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Plan

Principles of Boltzmann samplers.
Application to planar graphs

Size distribution and complexity results:

* A linear time approximate size random generator of

planar graphs

* A quadratic time exact size random generator of
planar graphs

Implementation and experimentations
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The general framework of
Boltzmann samplers
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ldea of Boltzmann samplers

Introduced by Duchon, Flajolet, Louchard and Schaeffer
(2002)

Relax the constraint of fixed size (cf recursive method)
for random generation.

The distribution is spread over all objects of the class.

An object is drawn with probability proportional to the
exponential of its size (cf statistical physics)
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Unlabelled sets

* Let C be an unlabelled combinatorial class
(e.g. binary trees)
Ordinary generating function:

Clx) = Z:CM = chx",

vel n>0

where |v| is the size of 7.

* Given x > 0 (= < p¢) a fixed real value,
a Boltzmann sampler I'C'(z) is a procedure that draws
each object v of C with probability:

el
PT(V) — O(Z:)
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Finite sets

Let £ = ("yl,...,’yd) E(x) — Z;z:l 2l
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The basic construction rules

Union: Let C = AU B. Assume we have Boltzmann samplers
['A(z) for A and I'B(x) for B. Define I'C'(x) as:

I'C'(x)
A(z) B(x)
C'(x) C(z)
['A(z) I'B(z)

= ['C'(z) is a Boltzmann sampler for A U B.
Proof:

* If y € A, then Pr(y) = 58 . 25 = &

* If vy € B, then Pr(v) =
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The basic construction rules

Product: Let C = A x B. Assume we have Boltzmann
samplers 'A(x) for A and I'B(x) for B. Define I'C'(x) as:

I'C(x) : v« TA(z)
V2 < I'B(z)
return (71, ’}/2)

= ['C(x) is a Boltzmann sampler for AU B :
Proof: an object v = (v1,72) has probability:

rlnl el e il

A(z) B(z)  Az)-B(z) C(z)
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Example: binary trees

14/

@ e

A/\

Generating function  Boltzmann sampler
B(z) =z + B(z)’ I'B(x)
return leaf return ;
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Result for unlabeled sets

Theorem:

* A Boltzmann sampler can be assembled for an unlabeled
class specified with the constructions U, x, Sequence.

* The complexity is linear in the size of the output object.

Construction | Boltzmann sampler I'C'(x)

C=0 return &
C=oe return e
A(z) | B(x
C=AUB | Bem (ngg ngg)? DA(z)|TB(x)

C=AxB |return (I'A(z),I'B(x))
C =Seq(A) | k «— Geom (A(x))
return ('A(x),...,T'A(x)) { k calls}
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Labeled sets

* Let C be a labeled combinatorial class
(e.g. permutations)
Exponential generating function:

=2

veC

217l L

w:z nl’

where |v| is the size of ~.

* Given x > 0 (= < p¢) a fixed real value, a Boltzmann
sampler I'C'(x) draws each object v of C with probability:

el
Pr(v) = ot
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The basic construction rules

Union: Let C = AU B. Assume we have Boltzmann samplers
['A(z) for A and I'B(x) for B. Define I'C'(x) as:

I'C'(x)
A(z) B(x)
C(z) C(z)
['A(z) I'B(z)

= ['C'(z) is a Boltzmann sampler for AU B :
Proof:

A(x 217 27l
 Ify e A then Pr(y) = 565 (attr) = el
1 1

Bl(x x|’Y|
* Ify € B, then Pr(y) = &) - (c<x> wu) = B T
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Cartesian product for labelled sets

An object of A x I3 is obtained by:
* taking a pair (v1,72) with v € A and ~ € B.

* Relabel according to a partition of [1,....|v1| + |[y2]].

