Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)
Rooted maps

A map is rooted by marking and orienting an edge.

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge

The 9 rooted maps with two edges
Counting rooted maps

Let \(a_n \) be the number of rooted maps with \(n \) edges.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>2</td>
<td>9</td>
<td>54</td>
<td>378</td>
<td>2916</td>
<td>24057</td>
<td>208494</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>
Counting rooted maps

Let \(a_n \) be the number of rooted maps with \(n \) edges.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>2</td>
<td>9</td>
<td>54</td>
<td>378</td>
<td>2916</td>
<td>24057</td>
<td>208494</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\frac{2 \cdot 3^n}{(n + 1)(n + 2)} \binom{2n}{n}
\]

Theorem: (Tutte’63)
Counting rooted maps

Let a_n be the number of rooted maps with n edges

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>2</td>
<td>9</td>
<td>54</td>
<td>378</td>
<td>2916</td>
<td>24057</td>
<td>208494</td>
<td>...</td>
</tr>
</tbody>
</table>

Theorem: (Tutte’63)

$$
\frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}
$$

Not an isolated case:

- Triangulations ($2n$ faces)

 Loopless: \(\frac{2^n}{(n+1)(2n+1)} \binom{3n}{n} \)

 Simple: \(\frac{1}{n(2n-1)} \binom{4n-2}{n-1} \)

- Quadrangulations (n faces)

 General: \(\frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \)

 Simple: \(\frac{2}{n(n+1)} \binom{3n}{n-1} \)
Counting rooted maps

Let \(a_n \) be the number of rooted maps with \(n \) edges.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>2</td>
<td>9</td>
<td>54</td>
<td>378</td>
<td>2916</td>
<td>24057</td>
<td>208494</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

Theorem: (Tutte’63)

\[
\frac{2 \cdot 3^n}{(n + 1)(n + 2)} \binom{2n}{n}
\]

Not an isolated case:

- **Triangulations** (\(2n \) faces)
 \[
 \text{Loopless: } \frac{2^n}{(n + 1)(2n + 1)} \binom{3n}{n}
 \]
 \[
 \text{Simple: } \frac{1}{n(2n - 1)} \binom{4n - 2}{n - 1}
 \]

- **Quadrangulations** (\(n \) faces)
 \[
 \text{General: } \frac{2 \cdot 3^n}{(n + 1)(n + 2)} \binom{2n}{n}
 \]
 \[
 \text{Simple: } \frac{2}{n(n + 1)} \binom{3n}{n - 1}
 \]
Bijective aspects of planar maps
Motivations for bijections

• efficient manipulation of maps (random generation algo.)

• key ingredient to study distances (diameter,...) in random maps
 - typical distances of order $n^{1/4}$ ($\neq n^{1/2}$ in random trees)
 - random map M with n edges = random discrete metric space (M, d)

Theo: [Le Gall, Miermont’13]

$(M, \frac{1}{n^{1/4}} d)$ converges to a continuum random metric space
called the Brownian map

(analog for maps of the Continuous Random Tree)
Pointed quadrangulations, geodesic labelling

Pointed quadrangulation = quadrangulation with a marked vertex v_0

Geodesic labelling with respect to v_0: $\ell(v) = \text{dist}(v_0, v)$

Rk: two types of faces
Well-labelled trees

Well-labelled tree $= \text{plane tree where}$
- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e = \{u, v\}$ satisfies $|\ell(u) - \ell(v)| \leq 1$
The Schaeffer bijection [Schaeffer’99], also [Cori-Vauquelin’81]

Pointed quadrangulation \Rightarrow well-labelled tree with min-label=1

n faces

n edges

Local rule in each face:
Proof that it gives a tree

\[Q \]

\[n \text{ faces} \]
\[n + 2 \text{ vertices} \]
Proof that it gives a tree

Q

n faces
$n + 2$ vertices

T

n edges
$n + 1$ vertices
Proof that it gives a tree

\[Q \]

