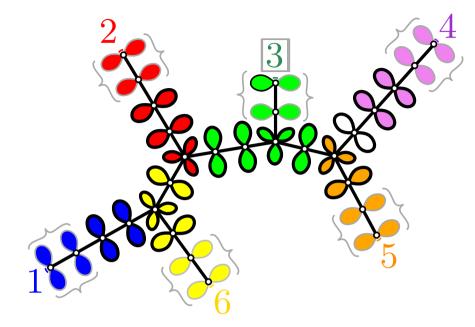
if min=0 or min is not unique, the bijection fails

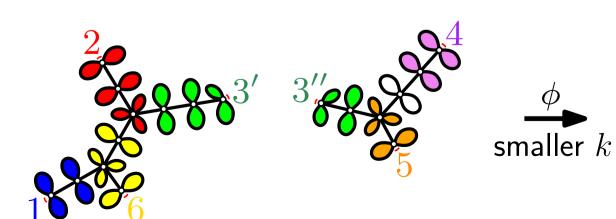


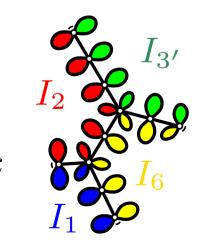


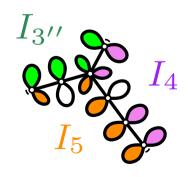




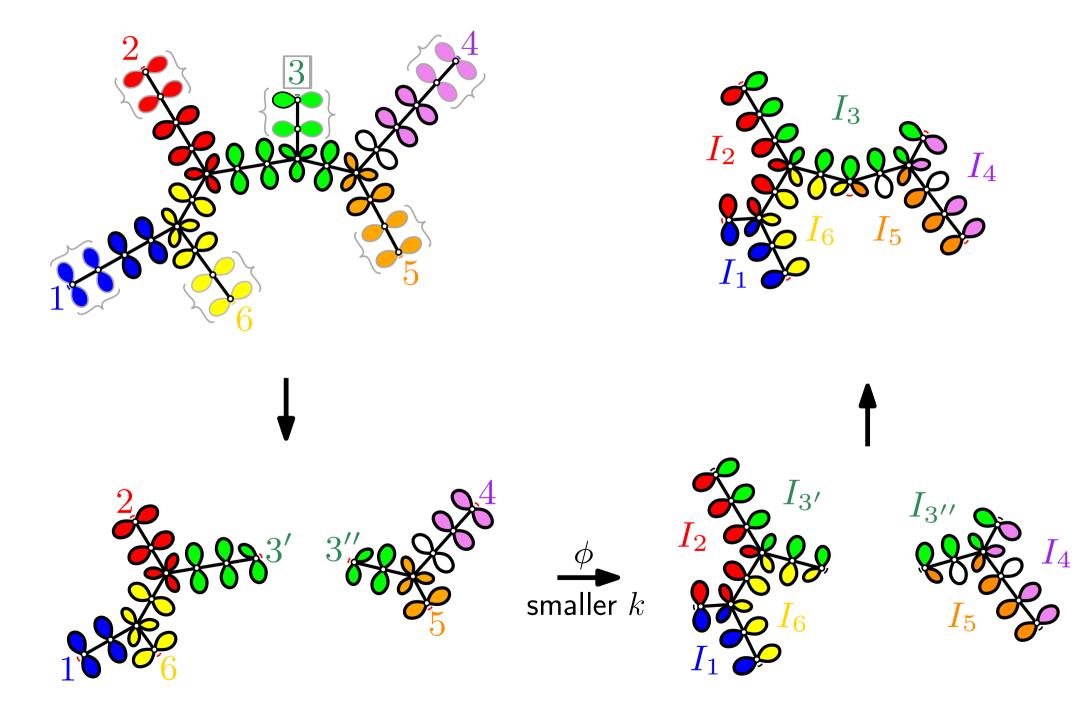




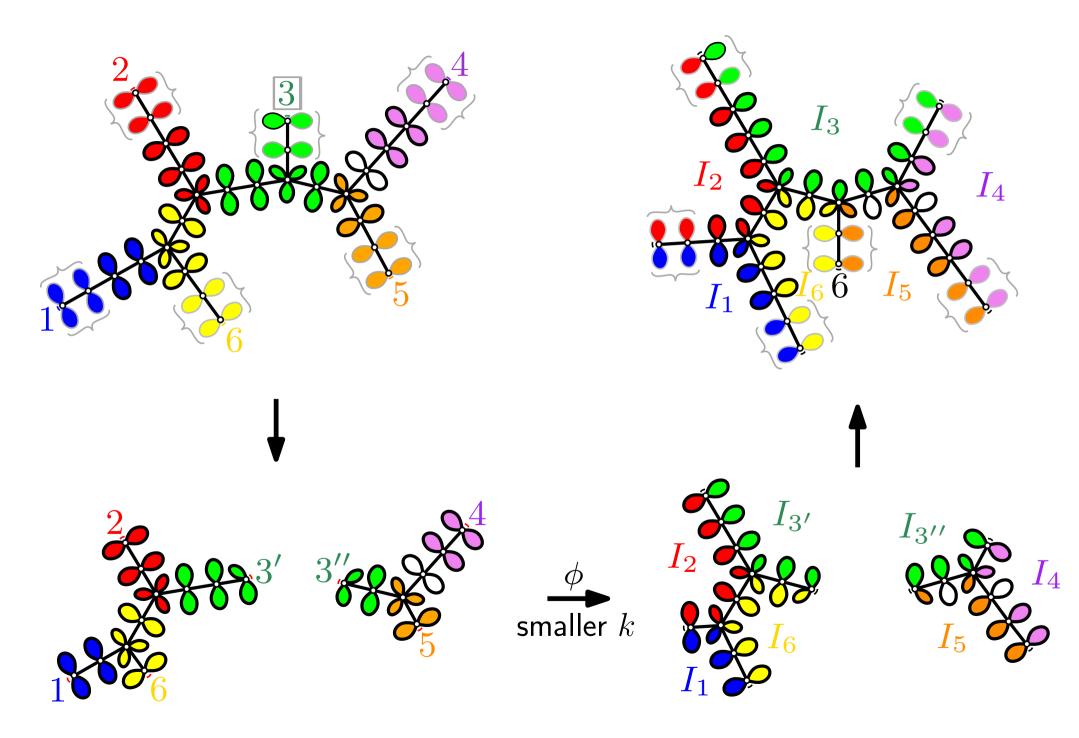




Bijection for $k \geq 3$ (induction on k)



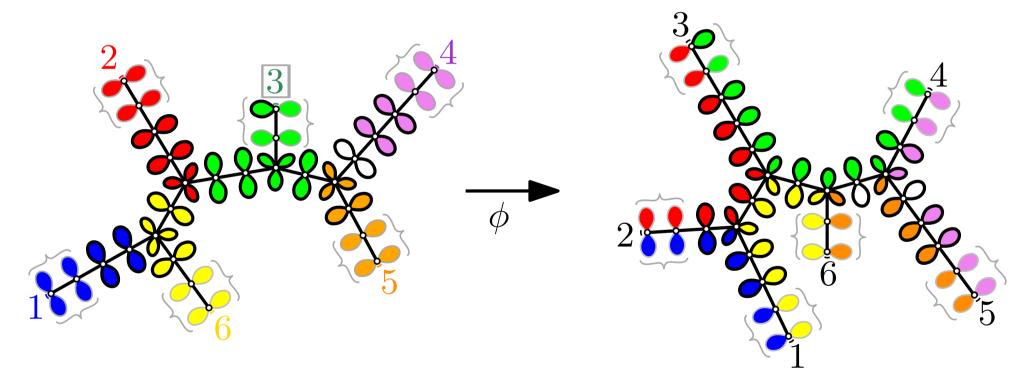
Bijection for $k \geq 3$ (induction on k)



Summary of the results for trees for any fixed $k \ge 2$

Let \mathcal{A}_n^k be the set of trees with n edges and k marked corners Then there is a subfamily $\mathcal{B}_n^k \subset \mathcal{A}_n^k$ (no-failure case) such that $|\mathcal{B}_n^k| = |\mathcal{A}_n^k| \cdot (1 - O(n^{-1/2}))$

and a **bijection** ϕ from \mathcal{B}_n^k to itself that **permutes the attached subtrees**



so that for $i \in [1..k]$ each attached subtree in $C_i^{<}$ gets moved to I_i \Rightarrow For T random in \mathcal{A}_n^k , $\operatorname{Vor}^{(k)}(T) \sim \operatorname{Int}^{(k)}(T) \sim \operatorname{Uniform}$ law on Δ_k

