Decomposition and enumeration of planar graphs

Éric Fusy
Dept. Mathematics, University of British Columbia
(Vancouver)

Planar graphs and planar maps

- A graph is planar iff it admits a planar drawing (no edge-crossings)

Planar graphs and planar maps

- A graph is planar iff it admits a planar drawing (no edge-crossings)

a planar graph

- Planar map $=$ planar graph + planar embedding

Planar graphs and planar maps

- A graph is planar iff it admits a planar drawing (no edge-crossings)

a planar graph

a non-planar graph
- Planar map $=$ planar graph + planar embedding

- We consider labelled graphs/maps: the n vertices carry distinct labels in $[1, \ldots, n]$.

Planar graph enumeration

Let $G[n]$ be the number of planar graphs with n vertices.
Let $G(x)=\sum_{n} G[n] \frac{x^{n}}{n!}$ be the counting series.

Planar graph enumeration

Let $G[n]$ be the number of planar graphs with n vertices.
Let $G(x)=\sum_{n} G[n] \frac{x^{n}}{n!}$ be the counting series.

- Exact enumeration [Bodirsky, Groepl, Kang'03]: The numbers $G[n]$ can be computed in polynomial time:

$$
G(x)=1 x^{0}+1 x+2 \frac{x^{2}}{2!}+8 \frac{x^{3}}{3!}+64 \frac{x^{4}}{4!}+1023 \frac{x^{5}}{5!}+32071 \frac{x^{6}}{6!}+\cdots
$$

Planar graph enumeration

Let $G[n]$ be the number of planar graphs with n vertices.
Let $G(x)=\sum_{n} G[n] \frac{x^{n}}{n!}$ be the counting series.

- Exact enumeration [Bodirsky, Groepl, Kang'03]:

The numbers $G[n]$ can be computed in polynomial time:

$$
G(x)=1 x^{0}+1 x+2 \frac{x^{2}}{2!}+8 \frac{x^{3}}{3!}+64 \frac{x^{4}}{4!}+1023 \frac{x^{5}}{5!}+32071 \frac{x^{6}}{6!}+\cdots
$$

- Asymptotic enumeration [Giménez and Noy'05]: The numbers $G[n]$ satisfies asymptotically:

$$
G[n] \sim n!g \gamma^{n} n^{-7 / 2}
$$

where $g \approx 4.26 \cdot 10^{-6}$ and $\gamma \approx 27.22$ are analytically computable.
$(+$ limit laws for nr edges, nr connected components...) - p.3/21

Exact enumeration of planar graphs

Families of planar graphs

First terms:

$$
\begin{aligned}
& G_{0}(x, y)=1+x+\frac{x^{2}}{2!}(1+y)+\frac{x^{3}}{3!}\left(1+3 y+3 y^{2}+y^{3}\right)+\cdots \\
& G_{1}(x, y)=x+\frac{x^{2}}{2!} y+\frac{x^{3}}{3!}\left(3 y^{2}+y^{3}\right)+\frac{x^{4}}{4!}\left(16 y^{3}+15 y^{4}+6 y^{5}+y^{6}\right)+\cdots \\
& G_{2}(x, y)=\frac{x^{2}}{2!} y+\frac{x^{3}}{3!} y^{3}+\frac{x^{4}}{4!}\left(3 y^{4}+6 y^{5}+y^{6}\right)+\cdots \\
& G_{3}(x, y)=\frac{x^{4}}{4!} y^{6}+\frac{x^{5}}{5!}\left(15 y^{8}+10 y^{9}\right)+\cdots
\end{aligned}
$$

The counting scheme

1) Equivalence with maps (Whitney):

3-connected planar maps

3-connected planar graphs
2) Decomposition by increasing connectivity degree:

3-connected planar graphs \downarrow
2-connected planar graphs
connected planar graphs
planar graphs

