A linear time algorithm for the random generation of labeled planar graphs

Éric Fusy

Algorithms Project, INRIA Rocquencourt

Plan

- Principles of Boltzmann samplers.
- Application to planar graphs
- Size distribution and complexity results:
 - A linear time approximate size random generator of planar graphs
 - A quadratic time exact size random generator of planar graphs
- Implementation and experimentations

The general framework of Boltzmann samplers

Idea of Boltzmann samplers

- Introduced by Duchon, Flajolet, Louchard and Schaeffer (2002)
- Relax the constraint of fixed size (cf recursive method) for random generation.
- The distribution is spread over all objects of the class.
- An object is drawn with probability proportional to the exponential of its size (cf statistical physics)

Unlabelled sets

 Let C be an unlabelled combinatorial class (e.g. binary trees)
 Ordinary generating function:

$$C(x) = \sum_{\gamma \in \mathcal{C}} x^{|\gamma|} = \sum_{n \ge 0} c_n x^n,$$

where $|\gamma|$ is the size of γ .

Given x > 0 (x ≤ ρ_C) a fixed real value,
 a Boltzmann sampler ΓC(x) is a procedure that draws each object γ of C with probability:

$$Pr(\gamma) = \frac{x^{|\gamma|}}{C(x)}$$

Finite sets

The basic construction rules

Union: Let $C = A \cup B$. Assume we have Boltzmann samplers $\Gamma A(x)$ for A and $\Gamma B(x)$ for B. Define $\Gamma C(x)$ as:

 $\Rightarrow \Gamma C(x)$ is a Boltzmann sampler for $\mathcal{A} \cup \mathcal{B}$. **Proof:**

• If
$$\gamma \in \mathcal{A}$$
, then $Pr(\gamma) = \frac{A(x)}{C(x)} \cdot \frac{x^{|\gamma|}}{A(x)} = \frac{x^{|\gamma|}}{C(x)}$.

• If
$$\gamma \in \mathcal{B}$$
, then $Pr(\gamma) = \frac{B(x)}{C(x)} \cdot \frac{x^{|\gamma|}}{B(x)} = \frac{x^{|\gamma|}}{C(x)}$.

The basic construction rules

Product: Let $C = A \times B$. Assume we have Boltzmann samplers $\Gamma A(x)$ for A and $\Gamma B(x)$ for B. Define $\Gamma C(x)$ as:

$$\Gamma C(x) : \gamma_1 \leftarrow \Gamma A(x)$$

$$\gamma_2 \leftarrow \Gamma B(x)$$

return (γ_1, γ_2)

 $\Rightarrow \Gamma C(x)$ is a Boltzmann sampler for $\mathcal{A} \cup \mathcal{B}$: **Proof:** an object $\gamma = (\gamma_1, \gamma_2)$ has probability:

$$\frac{x^{|\gamma_1|}}{A(x)}\frac{x^{|\gamma_2|}}{B(x)} = \frac{x^{|\gamma_1|+|\gamma_2|}}{A(x)\cdot B(x)} = \frac{x^{|\gamma|}}{C(x)}$$

Example: binary trees

Result for unlabeled sets

Theorem:

- A Boltzmann sampler can be assembled for an unlabeled class specified with the constructions ∪, ×, Sequence.
- The complexity is linear in the size of the output object.

Construction	Boltzmann sampler $\Gamma C(x)$
$\mathcal{C} = \varnothing$	return \varnothing
$\mathcal{C} = ullet$	return •
$\mathcal{C} = \mathcal{A} \cup \mathcal{B}$	Bern $\left(\frac{A(x)}{C(x)} \frac{B(x)}{C(x)}\right)$? $\Gamma A(x) \Gamma B(x)$
$\mathcal{C}=\mathcal{A} imes\mathcal{B}$	return $(\Gamma A(x), \Gamma B(x))$
$\mathcal{C} = \mathrm{Seq}\left(\mathcal{A}\right)$	$k \leftarrow \operatorname{Geom}\left(A(x)\right)$
	return $(\Gamma A(x), \dots, \Gamma A(x))$ { k calls}