Induced results

The CRT is the continuum limit of random trees (with edge lengths $/\sqrt{n}$)

So the CRT is Voronoi-uniform

Induced results

The CRT is the continuum limit of random trees (with edge lengths $/\sqrt{n}$)

Gromov-Hausdorff-Prokhorov topology

[Caraceni'16] [Stufler'17]

[Albenque, Marckert'08]

So the CRT is Voronoi-uniform

 \Rightarrow any model of random graphs converging to the CRT is Voronoi-uniform as $n \to \infty$

This includes

- random dissections of an *n*-gon [Curien, Haas, Kortchemski'14] [Bettinelli'17]
- random outerplanar maps with n edges
- random stacked triangulations of n vertices
- random graphs of size n from a subcritical family [Panagiotou,Stufler,Weller'14] (outerplanar graphs, series-parallel graphs)

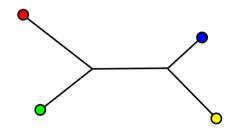
Let T be a CRT with k random points p_1, \ldots, p_k

To prove that T is Voronoi-uniform, we have to prove that (i) for every $k \ge 2$, $\operatorname{Vor}^{(k)}(T)$ and $\operatorname{Int}^{(k)}(T)$ are equidistributed

Let T be a CRT with k random points p_1, \ldots, p_k

To prove that T is Voronoi-uniform, we have to prove that (i) for every $k \ge 2$, $\operatorname{Vor}^{(k)}(T)$ and $\operatorname{Int}^{(k)}(T)$ are equidistributed

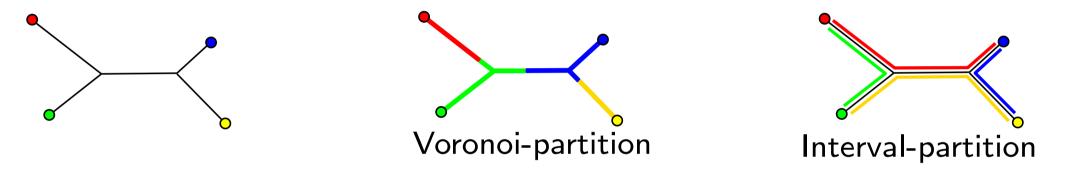
Let S be the skeleton of T (k-leaf binary tree with random edge-lengths)



Let T be a CRT with k random points p_1, \ldots, p_k

To prove that T is Voronoi-uniform, we have to prove that (i) for every $k \ge 2$, $\operatorname{Vor}^{(k)}(T)$ and $\operatorname{Int}^{(k)}(T)$ are equidistributed

Let S be the skeleton of T (k-leaf binary tree with random edge-lengths)

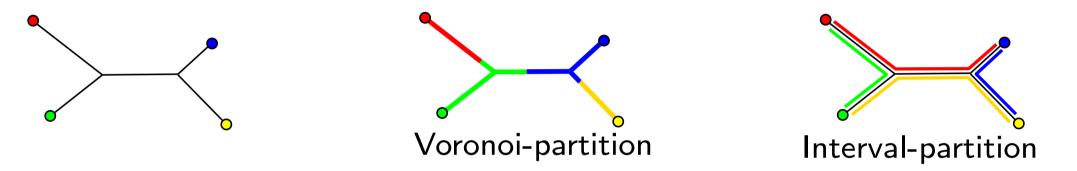


To prove (i), it is enough to prove (ii) for every $k \ge 2$, $2 \operatorname{Vor}^{(k)}(S)$ and $\operatorname{Int}^{(k)}(S)$ are equidistributed

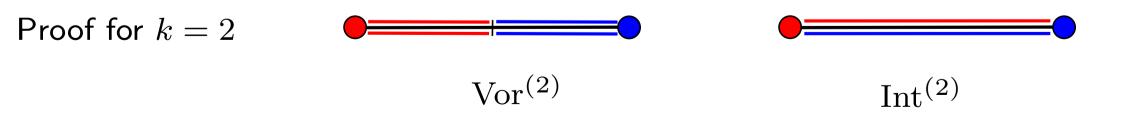
Let T be a CRT with k random points p_1, \ldots, p_k