- \(n \) faces
- \(n + 2 \) vertices

\[T \]

- \(n \) edges
- \(n + 1 \) vertices

Assume that \(T \) has a cycle \(C \)
Proof that it gives a tree

Assume that T has a cycle C where C is the smallest label on C.

n faces
$n + 2$ vertices

n edges
$n + 1$ vertices
Proof that it gives a tree

Assume that T has a cycle C

n faces
$n + 2$ vertices
$n + 1$ vertices

n edges

smallest label on C
Proof that it gives a tree

Assume that T has a cycle C

n faces
$n + 2$ vertices

n edges
$n + 1$ vertices

smallest label on C
Proof that it gives a tree

Assume that T has a cycle C.

The smallest label on C is less than i.

Contradiction.
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree
Rightmost geodesic paths

situation at a corner of the tree

implies property

\[\geq i \]
The inverse construction [Schaeffer’99], also [Cori-Vauquelin’81]

From a well-labelled tree to a pointed quadrangulation
The inverse construction \cite{Schaeffer99}, also \cite{Cori-Vauquelin81}

From a well-labelled tree to a pointed quadrangulation

1) insert a “leg” at each corner
The inverse construction \cite{Schaeffer’99}, also \cite{Cori-Vauquelin’81}.

From a well-labelled tree to a pointed quadrangulation

1) insert a “leg” at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree.
The inverse construction \cite{Schaeffer'99}, also \cite{Cori-Vauquelin'81}

From a well-labelled tree to a pointed quadrangulation

1) insert a “leg” at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_0 outside and connect legs of label 1 to it
The Schaeffer bijection \cite{Schaeffer99}, also \cite{CoriVauquelin81}

From a well-labelled tree to a pointed quadrangulation

1) insert a “leg” at each corner
2) connect each leg of label \(i \geq 2 \) to the next corner of label \(i-1 \) in ccw order around the tree
3) create a new vertex \(v_0 \) outside and connect legs of label 1 to it
4) erase the tree-edges
The Schaeffer bijection \[\text{[Schaeffer'99], also [Cori-Vauquelin'81]}\]

From a well-labelled tree to a pointed quadrangulation

1) insert a “leg” at each corner
2) connect each leg of label \(i \geq 2\) to the next corner of label \(i-1\) in ccw order around the tree
3) create a new vertex \(v_0\) outside and connect legs of label 1 to it
4) erase the tree-edges

recover the original pointed quadrangulation
The effect of marking an edge

Local rule in each face:

marked edge

marked half-edge
Bijective proof of counting formula

Let \(q_n = \#(\text{rooted quadrangulations with } n \text{ faces}) \)

We want to show (bijectively) that

\[
q_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n} z^n
\]

Rk: \(q_n \times (n+2) = \# \text{ rooted quadrangulations with } n \text{ faces} + \text{ marked vertex} \)

Hence if \(b_n := \# \text{ quadrangulations with } n \text{ faces} + \text{ marked edge} + \text{ marked vertex} \)

then \(b_n = \frac{n+2}{2} q_n \)

Hence proving formula for \(q_n \) amounts to proving \(b_n = 3^n \text{Cat}_n \)
Bijective proof of counting formula

Schaeffer’s bijection ⇒ $b_n = \#$(rooted well-labelled trees with n edges)
Bijective proof of counting formula

Schaeffer’s bijection $\Rightarrow b_n = \#$(rooted well-labelled trees with n edges)

$b_n = 3^n \text{Cat}_n = 3^n \frac{(2n)!}{n!(n+1)!}$
The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter'04]
The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

Label vertices by distance from the marked vertex.
The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile

(i) Add a black vertex in each face
Construction of a labeled mobile

(i) Add a black vertex in each face

(ii) Each map-edge gives a mobile-edge using the local rule

\[
\begin{align*}
 &i - 1 \\
 &\quad \downarrow \\
 &\quad \quad \text{black vertex}
\end{align*}
\]

\[
\begin{align*}
 &i \\
 &\quad \downarrow \\
 &\quad \quad \text{black vertex}
\end{align*}
\]
The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]