Labeled sets

 Let C be a labeled combinatorial class (e.g. permutations)
 Exponential generating function:

$$C(x) = \sum_{\gamma \in \mathcal{C}} \frac{x^{|\gamma|}}{|\gamma|!} = \sum_{n} c_n \frac{x^n}{n!},$$

where $|\gamma|$ is the size of $\gamma.$

• Given x > 0 ($x \le \rho_C$) a fixed real value, a Boltzmann sampler $\Gamma C(x)$ draws each object γ of C with probability:

$$Pr(\gamma) = \frac{1}{C(x)} \frac{x^{|\gamma|}}{|\gamma|!}$$

The basic construction rules

Union: Let $C = A \cup B$. Assume we have Boltzmann samplers $\Gamma A(x)$ for A and $\Gamma B(x)$ for B. Define $\Gamma C(x)$ as:

 $\Rightarrow \Gamma C(x)$ is a Boltzmann sampler for $\mathcal{A} \cup \mathcal{B}$: **Proof:**

• If $\gamma \in \mathcal{A}$, then $Pr(\gamma) = \frac{A(x)}{C(x)} \cdot \left(\frac{1}{A(x)} \frac{x^{|\gamma|}}{|\gamma|!}\right) = \frac{1}{C(x)} \frac{x^{|\gamma|}}{|\gamma|!}$.

• If
$$\gamma \in \mathcal{B}$$
, then $Pr(\gamma) = \frac{B(x)}{C(x)} \cdot \left(\frac{1}{C(x)} \frac{x^{|\gamma|}}{|\gamma|!}\right) = \frac{1}{B(x)} \frac{x^{|\gamma|}}{|\gamma|!}$.

Cartesian product for labelled sets

An object of $\mathcal{A} \star \mathcal{B}$ is obtained by:

- taking a pair (γ_1, γ_2) with $\gamma_1 \in \mathcal{A}$ and $\gamma_2 \in \mathcal{B}$.
- Relabel according to a partition of $[1, \ldots, |\gamma_1| + |\gamma_2|]$.

Boltzmann for cartesian product

Cartesian product: Let $C = A \star B$. Assume we have Boltzmann samplers $\Gamma A(x)$ for A and $\Gamma B(x)$ for B. Define $\Gamma C(x)$ as:

- p.14/49

Result for labeled sets

Theorem:

- A Boltzmann sampler can be assembled for a labeled class specified with the constructions ∪, ×, Set.
- The complexity is linear in the size of the output object.
- The labels have just to be thrown at the end.

Boltzmann vs the recursive method

	Boltzmann	recursive method
size distribution	$Pr(size = n) = \frac{C_n x^n}{C(x)}$	fixed size n
auxiliary memory	$\mathcal{O}(\log(n))$	$\mathcal{O}(n^2)$
time per generation	$\mathcal{O}(n^2)$ Exact	$\mathcal{O}(n\log(n))$ Exact
	$\mathcal{O}(n)$ Approx	

Planar graphs and Boltzmann samplers

Labeled Planar graphs

- A labelled graph with n vertices is a set of edges on the labeled vertex-set V = [1, ..., n].
- A graph is planar if it can be embedded in the plane.

 \mathbf{K}_{5} is not planar

• The embedding does not count (\neq planar maps)

Random generation of planar graphs

Existing algorithms:

- Markov chain (Denise, Vasconcellos, Welsh): simple algorithm but unknown convergence rate (mixing time)
- Recursive method (Bodirsky, Gröpl, Kang): Polynomial time algorithm for uniform random generation of planar graphs with *n* vertices but large preprocessing time (many coefficients need to be stored).

What new has to be done?

