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Planar graphs and planar maps

* A graph is planar iff it admits a planar drawing (no
edge-crossings)

———————————————————————————————————————————————————————————————
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Planar graphs and planar maps

* A graph is planar iff it admits a planar drawing (no
edge-crossings)

———————————————————————————————————————————————————————————————

-1 &

a planar graph ' 1a non-planar graph

* We consider labelled graphs/maps: the n vertices carry
distinct labels in [1,... n].
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Planar graph enumeration

Let GG|n| be the number of planar graphs with n vertices.
Let G(x) =), G[n]f”’n—T be the counting series.
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Planar graph enumeration

Let GG|n| be the number of planar graphs with n vertices.
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* Exact enumeration [Bodirsky, Groepl, Kang'03]:
The numbers G|n] can be computed in polynomial time:
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Planar graph enumeration

Let GG|n| be the number of planar graphs with n vertices.
Let G(x) =), G[n]””n—f be the counting series.

* Exact enumeration [Bodirsky, Groepl, Kang'03]:
The numbers GG|n] can be computed in polynomial time:

2 3 4 5 6

G(z) = 12° +1x+2§+8 5 164 i 110235 = +32071a

* Asymptotic enumeration [Giménez and Noy'05]:
The numbers GG|n] satisfies asymptotically:
G[n] ~ nlg A"n "2
where g ~ 4.26 - 1079 and v ~ 27.22 are analytically

computable.
(+ limit laws for nr edges, nr connected components...) —»#/2!



Exact enumeration of planar
graphs
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Families of planar graphs

3 0-connected 3 3 2-connected 3
: general case ' 1 (at least 2 vertices) :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3 1-connected 3 3 3-connected 3
. (=connected) " | (at least 4 vertices) |

First terms:
Golz,y)= 1+a:—|—9§(1+y) 143y + 32+ 47 + -
Gi(z,y)= x+2,y+3,(3y +93) + ﬁ(16y3+15y4+6y5+y6)+---
Ga(z,y)= 2.y+ 3,@/ 323yt +6y5+y6)+
Gs(w,y)="211° + 5,(15?; +10y") +
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The counting scheme

1) Equivalence with maps (Whitney):

3-connected planar maps

$

3-connected planar graphs

2) Decomposition by increasing connectivity degree:

3-connected planar graphs

!

2-connected planar graphs

!

connected planar graphs

!

planar graphs
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3-connected planar graphs

* Whitney’s theorem: Each 3-connected planar graph
has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

— 1] —
G3(xay) — §M3($,y)
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3-connected planar graphs

* Whitney’s theorem: Each 3-connected planar graph
has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

— 1] —
GS(CC,y) — §M3($,y)

* Enumeration of rooted 3-connected maps
[Mullin, Schellenberg'68, Fusy, Poulalhon, Schaeffer'05]:

V(o) = a2 y (1+U)2(1+V)2)

l+zy 14y (14+U+V)3

with U =ay(1+V)?, V =y(1+U)>
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3-connected planar graphs

* Whitney’s theorem: Each 3-connected planar graph
has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

— 1] —
GS(CE, y) — §M3($,y)

* Enumeration of rooted 3-connected maps
[Mullin, Schellenberg'68, Fusy, Poulalhon, Schaeffer'05]:

V(o) = a2 y (1+U)2(1+V)2)

l+zy 14y (14+U+V)3

with U =ay(1+V)?, V =y(1+U)>
4

£C4 5 6
Gs(z,y) = Zy6+ (15y8 +10y°) + — o (60y° +432y1° + 540y +195¢y12) +- - -
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From 3-connected to 2-connected

Trakhtenbrot’s decomposition (1958):
A rooted 2-connected planar graph is either:

k > 2 components k > 2 components substitution at edges of
in series in parallel a 3-connected (planar!) graph

= tree-like decomposition of rooted 2-connected planar graphs
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From 3-connected to 2-connected