Conditions:
(i) \(\exists \) vertex of label 1
(ii) \(j \leq i+1 \)

remove the map-edges and the marked vertex \(0 \)
The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]

Local rule

Conditions:
(i) ∃ vertex of label 1
(ii) \(j \leq i+1 \)

Theorem: The mapping is a **bijection**.

face of degree \(2i \) ←→ black vertex of degree \(i \)
Rewriting labelled mobiles as trees with arrows

Conditions:

(i) \(\exists \) vertex of label 1

(ii) \(\delta = i - j \geq -1 \)

Condition:

each black vertex has as many buds as neighbors
Enumerative consequence

Tutte’s slicings formula (1962):

Let \(B[n_1, n_2, \ldots, n_k] \) be the number of rooted bipartite maps with \(n_i \) faces of degree \(2i \) for \(i \in [1..k] \). Then

\[
B[n_1, \ldots, n_k] = 2 \frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_i!} \left(\frac{2i - 1}{i - 1} \right)^{n_i}
\]

where \(e = \# \text{edges} = \sum_i i n_i \) and \(v = \# \text{vertices} = e - k + 2 \)

('contains' formula for rooted quadrangulations, \(n_2 = n, n_i = 0 \) for \(i \neq 2 \))
Reformulation of bijection using orientations

Distance-labeling

Geodesic orientation

Local rule

\[\delta = i - j \geq -1 \]

\[\delta + 1 \text{ buds} \]
Definition of blossoming mobiles

- **Blossoming mobile** = bipartite tree (black/white vertices) where each corner at a black vertex carries $i \geq 0$ buds

 \[
 \text{excess} = \text{number of edges} - \text{number of buds}
 \]

 A blossoming mobile of excess -2
Definition of blossoming mobiles

- **Blossoming mobile** = bipartite tree (black/white vertices)
 where each corner at a black vertex carries \(i \geq 0 \) buds

\[
\text{excess} = \text{number of edges} - \text{number of buds}
\]

- A blossoming mobile is called **balanced** iff each black vertex has as many buds as neighbors

\[
\text{Rk: implies that the excess is } 0
\]
Summary of the reformulation

Condition:
Each black vertex has as many buds as neighbors

Theorem: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles

face of degree $2i$ \leftrightarrow black vertex of degree $2i$
Summary of the reformulation

Theorem: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles

\[
\text{face of degree } 2i \leftrightarrow \text{black vertex of degree } 2i
\]

(Other bijection by Schaeffer'97 in the dual setting of eulerian maps)

Condition:
Each black vertex has as many buds as neighbors

Local rule:

[Diagram of a local rule with a black vertex and its neighbors]
Extension for pointed orientations with no ccw cycle

- More generally, we **obtain a blossoming mobile** (of excess 0) if we start from a vertex-pointed orientation such that:
 - the marked vertex \(v_0 \) is a **“source”** (no incoming edge)
 - every vertex is **accessible** from \(v_0 \) by a directed path
 - **there is no ccw cycle** (with \(v_0 \in \text{outer face} \))
Extension for pointed orientations with no ccw cycle

- More generally, we **obtain a blossoming mobile** (of excess 0) if we start from a vertex-pointed orientation such that:
 - the marked vertex v_0 is a **"source"** (no incoming edge)
 - every vertex is **accessible** from v_0 by a directed path
 - there is no ccw cycle (with $v_0 \in$ outer face)

Theorem: Let \mathcal{O}_0 be this family of orientations, then the correspondence is a bijection with mobiles of excess 0
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
Proof that it gives a tree

Start from an oriented map \(M \in \mathcal{O}_0 \) and apply the local rule

Let \(G \) be the graph of red edges and their incident vertices

\(G \) has \(|V_M| - 1 \), white vertices, \(|F_M| \) black vertices, and \(|E_M| \) edges
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices

G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

v_0
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule.