To design a Boltzmann sampler for labeled planar graphs, we have to do the following:

- A planar graph has labeled vertices and unlabeled edges:
 ⇒ define the Boltzmann framework for the case of a mixed class (two variables)
- Add the substitution (composition of G.f.) to the constructions.
- Add rejection techniques to do derooting/rerooting operations on the graphs

Boltzmann samplers: mixed classes

 Let C be a mixed combinatorial class (e.g. planar graphs) Mixed Generating function:

$$C(x,y) = \sum_{\gamma \in \mathcal{C}} \frac{x^{i(\gamma)}}{i(\gamma)!} y^{j(\gamma)} = \sum_{i,j} c_{i,j} \frac{x^{i}}{i!} y^{j},$$

 $i(\gamma)$ is the number of labeled atoms (e.g. vertices) $j(\gamma)$ is the number of unlabeled atoms (e.g. edges)

 Given x > 0 and y > 0 two fixed real values, a Boltzmann sampler ΓC(x, y) draws each object γ of C with probability:

$$Pr(\gamma) = \frac{1}{C(x,y)} \frac{x^{i(\gamma)}}{i(\gamma)!} y^{j(\gamma)}$$

Boltzmann samplers: mixed classes

Theorem: A Boltzmann sampler can be assembled for a mixed class specified with the constructions \cup , \times , Set. Linear time complexity in the size of the output object.

Boltzmann samplers: substitution

- The class C = A ∘ B consists of objects of A where each atom is replaced by an object of B
 G.f.: C(x) = A(B(x))
- Boltzmann sampler:

$$\Gamma C(x) \quad \gamma \leftarrow \Gamma A(B(x))$$
replace each atom of γ by $\Gamma B(x)$

very simple and no need of Bernoulli-choices (unlike the recursive method)

Conception of a Boltzmann sampler for planar graphs

Overview of the method

- Decomposition according to successive levels of connectivity:
 Planar graph → Connected → 2-connected → 3-connected
- Combinatorial bijection (Fusy, Poulalhon, Schaeffer)
 3-connected graphs ↔ binary trees

Planar graphs

Planar graphs \rightarrow connected p. g.

- Let \mathcal{G} be the set of planar graphs
- Let \mathcal{C} be the set of connected planar graphs
- A planar graph is decomposed into connected components

$$\Rightarrow \mathcal{G} = Set(\mathcal{C}) \qquad \qquad G(x) = \exp(C(x))$$

$$\begin{array}{ll} \Gamma G(x,y) & : & k \leftarrow Poiss(C(x,y)) \\ & & \mathsf{return} \ (\Gamma C(x,y),\ldots,\Gamma C(x,y)) \ \{ \ k \ \mathsf{calls} \} \end{array}$$

$\textbf{Connected} \rightarrow \textbf{2-connected}$

Decomposition by vertex-substitution:

A pointed connected planar graph is a set of pointed 2-connected planar graphs where each non pointed vertex is substituted by a pointed connected planar graph.

Connected \rightarrow 2-connected

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x)))$$

$$\Gamma C^{\bullet}(x):1) \ k \leftarrow Poiss(\lambda := B'(C^{\bullet}(x))) \qquad \exp(\dots)$$

$$2) \ \gamma \leftarrow (\Gamma B^{\bullet}(C^{\bullet}(x)), \dots, \Gamma B^{\bullet}(C^{\bullet}(x))) \qquad \exp(B'(\dots))$$

2)
$$\gamma \leftarrow \underbrace{(\Gamma B^{\bullet}(C^{\bullet}(x)), \dots, \Gamma B^{\bullet}(C^{\bullet}(x)))}_{k \ times} \exp(B'(\dots))$$

3) merge the k marked vertices of γ
4) for each non-marked vertex v of γ
substitute v by $\gamma_v \leftarrow \Gamma C^{\bullet}(x) \qquad \exp(B'(C^{\bullet}(x)))$
5) return γ

\Rightarrow Finding ΓC^{\bullet} reduces to finding ΓB^{\bullet}

$\textbf{2-connected} \rightarrow \textbf{3-connected}$

- Decomposition by edge-substitution.
- B(x, y) series of 2-connected planar graphs.
- $G_3(x, y)$ series of 3-connected planar graphs

$\textbf{3-connected} \leftrightarrow \textbf{binary trees}$

$\textbf{3-connected} \leftrightarrow \textbf{binary trees}$

Fusy, Poulalhon, Schaeffer 2005: Binary trees are in bijection with edge-pointed 3-connected planar graphs.

