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Voronoi tesselations in measured metric spaces
Let X = (F,d, 1) be a measured metric space (with u(F) =1)

Consider k points p1,...,pr In B
The space FE is ‘partitioned’ into cells C4, ..., C) where

Oz' — {p < X7 d(pap’L) = min d(pap])JG[lk]}
-

p3
on unit square (10 cells) on unit circle (3 cells)

D2

The corresponding Voronoi vector Is Vor(®) .= ((C1), -y u(Ck))

(Rk: u(Cy) + -+ 4 u(Cr) = 1 when cell intersections have zero measure)



The discrete case

Graph G = discrete metric space

. 1
E = vertex-set d = graph distance 1= %] Z O
possibly with V] =
cage-lengths uniform distribution
on vertex-set
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Voronoi vector for random points in a metric space
Let X = (F,d, ) be a fixed measured metric space

Consider k random points p1,...,p; in E (chosen under )

What is the distribution of the corresponding (random) vector Vor(®) 7

Examples: (for kK =2 and n — 00)

n-star

(each branch
of length n)

~ 8(1/2,1/2) ~ 290,0) + 290,1)
(closest to center wins all)



Voronoi vector for a random metric space
o Let X = (FE,d, ;1) be a random metric space
For kK > 2 fixed, let p1,...,pr be random points of X

Consider the associated Voronoi vector Vor'®) = (u(Ch), ..., u(Cg))

Which distribution can we have for the (doubly) random vector Vor'*) ?
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Voronoi vector for a random metric space
o Let X = (FE,d, ;1) be a random metric space
For kK > 2 fixed, let p1,...,pr be random points of X

Consider the associated Voronoi vector Vor'® = (u(C1), ..., u(Cy))
Which distribution can we have for the (doubly) random vector Vor'*) ?

The model is called Voronoi-uniform if Vor'*) is uniformly distributed on

Ak — {(xla “ o 73316)7 i > 07 Zle Lj — 1}
(for k = 2 each component of Vor® has uniform law on [0, 1])

e Similarly a sequence X,, of random discrete metric spaces )
Is said to be Voronoi-uniform as n — oo if the Voronoi vector Vng )

satisfies Vé‘“) Sroba » Uniform law on Ay

As it turns out, several models of random graphs have this behaviour



Example for the complete graph P,
Consider the complete graph K,, with Exp(1) edge-lengths, &
Vee K,,, Pll(e)>t)=¢" . "

Then this model is Voronoi-uniform as n — oo

?
’ , - O 4/7
cf Polya urn model ‘%/7; \/‘

starting with one ball
e é é é
@
o O @ o ..

- Grow the cells C1,...,Ck (at unit speed) from p1,...,pg
- at each time ¢ where a new vertex v gets absorbed,

Cil
Ci|+ -+ |Cy
- convergence of urn composition (as n — oo) to uniform law on Ay

it gets absorbed by cell C; with probability




Results for random maps and trees
e For random maps:

Conjecture: [Chapuy'16]
For g > 0 let Q%g) be the random bipartite quadrangulation

of genus g with n faces. Then Q'Y is Voronoi-uniform when n — 0o

< continuum limit (Brownian map in genus g) is Voronoi-uniform
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Results for random maps and trees
e For random maps:

Conjecture: [Chapuy'16]
For g > 0 let Q%g) be the random bipartite quadrangulation
of genus g with n faces. Then Q'Y is Voronoi-uniform when n — 0o

< continuum limit (Brownian map in genus g) is Voronoi-uniform
supported by proof (using the “t;-recurrence”) that for all g > 0
E(Vor?) -Vorg)) =1/6 E(Vorgg) -Vor;‘g) -Voré:g)) = 1/60

Recent proof for g =0 and k =2  [Guitter'17]

e For random trees and random unicellular maps:

Theorem: [Addario-Berry,Angel,Chapuy,F,Goldschmidt 18]
For g > 0 let Uﬁf’) be the random unicellular map of genus g with n edges

Then U is Voronoi-uniform when n — 0o

< the continuum limit is Voronoi-uniform (CRT for genus 0)

(also holds for random unicellular maps on non-orientable surfaces)
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Distance between 2 random points in random trees