3-connected planar graphs

- Whitney's theorem: Each 3-connected planar graph has two embeddings on the sphere, which differ by a reflexion (facial cycles can be read off from the graph)

$$
\overrightarrow{G_{3}}(x, y)=\frac{1}{2} \overrightarrow{M_{3}}(x, y)
$$

3-connected planar graphs

- Whitney's theorem: Each 3-connected planar graph has two embeddings on the sphere, which differ by a reflexion (facial cycles can be read off from the graph)

$$
\overrightarrow{G_{3}}(x, y)=\frac{1}{2} \overrightarrow{M_{3}}(x, y)
$$

- Enumeration of rooted 3-connected maps [Mullin, Schellenberg'68, Fusy, Poulalhon, Schaeffer'05]:

$$
\overrightarrow{M_{3}}(x, y)=x^{2} y^{2}\left(\frac{1}{1+x y}-\frac{y}{1+y}-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right)
$$

with $U=x y(1+V)^{2}, \quad V=y(1+U)^{2}$.

3-connected planar graphs

- Whitney's theorem: Each 3-connected planar graph has two embeddings on the sphere, which differ by a reflexion (facial cycles can be read off from the graph)

$$
\overrightarrow{G_{3}}(x, y)=\frac{1}{2} \overrightarrow{M_{3}}(x, y)
$$

- Enumeration of rooted 3-connected maps [Mullin, Schellenberg'68, Fusy, Poulalhon, Schaeffer'05]:

$$
\overrightarrow{M_{3}}(x, y)=x^{2} y^{2}\left(\frac{1}{1+x y}-\frac{y}{1+y}-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right)
$$

with $U=x y(1+V)^{2}, \quad V=y(1+U)^{2}$.
\Downarrow

$$
G_{3}(x, y)=\frac{x^{4}}{4!} y^{6}+\frac{x^{5}}{5!}\left(15 y^{8}+10 y^{9}\right)+\frac{x^{6}}{6!}\left(60 y^{9}+432 y^{10}+540 y^{11}+195 y^{12}\right)+\cdots
$$

From 3-connected to 2-connected

Trakhtenbrot's decomposition (1958):
A rooted 2-connected planar graph is either:

$k \geq 2$ components in series

$k \geq 2$ components

substitution at edges of a 3-connected (planar!) graph
\Rightarrow tree-like decomposition of rooted 2-connected planar graphs

From 3-connected to 2-connected

Trakhtenbrot's decomposition (1958):
A rooted 2-connected planar graph is either:

$k \geq 2$ components in series

$k \geq 2$ components

substitution at edges of a 3-connected (planar!) graph
\Rightarrow tree-like decomposition of rooted 2-connected planar graphs
Equation-system:

$$
\begin{gathered}
\left\{\begin{aligned}
& \overrightarrow{G_{2}}=y+S+P+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right) \\
& S=x\left(\overrightarrow{G_{2}}-S\right) /\left(1-x\left(\overrightarrow{G_{2}}-S\right)\right) \\
& P=\exp \left(\overrightarrow{G_{2}}-P\right)-1-\left(\overrightarrow{G_{2}}-P\right) \\
& \Downarrow
\end{aligned}\right. \\
G_{2}(x, y)=\frac{x^{2}}{2!} y+\frac{x^{3}}{3!} y^{3}+\frac{x^{4}}{4!}\left(3 y^{4}+6 y^{5}+y^{6}\right)+\frac{x^{5}}{5!}\left(12 y^{5}+70 y^{6}+100 y^{7}+15 y^{8}+10 y^{9}\right)+\cdots
\end{gathered}
$$

From 2-connected to connected

Decomposition by vertex-substitution:
A pointed connected planar graph decomposes into a set of pointed 2-connected planar graphs where each non pointed vertex is substituted by a pointed connected planar graph.
($=$ first level of the decomposition in 2-connected blocks)

