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Planar graphs and planar maps
• A graph is planar iff it admits a planar drawing (no

edge-crossings)
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• We consider labelled graphs/maps: the n vertices carry
distinct labels in [1, . . . , n].
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Planar graph enumeration
Let G[n] be the number of planar graphs with n vertices.

Let G(x) =
∑

n G[n]x
n

n!
be the counting series.
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Planar graph enumeration
Let G[n] be the number of planar graphs with n vertices.

Let G(x) =
∑

n G[n]x
n

n!
be the counting series.

• Exact enumeration [Bodirsky, Groepl, Kang’03]:
The numbers G[n] can be computed in polynomial time:

G(x) = 1x0+1x+2
x2

2!
+8

x3

3!
+64

x4

4!
+1023

x5

5!
+32071

x6

6!
+· · ·
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Planar graph enumeration
Let G[n] be the number of planar graphs with n vertices.

Let G(x) =
∑

n G[n]x
n

n!
be the counting series.

• Exact enumeration [Bodirsky, Groepl, Kang’03]:
The numbers G[n] can be computed in polynomial time:

G(x) = 1x0+1x+2
x2

2!
+8

x3

3!
+64

x4

4!
+1023

x5

5!
+32071

x6

6!
+· · ·

• Asymptotic enumeration [Giménez and Noy’05]:
The numbers G[n] satisfies asymptotically:

G[n] ∼ n!g γnn−7/2

where g ≈ 4.26 · 10−6 and γ ≈ 27.22 are analytically
computable.
(+ limit laws for nr edges, nr connected components...) – p.3/21



Exact enumeration of planar
graphs
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Families of planar graphs

0-connected

1-connected

2-connected

3-connected

(at least 2 vertices)

(at least 4 vertices)

general case

(=connected)

G0(x, y)=1 + x + x2

2!
(1 + y) + x3

3!
(1 + 3y + 3y2 + y3) + · · ·

G1(x, y)=x + x2

2!
y + x3

3!
(3y2 + y3) + x4

4!
(16y3 + 15y4 + 6y5 + y6) + · · ·

G2(x, y)= x2

2!
y + x3

3!
y3 + x4

4!
(3y4+6y5+y6) + · · ·

G3(x, y)= x4

4!
y6 + x5

5!
(15y8 + 10y9) + · · ·

First terms:

1 3 1 12 4 12 3 6 1
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The counting scheme

2) Decomposition by increasing connectivity degree:

3-connected planar graphs

1) Equivalence with maps (Whitney):

3-connected planar maps

3-connected planar graphs

2-connected planar graphs

connected planar graphs

planar graphs
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3-connected planar graphs
• Whitney’s theorem: Each 3-connected planar graph

has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

−→
G3(x, y) =

1

2

−→
M3(x, y).
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3-connected planar graphs
• Whitney’s theorem: Each 3-connected planar graph

has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

−→
G3(x, y) =

1

2

−→
M3(x, y).

• Enumeration of rooted 3-connected maps
[Mullin, Schellenberg’68, Fusy, Poulalhon, Schaeffer’05]:
−→
M3(x, y) = x2y2

( 1

1 + xy
− y

1 + y
− (1 + U)2(1 + V )2

(1 + U + V )3

)

with U = xy(1 + V )2, V = y(1 + U)2.
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3-connected planar graphs
• Whitney’s theorem: Each 3-connected planar graph

has two embeddings on the sphere, which differ by a
reflexion (facial cycles can be read off from the graph)

−→
G3(x, y) =

1

2

−→
M3(x, y).

• Enumeration of rooted 3-connected maps
[Mullin, Schellenberg’68, Fusy, Poulalhon, Schaeffer’05]:
−→
M3(x, y) = x2y2

( 1

1 + xy
− y

1 + y
− (1 + U)2(1 + V )2

(1 + U + V )3

)

with U = xy(1 + V )2, V = y(1 + U)2.