Consider a random plane tree on n edges with two marked corners

\ A 4
A A

e Distribution of D,,;: P(Dp =4) = ——

Qn,

1 W distance D,, = 3

where a,, p = # trees on n edges with 2 marked corners at distance £

an = F trees on n edges with 2 marked corners
_ _ +1 /2n + 2
And Lagrange inversion = ap, ¢ = —( )
n n-+¢
n—+1
Ao for £ g



Distance between 2 random points in random trees

Consider a random plane tree on n edges with two marked corners

1 /\< /\< W distance D,, = 3

a
e Distribution of D,,;: P(Dn =¥) = Znat
An
where a,, p = # trees on n edges with 2 marked corners at distance £
an = F trees on n edges with 2 marked corners
2.4™
Then a, = Caty - (2n — 1) ~ e
_ _ +1 /2n + 2
And Lagrange inversion = ap, ¢ = —( )
n n-+¢
~ o Te * for N
D :
= Int L2:176_‘“"2 hence —= » law of density Qe

an Vn Vi (Rayleigh law)



Joint law for the distance and Voronoi masses

n1 vertices 5 no vertices
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Joint law for the distance and Voronoi masses

ni vertices

no vertices

{ITiks

# such configurations = a,, ¢ - Gp, s

Y

mn

TN1MN9

2 2 .
r1xo e T17 T2 Wlth{

L1

L2

nT +mno9 =n
niT=o-n

¢ =x-+/n




Joint law for the distance and Voronoi masses

n1 vertices 5 no vertices

XI55 o

# such configurations = a,, ¢ - Gp, s

T = £ = T
~ 4" T1T9 e_x%_x% with v “
T™T™Nni1mn9 To = [ x
V12 vV (1—a)
4™ 2 ( 2 )
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n2r (a(l—a)32 P\ a1 —a)



Joint law for the distance and Voronoi masses

n1 vertices : no vertices

XI55 o

# such configurations = a,, ¢ - Gp, s

T = £ = T
~ 4" T1T9 e_x%_w% with v “
T™T™Nni1mn9 To = [ €T
V12 vV (1—a)
4™ 2 ( 2 )
~ : ex —
n2r (a(l—a)32 P\ a1 —a)

2
=> convergence to joint density f(a,x) = ﬁ(a(ﬁx—a))?’/z exp ( — =z )




Joint law for the distance and Voronoi masses

n1 vertices : no vertices

XI55 o

# such configurations = a,, ¢ - Gp, s

TN1MN9

T = L _
n 2 2 : L/ o
~ —2 _pixoe T17T2  with Zl “

2T U T Jioa)
AT x2 ( 72 )
~ : exp | —
n2r (ol — a))3/2 P a(l — a)
=> convergence to joint density f(a,x) = \/E(a(éixja))?’/z CXp ( - a(fia))
Rk: Vo € (0, 1), fj;? fla,z)dx =1 cf change of variable u = \/a("’i_a)

uniformity for random trees

= marginal law in « is uniform on [0,1] =| . 1 —9




Bijective approach

Let Ag{) := set of trees on n edges with k& marked corners
Voronoi partition Contour partition

Vor® = (u(C1),...,1n(Cr)) | Int® = L (length(l1), ..., length(I},))

Idea: Find a bijection & from Afzk) to itself such that
for T' = &(T) one has Int™ (T") = Vor'’® (T) (up to o(1) corrections)

This will prove uniformity, since clearly for T” taken at random in Aff,,k)

(k) (7 . '
Int"™ (T") Sroba Uniform law on Ag




Bijection for £k = 2

odd

distance

The bijection ¢ permutes the attached subtrees
For i € {1,2} each attached subtree in C~ gets moved to I,

= In proba we have  u(C;) ~ p(l;) ~ %length(li) — Unif(0, 1)



Bijection for £ > 3 (induction on k)
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Bijection for £ > 3 (induction on k)

2 4

skeleton

if min=0 or min is not unique, the bijection fails
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Summary of the results for trees for any fixed k > 2

Let A% be the set of trees with n edges and k marked corners
Then there is a subfamily BX c A% (no-failure case) such that

Bi| = |Az - (1 - O0(n™1/2))

and a bijection ¢ from Bfl to itself that permutes the attached subtrees

so that for ¢ € [1..k| each attached subtree in C'~ gets moved to I;
— For T random in A%, Vor'®(T) ~ Int'®) (T") ~ Uniform law on A}



