
Bijections autour des bois de Schnyder
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Schnyder structures on simple triangulations
Let T be a simple triangulation (topological, up to isotopy)



Schnyder structures on simple triangulations

T can be endowed with a labelling

1) Schnyder labellings

of the corners by {1, 2, 3} such that

inner faces

inner vertices

outer vertices

[Schnyder’89]

1
1

1

1

1
1

1

11
1

2 2

2
22

2

2
223

3
3

3

3

3 3

3
2

1

23

3 3
3
3

2
2
2

1 1

1 1 1
2

2
3

3

323
3

1



Schnyder structures on simple triangulations

T can be endowed with a labelling

1) Schnyder labellings

of the corners by { , , } such that

inner faces

inner vertices

outer vertices

[Schnyder’89]
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Schnyder structures on simple triangulations

inner vertices

outer vertices

[Schnyder’89]2) Schnyder woods

Schnyder woods ↔ Schnyder labellings

T can be endowed with a tricoloration
+orientation of the inner edges such that



Schnyder structures on simple triangulations

inner vertices
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T can be endowed with a tricoloration
+orientation of the inner edges such that



Schnyder structures on simple triangulations

inner vertices

outer vertices

yields a spanning
tree in each color

2) Schnyder woods [Schnyder’89]

T can be endowed with a tricoloration
+orientation of the inner edges such that



Schnyder structures on simple triangulations

inner vertices

outer vertices

2) Schnyder woods [Schnyder’89]

T can be endowed with a tricoloration
+orientation of the inner edges such that



Schnyder structures on simple triangulations

T can be endowed with an orientation

3) 3-orientations

of its inner edges such that

inner vertices

outer vertices

outdeg=3

outdeg=0

[Schnyder’89]



Schnyder structures on simple triangulations
The 3 incarnations of Schnyder structures:

Schnyder labelling Schnyder wood 3-orientation

⇔ ⇔
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The 3 incarnations of Schnyder structures:

Schnyder labelling Schnyder wood 3-orientation

⇔ ⇔



Applications of Schnyder woods
Associate 3 coordinates to each vertex of T

a1

a2a3

A
B

C

D

(mapping from V to R3)

[Schnyder’89,90]



4 faces in red area

2 faces in blue area 3 faces in green area
A→ (4, 2, 3)
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Applications of Schnyder woods
Associate 3 coordinates to each vertex of T

a1

a2a3

A
B

C

D

A→ (4, 2, 3)
B → (5, 3, 1)
C → (1, 4, 4)
D → (2, 1, 6)

a1 → (9, 0, 0)
a2 → (0, 9, 0)
a3 → (0, 0, 9)

(mapping from V to R3)

9 inner faces

all in x + y + z = 9

[Schnyder’89,90]



Applications of Schnyder woods
Associate 3 coordinates to each vertex of T

a1

a2a3

A
B

C

D

A→ (4, 2, 3)
B → (5, 3, 1)
C → (1, 4, 4)
D → (2, 1, 6)

a1 → (9, 0, 0)
a2 → (0, 9, 0)
a3 → (0, 0, 9)

(mapping from V to R3)

9 inner faces

all in x + y + z = 9

Straight-line drawing algo Planarity criterion

G = (V, E) is planar iff

∃ Φ : V ∪ E → R3

such that

∀p 6= q ∈ (V ∪ E)2

Φ(p) ≤ Φ(q)
R3

p ∈ V, q ∈ E and p ∈ q
m

[Schnyder’89,90]



Bijection for Schnyder woods [Bonichon’02]
revisited in the dual setting



Bijection for Schnyder woods [Bonichon’02]

Take the (3-regular) dual of the triangulation



Bijection for Schnyder woods [Bonichon’02]

In black the dual tree of the red tree
In orange the dual of the red edges



Bijection for Schnyder woods [Bonichon’02]

move corner-labels toward black vertices



Bijection for Schnyder woods [Bonichon’02]

Erase the triangulation, keep the dual



Bijection for Schnyder woods [Bonichon’02]

Cut the orange edges at their middle



Bijection for Schnyder woods [Bonichon’02]

Cut the orange edges at their middle

⇒ binary tree such that there is a
parenthesis matching of the leaves



Bijection for Schnyder woods [Bonichon’02]

binary tree such that there is a
rectilinear representationparenthesis matching of the leaves

⇒



Bijection for Schnyder woods

⇒

[Bonichon’02]

binary tree such that there is a
rectilinear representationparenthesis matching of the leaves



Bijection for Schnyder woods

⇒
0 0 1 0 1 1 0 0 1 1

(encoded by two words)