From connected to general ones

A planar graph is a set of connected planar graphs:

$$
G_{0}(x, y)=\exp \left(G_{1}(x, y)\right)
$$

\Downarrow

$$
G_{0}(x, y)=1+x+\frac{x^{2}}{2!}(1+y)+\frac{x^{3}}{3!}\left(1+3 y+3 y^{2}+y^{3}\right)+\frac{x^{4}}{4!}\left(1+6 y+15 y^{2}+20 y^{3}+15 y^{4}+6 y^{5}+y^{6}\right) \cdots
$$

Asymptotic enumeration of planar graphs

The approach

Analytic combinatorics (Flajolet, Sedgewick'08)
Class $\mathcal{C}=\cup_{n} \mathcal{C}_{n}$, coeff. $c_{n}=\left|\mathcal{C}_{n}\right|$, series: $C(z)=\sum_{n} c_{n} \frac{z^{n}}{n!}$

1. Find a combinatorial decomposition for \mathcal{C}
2. Translate into an equation-system satisfied by $C(z)$
3. Analyse the singularities of $C(z)$, and transfer to asymptotic formula for $\left|\mathcal{C}_{n}\right|$.

The approach

Analytic combinatorics (Flajolet, Sedgewick'08)
Class $\mathcal{C}=\cup_{n} \mathcal{C}_{n}$, coeff. $c_{n}=\left|\mathcal{C}_{n}\right|$, series: $C(z)=\sum_{n} c_{n} \frac{z^{n}}{n!}$

1. Find a combinatorial decomposition for \mathcal{C}
2. Translate into an equation-system satisfied by $C(z)$
3. Analyse the singularities of $C(z)$, and transfer to asymptotic formula for $\left|\mathcal{C}_{n}\right|$.

Example: binary trees

1. Decomposition: tree \rightarrow (left tree, node, right tree)
2. Equation-system: $C(z)=z+C(z)^{2}$
3. Analysis: square-root singularity at $z=1 / 4$

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2} \Rightarrow C[n] \sim \frac{4^{n}}{\sqrt{\pi} n^{3 / 2}}
$$

Asymptotics 3-connected planar graphs

Re: asymptotics of $G_{3}[n]$ reduces to studying $\overrightarrow{G_{3}}[n, k]$, as

$$
G_{3}[n]=\sum_{k} \frac{\overrightarrow{G_{3}}[n, k]}{2 k}
$$

[Bender, Richmond'84]:
The explicit expression of $\overrightarrow{G_{3}}(x, Y)=\frac{1}{2} \overrightarrow{M_{3}}(x, Y)$ yields:

$$
\begin{aligned}
& \forall y>0 \text { fixed, } \overrightarrow{G_{3}}(x, Y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots \\
& \forall \\
& \text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{3}}[n \cdot k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2}
\end{aligned}
$$

Asymptotics 3-connected planar graphs

Re: asymptotics of $G_{3}[n]$ reduces to studying $\overrightarrow{G_{3}}[n, k]$, as

$$
G_{3}[n]=\sum_{k} \frac{\overrightarrow{G_{3}}[n, k]}{2 k}
$$

[Bender, Richmond'84]:
The explicit expression of $\overrightarrow{G_{3}}(x, Y)=\frac{1}{2} \overrightarrow{M_{3}}(x, Y)$ yields:

$$
\begin{aligned}
& \forall y>0 \text { fixed, } \begin{array}{r}
\overrightarrow{G_{3}}(x, Y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots \\
\Downarrow \\
\text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{3}}[n \cdot k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2} \\
\quad \Downarrow \\
G_{3}[n]=\sum_{k} \frac{\overrightarrow{G_{3}}[n, k]}{2 k} \sim n!c \frac{\gamma^{n}}{n^{3}}\left(\frac{\sigma \sqrt{n}}{\mu n} \int e^{-t^{2} / 2} \mathrm{~d} t\right)
\end{array} .
\end{aligned}
$$