Partition: [1,3,6, 7]
2 4,5]

ket ol
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Boltzmann for cartesian product

Cartesian product: Let C = A% B. Assume we have
Boltzmann samplers I'A(z) for A and I'B(x) for B. Define
I'C'(x) as
I'C(x) : v« TA(z)
V2 < I'B(z)
remove the labels on v and -

throw disctinct labels at random on (71, y2)
return (1, v2)

= I'C(x) is a Boltzmann sampler for A *x B
FA(ac): FB:I;

o Aunlabe@ Arelabelo A
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Result for labeled sets

Theorem:

* A Boltzmann sampler can be assembled for a labeled
class specified with the constructions U, x, Set.

* The complexity is linear in the size of the output object.

* The labels have just to be thrown at the end.
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Boltzmann vs the recursive method

Boltzmann recursive method
size distribution Pr(size =n) = %&f}; fixed size n
auxiliary memory O(log(n)) O(n?)
time per generation | O(n?) Exact O(nlog(n)) Exact
O(n) Approx
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Planar graphs and Boltzmann
samplers
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Labeled Planar graphs

* A labelled graph with n vertices is a set of edges on the
labeled vertex-set V = [1,...,n|.

* A graph is planar if it can be embedded in the plane.

&2

4

* The embedding does not count (# planar maps)
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Random generation of planar graphs

Existing algorithms:
* Markov chain (Denise, Vasconcellos, Welsh):
simple algorithm but unknown convergence rate (mixing
time)
* Recursive method (Bodirsky, Gropl, Kang): Polynomial
time algorithm for uniform random generation of planar

graphs with n vertices but large preprocessing time
(many coefficients need to be stored).
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What new has to be done?

To design a Boltzmann sampler for labeled planar graphs, we
have to do the following:

* A planar graph has labeled vertices and unlabeled edges:
= define the Boltzmann framework for the case of a
mixed class (two variables)

* Add the substitution (composition of G.f.) to the
constructions.

* Add rejection techniques to do derooting/rerooting
operations on the graphs
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Boltzmann samplers: mixed classes

* Let C be a mixed combinatorial class (e.g. planar graphs)
Mixed Generating function:

24(7) i

: xrt .
O(ﬂf,y) — Z Z(/y)'y](f)/) — Zci’jﬁij

vel ' i,J

i(v) is the number of labeled atoms (e.g. vertices)
7(7) is the number of unlabeled atoms (e.g. edges)

* Given x > 0 and y > 0 two fixed real values, a
Boltzmann sampler I'C'(z, ) draws each object v of C
with probability:

2400
Pr(v) = ey’
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Boltzmann samplers: mixed classes

Theorem: A Boltzmann sampler can be assembled for a
mixed class specified with the constructions U, x, Set.
Linear time complexity in the size of the output object.

Construction | Boltzmann sampler I'C'(x, y)
C=AUB | Bem (A22)7 I A(z,y)[MB(r,y)
C=AxB |return (I'A(z,y),['B(z,y))+relabel

C = Set (A) | nr_components < Poiss (A(x,y))
return (FA(:U Y),...,LA(z,y)) +relabel

FA( ) :

<> .A.“% Na“<> A,
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Boltzmann samplers: substitution

* The class C = A o 3 consists of objects of A where each

atom is replaced by an object of B
G.f.. C(x) = A(B(x))

* Boltzmann sampler:
I'C(zx) v+ TA(B(x))
replace each atom of ~ by I'B(x)

* very simple and no need of Bernoulli-choices (unlike the
recursive method)
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Conception of a Boltzmann
sampler for planar graphs



Overview of the method

* Decomposition according to successive levels of

connectivity:
Planar graph — Connected — 2-connected —

3-connected

e Combinatorial bijection (Fusy, Poulalhon, Schaeffer)
3-connected graphs < binary trees
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Planar graphs

Disconnected @ B

Connected

2-connected m

3-connected
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Planar graphs — connected p. g.