[Bonichon’02]
binary tree such that there is a rectilinear representation
parenthesis matching of the leaves
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Bijection for Schnyder woods

⇒
0 0 1 0 1 1 0 0 1 1

0 0 1 0 0 1 0 1 1 1

[Bonichon’02]

non-crossing pair of Dyck paths

0

1

⇓

(encoded by two words)
binary tree such that there is a rectilinear representation
parenthesis matching of the leaves



Bijection for Schnyder woods

⇒
0 0 1 0 1 1 0 0 1 1

0 0 1 0 0 1 0 1 1 1

[Bonichon’02]

non-crossing pair of Dyck paths

0

1

⇓

⇐
Total number sn of Schnyder woods over
triangulations with n + 3 vertices is
sn = CatnCatn+2 − Catn+1Catn+1

= 6(2n)!(2n+2)!
n!(n+1)!(n+2)!(n+3)!

(encoded by two words)
binary tree such that there is a rectilinear representation
parenthesis matching of the leaves



Lattice property for Schnyder woods

Theorem: Let T be a simple triangulation. Then the set of
[Ossona de Mendez’94], [Brehm’00]

Schnyder structures of T is a distributive lattice
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Lattice property for Schnyder woods

Theorem: Let T be a simple triangulation. Then the set of
[Ossona de Mendez’94], [Brehm’00]

Schnyder structures of T is a distributive lattice

min max

Flip:

on 3-orientations

The min is the unique 3-orientation of T with no clockwise circuit

to



Orientations and mobiles
Let O be the set of orientations
on planar maps such that:

• there is no clockwise circuit
• Each inner vertex can access

the outer (unoriented simple) cycle

• the outer cycle is a sink



Orientations and mobiles
Let O be the set of orientations
on planar maps such that:

• there is no clockwise circuit
• Each inner vertex can access

the outer (unoriented simple) cycle

Let M be the set of mobiles, i.e.,

bipartite plane trees with arrows
(called buds) at black vertices

• the outer cycle is a sink



“Master bijection”

Local
rules

⇒ ⇒

[Bernardi,F’10]

Theorem: The above construction Φ is a bijection between O and M.
Moreover,

degrees of inner faces degrees of black vertices

outdegrees of inner vertices degrees of white vertices



Specialization to simple triangulations
• From the lattice property (taking the min) we have

family of simple triangulations ↔ subfamily F of O where:
- faces have degree 3
- inner vertices have outdegree 3



Specialization to simple triangulations
• From the lattice property (taking the min) we have

family of simple triangulations ↔ subfamily F of O where:
- faces have degree 3
- inner vertices have outdegree 3

• From the master bijection specialized to F , we have
F ↔ subfamily of mobiles where all vertices have degree 3

[F, Poulalhon, Schaeffer’08], other bijection in [Poulalhon, Schaeffer’03]



Counting formula
The bijection when there is a marked inner face:



Counting formula
The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

⇒ ⇒
quaternary tree



Counting formula
The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let tn = #{(rooted) triang. with n + 3 vertices}, F (x) =
∑

n tnx2n+1

Then F ′(x) = (1 + u)3 where u = u(x) is specified by u = x2(1 + u)4︸ ︷︷ ︸
quat. trees

⇒ ⇒
quaternary tree



Counting formula
The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let tn = #{(rooted) triang. with n + 3 vertices}, F (x) =
∑

n tnx2n+1

Then F ′(x) = (1 + u)3 where u = u(x) is specified by u = x2(1 + u)4︸ ︷︷ ︸
quat. trees

⇒ tn =
2(4n + 1)!

(n + 1)!(3n + 2)!(Lagrange)
[Tutte’62]

⇒ ⇒
quaternary tree



Colored formulation of the bijection

Take the Schnyder labelling corresponding to the minimal 3-orientation



Colored formulation of the bijection

Take the Schnyder labelling corresponding to the minimal 3-orientation



Colored formulation of the bijection

⇒

Replace each by



Colored formulation of the bijection

⇒

Replace each by

Local rules:



Colored formulation of the bijection

• Apply ⇒ to each inner white vertex

⇒ ⇒

• Erase the 3 outer vertices and their incident half-edges



Colored formulation of the bijection

• Apply ⇒ to each inner white vertex

⇒ ⇒

• Erase the 3 outer vertices and their incident half-edges

Same bijection as before, because ⇒



Summary and extensions
• We have two formulations of a bijection for (simple) triangulations

BA
oriented colored



Summary and extensions
• We have two formulations of a bijection for (simple) triangulations

• Yields the counting formulas (one for GF, one for coefficients):