Boltzmann sampler for planar graphs

Rejection for Boltzmann samplers

- Let *B* be a combinatorial class for which we have a Boltzmann sampler.
- Let A ⊂ B be a combinatorial class for which we want a Boltzmann sampler.

$$\begin{array}{ll} \Gamma A(x) & : & \gamma \leftarrow \Gamma B(x) \\ & & \text{if } \gamma \in \mathcal{A} \text{ return } \gamma \text{ else restart} \end{array}$$

Then $\Gamma A(x)$ is a Boltzmann sampler for \mathcal{A} .

The acceptance probability at each try is

$$P_{accept} = \sum_{\gamma \in \mathcal{A}} \frac{x^{|\gamma|}}{B(x)} = \frac{A(x)}{B(x)}$$

Applications

• $\Gamma C(x, y)$ from $\Gamma C^{\bullet}(x, y)$

$$\Rightarrow \Gamma C(x,y): \ \gamma \leftarrow \Gamma C^{\bullet}(x,y)$$
 if the pointed vertex has label 1, return γ else restart

•
$$\Gamma \frac{\partial B}{\partial x}(x,y)$$
 from $\Gamma \frac{\partial B}{\partial y}(x,y)$

$$\Rightarrow \Gamma \frac{\partial B}{\partial x}(x,y): \gamma \leftarrow \Gamma \frac{\partial B}{\partial y}(x,y)$$

if the end of the root-edge is the smallest neighbour
of the origin of the root-edge, return γ
else restart

Derivation of an efficient sampler

How to achieve a target size n?

- We have a Boltzmann sampler $\Gamma G(x, 1)$ for planar graphs
- We want to achieve a target-size *n*
- We have to choose $x = x_n$ so that $\Gamma G(x_n)$ produces graphs of size n with good probability.
- Natural choice: x_n such that $\mathbf{E}(size(\Gamma G(x_n))) = n$
- The function $x \to \mathbf{E}(size(\Gamma G(x)))$ is increasing $\Rightarrow x_n$ has to converge to ρ_G (dom. sing.) when $n \to \infty$.

Size distribution

Problem: Even at the singularity ρ_G , the expected size of $\Gamma G(\rho_G)$ remains bounded:

Improve the size distribution

Solution: point the graphs 3 times **Effect**: multiply coefficient G_n by n^3 .

Inject pointing into decomposition

•
$$\mathcal{C} = \mathcal{A} \cup \mathcal{B} \Rightarrow \mathcal{C}^{\bullet} = \mathcal{A}^{\bullet} \cup \mathcal{B}^{\bullet}$$

•
$$\mathcal{C} = \mathcal{A} \star \mathcal{B} \Rightarrow \mathcal{C}^{\bullet} = \mathcal{A}^{\bullet} \star \mathcal{B} \cup \mathcal{A} \star \mathcal{B}^{\bullet}$$

• $\mathcal{C} = Set(\mathcal{A}) \Rightarrow \mathcal{C}^{\bullet} = \mathcal{A}^{\bullet} \star Set(\mathcal{A})$

Example: pointed binary trees $\begin{cases}
B(x) = x + B(x)^2 \\
B^{\bullet}(x) = x + B^{\bullet}(x)B(x) + B(x)B^{\bullet}(x)
\end{cases}$

Main results

Let *n* be a target size and ϵ be a (relative) size-tolerance. Take $\Gamma G^{\bullet\bullet\bullet}(x_n)$ at $x_n = \rho_G \left(1 - \frac{1}{2n}\right)$.