* Let G be the set of planar graphs
* Let C be the set of connected planar graphs

* A planar graph is decomposed into connected
components

= G = Set(C) G(z) = exp(C(z))

I'G(x,y) : k<« Poiss(C(x,y))
return (I'C(z,y),...,I'C(x,y)) { k calls}
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Connected — 2-connected

Decomposition by vertex-substitution:

A pointed connected planar graph is a set of pointed
2-connected planar graphs where each non pointed vertex is

substituted by a pointed connected planar graph.
= | C*(x,y) = zexp(B'(C*(z,y),y))

%5@3
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Connected — 2-connected

C*(z) = zexp(B'(C*(v)))

I'C*(x):1) k < Poiss(A := B'(C*(x)) exp(...)
2) v (I'B*(C*(x)), 9 'B*(C*(x))) exp(B(...))
k times

3) merge the k& marked vertices of
4) for each non-marked vertex v of ~

substitute v by v, «— I'C*(x) exp(B'(C*(x)))
5) return ~y

= |Finding I'C'® reduces to finding I'B*

— p.29/49



2-connected — 3-connected

* Decomposition by edge-substitution.

* B(xz,y) series of 2-connected planar graphs.

* (G3(x,y) series of 3-connected planar graphs

OB
Yy

(z,y)

~ % (2, %, y))

Finding F%—g reduces to finding F%—%
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3-connected < binary trees
)%I\ jac

!




3-connected < binary trees

Fusy, Poulalhon, Schaeffer 2005:
Binary trees are in bijection with edge-pointed 3-connected
planar graphs.

177/

. . /
le O 1+3 vertices
I+]+4 edges
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Boltzmann sampler for planar graphs

edge—pointed 90
3—connected graph™ 9y (z,y)

I'T(x,y) binary tree
bijection

\l/ edge—substitution

9B (z,y) vertex—pointed
O 2—connected graph

edge—pointed Fa_B(x y)
o oy \™7
rejection 2 —connected graph

vertex—substitution

| (x,y) vertex—pointed > connected graph ['C(z,y)

8$ . .
connected graph rejection
connected components

[ planar graph I'G(z, y)]
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Rejection for Boltzmann samplers
* Let B be a combinatorial class for which we have a
Boltzmann sampler.

e Let A C B be a combinatorial class for which we want a
Boltzmann sampler.

['A(z) : v+« I'B(z)
if v € A return v else restart

Then I'A(z) is a Boltzmann sampler for A.

The acceptance probability at each try is

B 2] - Ax)
Paccept — %4 B(aj‘) — B(aj‘)
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Applications

o I'C(z,y) from I'C*(x,y)

C is a subset of C® : '@' —> @<>'

= I'C(z,y): v —=TC*(z,y)
if the pointed vertex has label 1, return -y
else restart

FaB(x y) from FaB (,y)

B® is a subset of B~ : @ @
choose smallest
neighbour

= Top(x,y): 7 =T (2,y)

if the end of the root-edge is the smallest neighbour

of the origin of the root-edge, return ~
else restart
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Derivation of an efficient
sampler
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How to achieve a target size n?

* We have a Boltzmann sampler I'G(z, 1) for planar
graphs

* We want to achieve a target-size n

* We have to choose © = z,, so that I'G(z,) produces
graphs of size n with good probability.

* Natural choice: x,, such that | E(size(I'G(xy))) =n

* The function x — E(size(I'G(x))) is increasing
= 1, has to converge to pg (dom. sing.) when n — ooc.
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Size distribution

Problem: Even at the singularity pg, the expected size of
['G(pg) remains bounded:

P ( . . ) L ang ~ C
risize =n) = Goy ~ i

(Giménez, Noy 2005)

proba
A

c/n7/2

~gze

Size distribution of the output of I'G(pg)
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Improve the size distribution

Solution: point the graphs 3 times
Effect: multiply coefficient G,, by n?