Asymptotics 3-connected planar graphs

Re: asymptotics of $G_{3}[n]$ reduces to studying $\overrightarrow{G_{3}}[n, k]$, as

$$
G_{3}[n]=\sum_{k} \frac{\overrightarrow{G_{3}}[n, k]}{2 k}
$$

[Bender, Richmond'84]:
The explicit expression of $\overrightarrow{G_{3}}(x, Y)=\frac{1}{2} \overrightarrow{M_{3}}(x, Y)$ yields:

$$
\begin{gathered}
\forall y>0 \text { fixed, } \overrightarrow{G_{3}}(x, Y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots \\
\Downarrow \\
\text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{3}}[n, k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2} \\
\Downarrow \\
G_{3}[n]=\sum_{k} \frac{\overrightarrow{G_{3}}[n, k]}{2 k} \sim n!c \frac{\gamma^{n}}{n^{3}}\left(\frac{\sigma \sqrt{n}}{2 \mu n} \int e^{-t^{2} / 2} \mathrm{~d} t\right) \\
\Downarrow \\
\quad G_{3}[n] \sim n!c^{\prime} \frac{\gamma^{n}}{n^{7 / 2}}
\end{gathered}
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):

$$
\forall Y>0 \text { fixed }, \quad \overrightarrow{G_{3}}(x, Y)=\text { polyn. }+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):

$$
\forall Y>0 \text { fixed, } \quad \overrightarrow{G_{3}}(x, Y)=\text { polyn. }+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots
$$

- Trace the singularities from $\overrightarrow{G_{3}}(x, Y)$ to $\overrightarrow{G_{2}}(x, y)$ in

$$
\overrightarrow{G_{2}}(x, y)=\operatorname{sp} \text { decomp. }+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right):
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):

$$
\forall Y>0 \text { fixed, } \overrightarrow{G_{3}}(x, Y)=\text { polyn. }+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots
$$

- Trace the singularities from $\overrightarrow{G_{3}}(x, Y)$ to $\overrightarrow{G_{2}}(x, y)$ in

$$
\overrightarrow{G_{2}}(x, y)=\text { sp decomp. }+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right):
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):
$\forall Y>0$ fixed, $\overrightarrow{G_{3}}(x, Y)=$ polyn. $+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots$
- Trace the singularities from $\overrightarrow{G_{3}}(x, Y)$ to $\overrightarrow{G_{2}}(x, y)$ in

$$
\overrightarrow{G_{2}}(x, y)=\operatorname{sp} \text { decomp. }+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right):
$$

$$
\begin{array}{r}
\forall y>0 \text { fixed, } \begin{array}{r}
\overrightarrow{G_{2}}(x, y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{2}(y)}\right)^{3 / 2}+\ldots \\
\Downarrow \\
\text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{2}}[n . k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2}
\end{array} .=\text {. }
\end{array}
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):
$\forall Y>0$ fixed, $\overrightarrow{G_{3}}(x, Y)=$ polyn. $+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots$
- Trace the singularities from $\overrightarrow{G_{3}}(x, Y)$ to $\overrightarrow{G_{2}}(x, y)$ in

$$
\overrightarrow{G_{2}}(x, y)=\mathrm{sp} \text { decomp. }+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right):
$$

$$
\begin{aligned}
& \forall y>0 \text { fixed, } \overrightarrow{G_{2}}(x, y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{2}(y)}\right)^{3 / 2}+\ldots \\
& \forall \\
& \text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{2}}[n \cdot k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2} \\
& G_{2}[n]=\sum_{k} \frac{\overrightarrow{G_{2}}[n, k]}{2 k} \sim n!c \frac{\gamma^{n}}{n^{3}}\left(\frac{\sigma \sqrt{n}}{\mu n} \int e^{-t^{2} / 2} \mathrm{~d} t\right)
\end{aligned}
$$

Asymptotics 2-connected planar graphs

[Bender, Gao, Wormald'2002]:

- Singularity analysis of $\overrightarrow{G_{3}}(x, Y)$ from the explicit expression (similar to binary trees):
$\forall Y>0$ fixed, $\overrightarrow{G_{3}}(x, Y)=$ polyn. $+c\left(1-\frac{x}{\rho_{3}(Y)}\right)^{3 / 2}+\ldots$
- Trace the singularities from $\overrightarrow{G_{3}}(x, Y)$ to $\overrightarrow{G_{2}}(x, y)$ in

$$
\overrightarrow{G_{2}}(x, y)=\mathrm{sp} \text { decomp. }+\overrightarrow{G_{3}}\left(x, \overrightarrow{G_{2}}(x, y)\right):
$$

$$
\begin{aligned}
& \forall y>0 \text { fixed }, \overrightarrow{G_{2}}(x, y)=\text { polynom }+c^{\prime}\left(1-\frac{x}{\rho_{2}(y)}\right)^{3 / 2}+\ldots \\
& \text { if } k=\mu n+t \sigma \sqrt{n} \text { then } \overrightarrow{G_{2}}[n . k]_{n \rightarrow \infty}^{\sim} n!c \frac{\gamma^{n}}{n^{3}} e^{-t^{2} / 2} \\
& \left.G_{2}[n]=\sum_{k} \frac{\overrightarrow{G_{2}}[n, k]}{2 k} \sim \underset{\substack{\Downarrow \\
\Downarrow}}{\substack{\Downarrow \\
n^{3}}} \frac{\gamma^{n}}{\mu n} \int e^{-t^{2} / 2} \mathrm{~d} t\right) \\
& G_{2}[n] \sim n!c^{\prime} \frac{\gamma^{n}}{n^{7 / 2}}
\end{aligned}
$$

Going to 1-connected: difficult!

- Trace the singularities from $G_{2}^{\prime}(x, y)$ to $G_{1}^{\prime}(x, y)$ in

$$
G_{1}^{\prime}(x, y)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x, y), y\right)\right)
$$

Going to 1-connected: difficult !

- Trace the singularities from $G_{2}^{\prime}(x, y)$ to $G_{1}^{\prime}(x, y)$ in

$$
G_{1}^{\prime}(x, y)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x, y), y\right)\right)
$$

- Problem: we know the singular expansion of $\overrightarrow{G_{2}}(x, y)$, not the one of $G_{2}^{\prime}(x, y)$!

$$
G_{2}^{\prime}(x, y)=\frac{\partial}{\partial x} G_{2}(x, y)=\frac{\partial}{\partial x}(\frac{1}{2} \underbrace{\int \overrightarrow{G_{2}}(x, y) \mathrm{d} y}_{\text {difficult }})
$$

Going to 1-connected: difficult !

- Trace the singularities from $G_{2}^{\prime}(x, y)$ to $G_{1}^{\prime}(x, y)$ in

$$
G_{1}^{\prime}(x, y)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x, y), y\right)\right)
$$

- Problem: we know the singular expansion of $\overrightarrow{G_{2}}(x, y)$, not the one of $G_{2}^{\prime}(x, y)$!

$$
G_{2}^{\prime}(x, y)=\frac{\partial}{\partial x} G_{2}(x, y)=\frac{\partial}{\partial x}(\frac{1}{2} \underbrace{\int \overrightarrow{G_{2}}(x, y) \mathrm{d} y}_{\text {difficult }})
$$

- [Giménez, Noy'05]: analytic integration of $\overrightarrow{G_{2}}(x, y) \mathrm{d} y$. [Chapuy, Fusy, Kang, Shoilekova'07, Leroux et al'07]: "combinatorial" integration: obtain directly $G_{2}(x, y)$.

Combinatorial integration on trees

- Let $T(x)$ be the series counting (unrooted) labeled trees
- Let $T^{\circ}(x)$ be the series counting pointed trees, specified by:

$$
\begin{aligned}
T^{\circ}(x) & =x \exp \left(T^{\circ}(x)\right) \\
T^{\circ}[n]=n T[n] & \Rightarrow T(x)=\int_{0}^{x} \frac{T^{\circ}(t)}{t} \mathrm{~d} t
\end{aligned}
$$

How to integrate (obtain an equation-system specifying $T(x)$) without calculations ?