To prove that T is Voronoi-uniform, we have to prove that (i) for every $k \ge 2$, $\operatorname{Vor}^{(k)}(T)$ and $\operatorname{Int}^{(k)}(T)$ are equidistributed

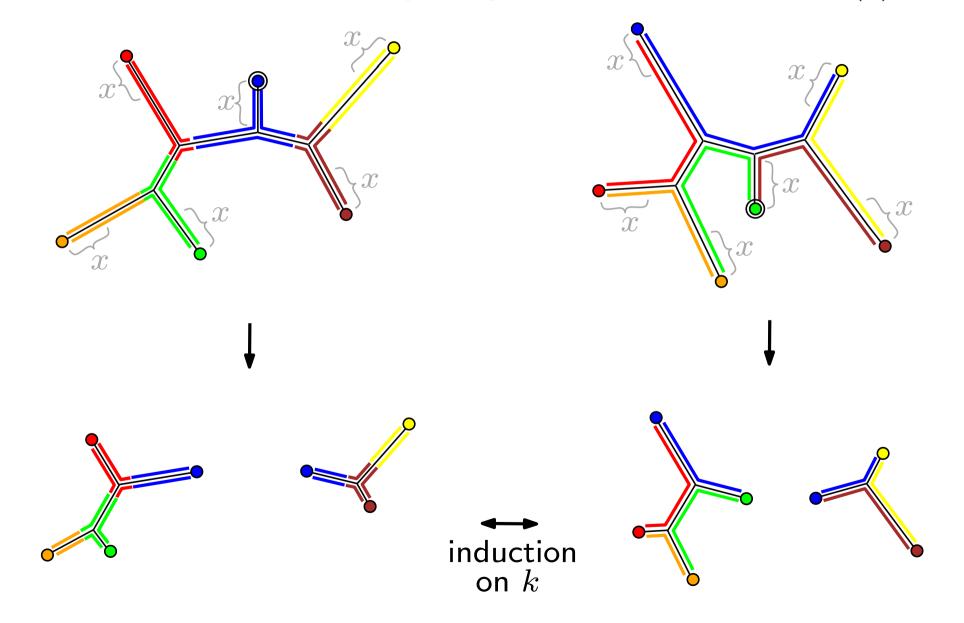
Let S be the skeleton of T (k-leaf binary tree with random edge-lengths)



To prove (i), it is enough to prove (ii) for every $k \ge 2$, $2 \text{Vor}^{(k)}(S)$ and $\text{Int}^{(k)}(S)$ are equidistributed