⇓

G3(x, y) =
x4

4!
y6+

x5

5!
(15y8+10y9)+

x6

6!
(60y9+432y10+540y11+195y12)+· · ·
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From 3-connected to 2-connected
Trakhtenbrot’s decomposition (1958):
A rooted 2-connected planar graph is either:

k ≥ 2 components
in series

k ≥ 2 components
in parallel

substitution at edges of
a 3-connected (planar!) graph

⇒ tree-like decomposition of rooted 2-connected planar graphs
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From 3-connected to 2-connected
Trakhtenbrot’s decomposition (1958):
A rooted 2-connected planar graph is either:

k ≥ 2 components
in series

k ≥ 2 components
in parallel

substitution at edges of
a 3-connected (planar!) graph

⇒ tree-like decomposition of rooted 2-connected planar graphs

Equation-system:






−→
G2 = y + S + P +

−→
G3(x,

−→
G2(x, y))

S = x(
−→
G2 − S)/(1 − x(

−→
G2 − S))

P = exp(
−→
G2 − P ) − 1 − (

−→
G2 − P )

⇓
G2(x, y) = x2

2!
y+ x3

3!
y3 + x4

4!
(3y4+6y5+y6)+ x5

5!
(12y5+70y6+100y7+15y8+10y9)+ · · ·
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From 2-connected to connected
Decomposition by vertex-substitution:
A pointed connected planar graph decomposes into a set of
pointed 2-connected planar graphs where each non pointed
vertex is substituted by a pointed connected planar graph.

(= first level of the decomposition in 2-connected blocks)

G′

1
(x, y) = exp(G′

2
(xG′

1
(x, y), y))

⇓
G1(x, y) = x + x2

2!
y+ x3

3!
(3y2+y3)+ x4

4!
(16y3+15y4+6y5+y6)+· · ·
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From connected to general ones
A planar graph is a set of connected planar graphs:

G0(x, y) = exp(G1(x, y))

⇓

G0(x, y)=1+x+ x2

2!
(1 + y)+ x3

3!
(1 + 3y + 3y2 + y3)+ x4

4!
(1 + 6y + 15y2 + 20y3+15y4+6y5+y6) · · ·

– p.10/21



Asymptotic enumeration of
planar graphs
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The approach
Analytic combinatorics (Flajolet, Sedgewick’08)

Class C = ∪nCn, coeff. cn = |Cn|, series: C(z) =
∑

n cn
zn

n!

1. Find a combinatorial decomposition for C
2. Translate into an equation-system satisfied by C(z)

3. Analyse the singularities of C(z), and transfer to
asymptotic formula for |Cn|.

– p.12/21



The approach
Analytic combinatorics (Flajolet, Sedgewick’08)

Class C = ∪nCn, coeff. cn = |Cn|, series: C(z) =
∑

n cn
zn

n!

1. Find a combinatorial decomposition for C
2. Translate into an equation-system satisfied by C(z)

3. Analyse the singularities of C(z), and transfer to
asymptotic formula for |Cn|.

Example: binary trees

1. Decomposition: tree → (left tree, node, right tree)

2. Equation-system: C(z) = z + C(z)2

3. Analysis: square-root singularity at z = 1/4

C(z) =
1 −

√
1 − 4z

2
⇒ C[n] ∼ 4n

√
πn3/2
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Asymptotics 3-connected planar graphs
Rk: asymptotics of G3[n] reduces to studying

−→
G3[n, k], as

G3[n] =
∑

k

−→
G3[n, k]

2k

[Bender, Richmond’84]:
The explicit expression of

−→
G3(x, Y ) = 1

2

−→
M3(x, Y ) yields:

∀y > 0 fixed,
−→
G3(x, Y ) = polynom + c′(1 − x

ρ3(Y ))
3/2 + . . .

if k = µn + tσ
√

n then
−→
G3[n.k] ∼

n→∞n! c
γn

n3e−t2/2
⇓
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Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

– p.14/21



Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

• Trace the singularities from
−→
G3(x, Y ) to

−→
G2(x, y) in

−→
G2(x, y) = sp decomp. +

−→
G3(x,

−→
G2(x, y)) :