Let G be the graph of red edges and their incident vertices.
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, and $|E_M|$ edges.

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges.

hence G is a tree iff G is acyclic.

Assume G has a cycle:

$v_0 \circlearrowleft \quad e_1$
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :

v_0
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

\[e_1 \quad \ldots \quad e_2 \quad v_0 \]
Proof that it gives a tree
Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices.

G has $|V_M| - 1$ white vertices, $|F_M|$ black vertices, et $|E_M|$ edges.

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic.

Assume G has a cycle:

![Diagram](image_url)
Proof that it gives a tree

Start from an oriented map \(M \in \mathcal{O}_0 \) and apply the local rule

Let \(G \) be the graph of red edges and their incident vertices
\(G \) has \(|V_M| - 1 \), white vertices, \(|F_M| \) black vertices, et \(|E_M| \) edges

Euler relation: \(|E_M| = |V_M| + |F_M| - 2 \)

\[\Rightarrow G \text{ has one more vertices than edges} \]

hence \(G \) is a tree iff \(G \) is acyclic

Assume \(G \) has a cycle :

\[v_0 \]

\[e_1, e_2, e_3 \]
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices

G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :
Proof that it gives a tree

Start from an oriented map \(M \in O_0 \) and apply the local rule

Let \(G \) be the graph of red edges and their incident vertices. \(G \) has \(|V_M| - 1\) white vertices, \(|F_M|\) black vertices, and \(|E_M|\) edges.

Euler relation: \(|E_M| = |V_M| + |F_M| - 2\)

\(\Rightarrow\) \(G \) has one more vertices than edges

Hence \(G \) is a tree iff \(G \) is acyclic.

Assume \(G \) has a cycle:

\[\begin{align*}
 v_0 & \quad e_1 \quad e_2 \quad e_3 \quad e_4
\end{align*} \]
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule.

Let G be the graph of red edges and their incident vertices.
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges.

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic.

Assume G has a cycle:

prisoner ccw cycle

\Rightarrow contradiction
Extension for mobiles of excess ≤ 0
More generally the “source” can be a d-gonal source as the outer face for any $d \geq 0$

Example for $d = 3$

For $d > 0$, we take the d-gonal source as the outer face

More generally the “source” can be a d-gon, for any $d \geq 0$
Extension for mobiles of excess \(\leq 0 \)
More generally the “source” can be a \(d \)-gonal, for any \(d \geq 0 \)
Example for \(d = 3 \)

For \(d > 0 \), we take the \(d \)-gonal source as the outer face

Let \(\mathcal{O} \) be the family of these orientations, still with the conditions
- the \(d \)-gonal source has no ingoing edge
- accessibility of every vertex from the source
- no ccw cycle
Theorem [Bernardi-F’10]: Φ is a bijection between \mathcal{O} and blossoming mobiles of ≤ 0 excess. Moreover,

- degree of external face \leftrightarrow excess
- degree of internal faces \leftrightarrow degree of black vertices
- indegree of internal vertices \leftrightarrow degree of white vertices

cf [Bernardi’07], [Bernardi-Chapuy’10]
Extension for mobiles of excess ≤ 0

- Inverse mapping (tree \rightarrow cactus \rightarrow closure operations)
Scheme for a general bijective strategy

1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_C of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees
Scheme for a general bijective strategy

1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_C of \mathcal{O} with conditions on:
 - Face degrees
 - Vertex indegrees

Example: $\mathcal{C} =$ Family of simple triangulations

$\mathcal{C} \simeq$ subfamily \mathcal{O}_C of \mathcal{O} with
 - Face-degree $= 3$
 - Vertex-indegree $= 3$
Scheme for a general bijective strategy

1) Map family \mathcal{C} identifies with a **subfamily** \mathcal{O}_C of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees

Example: $\mathcal{C} = \text{Family of simple triangulations}$

\[\mathcal{C} \simeq \text{subfamily } \mathcal{O}_C \text{ of } \mathcal{O} \text{ with:}
\begin{align*}
&\text{• Face-degree } = 3 \\
&\text{• Vertex-indegree } = 3
\end{align*} \]

2) **Specialize** the ‘meta bijection’ Φ to the subfamily \mathcal{O}_C

\[\text{degree of internal faces } \leftrightarrow \text{degree of black vertices} \]
\[\text{indegree of internal vertices } \leftrightarrow \text{degree of white vertices} \]
\(\alpha \)-orientations

Let \(G = (V, E) \) be a graph
Let \(\alpha \) be a function from \(V \) to \(\mathbb{N} \)

\[
\begin{array}{c}
\alpha : \\
a \rightarrow 2 \\
b \rightarrow 1 \\
c \rightarrow 2 \\
d \rightarrow 0 \\
e \rightarrow 2 \\
\end{array}
\]
\textbf{\(\alpha\)-orientations}

Let \(G = (V, E) \) be a graph

Let \(\alpha \) be a function from \(V \) to \(\mathbb{N} \)

\[
\begin{array}{cccc}
a & b & c & d & e \\
2 & 1 & 2 & 0 & 2 \\
\end{array}
\]

Def: An \(\alpha \)-orientation is an orientation of \(G \) where for each \(v \in V \)

\[
\text{indegree}(v) = \alpha(v)
\]
α-orientations

Let $G = (V, E)$ be a graph.
Let α be a function from V to \mathbb{N}.

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Def: An α-orientation is an orientation of G where for each $v \in V$,
\[
\text{indegree}(v) = \alpha(v)
\]
\(\alpha\)-orientations: criteria for existence

- If an \(\alpha\)-orientation exists, then

\[
\begin{align*}
(i) \ & \sum_{v \in V} \alpha(v) = |E| \\
(ii) \ & \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S|
\end{align*}
\]
α-orientations: criteria for existence

• If an α-orientation exists, then

\begin{align*}
(\text{i}) \quad & \sum_{v \in V} \alpha(v) = |E| \\
(\text{ii}) \quad & \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S| \\
\end{align*}

• If the α-orientation is accessible from a vertex \(u \in V \) then

\((\text{iii}) \quad \sum_{v \in S} \alpha(v) > |E_S| \) whenever \(u \not\in S \) and \(S \neq \emptyset \)

\(\bar{S} \) and \(S \) are subsets of the vertex set \(V \).
α-orientations: criteria for existence

- If an α-orientation **exists**, then

\[
∀ S ⊆ V, \sum_{v \in S} α(v) ≥ |E_S|
\]

(i) \(\sum_{v \in V} α(v) = |E| \)

(ii) \(∀ S ⊆ V, \sum_{v \in S} α(v) ≥ |E_S| \)

- If the α-orientation is **accessible** from a vertex \(u \in V \) then

\[
\sum_{v \in S} α(v) > |E_S| \quad \text{whenever} \quad u /∈ S \quad \text{and} \quad S ≠ ∅
\]

(iii) \(\sum_{v \in S} α(v) > |E_S| \quad \text{whenever} \quad u /∈ S \quad \text{and} \quad S ≠ ∅ \)

Lemma (folklore): The conditions are necessary and sufficient
\(\alpha\)-orientations: criteria for existence

- If an \(\alpha\)-orientation exists, then

\[
(i) \sum_{v \in V} \alpha(v) = |E| \\
(ii) \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S|
\]

- If the \(\alpha\)-orientation is accessible from a vertex \(u \in V\) then

\[
(iii) \sum_{v \in S} \alpha(v) > |E_S| \text{ whenever } u \notin S \text{ and } S \neq \emptyset
\]

Lemma (folklore): The conditions are necessary and sufficient

\(\Rightarrow\) accessibility from \(u \in V\) just depends on \(\alpha\) (not on which \(\alpha\)-orientation)
\(\alpha\)-orientations for plane maps

Fundamental lemma: If a plane map admits an \(\alpha\)-orientation, then it admits a **unique** \(\alpha\)-orientation **without ccw circuit**, called **minimal**.
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a **unique α-orientation without ccw circuit**, called minimal.