Theorem The generator $\Gamma G^{\bullet\bullet\bullet}(x_n)$ produces planar graphs:

- with size in $[n(1-\epsilon), n(1+\epsilon)]$ in linear time. APPROX
- with size *n* in quadratic time. EXACT

	Aux. memory	Prep. time	Time per generation	
Markov	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	unknown	{exact size}
Recursive	$\mathcal{O}(n^5 \log n)$	$\mathcal{O}\left(n^7 ight)$	$\mathcal{O}(n^3)$	{exact size}
Boltzmann	$\mathcal{O}((\log n)^k)$	$\mathcal{O}((\log n)^k)$	$\mathcal{O}(n^2)$	{exact size}
			$\mathcal{O}(n)$	{approx. size}

Changing the ratio edges-vertices

- Let y > 0 be a fixed real value.
- For $n \neq 1$, let x_n be such that $\mathbf{E}(size(\Gamma G^{\bullet \bullet \bullet}(x_n, y))) = n$

Result: There exists a constant $\mu(y) \in (1,3)$ such that the ratio edges-vertices of the output of $\Gamma G^{\bullet\bullet\bullet}(x_n, y)$ is almost surely equal to $\mu(y)$ when $n \to +\infty$.

Grammar for complexity calculation

Let C be a class and x > 0 a real value Define $\Lambda C(x)$ as the average number of operations of $\Gamma C(x)$.

• Union:

$$\Gamma C(x) : \operatorname{Bern}\left(\frac{A(x)}{C(x)}|\frac{B(x)}{C(x)}\right)? : \Gamma A(x)|\Gamma B(x)$$
$$\overline{\Lambda C(x) = \frac{A(x)}{C(x)} \cdot \Lambda A(x) + \frac{B(x)}{C(x)} \cdot \Lambda B(x)}$$

• Product:

 $\Gamma C(x) : (\Gamma A(x), \Gamma B(x)).$ $\Lambda C(x) = \Lambda A(x) + \Lambda B(x)$

• Set:

 $\Gamma C(x) : \text{Poiss}(A(x)) \Rightarrow \Gamma A(x)$

 $\Lambda C(x) = E(\text{Poiss}(A(x))) \cdot \Lambda A(x) = A(x) \cdot \Lambda A(x)$

Grammar for complexity calculation

Let C be a class and x > 0 a real value Define $\Lambda C(x)$ as the average number of operations of $\Gamma C(x)$. Define $\Sigma C(x)$ as the average size of $\Gamma C(x)$.

• Substitution

 $\Gamma C(x) : \text{replace each atom of } \Gamma A(B(x)) \text{ by } \Gamma B(x)$ $\Lambda C(x) = \Lambda A(B(x)) + \Sigma A(B(x)) \cdot \Lambda B(x)$

• Rejection

$$\mathcal{A} \subset \mathcal{B}$$

$$\Gamma A(x) : \text{do } \gamma \leftarrow \Gamma B(x) \text{ until } \gamma \in \mathcal{A}$$

$$\Lambda A(x) = \frac{B(x)}{A(x)} \cdot \Lambda B(x)$$

Complexity results

- For all instances of rejection $\mathcal{A} \subset \mathcal{B}$, the acceptance-probability $\frac{A(x_n)}{B(x_n)}$ is bounded away from 0 when n goes to ∞ .
- The grammar for calculations implies the following result:

Theorem: For $n \ge 1$, let x_n be such that the expected size of $\Gamma G^{\bullet \bullet \bullet}(x_n)$ is n. Then:

$$\Lambda G^{\bullet\bullet\bullet}(x_n) = \mathcal{O}(n).$$

Implementation and experimental results

Overview of the implementation

- 1) Choose a bunch of target-sizes n = (1000, 10000, 100000, 1000000)
- 2) For each target-size n, compute x_n such that $E(size(\Gamma G^{\bullet\bullet\bullet}(x_n))) = n$ and evaluate all generating functions of planar graphs at x_n

Experimental results

Let X_n be the number of edges of a random planar graph on n vertices.

Theorem: (Giménez, Noy) There exists a constant $\mu \approx 2.2132$, such that

Tries in chronological order

Experimental results

Conjecture: Let $Y_{n,k}$ be the proportion of vertices having degree k in a random planar graph on n vertices. Then there is a probability distribution $(p_k)_{k>1}$ such that