Induced results

The CRT is the continuum limit
of random trees

(with edge lengths /+/n)

So the CRT is Voronoi-uniform




Induced results

The CRT is the continuum limit a8
of random trees =) o e
(with edge lengths /+/n) LAV IR ¥ e
iy 7 B AP

So the CRT is Voronoi-uniform

Gromov-Hausdorff-Prokhorov topology

= any model of random graphs converging to the CRT
is Voronoi-uniform as n — o0

This includes
- random dissections of an n-gon
- random outerplanar maps with n edges
- random stacked triangulations of n vertices

- random graphs of size n from a subcritical family
(outerplanar graphs, series-parallel graphs)



Proof of uniformity directly on the CRT
Let T be a CRT with k£ random points p1,...,px

To prove that 1" is Voronoi-uniform, we have to prove that
(i) for every k > 2, Vor'® (T) and Int'™® (T") are equidistributed
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Proof of uniformity directly on the CRT
Let T be a CRT with k£ random points p1,...,px

To prove that 1" is Voronoi-uniform, we have to prove that
(i) for every k > 2, Vor'® (T) and Int'™® (T") are equidistributed

Let S be the skeleton of T' (k-leaf binary tree with random edge-lengths)
Voronoi-partition Interval-partition

To prove (i), it is enough to prove
(ii) for every k > 2, 2Vor'™ (S) and Int'*)(S) are equidistributed

Proof for k = 2 @- l = @ @

Vor(2) Int(2)



Proof of uniformity directly on the CRT
Proof (by induction on k) that 2 Vor(*)(S) and Int(*)(S) are equidistributed
Rk: can rescale S so that the edge-lengths are independent Exp(l) laws

l

r < % <

on k



Extension to maps of finite excess
For g > 0and k = (k1,...,kr) with k; > 1

MS"‘” := set of maps of genus g with n edges and r faces f1,..., fr
where in each face f; there are k; marked corners ¢; 1,...,¢; k.

YA/




Extension to maps of finite excess
For g > 0and k = (k1,...,kr) with k; > 1

./\/lg,,k’g) := set of maps of genus g with n edges and r faces fi1,..., fr
where in each face f; there are k; marked corners ¢; 1,...,¢; g,
Voronoi partition Contour partition

N=Fk +---4+ k. (total number of marked corners) [i,j = jth interval in f@
{pi}1<i<y = {vertices at marked corners in f1,..., fr} vector U, := %(161{1%}5}1(]@,1); ..., length(I; 1))
Voronoi vector Vor .= (u(Ch), ..., u(Cy)) Interval vector Int := concatenate Uy; Us; . .. ; U,




Extension to maps of finite excess
Result: For g > 0 and k = (k1,..., k)
there is a subfamily qug’k) C M%g’k) with |B§Lg’k)| ~ |/\/l$,,g’k)|

and a bijection ¢ from Bﬁlg’k) to itself such that for M’ = ¢(M)
we have Int(M’) = Vor(M) up to o(1) error terms
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Extension to maps of finite excess
Result: For g > 0 and k = (k1,...,ky)
there is a subfamily Bﬁ,(qjg’k) C ./\/l%g’k) with |Bf,(19’k)| ~ |M§Lg’k)|

and a bijection ¢ from Bﬁlg’k) to itself such that for M’ = ¢(M)
we have Int(M’) = Vor(M) up to o(1) error terms

e Random maps in ./\/lq(,jq’k) have a scaling limit called the CRM(9:k)
The bijection implies that Vor and Int are equidistributed in the CRM(9:¥)

e This can be proved directly, on the associated skeleton and using induction

3 cases for the skeleton (surrounded the leaf with shortest incident edge)

cut split merge



Induced results
For g > 0 and k = (k1,...,kr)

the 2 vectors Vor and Int are equidistributed in the CRM(9¥)

e Case r = 1 (unicellular maps)

Int is uniformly distributed on Ay, hence so is Vor
= the CRUM, is Voronoi-uniform

e Case k1 =1,...,k. =1 (one marked corner in each face)
for a random map in MY™, Vor ~ = - (deg(f1),.-.,deg(fr))
g=0: Tutte's slicings formula gives Vor ~ density :1:1/2 ce :1371«/2 on A,

(Dirichlet (2,..., 1))



