Duality relations for constrained walks

Éric Fusy (CNRS/LIX)

joint work with Mireille Bousquet-Mélou, Julien Courtiel, Mathias Lepoutre, Marni Mishna, and Kilian Raschel

TU Berlin, Jan 13, 2020
Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if

- both families use the same steps, such that \mathcal{A} has stronger endpoint constraint, \mathcal{B} has stronger domain constraint

- there is a length-preserving bijection between \mathcal{A} and \mathcal{B}

Example in 2D: $(\text{step-set } \{\uparrow, \leftarrow, \downarrow, \rightarrow\})$
Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if

- both families use the same steps, such that \mathcal{A} has stronger endpoint constraint, \mathcal{B} has stronger domain constraint

- there is a length-preserving bijection between \mathcal{A} and \mathcal{B}

Example in 2D: (step-set $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$)

Motivations:

- mapping $\mathcal{A} \rightarrow \mathcal{B}$ for **counting** (\mathcal{A} easier)
- mapping $\mathcal{B} \rightarrow \mathcal{A}$ for **random generation** (early-abort rejection)
Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if
- both families use the same steps, such that \mathcal{A} has stronger endpoint constraint, \mathcal{B} has stronger domain constraint
- there is a length-preserving bijection between \mathcal{A} and \mathcal{B}

Example in 2D: $(\text{step-set } \{\uparrow, \leftarrow, \downarrow, \rightarrow\})$

Motivations:
- mapping $\mathcal{A} \rightarrow \mathcal{B}$ for counting (\mathcal{A} easier)
- mapping $\mathcal{B} \rightarrow \mathcal{A}$ for random generation (early-abort rejection)

<table>
<thead>
<tr>
<th>gen\mathcal{B}:</th>
<th>while not fails</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>generate random walk step by step</td>
</tr>
<tr>
<td></td>
<td>reject as soon as walk leaves domain for \mathcal{B} (if not, success!)</td>
</tr>
</tbody>
</table>
Classical 1D example

\[a_{2n} = \binom{2n}{n} \]

\(A \leftrightarrow B \)
Classical 1D example

\[a_{2n} = \binom{2n}{n} \]

1st bijection:

\[\gamma_1 \rightarrow \gamma_2 \]

\[\text{mir}(\gamma_1) \rightarrow \gamma_2 \]

\[k \rightarrow 2k \]
Classical 1D example

\[a_{2n} = \binom{2n}{n} \]

1st bijection:

\[\gamma_1 \quad \gamma_2 \]

Rk: implies

\[k \quad 2k \]

\[\text{mir}(\gamma_1) \]
Classical 1D example

\[a_{2n} = \binom{2n}{n} \]

\[\mathcal{A} \quad \leftrightarrow \quad \mathcal{B} \]

1st bijection:

\[\gamma_1 \quad \leftrightarrow \quad \gamma_2 \]

Rk: implies

Rk: extends to \(r \geq 1 \) paths

\[r = 2 \]

[Proctor'83, Elizalde'15, Hanaker et al.'17]
Classical 1D example

2nd bijection:

via Dyck paths with marked down-steps ending on x-axis

\[A \]

$k = 3$ excursions below x-axis

flip excursions of marked steps

\[\text{intermediate} \]

$k = 3$ marked steps

flip marked steps

\[B \]

ends at height $2k = 6$
Outline of the talk

Duality relations for 2D walks using bijections to oriented maps

• Simple walks: \{↑, ←, ↓, →\}

• Tandem walks: \{←, ↑, ↘\} (and extension)

using Bernardi-Bonichon bijection for Schnyder woods

using Kenyon et al. bijection for bipolar orientations
Outline of the talk

Duality relations for 2D walks using bijections to oriented maps

• Simple walks: \{↑, ←, ↓, →\}

• Tandem walks: \{←, ↑, ↘\} (and extension)

using Bernardi-Bonichon bijection for Schnyder woods

using Kenyon et al. bijection for bipolar orientations
Simple walks
2D simple walk \leftrightarrow pair of directed walks

$x(t) + y(t)$

$x(t) - y(t)$

$2y$
2D simple walk \leftrightarrow pair of directed walks

$x(t) + y(t)$

$x(t) - y(t)$

$2y$
2D simple walk \leftrightarrow pair of directed walks

$x(t) + y(t)$

$x(t) - y(t)$

$2y$
2D simple walk \leftrightarrow pair of directed walks

$\text{Rk: } x(t) + y(t)$

is the same as $x(t) - y(t)$
2D simple walk \leftrightarrow pair of directed walks