Trakhtenbrot’s decomposition (1958):
A rooted 2-connected planar graph is either:

k > 2 components k > 2 components substitution at edges of
in series in parallel a 3-connected (planar!) graph

= tree-like decomposition of rooted 2-connected planar graphs

Equation-system:

( Gy = +S+P+G3(x,:§(x,y))

{5 = 2(G =)/~ 2(Ts - 5)

. P = exp(G2—P)—1—(G2—P)
J

2 3 4 5
Ga(z,y) = Sry+ Srv° + 7 (By*+6y°+y°) + F7 (129°+70y%+100y "+15y54+10y?) + - - -
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From 2-connected to connected

Decomposition by vertex-substitution:

A pointed connected planar graph decomposes into a set of
pointed 2-connected planar graphs where each non pointed
vertex Is substituted by a pointed connected planar graph.

(= first level of the decomposition in 2-connected blocks)

%éﬁ@

G (x,y) = exp(G5 (G (z,y),
J

2 3 4
Gi(z,y) = =+ Sry+ %5 (3y? +v°) + &7 (16y° +15y* +6y° +¢°) +- - -
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From connected to general ones

A planar graph is a set of connected planar graphs:

-----
---------
. .
. "

. .
-------

O .
-------

Go(z,y) = exp(Gi(z,y))

4

2 3 4
Go(z,y)=1+z+ 5 (1 +y)+ Fr (1 + 3y + 3y + y°)+ 57 (1 4 6y + 15y* + 20y° +15y* +-6y° +4°) - - -
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Asymptotic enumeration of
planar graphs



The approach

Analytic combinatorics (Flajolet, Sedgewick'08)
Class C = U,,Cy,, coeff. ¢, = |Cy|, series: C(2) =) cn%
1. Find a combinatorial decomposition for C
2. Translate into an equation-system satisfied by C(z)

3. Analyse the singularities of C'(z), and transfer to
asymptotic formula for |C,]|.

- p.12/21



The approach

Analytic combinatorics (Flajolet, Sedgewick'08)
Class C = U,,Cy,, coeff. ¢, = |Cy|, series: C(2) =) cn%
1. Find a combinatorial decomposition for C
2. Translate into an equation-system satisfied by C(z)

3. Analyse the singularities of C'(z), and transfer to
asymptotic formula for |C,]|.

Example: binary trees
1. Decomposition: tree — (left tree, node, right tree)

2. Equation-system: |C(z) = z + C(2)?

3. Analysis: square-root singularity at z = 1/4

1 —+1—-4z 4"
C(z) = 5 = C’[n]w\/%ng/2
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Asymptotics 3-connected planar graphs
Rk: asymptotics of GG3|n| reduces to studying C?g[n, k|, as

Gl = Y F
k

[Bender, Richmond'84]: .
The explicit expression of Gg(az Y) = s Ms(x,Y) yields:

Vy > 0 fixed, Gg(ﬂ’), Y') = polynom + ¢/(1 — pgz”y))g/z +
4

: —~ T 29
if k = un +toy/n then Gsn.k| ~ nlc 3¢ /
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Asymptotics 3-connected planar graphs
Rk: asymptotics of GG3|n| reduces to studying C?g[n, k|, as

Gl = Y F
k

[Bender, Richmond'84]: .
The explicit expression of Gg(az Y) = s Ms(x,Y) yields:

Vy > 0 fixed, Gg(a:, Y') = polynom + /(1 — % )3/2 +

p3(Y)
v —~ 7 29
if k = un +toy/n then Gsn.k| ~ nlc 3¢
o
G'3|n, k o 42

i 2k [n
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Asymptotics 3-connected planar graphs
Rk: asymptotics of GG3|n| reduces to studying C?g[n, k|, as

Gafi) = 3 et
k

[Bender, Richmond'84]: .
The explicit expression of Gg(az Y) = s Ms(x,Y) yields:

Vy > 0 fixed, Gg([l’}, Y') = polynom + ¢/(1 — 395)3/2 + ...

p3(Y)
= 7 22
if k = un +toy/n then Gsn, k| ~ nl c. 3¢
o
G [ ]_ZG3[TL7 k] ' /Yn(o_\/ﬁ _t2/2dt)
aln| = T nle 3 2m e
4
n
ol L
Gsn| nle
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Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:
—
* Singularity analysis of G3(z,Y) from the explicit
expression (similar to binary trees):

— T 3/2
VY > 0fixed, Gs(x,Y) = polyn.+c(1— ) +. ..
p3(Y)

— p.14/21



Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:
—
* Singularity analysis of G3(z,Y) from the explicit
expression (similar to binary trees):

— T 3/2
VY > 0fixed, Gs(x,Y) = polyn.+c(1— ) +. ..
p3(Y)

[ [ H H L]
* Trace the singularities from G3(x,Y") to Ga(z,y) in
— — —
GQ(iC, y) — Sp decomp' - GS(xa GQ(iC, y)) :
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Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:
—
* Singularity analysis of G3(z,Y) from the explicit
expression (similar to binary trees):

— T 3/2
VY > 0fixed, Gs(x,Y) = polyn.+c(1— ) +. ..
p3(Y)

[ [ H H L]
* Trace the singularities from G3(x,Y") to Ga(z,y) in
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Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:
—
* Singularity analysis of G3(z,Y) from the explicit
expression (similar to binary trees):

— T 3/2
VY > 0fixed, Gs(x,Y) = polyn.+c(1— ) +. ..
p3(Y)

] ] ] H H =
* Trace the singularities from G3(x,Y") to Ga(z,y) in
—

C?Q(:E, y) = sp decomp. + CT:;(ZC, Ga(zx,y)) :

Vy > 0 fixed, 672)(:1:, y) = polynom + /(1 — p;z;y))?)/z +...
4

n
if k=pun+toy/n theﬁ @[nk} e ;136—162/2
H
n ,
Gon] = Z Galn, ] ~ n!cfyg(a\/H e_t2/2dt)

2 2k ne" un
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Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

e Singularity analysis of 673)(1;, Y') from the explicit
expression (similar to binary trees):

VY > 0 fixed, C?g(a:,Y) = polyn.+c(1—

X

p3(Y)

3/2
)+

. T — — .
* Trace the singularities from G3(x,Y") to Ga(z,y) in

—

H H
G2(z,y) = sp decomp. + G3(x, Ga(z,y)) :
Vy > 0 fixed, C?;(a:,y) = polynom + /(1 — pjy))?)/z +...
. 0
if k= un+toy/n theﬁ Goln.k], ~ n! Cn?’e_t /2
Goln. k] 7\ A" oV [ 2
Gon] g T ncng( n e dt)
n
Golnl ~ nld— L
9[n] nle’ 77
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Going to 1-connected: difficult !

* Trace the singularities from G5 (z,y) to G/ (x,y) in

G(z,y) = exp (Go(xG (2, y),v))
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Going to 1-connected: difficult !

* Trace the singularities from G (z,y) to G (x,y) in
G (z,y) = exp (G5(2G1(2,Y), y))

* Problem: we know the singular expansion of @(m,y)
not the one of G/ (z,y) !

0 0 /1 [—

\ J/

difficult
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Going to 1-connected: difficult !

* Trace the singularities from G (z,y) to G (x,y) in
G (z,y) = exp (G5(2G1(2,Y), y))

* Problem: we know the singular expansion of @(w,y)
not the one of G/ (z,y) !

0 0 /1 [—

\ J/

difficult
. . . H
® [Giménez, Noy’05]: analytic integration of Ga(x,y)dy.