Let tn = #{(rooted) triang. with n + 3 vertices}, F (x) =
∑
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Summary and extensions
• We have two formulations of a bijection for (simple) triangulations

• Yields the counting formulas (one for GF, one for coefficients):

Let tn = #{(rooted) triang. with n + 3 vertices}, F (x) =
∑

n tnx2n+1

F ′(x) = (1 + u)3 where u = x2(1 + u)4 tn = 2(4n+1)!
(n+1)!(3n+2)!1 2

BA
oriented colored

• We now give two extensions:

3-connected maps d-angulations of girth d

Bijection extends B

Counting: (bivariate) extends 2

Bijection extends
Counting: (bivariate) extends

A
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Extension to 3-connected maps
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Rk: a triangulation is 3-connected iff it is simple
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Quasi 3-connected maps
A planar map G with 3 marked outer vertices {R,B,G} is called

quasi 3-connected if G + triangle formed by {R,B,G} is 3-connected
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A planar map G with 3 marked outer vertices {R,B,G} is called
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Let Qi,j = set quasi 3-conn. maps with i + 3 vertices and j inner faces



Quasi 3-connected maps
A planar map G with 3 marked outer vertices {R,B,G} is called

quasi 3-connected if G + triangle formed by {R,B,G} is 3-connected

quasi 3-connected

Let Qi,j = set quasi 3-conn. maps with i + 3 vertices and j inner faces

Rk: Extremal case j = 2i + 1 gives triangulations with i + 3 vertices



Duality for quasi 3-connected maps

G dual G∗G + G∗

Q∗i,j = Qj,i

The family of quasi 3-connected maps is stable by duality



Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)

G



Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)



Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)

C

Rk: quasi 3-connectivity of G ⇔ each 4-cycle of C delimits a face

C is a dissection of an hexagon by quadrangular faces



Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)

G and G∗ have the same corner-map



3-connected Schnyder labellings

G can be endowed with a labelling
of the corners by { , , } such that

inner faces

inner vertices

outer vertices

Let G be a quasi 3-connected map. [Miller’02], [Felsner’04]

outer face(s)



3-connected Schnyder labellings

Rk: also incarnations as Schnyder woods, 3-orientations (ommited)

G can be endowed with a labelling
of the corners by { , , } such that

inner faces

inner vertices

outer vertices

Let G be a quasi 3-connected map. [Miller’02], [Felsner’04]

outer face(s)



Duality for 3-connected Schnyder labellings
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Duality for 3-connected Schnyder labellings



Duality for 3-connected Schnyder labellings



Duality for 3-connected Schnyder labellings

Local rule:

duality is well seen on corner map C

same rule at black & white vertices



Lattice property in the 3-connected case

Theorem: Let G be a quasi 3-connected map. Then the set of
[Felsner’04]

Schnyder labellings of G is a distributive lattice

formulated on the associated corner map C

G

C
min max

flip:
color
switch
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Rk: extends flip for
triangulations



Lattice property in the 3-connected case

Theorem: Let G be a quasi 3-connected map. Then the set of
[Felsner’04]

Schnyder labellings of G is a distributive lattice

formulated on the associated corner map C

G

C
min max

flip:
color
switch

Rk: extends flip for
triangulations



Bijection for quasi 3-connected maps

G C minlattice

[F, Poulalhon, Schaeffer’08]

'



Bijection for quasi 3-connected maps

unrooted binary tree

G C minlattice

[F, Poulalhon, Schaeffer’08]

'



Bijection for quasi 3-connected maps

unrooted binary tree
+ vertex bicoloration
+ edge tricoloration

G C minlattice

[F, Poulalhon, Schaeffer’08]

'



Bijection for quasi 3-connected maps

unrooted binary tree
+ vertex bicoloration
+ edge tricoloration

G C minlattice

i + 3 vertices
j inner faces

i black vert.
j white vert.

[F, Poulalhon, Schaeffer’08]

'



Counting formula

G with a marked inner face 3 rooted binary trees



Counting formula

Let qi,j = #{quasi 3-conn. maps with i + 3 vertices and j inner faces}
Let F (x◦, x•) =

∑
i,j qi,jx

i
◦x

j
•

∂
∂x•

F (x◦, x•) = (1 + U)3, where
{

U = x◦ · (1 + V )2,
V = x• · (1 + U)2

G with a marked inner face 3 rooted binary trees



Counting formula

Let qi,j = #{quasi 3-conn. maps with i + 3 vertices and j inner faces}
Let F (x◦, x•) =