$x(t) + y(t)$

$x(t) - y(t)$

$2y$

x

y

$\uparrow \downarrow$

\leftrightarrow

Rk: \leftrightarrow

is the same as

[Elizalde’15] path manipulations

or Schnyder woods

easy
Schnyder wood on triangulations

Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

Local conditions:
- at each inner vertex
- at the outer vertices

yields a spanning tree in each color

[Schnyder’89]
Bijection for Schnyder woods

Some information is redundant:

just need the blue tree and positions of the ingoing red edges
Bijection for Schnyder woods

Some information is redundant:
just need the blue tree and positions of the ingoing red edges

Bottom Dyck path:
contour of blue tree

[Bernardi, Bonichon’07]
Bijection for Schnyder woods

Some information is redundant:
just need the blue tree and positions of the ingoing red edges

Upper Dyck path:
red indegrees

4th up-step
\text{in}(u_4) = 2

Bottom Dyck path:
contour of blue tree

\[\text{Bernardi, Bonichon'07} \]
Bijection for Schnyder woods

The mapping is a bijection from Schnyder woods with $n + 3$ vertices to non-crossing pairs of Dyck paths of lengths $2n$.

$deg(B) = 3$

$deg(R) = 2$
Proof of
Proof of \leftrightarrow Rk: \leftrightarrow

proof via arc diagrams also holds

[Courtiel,F,Lepoutre,Mishna’18]
Extension to prove

Bijection extended to $a = 2$
Tandem walks
Tandem walks

A **tandem-walk** is a walk in \mathbb{Z}^2 with step-set $\{N, W, SE\}$

in the plane \mathbb{Z}^2

in the half-plane $\{y \geq 0\}$

in the quarter plane \mathbb{N}^2

cf 2 queues in series
Duality relation for tandem walks

There is a bijection between:

- tandem walks of length n
 staying in the quarter plane \mathbb{N}^2

- tandem walks of length n
 staying in the half-plane $\{y \geq 0\}$
 and ending at $y = 0$

Rk: The bijection preserves the number of SE steps
There is a bijection between:

tandem walks of length \(n \) staying in the quadrant \(\mathbb{N}^2 \), ending at \((i, j)\)

\[\downarrow \]

Young tableaux of size \(n \) and height \(\leq 3 \), of shape

\[\text{tableau} \]

(after \(s \) steps, current \(y = \#N - \#SE \), current \(x = \#SE - \#W \))
Bijection with Motzkin walks

[

1 2 5 8 9 11
3 6 7 10 13
4 12

Young tableau
of height ≤ 3

Gouyou-Beauchamps’89]
Bijection with Motzkin walks

Robinson Schensted involution with no tandem walk in \mathbb{N}^2

Young tableau of height ≤ 3

[Gouyou-Beauchamps’89]
Bijection with Motzkin walks

Robinson Schensted involution with no matching

with no nesting

tandem walk in \mathbb{N}^2

Young tableau of height ≤ 3

[Robinson, Schensted, Gouyou-Beauchamps'89]
Bijection with Motzkin walks

Young tableau of height ≤ 3

Robinson Schensted

no nesting

FIFO

Motzkin walk

tandem walk in \mathbb{N}^2

[Gouyou-Beauchamps’89]
Bijection with Motzkin walks

Young tableau of height ≤ 3

no nesting

FIFO

Motzkin walk

LIFO

no crossing

matching with no nesting

Robinson Schensted

involution with no nesting

Gouyou-Beauchamps’89

Robinson

Schensted

[1 2 5 8 9 11]
[3 6 7 10 13]
[4 12]
An extension of the walk model

General model:

- **Step-set:**
 - the SE step
 - every step $(-i, j)$ (with $i, j \geq 0$)

 \[\text{level} := i + j \]

Example:

![Graph showing the walk model with levels and steps labeled](image-url)
An extension of the walk model

General model:

- **step-set:**
 - the SE step
 - every step \((-i, j)\) (with \(i, j \geq 0\))

- **level:** \(i + j\)

Example:

- The bijection (using bipolar orientations) preserves the number of SE-steps and the number of steps in each level \(p \geq 1\)

We still have

- different bijection using automata rules [Chyzak-Yeats’18]

The bijection (using bipolar orientations) **preserves** the number of SE-steps and the number of steps in each level \(p \geq 1\)
Bipolar and marked bipolar orientations

bipolar orientation:

(on planar maps)

= acyclic orientation

with a unique source S

and a unique sink N

with S, N incident to the outer face

inner vertex

inner face
Bipolar and marked bipolar orientations

bipolar orientation:
(on planar maps)

= acyclic orientation
with a unique source S
and a unique sink N

with S, N incident to the outer face

marked bipolar orientation:

a marked vertex $W \neq N$ on left boundary
a marked vertex $E \neq S$ on right boundary

with indegree=1

outdegree=1

inner vertex

inner face
The Kenyon et al. bijection

start with \(\begin{array}{c}
N \\
E \\
W \\
S
\end{array} \) and read the walk step by step

- **SE steps** create a new black vertex

- **steps** \((-i, j)\) create a new inner face (of degree \(i + j + 2\))
The Kenyon et al. bijection

general tandem-walk (in \mathbb{Z}^2) \(\xrightarrow{bijection}\) marked bipolar orientation

SE step \(\xrightarrow{\text{black vertex}}\) inner face of degree \(i+j+2\)

step \((-i, j)\) \(\xrightarrow{\text{inner face of degree } i+j+2}\)
Parameter-correspondence in the bijection

\[
\begin{align*}
\# \text{ “face-steps” of level } p & \longleftrightarrow \# \text{ inner faces of degree } p + 2 \\
\# \text{ SE-steps} & \longleftrightarrow \# \text{ black vertices} \\
1 + \# \text{ steps} & \longleftrightarrow \# \text{ plain edges (not dashed)}
\end{align*}
\]
An involution on marked bipolar orientations

\begin{align*}
N & \quad d \\
W & \quad a \\
S & \quad c+1 \\
E & \quad b+1
\end{align*}
An involution on marked bipolar orientations

Mirror

$a \leftrightarrow d$
Effect of the involution on walks

$$b+1 \quad d$$

$$W \quad a$$

$$S$$

$$N$$

$$E$$

$$\cdots$$

$$c+1$$

$$\text{involution} \quad a \leftrightarrow d$$

$$\text{start} \quad \text{end}$$

$$b \quad d$$

$$c$$

$$a$$

$$b$$

$$d$$
Proof of

\[\leftrightarrow \]

\[\text{involution} \]

[Bousquet-Mélou, F, Raschel’19]
Proof of

• Specialize the involution at $b = 0$

& specialize further at $d = 0$

[Bousquet-Mélou,F,Raschel’19]
General situation in duality bijections

Two families \mathcal{A}, \mathcal{B} of walks

$$A(t) = \sum_n a_n t^n \quad B(t) = \sum_n b_n t^n$$

want to prove bijectively that $A(t) = B(t)$
General situation in duality bijections

Two families \mathcal{A}, \mathcal{B} of walks

$$A(t) = \sum_n a_n t^n \quad B(t) = \sum_n b_n t^n$$

want to prove bijectively that $A(t) = B(t)$

There is a superfamily $\mathcal{C} \supset \mathcal{A}, \mathcal{B}$ and an involution on \mathcal{C} exchanging two parameters i, j such that, with $C(t; u, v) = \sum c_{n, i, j} t^n u^i v^j$, we have

$$A(t) = C(t; 1, 0) \quad B(t) = C(t; 0, 1)$$
General situation in duality bijections

Two families \mathcal{A}, \mathcal{B} of walks

$$A(t) = \sum_n a_n t^n \quad B(t) = \sum_n b_n t^n$$

want to prove bijectively that $A(t) = B(t)$

There is a superfamily $\mathcal{C} \supset \mathcal{A}, \mathcal{B}$ and an involution on \mathcal{C} exchanging two parameters i, j such that, with $C(t; u, v) = \sum c_{n, i, j} t^n u^i v^j$, we have

$$A(t) = C(t; 1, 0) \quad B(t) = C(t; 0, 1)$$

Ex: for tandem walks

Mirror-involution via bipolar orientations

Ex: for 1D walks of even length

Exchange involution

Extension for $r \geq 1$ walks: involutivity of jeu de taquin

[Hanaker et al.'17]
Conjecture for double-tandem walks

Step-set

Known: [Yeats’14, Chyzak-Yeats’18]

Conjecture: There is an involution that realizes and preserves the length and the number of steps in \{→, ↓, ↖\}

and preserves the length and the number of steps in \{→, ↓, ↖\}