Combinatorial integration on trees

- Let $T(x)$ be the series counting (unrooted) labeled trees
- Let $T^{\circ}(x)$ be the series counting pointed trees, specified by:

$$
\begin{aligned}
T^{\circ}(x) & =x \exp \left(T^{\circ}(x)\right) \\
T^{\circ}[n]=n T[n] & \Rightarrow T(x)=\int_{0}^{x} \frac{T^{\circ}(t)}{t} \mathrm{~d} t
\end{aligned}
$$

How to integrate (obtain an equation-system specifying $T(x)$) without calculations ?

- Solution: There is one more vertex than edge in a tree:

$$
T(x)=T^{\circ}(x)-T^{\circ-\circ}(x)
$$

Combinatorial integration on trees

- Let $T(x)$ be the series counting (unrooted) labeled trees
- Let $T^{\circ}(x)$ be the series counting pointed trees, specified by:

$$
\begin{aligned}
T^{\circ}(x) & =x \exp \left(T^{\circ}(x)\right) \\
T^{\circ}[n]=n T[n] & \Rightarrow T(x)=\int_{0}^{x} \frac{T^{\circ}(t)}{t} \mathrm{~d} t
\end{aligned}
$$

How to integrate (obtain an equation-system specifying $T(x)$) without calculations ?

- Solution: There is one more vertex than edge in a tree:

$$
T(x)=T^{\circ}(x)-T^{\circ-\circ}(x)
$$

where $T^{\circ}(x)=x \exp \left(T^{\circ}(x)\right.$ and $T^{\circ-\circ}(x)=\frac{1}{2} T^{\circ}(x)^{2}$

Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an unrooted tree (cf [Tutte'63]: decomposition along 2-cuts).

Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an unrooted tree (cf [Tutte'63]: decomposition along 2-cuts). Apply the same trick as for trees:

$$
G_{2}(x, y)=G_{2}^{\circ}(x, y)-G_{2}^{\circ-\circ}(x, y)
$$

Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an unrooted tree (cf [Tutte'63]: decomposition along 2-cuts). Apply the same trick as for trees:

$$
G_{2}(x, y)=G_{2}^{\circ}(x, y)-G_{2}^{\circ-\circ}(x, y)
$$

where $G_{2}^{\circ}=G_{2}^{S}+G_{2}^{P}+G_{2}^{T}$

$$
G_{2}^{\circ-\circ}=G_{2}^{S-P}+G_{2}^{S-T}+G_{2}^{P-T}+G_{2}^{T-T}
$$

Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an unrooted tree (cf [Tutte'63]: decomposition along 2-cuts). Apply the same trick as for trees:

$$
G_{2}(x, y)=G_{2}^{\circ}(x, y)-G_{2}^{\circ-\circ}(x, y)
$$

where $G_{2}^{\circ}=G_{2}^{S}+G_{2}^{P}+G_{2}^{T}$

$$
G_{2}^{\circ-\circ}=G_{2}^{S-P}+G_{2}^{S-T}+G_{2}^{P-T}+G_{2}^{T-T}
$$

Each of the 7 families is decomposable:
Example: $G_{2}^{T}(x, y)=G_{3}\left(x, \overrightarrow{G_{2}}(x, y)\right)$