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 disagree form an eulerian suborientation of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2).
Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation without ccw circuit, called *minimal*.

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 disagree form an eulerian suborientation of O_1 ⇒ contains a circuit (ccw in O_1 or O_2)

Set of α-orientations = *distributive lattice*

[Khueller et al’93], [Propp’93], [O. de Mendez’94], [Felsner’03]
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a **unique** α-orientation **without ccw circuit**, called **minimal**.

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 **disagree** form an **eulerian suborientation** of O_1 \Rightarrow contains a circuit (ccw in O_1 or O_2).

Set of α-orientations = **distributive lattice**

[Khueller et al'93], [Propp'93], [O. de Mendez’94], [Felsner’03]
Fact: A triangulation with n internal vertices has $3n$ internal edges.
Fact: A triangulation with n internal vertices has $3n$ internal edges.

Natural candidate for indegree function:
$$\alpha : v \mapsto 3 \text{ for each internal vertex } v.$$

call 3-orientation such an α-orientation.

Application to simple triangulations
Application to simple triangulations

Fact: A triangulation admitting a 3-orientation is simple

- k internal vertices
- $3k + 1$ internal edges

k internal vertices

$3k + 1$ internal edges
Application to simple triangulations

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation. (proof by shelling procedure)

Easier proof: Any simple planar graph $G = (V, E)$ satisfies

$$|E| \leq 3|V| - 6 \quad \text{(Euler relation)}$$

hence the existence/accessibility conditions are satisfied. □
Application to simple triangulations

- From the lattice property (taking the min) we have

 family \mathcal{F} of simple triangulations \leftrightarrow subfamily \mathcal{O}_T of \mathcal{O} where:
 - faces have degree 3
 - inner vertices have indegree 3

- From the bijection Φ specialized to \mathcal{O}_T, we have

 $\mathcal{F} \leftrightarrow$ mobiles where all vertices have degree 3

[Bernardi, F’10], other bijection in [Poulalhon, Schaeffer’03]
Counting formula for simple triangulations

Let $T_n = \#$ rooted simple triangulations with $n + 3$ vertices

marked face (outer) + marked edge

$\Rightarrow T_n = \frac{2(4n + 1)!}{(n + 1)!(3n + 2)!}$
Application to simple quadrangulations

2-orientation = orientation where each internal vertex has indegree 2

[de Fraysseix, Ossona de Mendez’01]:
A quadrangulation Q admits a 2-orientation iff Q is simple
Every 2-orientation is accessible from the outer contour
(proof by shelling algorithm)

![Diagram of a quadrangulation](image)

Proof from existence criterion:
for every simple bipartite graph $G = (V, E)$, one has $|E| \leq 2|V| - 4$
Application to simple quadrangulations

- Specializing the meta bijection Φ we get

 - indegrees $= 2$
 - face-degrees $= 4$

 - every \bigcirc has degree 2
 - every \bullet has degree 4

 (\simeq unrooted ternary tree)
Application to simple quadrangulations

• Specializing the meta bijection Φ we get

\[
\text{indegrees} = 2 \\
\text{face-degrees} = 4
\]

• recover a bijection in [Schaeffer’99]

• bijection \Rightarrow there are \(\frac{4(3n)!}{n!(2n+2)!} \) rooted simple quadrangulations with \(n \) faces

\[
\text{every } \circ \text{ has degree 2} \\
\text{every } \bullet \text{ has degree 4} \\
(\sim \text{ unrooted ternary tree})
\]
Extension to any girth and face-degrees

girth = length shortest cycle

Rk: girth \leq \text{minimal face-degree}

Our approach works in any girth d, with control on the face-degrees

Other approach using slice decompositions [Bouttier,Guitter’15]