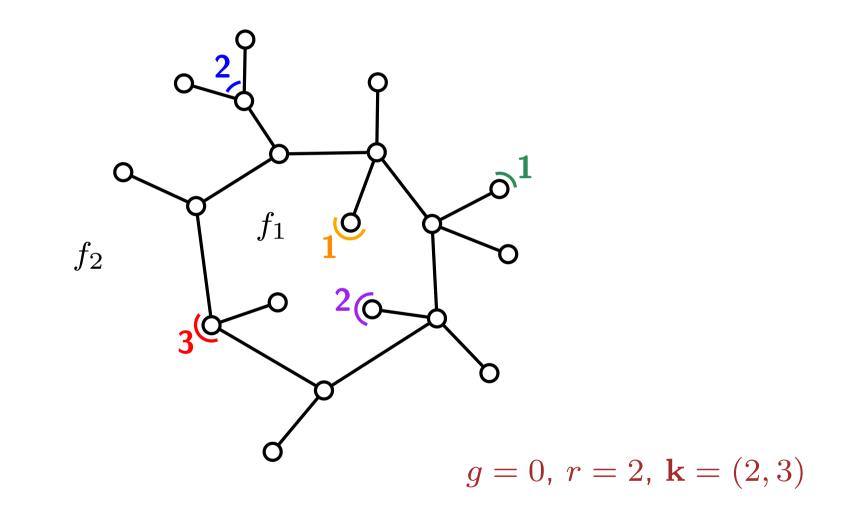


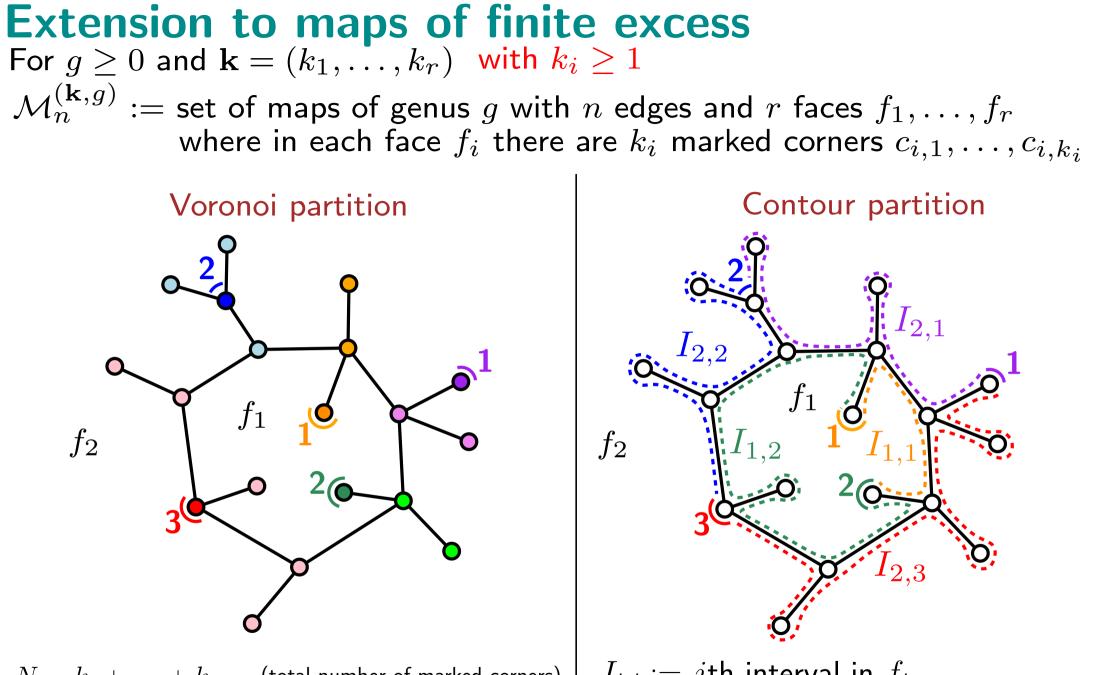
Proof (by induction on k) that $2 \operatorname{Vor}^{(k)}(S)$ and $\operatorname{Int}^{(k)}(S)$ are equidistributed **Rk**: can rescale S so that the edge-lengths are independent $\operatorname{Exp}(1)$ -laws



For $g \ge 0$ and $\mathbf{k} = (k_1, \ldots, k_r)$ with $k_i \ge 1$

 $\mathcal{M}_n^{(\mathbf{k},g)} :=$ set of maps of genus g with n edges and r faces f_1, \ldots, f_r where in each face f_i there are k_i marked corners $c_{i,1}, \ldots, c_{i,k_i}$





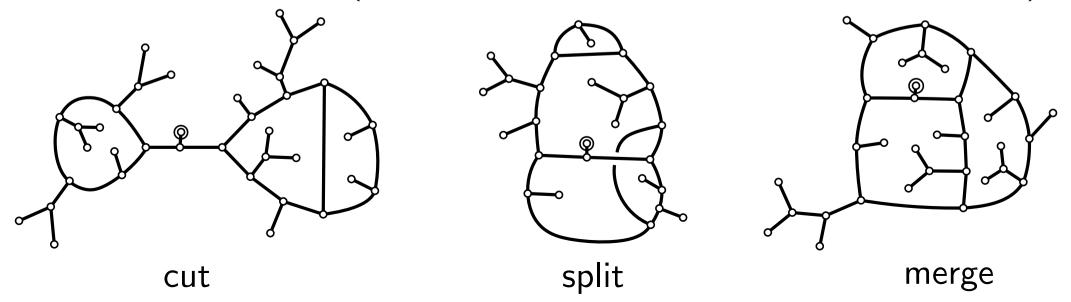
 $N = k_1 + \dots + k_r$ (total number of marked corners) $\{p_i\}_{1 \le i \le N} = \{\text{vertices at marked corners in } f_1, \dots, f_r\}$ Voronoi vector $\text{Vor} := (\mu(C_1), \dots, \mu(C_N))$ $I_{i,j} := j \text{th interval in } f_i$ vector $U_i := \frac{1}{2n} (\text{length}(I_{i,1}), \dots, \text{length}(I_{i,k_i}))$ Interval vector Int := concatenate $U_1; U_2; \dots; U_r$