[Chapuy, Fusy, Kang, Shoilekova’07, Leroux et al’07]:
“‘combinatorial” integration: obtain directly Go(z,y).
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Combinatorial integration on trees

e Let T'(x) be the series counting (unrooted) labeled trees

e Let T°(x) be the series counting pointed trees, specified by:
1°(x) = xexp(T°(z))

") dt.

T°n]=nTn] = T(r)= /()

How to integrate (obtain an equation-system specifying 7'(x))
without calculations ?

- p.16/21



Combinatorial integration on trees

e Let T'(x) be the series counting (unrooted) labeled trees

e Let T°(x) be the series counting pointed trees, specified by:
1°(x) = xexp(T°(z))
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T°n]=nTn] = T(r)= /0

How to integrate (obtain an equation-system specifying 7'(x))
without calculations ?

e Solution: There is one more vertex than edge in a tree:

T(z) = T°(z)—T°°(x)
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Combinatorial integration on trees

e Let T'(x) be the series counting (unrooted) labeled trees

e Let T°(x) be the series counting pointed trees, specified by:
1°(x) = xexp(T°(z))

") dt.

T°n]=nTn] = T(r)= /0

How to integrate (obtain an equation-system specifying 7'(x))
without calculations ?

e Solution: There is one more vertex than edge in a tree:

T(z) = T°(z)—T°°(x)

where T°(z) = xexp(T°(z) and T°°(x) = 1 T°(z)?
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Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).

— p.17/21



Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:

GQ(xvy) — GQO(xvy) - GQO_O(xvy)
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Look at the tree given by Trakhtenbrot's decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:
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Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:

GQ(xvy) — GQO(xvy) - GQO_O(xvy)

where G5 = Gy + G4 + G4
GZO—O _ GQS_P 4 GQS_T 4 GQP_T 4+ GQT_T

Each of the 7 families is decomposable:
Example: Gl (z,y) = Ga(, Ga(w,y))
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Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:

GQ(xvy) — GZO(xvy) - GQO_O(xvy)

where G5 = Gy + G4 + G4
GZO—O _ GQS_P 4 GQS_T 4 GQP_T 4+ GQT_T

Each of the 7 families is decomposable:
Example: Gl (z,y) = Ga(, Ga(w,y))

(Rq: G3 = M3 = 1(My — My + M;') by Euler's relation)
~— ~~ =~

vert. edge face

and each of MY, M3, M3 is decomposable

-~ p.17/21



Now can go to 1-connected

Equation from 2- to 1-connected:
G\ (z) = exp(Gy(zG1(x)))
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Now can go to 1-connected

Equation from 2- to 1-connected:
G\ (z) = exp(Gy(zG1(x)))

We are now able to analyse the singularities of G (x):

0

, B B 3/2
G5(x) = =—Go(x, 1) = polynom + c(l — x/pg) .

ox
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Now can go to 1-connected

Equation from 2- to 1-connected:
G\ (z) = exp(Gy(zG1(x)))

We are now able to analyse the singularities of G (x):

0

, B B B 3/2
G5(x) = —Go(x, 1) = polynom + ¢( 1 — x/ps .

ox

which yields (composition-effect in the equation):

/ / 3/2
G1($)=polyn0m+c(1—x/m) 4.
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Now can go to 1-connected

Equation from 2- to 1-connected:
Gy (x) = exp(G5(zG(2)))

We are now able to analyse the singularities of G (x):

0

, B B B 3/2
G5(x) = —Go(x, 1) = polynom + ¢( 1 — x/ps .

ox

which yields (composition-effect in the equation):

/ / 3/2
G1($)=polyn0m+c(1—x/m) 4.
Y

G'[n| ~ n! c”pl_"n_5/2

4

Gin| ~ n! c”pl_”n_7/2
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Finally go to O-connected !

Similar as from 2- to 1-connected (combinatorial integration):
Go(x) = exp(G1(x)).
Express GG1(x) directly from the (unrooted) block-tree

) N )
// /I

Gi(z) =Gy (z) = Gy " (2)

- p.19/21



Finally go to O-connected !