Combin. integration for 2-connected

Look at the tree given by Trakhtenbrot's decomposition as an unrooted tree (cf [Tutte'63]: decomposition along 2-cuts). Apply the same trick as for trees:

$$
G_{2}(x, y)=G_{2}^{\circ}(x, y)-G_{2}^{\circ-\circ}(x, y)
$$

where $G_{2}^{\circ}=G_{2}^{S}+G_{2}^{P}+G_{2}^{T}$

$$
G_{2}^{\circ-\circ}=G_{2}^{S-P}+G_{2}^{S-T}+G_{2}^{P-T}+G_{2}^{T-T}
$$

Each of the 7 families is decomposable:
Example: $G_{2}^{T}(x, y)=G_{3}\left(x, \overrightarrow{G_{2}}(x, y)\right)$
(Rq: $G_{3}=\frac{1}{2} M_{3}=\frac{1}{4}(\underbrace{M_{3}^{V}}_{\text {vert. }}-\underbrace{M_{3}^{E}}_{\text {edge }}+\underbrace{M_{3}^{F}}_{\text {face }})$ by Euler's relation)
and each of $M_{3}^{V}, M_{3}^{E}, M_{3}^{F}$ is decomposable

Now can go to 1-connected

Equation from 2- to 1-connected:

$$
G_{1}^{\prime}(x)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x)\right)\right)
$$

Now can go to 1-connected

Equation from 2- to 1-connected:

$$
G_{1}^{\prime}(x)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x)\right)\right)
$$

We are now able to analyse the singularities of $G_{2}^{\prime}(x)$:

$$
G_{2}^{\prime}(x)=\frac{\partial}{\partial x} G_{2}(x, 1)=\text { polynom }+c\left(1-x / \rho_{2}\right)^{3 / 2}+\ldots
$$

Now can go to 1-connected

Equation from 2- to 1-connected:

$$
G_{1}^{\prime}(x)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x)\right)\right)
$$

We are now able to analyse the singularities of $G_{2}^{\prime}(x)$:

$$
G_{2}^{\prime}(x)=\frac{\partial}{\partial x} G_{2}(x, 1)=\text { polynom }+c\left(1-x / \rho_{2}\right)^{3 / 2}+\ldots
$$

which yields (composition-effect in the equation):

$$
G_{1}^{\prime}(x)=\text { polynom }+c^{\prime}\left(1-x / \rho_{1}\right)^{3 / 2}+\cdots
$$

Now can go to 1-connected

Equation from 2- to 1-connected:

$$
G_{1}^{\prime}(x)=\exp \left(G_{2}^{\prime}\left(x G_{1}^{\prime}(x)\right)\right)
$$

We are now able to analyse the singularities of $G_{2}^{\prime}(x)$:

$$
G_{2}^{\prime}(x)=\frac{\partial}{\partial x} G_{2}(x, 1)=\text { polynom }+c\left(1-x / \rho_{2}\right)^{3 / 2}+\ldots
$$

which yields (composition-effect in the equation):

$$
\begin{gathered}
G_{1}^{\prime}(x)=\text { polynom }+c^{\prime}\left(1-x / \rho_{1}\right)^{3 / 2}+\cdots \\
\Downarrow \\
G_{1}^{\prime}[n] \sim n!c^{\prime \prime} \rho_{1}^{-n} n^{-5 / 2} \\
\Downarrow \\
G_{1}[n] \sim n!c^{\prime \prime} \rho_{1}^{-n} n^{-7 / 2}
\end{gathered}
$$

Finally go to 0-connected!

Similar as from 2- to 1-connected (combinatorial integration):

$$
G_{0}(x)=\exp \left(G_{1}(x)\right)
$$

Express $G_{1}(x)$ directly from the (unrooted) block-tree

Finally go to 0 -connected!

Similar as from 2- to 1-connected (combinatorial integration):

$$
G_{0}(x)=\exp \left(G_{1}(x)\right)
$$

Express $G_{1}(x)$ directly from the (unrooted) block-tree

$$
G_{1}(x)=G_{1}^{\circ}(x)-G_{1}^{\circ-\circ}(x)
$$

where $G_{1}^{\circ}(x)=G_{1}^{\mathrm{v}}(x)+G_{1}^{\mathrm{B}}(x)$ and $G_{1}^{\circ}{ }^{\circ}(x)=G_{1}^{\mathrm{v}-\mathrm{B}}$

Finally go to 0-connected!