– p.14/21



Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

• Trace the singularities from
−→
G3(x, Y ) to

−→
G2(x, y) in

−→
G2(x, y) = sp decomp. +

−→
G3(x,

−→
G2(x, y)) :

Y 7→ρ3(Y )

x 7→
−→

G2(x, y)

Y

x
ρ2(y) sp

– p.14/21



Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

• Trace the singularities from
−→
G3(x, Y ) to

−→
G2(x, y) in

−→
G2(x, y) = sp decomp. +

−→
G3(x,

−→
G2(x, y)) :

Y 7→ρ3(Y )

x 7→−→
G2(x, y)

Y

xρ2(y)

∀y > 0 fixed,

sp

−→
G2(x, y) = polynom + c′(1 − x

ρ2(y))
3/2 + . . .

if k = µn + tσ
√

n then
−→
G2[n.k] ∼

n→∞n! c
γn

n3e−t2/2
⇓

– p.14/21



Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

• Trace the singularities from
−→
G3(x, Y ) to

−→
G2(x, y) in

−→
G2(x, y) = sp decomp. +

−→
G3(x,

−→
G2(x, y)) :

Y 7→ρ3(Y )

x 7→−→
G2(x, y)

Y

xρ2(y)

∀y > 0 fixed,

sp

−→
G2(x, y) = polynom + c′(1 − x

ρ2(y))
3/2 + . . .

if k = µn + tσ
√

n then
−→
G2[n.k] ∼

n→∞n! c
γn

n3e−t2/2
⇓

⇓
G2[n] =

−→
G2[n, k]

2k
∼ n!c

γn

n3 (
σ
√

n

µn
e−t2/2dt)

k

– p.14/21



Asymptotics 2-connected planar graphs
[Bender, Gao, Wormald’2002]:

• Singularity analysis of
−→
G3(x, Y ) from the explicit

expression (similar to binary trees):

∀ Y > 0 fixed,
−→
G3(x, Y ) = polyn.+c

(

1− x

ρ3(Y )

)3/2

+. . .

• Trace the singularities from
−→
G3(x, Y ) to

−→
G2(x, y) in

−→
G2(x, y) = sp decomp. +

−→
G3(x,

−→
G2(x, y)) :

Y 7→ρ3(Y )

x 7→−→
G2(x, y)

Y

xρ2(y)

∀y > 0 fixed,

sp

−→
G2(x, y) = polynom + c′(1 − x

ρ2(y))
3/2 + . . .

if k = µn + tσ
√

n then
−→
G2[n.k] ∼

n→∞n! c
γn

n3e−t2/2
⇓

⇓
G2[n] =

−→
G2[n, k]

2k
∼ n!c

γn

n3 (
σ
√

n

µn
e−t2/2dt)

⇓

G2[n] ∼ n!c′
γn

n7/2

k

– p.14/21



Going to 1-connected: difficult !
• Trace the singularities from G′

2
(x, y) to G′

1
(x, y) in

G′

1(x, y) = exp
(
G′

2(xG′

1(x, y), y)
)
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Going to 1-connected: difficult !
• Trace the singularities from G′

2
(x, y) to G′

1
(x, y) in

G′

1(x, y) = exp
(
G′

2(xG′

1(x, y), y)
)

• Problem: we know the singular expansion of
−→
G2(x, y),

not the one of G′

2
(x, y) !

G′

2(x, y) =
∂

∂x
G2(x, y) =

∂

∂x

(1

2

∫ −→
G2(x, y)dy

︸ ︷︷ ︸

difficult

)

.
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Going to 1-connected: difficult !
• Trace the singularities from G′

2
(x, y) to G′

1
(x, y) in

G′

1(x, y) = exp
(
G′

2(xG′

1(x, y), y)
)

• Problem: we know the singular expansion of
−→
G2(x, y),

not the one of G′

2
(x, y) !

G′

2(x, y) =
∂

∂x
G2(x, y) =

∂

∂x

(1

2

∫ −→
G2(x, y)dy

︸ ︷︷ ︸

difficult

)

.

• [Giménez, Noy’05]: analytic integration of
−→
G2(x, y)dy.