Result: For $g \ge 0$ and $\mathbf{k} = (k_1, \dots, k_r)$ there is a subfamily $\mathcal{B}_n^{(g,\mathbf{k})} \subset \mathcal{M}_n^{(g,\mathbf{k})}$ with $|\mathcal{B}_n^{(g,\mathbf{k})}| \sim |\mathcal{M}_n^{(g,\mathbf{k})}|$ and a bijection ϕ from $\mathcal{B}_n^{(g,\mathbf{k})}$ to itself such that for $M' = \phi(M)$ we have $\operatorname{Int}(M') = \operatorname{Vor}(M)$ up to o(1) error terms

- **Result:** For $g \ge 0$ and $\mathbf{k} = (k_1, \dots, k_r)$ there is a subfamily $\mathcal{B}_n^{(g,\mathbf{k})} \subset \mathcal{M}_n^{(g,\mathbf{k})}$ with $|\mathcal{B}_n^{(g,\mathbf{k})}| \sim |\mathcal{M}_n^{(g,\mathbf{k})}|$ and a bijection ϕ from $\mathcal{B}_n^{(g,\mathbf{k})}$ to itself such that for $M' = \phi(M)$ we have $\operatorname{Int}(M') = \operatorname{Vor}(M)$ up to o(1) error terms
- Random maps in $\mathcal{M}_n^{(g,\mathbf{k})}$ have a scaling limit called the $\operatorname{CRM}^{(g,\mathbf{k})}$ The bijection implies that Vor and Int are equidistributed in the $\operatorname{CRM}^{(g,\mathbf{k})}$

- **Result:** For $g \ge 0$ and $\mathbf{k} = (k_1, \dots, k_r)$ there is a subfamily $\mathcal{B}_n^{(g,\mathbf{k})} \subset \mathcal{M}_n^{(g,\mathbf{k})}$ with $|\mathcal{B}_n^{(g,\mathbf{k})}| \sim |\mathcal{M}_n^{(g,\mathbf{k})}|$ and a bijection ϕ from $\mathcal{B}_n^{(g,\mathbf{k})}$ to itself such that for $M' = \phi(M)$ we have $\operatorname{Int}(M') = \operatorname{Vor}(M)$ up to o(1) error terms
- Random maps in $\mathcal{M}_n^{(g,\mathbf{k})}$ have a scaling limit called the $\operatorname{CRM}^{(g,\mathbf{k})}$ The bijection implies that Vor and Int are equidistributed in the $\operatorname{CRM}^{(g,\mathbf{k})}$
- This can be proved directly, on the associated skeleton and using induction

3 cases for the skeleton (surrounded the leaf with shortest incident edge)



Induced results

For $g \ge 0$ and $\mathbf{k} = (k_1, \ldots, k_r)$

the 2 vectors Vor and Int are equidistributed in the $CRM^{(g,k)}$

- Case r = 1 (unicellular maps) Int is uniformly distributed on Δ_k , hence so is Vor \Rightarrow the CRUM_g is Voronoi-uniform
- Case $k_1 = 1, \ldots, k_r = 1$ (one marked corner in each face) for a random map in $\mathcal{M}_n^{(g,\mathbf{k})}$, $\operatorname{Vor} \sim \frac{1}{2n} \cdot (\operatorname{deg}(f_1), \ldots, \operatorname{deg}(f_r))$ g = 0: Tutte's slicings formula gives $\operatorname{Vor} \sim \operatorname{density} \propto x_1^{1/2} \cdots x_r^{1/2}$ on Δ_r (Dirichlet $(\frac{1}{2}, \ldots, \frac{1}{2})$)