Similar as from 2- to 1-connected (combinatorial integration):

$$
G_{0}(x)=\exp \left(G_{1}(x)\right) .
$$

Express $G_{1}(x)$ directly from the (unrooted) block-tree

$$
G_{1}(x)=G_{1}^{\circ}(x)-G_{1}^{\circ-\circ}(x)
$$

where $G_{1}^{\circ}(x)=G_{1}^{\mathrm{v}}(x)+G_{1}^{\mathrm{B}}(x)$ and $G_{1}^{\circ-\circ}(x)=G_{1}^{\mathrm{v}-\mathrm{B}}$
(The 3 families are decomposable, e.g., $G_{1}^{\mathrm{B}}(x)=G_{2}\left(x G_{1}^{\prime}(x)\right)$)

Finally go to 0-connected!

Similar as from 2- to 1-connected (combinatorial integration):

$$
G_{0}(x)=\exp \left(G_{1}(x)\right) .
$$

Express $G_{1}(x)$ directly from the (unrooted) block-tree

$$
G_{1}(x)=G_{1}^{\circ}(x)-G_{1}^{\circ-\circ}(x)
$$

where $G_{1}^{\circ}(x)=G_{1}^{\mathrm{v}}(x)+G_{1}^{\mathrm{B}}(x)$ and $G_{1}^{\circ}{ }^{\circ}(x)=G_{1}^{\mathrm{v}-\mathrm{B}}$
(The 3 families are decomposable, e.g., $G_{1}^{\mathrm{B}}(x)=G_{2}\left(x G_{1}^{\prime}(x)\right)$)
\Rightarrow singular analysis of $G_{1}(x)$, then of $G_{0}(x)$, yielding

$$
G_{0}[n] \sim n!c \gamma^{n} n^{-7 / 2}
$$

Extension to any graph family

[Giménez, Noy, Rue'07, Chapuy, Fusy, Kang, Shoilekova'07]
Theorem: For a graph family (stable under taking 3-connected components) the asymptotic study reduces to the asymptotic study for the 3 -connected subfamily.

Applies to any family specified by a collection of forbidden 3-connected minors:

Typical examples:

- Planar (=Forbid $\left(K_{5}, K_{3,3}\right)$): $G[n] \sim n!\gamma^{n} n^{-7 / 2}$ [Giménez, Noy'05] (asymptotics determined by 3-connected maps)
- Series-parallel $\left(=\operatorname{Forbid}\left(K_{4}\right)\right): G[n] \sim n!\gamma^{n} n^{-5 / 2}$ [Bodirsky, Giménez, Kang, Noy'05]
(asymptotics determined by tree-like decomposition along 2-cuts and 1-cuts)
In full generality, only partial results for graphs with forbidden minors
exponential growth [Norine et al.'06], with refinements in [Bernardi et al'07]

In project: graphs on other surfaces

- Surfaces are classified according to the genus g

- Genus of a graph $=$ minimal genus of a surface to embedd it

Example: $\operatorname{genus}\left(K_{5}\right)=1$

- Let $G^{(g)}[n]$ be the number of graphs of genus g with n vertices Exact enumeration seems difficult (Whitney's theorem can fail, genus might not add up for decomposition along 2-cuts)

- But asymptotic enumeration is doable! (work with B. Mohar and J. Rué [McDiarmid'08]: $\left(G^{(g)}[n] / n!\right)^{1 / n} \rightarrow \gamma$ (same growth as in the planar case)

$$
\begin{aligned}
& \text { For "almost all" graphs of genus } g \text {, the decomposition applies nicely } \\
& \text { (one big 3-connected map of genus } g \text {, all the other components are planar) } \\
& \qquad \llbracket \text { implies } \\
& \qquad G^{(g)}[n] \sim n!c^{(g)} \gamma^{n} n^{5 / 2(g-1)-1} \\
& \hline
\end{aligned}
$$

(Rk: this asymptotic pattern is known for embedded graphs ([Bender et al])