LD LD

proba pr oba

1/n
1/n7/2

|
~size n size

Output of I'G(pg) Output of TG*** (pa(1 — 5-))

2n
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Inject pointing into decomposition

e C=AUB=C*=A"UB"
e C=AxB=C"=A*"xBUAdxB*
e C=Set(A) = C* = A* x Set(A)

Example: pointed binary trees

|

B(x)
B*(x)

x4+ B(x)?
v+ B®(x)B(x) + B(x)B®*(x)
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Main results

Let n be a target size and ¢ be a (relative) size-tolerance.
Take I'G***(z,,) at zp, = pg (1 — 55).

Theorem The generator 'G**®*(x,,) produces planar graphs:
* with size in [n(1 —¢€),n(1 + €)] in linear time. APPROX
* with size n in quadratic time. EXACT

Aux. memory | Prep. time Time per generation
Markov | O(logn) O(1) unknown {exact size}
Recursive | O(n’logn) | O (n") O(n’) {exact size}

Boltzmann| O((logn)*) | O((logn)*) O(n?)  {exact size}
O(n)  {approx. size}
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Changing the ratio edges-vertices

* Let y > 0 be a fixed real value.

* Forn # 1, let z,, be such that
E (size(TG***(xp,y))) =n

Result: There exists a constant u(y) € (1,3) such that the
ratio edges-vertices of the output of 'G***(x,,,y) is almost
surely equal to u(y) when n — +o0.
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Grammar for complexity calculation

Let C be a class and x > 0 a real value
Define AC () as the average number of operations of I'C'(x).

e Union:
['C(z) : Bern (ggg | ggg;)? T A(z)|TB(z)

AC(z) =

. Product
['C(z) : (TA(z), 'B(x)).
AC(z) = AA(x) + AB(x)
* Set:
['C(x) : Poiss (A(x)) = T'A(x)
AC(z) = E (Poiss (A(x))) - AA(x) = A(z) - AA(x)
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Grammar for complexity calculation

Let C be a class and x > 0 a real value

Define AC () as the average number of operations of I'C'(x).

Define >XC'(z) as the average size of I'C(x).

* Substitution
['C'(x) : replace each atom of 'A(B(x)) by I'B(x)

AC(x) = AA(B(x)) + XA(B(z)) - AB(x)

* Rejection
ACB
['A(z) : do vy« I'B(x) until y € A

A(z) = 54 - AB(x)
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Complexity results

* For all instances of rejection A C B, the

acceptance-probability ggz% Is bounded away from 0

when n goes to oo.

* The grammar for calculations implies the following

result:
Theorem: For n > 1, let x,, be such that the expected

size of I'G**®*(xy,) is n. Then:
AG***(zp) = O(n).
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Implementation and
experimental results
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Overview of the implementation

1) Choose a bunch of target-sizes n = (1000, 10000, 100000, 1000000)

2) For each target-size n, compute x, such that F(size(I'G***(x,))) =n
and evaluate all generating functions of planar graphs at z,

A planar graph is an arborescent structure
whose nodes are 3-connected planar graphs

U

3) Assemble the arborescent structure
by doing Bernoulli-choices

= requires =~ 50 Bernoulli-vectors

Example: choice of the number of connected
components with Poiss(C(x,,))

4) Generate each 3-connected component

For each node of the arborescent structure
generate a binary tree and do the closure of it

(the closure can be implemented in linear time)
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Experimental results

Let X,, be the number of edges of a random planar graph on

n vertices.

Theorem: (Giménez, Noy)

There exists a constant p ~ 2.2132, such that

Xn

n

ratio edges-vertices

2.24 4

2.22 1+

almost surely when n — oo

20

Tries

40

in chronological order

60

80
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Experimental results

Conjecture: Let Y}, ;; be the proportion of vertices having
degree k in a random planar graph on n vertices.
Then there is a probability distribution (pg)r>1 such that

Yor — pr  almost surely when n — oo
n—oo

0.25 A

i

i i
0.05 -

eeeeee
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