[Chapuy, Fusy, Kang, Shoilekova’07, Leroux et al’07]:
“combinatorial” integration: obtain directly G2(x, y).
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Combinatorial integration on trees
• Let T (x) be the series counting (unrooted) labeled trees
• Let T ◦(x) be the series counting pointed trees, specified by:

T ◦(x) = x exp(T ◦(x))

T ◦[n] = nT [n] ⇒ T (x) =

∫ x

0

T ◦(t)

t
dt.

How to integrate (obtain an equation-system specifying T (x))
without calculations ?

– p.16/21
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Combinatorial integration on trees
• Let T (x) be the series counting (unrooted) labeled trees
• Let T ◦(x) be the series counting pointed trees, specified by:

T ◦(x) = x exp(T ◦(x))

T ◦[n] = nT [n] ⇒ T (x) =

∫ x

0

T ◦(t)

t
dt.

How to integrate (obtain an equation-system specifying T (x))
without calculations ?

• Solution: There is one more vertex than edge in a tree:

T (x) = T ◦(x)−T ◦−◦(x)

where T ◦(x) = x exp(T ◦(x) and T ◦−◦(x) = 1

2
T ◦(x)2
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Combin. integration for 2-connected
Look at the tree given by Trakhtenbrot’s decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
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Combin. integration for 2-connected
Look at the tree given by Trakhtenbrot’s decomposition as an
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Apply the same trick as for trees:

G2(x, y) = G ◦

2 (x, y) − G ◦−◦

2
(x, y)
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Combin. integration for 2-connected
Look at the tree given by Trakhtenbrot’s decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:

G2(x, y) = G ◦

2 (x, y) − G ◦−◦

2
(x, y)

where G ◦

2
= G S

2
+ G P

2
+ G T

2

G ◦−◦

2
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2
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2
+ G P−T

2
+ G T−T

2
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Each of the 7 families is decomposable:

Example: G T
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(x, y) = G3(x,
−→
G2(x, y))
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Combin. integration for 2-connected
Look at the tree given by Trakhtenbrot’s decomposition as an
unrooted tree (cf [Tutte’63]: decomposition along 2-cuts).
Apply the same trick as for trees:

G2(x, y) = G ◦

2 (x, y) − G ◦−◦

2
(x, y)

where G ◦

2
= G S

2
+ G P

2
+ G T

2

G ◦−◦

2
= G S−P

2
+ G S−T

2
+ G P−T

2
+ G T−T

2

Each of the 7 families is decomposable:

Example: G T
2

(x, y) = G3(x,
−→
G2(x, y))

(Rq: G3 = 1
2
M3 = 1

4
(MV

3
︸︷︷︸

vert.

− ME
3

︸︷︷︸

edge

+ MF
3

︸︷︷︸

face

) by Euler’s relation)

and each of MV
3 , ME

3 , MF
3 is decomposable
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Now can go to 1-connected
Equation from 2- to 1-connected:

G′

1(x) = exp(G′

2(xG′

1(x)))
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Now can go to 1-connected
Equation from 2- to 1-connected:

G′

1(x) = exp(G′

2(xG′

1(x)))

We are now able to analyse the singularities of G′

2
(x):

G′

2(x) =
∂

∂x
G2(x, 1) = polynom + c

(

1 − x/ρ2

)3/2

+ . . .
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Now can go to 1-connected
Equation from 2- to 1-connected:

G′

1(x) = exp(G′

2(xG′

1(x)))

We are now able to analyse the singularities of G′

2
(x):

G′

2(x) =
∂

∂x
G2(x, 1) = polynom + c

(

1 − x/ρ2

)3/2

+ . . .

which yields (composition-effect in the equation):

G′

1(x) = polynom + c′
(

1 − x/ρ1

)3/2

+ · · ·
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Now can go to 1-connected
Equation from 2- to 1-connected:

G′

1(x) = exp(G′

2(xG′

1(x)))

We are now able to analyse the singularities of G′

2
(x):

G′

2(x) =
∂

∂x
G2(x, 1) = polynom + c

(

1 − x/ρ2

)3/2

+ . . .

which yields (composition-effect in the equation):

G′

1(x) = polynom + c′
(

1 − x/ρ1

)3/2

+ · · ·
⇓

G′

1[n] ∼ n! c′′ρ−n
1

n−5/2

⇓

G1[n] ∼ n! c′′ρ−n
1

n−7/2
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Finally go to 0-connected !
Similar as from 2- to 1-connected (combinatorial integration):

G0(x) = exp(G1(x)).