∑
i,j qi,jx

i
◦x

j
•

∂
∂x•

F (x◦, x•) = (1 + U)3, where
{

U = x◦ · (1 + V )2,
V = x• · (1 + U)2

⇒ qi,j =
3

(2i + 1)(2j + 1)

(
2i + 1

j

)(
2j + 1

i

)
Lagrange

recover triangulations counting formula in the (extremal) case j =2i+1

G with a marked inner face 3 rooted binary trees

[Mullin&

Schellenberg’68]



Extension to d-angulations of girth d



The girth parameter

The girth of a graph is the length of a shortest cycle within the graph

Girth = 3

Rk: Simple ⇔ girth ≥ 3

(in particular a triangulation is simple iff it has girth 3)

If girth= d then all faces have degree at least d



d-angulations of girth d
For d ≥ 3 we consider d-angulations (all faces have degree d) of girth d

a pentagulation of girth 5



d-angulations of girth d
For d ≥ 3 we consider d-angulations (all faces have degree d) of girth d

a pentagulation of girth 5

Rk: By the Euler relation,
#(inner edges)

#(inner vertices)
=

d

d− 2



d/(d−2)-orientations for d-angulations of girth d
[Bernardi-F’10]: Let G be a d-angulation of girth d. Then (d−2)G
admits an orientation where each inner vertex has outdegree d

d = 5

Such an orientation is called a d/(d− 2)-orientation



d/(d−2)-orientations for d-angulations of girth d
[Bernardi-F’10]: Let G be a d-angulation of girth d. Then (d−2)G
admits an orientation where each inner vertex has outdegree d
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1
d = 5

⇔ assignment of (outgoing) flows to half-edges

3
0

3

3
3

3

3
0

0

0

0

0

Such an orientation is called a d/(d− 2)-orientation

total flow at inner edge = d− 2
total flow at inner vertex = d



d/(d−2)-orientations for d-angulations of girth d
[Bernardi-F’10]: Let G be a d-angulation of girth d. Then (d−2)G
admits an orientation where each inner vertex has outdegree d

2
1

2 1

2

1

2

1
d = 5

⇔ assignment of (outgoing) flows to half-edges

3
0

3

3
3

3

3
0

0

0

0

0

Such an orientation is called a d/(d− 2)-orientation

total flow at inner edge = d− 2
total flow at inner vertex = d

Rk: also formulations as
Schnyder labellings/woods



Lattice property for d/(d−2)-orientations

flow: 0
1
2
3

The set of d/(d− 2)-orientations of a fixed d-angulation
of girth d is a distributive lattice

min

max

flip: ⇒ increase flow
by 1 clockwise



Lattice property for d/(d−2)-orientations

flow: 0
1
2
3

The set of d/(d− 2)-orientations of a fixed d-angulation
of girth d is a distributive lattice

min

max

flip: ⇒ increase flow
by 1 clockwise

unique one with no
“clockwise circuit”



Master bijection in the flow-formulation

Local
rules

⇒ ⇒

degrees of inner faces degrees of black vertices

total flows at inner vertices total weights at white vertices

0

3

3

2
2

2

1

11
1

0

0
1

0

0

0

0

0

7

1

4

1 1

2

7

2
0

3
0

1
0

2

14
0

1

0

3 0
1

0

>0>0 >0

total flows at inner edges total weights at edges



Specialization to d-angulations of girth d

Bijection d-angulations of girth d ↔ weighted mobiles such that

3

3

2
2

2

1
1

1
0

0

0

0

0

0

1
3

3

23

3

⇒

[Albenque, Poulalhon’11]: other bijection (with blossoming trees)

⇒ 2

1
0
3

3

0 2

1
2 1

0
3

3
0

3

0

12

3
0

- each black vertex has degree d
- each white vertex has total weight d
- each edge has total weight d− 2 (weight> 0 at , weight=0 at )



Generating function expression
For i ∈ [0..d], Li:= family of such mobiles with a root-leg of weight i

• Bijection when an inner face is marked

For d ≥ 3, Fd(x) := GF of (rooted) d-angulations of girth d by inner faces

F ′(x) = (1 + Ld−2)d

Let Li(x) be the GF of Li where x marks black nodes

• Root-decomposition of mobiles in Li ⇒ (L0, L1, . . . , Ld) are given by
L0 = x · (1 + Ld−2)d−1,
Ld = 1,

Li =
∑
j>0

Ld−2−jLi+j for i = 1..d− 1

2
2

2 3
1

1
1
2

⇒

mobile in L2
d = 5

2
2 1

1
3 3

3
3

2
11

3 3
2

mobile in L0

Examples:

0
0 0
3

3
0

0 0
0

0

0
0