Similar as from 2- to 1-connected (combinatorial integration):
Go(x) = exp(G1(x)).
Express GG1(x) directly from the (unrooted) block-tree

) N )
// /I

Gi(z) =Gy (z) — Glo_o(a:)
where G (z) = Gy (x) + G (x) and G ~°(x) = G
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Finally go to O-connected !

Similar as from 2- to 1-connected (combinatorial integration):
Go(x) = exp(G1(x)).
Express GG1(x) directly from the (unrooted) block-tree

) N )
// /I

Gl(l’) = Glo(llf) — Glo_o(gj)
where G (z) = Gy (z) + G (x) and G ~°(x) = G
(The 3 families are decomposable, e.g., GlB(g;) = Gy(2Gh(2)))
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Finally go to O-connected !
Similar as from 2- to 1-connected (combinatorial integration):
Go(x) = exp(G1(x)).

Express GG1(x) directly from the (unrooted) block-tree

) J)ZQ\\\;SS:'
// y 7

Gl(l’) = Glo(llf) — Glo_o(gj)
where G (z) = Gy (z) + G (z) and G () = G
(The 3 families are decomposable, e.g., GlB(g;) = Gy(2Gh(2)))

= singular analysis of G1(z), then of Gy(z), yielding
—7/2

Goln| ~ nley™n
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Extension to any graph family

[Giménez, Noy, Rue’07, Chapuy, Fusy, Kang, Shoilekova’07]
Theorem: For a graph family (stable under taking 3-connected components) the
asymptotic study reduces to the asymptotic study for the 3-connected subfamily.

Applies to any family specified by a collection of forbidden 3-connected minors:

Typical examples:
®  Planar (=Forbid(Ks5, K3.3)): G[n] ~ n!y"n~7/2 [Giménez, Noy’05]
(asymptotics determined by 3-connected maps)
® Series-parallel (=Forbid(K4)): G[n] ~ n!y*n—5/2 [Bodirsky, Giménez,

Kang, Noy’05]
(asymptotics determined by tree-like decomposition along 2-cuts and 1-cuts)

In full generality, only partial results for graphs with forbidden minors

exponential growth [Norine et al.’06], with refinements in [Bernardi et al’07]
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In project: graphs on other surfaces

e Surfaces are classified according to the genus g

= &=

g=1 g=2

o Genus of a graph = minimal genus of a surface to embedd it

e Let G [n] be the number of graphs of genus g with n vertices

Exact enumeration seems difficult (Whitney’s theorem can fail,
genus might not add up for decomposition along 2-cuts)

genus of @+@ = 1 # genus of@ + genus of @

® But asymptotic enumeration is doable! (work with B. Mohar and J. Rué
[McDiarmid’08]: [ (G [n]/n))V/" — ~

(same growth as in the planar case)

For “almost all” graphs of genus g, the decomposition applies nicely
(one big 3-connected map of genus g, all the other components are planar)

ll implies
G(g) [n] ~ n' C(g),ynn5/2(g—1)—1
(Rk: this asymptotic pattern is known for embedded graphs ([Bender et al])

— p.21/21



	
	Planar graphs and planar maps
	Planar graph enumeration
	Exact enumeration of planar graphs
	Families of planar graphs
	The counting scheme
	3-connected planar graphs
	From 3-connected to 2-connected
	From 2-connected to connected
	From connected to general ones
	Asymptotic enumeration of planar graphs
	The approach
	Asymptotics 3-connected planar graphs
	Asymptotics 2-connected planar graphs
	Going to 1-connected: difficult !
	Combinatorial integration on trees
	Combin. integration for 2-connected
	Now can go to 1-connected
	Finally go to 0-connected !
	Extension to any graph family
	In project: graphs on other surfaces