Express G1(x) directly from the (unrooted) block-tree
v

v v

v

v

v

v

v

B

B

B

B

B
B

vv

v

G1(x) = G ◦

1 (x) − G ◦−◦

1
(x)
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v

v v

v

v

v

v

v

B

B

B

B

B
B

vv

v

G1(x) = G ◦

1 (x) − G ◦−◦

1
(x)

where G ◦

1
(x) = G v

1
(x) + G B

1
(x) and G ◦−◦

1
(x) = G v−B

1
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Finally go to 0-connected !
Similar as from 2- to 1-connected (combinatorial integration):

G0(x) = exp(G1(x)).

Express G1(x) directly from the (unrooted) block-tree
v

v v

v

v

v

v

v

B

B

B

B

B
B

vv

v

G1(x) = G ◦

1 (x) − G ◦−◦

1
(x)

where G ◦

1
(x) = G v

1
(x) + G B

1
(x) and G ◦−◦

1
(x) = G v−B

1

(The 3 families are decomposable, e.g., G B
1 (x) = G2(xG′

1(x)))
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Finally go to 0-connected !
Similar as from 2- to 1-connected (combinatorial integration):

G0(x) = exp(G1(x)).

Express G1(x) directly from the (unrooted) block-tree
v

v v

v

v

v

v

v

B

B

B

B

B
B

vv

v

G1(x) = G ◦

1 (x) − G ◦−◦

1
(x)

where G ◦

1
(x) = G v

1
(x) + G B

1
(x) and G ◦−◦

1
(x) = G v−B

1

(The 3 families are decomposable, e.g., G B
1 (x) = G2(xG′

1(x)))

⇒ singular analysis of G1(x), then of G0(x), yielding

G0[n] ∼ n! cγnn−7/2
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Extension to any graph family
[Giménez, Noy, Rue’07, Chapuy, Fusy, Kang, Shoilekova’07]

Theorem: For a graph family (stable under taking 3-connected components) the

asymptotic study reduces to the asymptotic study for the 3-connected subfamily.

Applies to any family specified by a collection of forbidden 3-connected minors:

Typical examples:

• Planar (=Forbid(K5, K3,3)): G[n] ∼ n! γnn−7/2 [Giménez, Noy’05]

(asymptotics determined by 3-connected maps)

• Series-parallel (=Forbid(K4)): G[n] ∼ n! γnn−5/2 [Bodirsky, Giménez,

Kang, Noy’05]

(asymptotics determined by tree-like decomposition along 2-cuts and 1-cuts)

In full generality, only partial results for graphs with forbidden minors

exponential growth [Norine et al.’06], with refinements in [Bernardi et al’07]
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In project: graphs on other surfaces

g = 2g = 1

• Surfaces are classified according to the genus g

• Genus of a graph = minimal genus of a surface to embedd it

Example: genus(K5)=1

• Let G(g)[n] be the number of graphs of genus g with n vertices

[McDiarmid’08]: (G(g)[n]/n!)1/n
→ γ (same growth as in the planar case)

Exact enumeration seems difficult (Whitney’s theorem can fail,
genus might not add up for decomposition along 2-cuts)

But asymptotic enumeration is doable! (work with B. Mohar and J. Rué

genus of 1 genus of genus of

For “almost all” graphs of genus g, the decomposition applies nicely
(one big 3-connected map of genus g, all the other components are planar)

implies

G(g)[n] ∼ n! c(g)γnn5/2(g−1)−1

•

(Rk: this asymptotic pattern is known for embedded graphs ([Bender et al])
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