ON SYMMETRIES IN PHYLOGENETIC TREES

ÉRIC FUSY∗

ABSTRACT. Billey et al. [arXiv:1507.04976] have recently discovered a surprisingly simple formula for the number $a_n(\sigma)$ of leaf-labelled rooted non-embedded binary trees (also known as phylogenetic trees) with $n \geq 1$ leaves, fixed (for the relabelling action) by a given permutation $\sigma \in \mathfrak{S}_n$. Denoting by $\lambda \vdash n$ the integer partition giving the sizes of the cycles of σ in non-increasing order, they show by a guessing/checking approach that if λ is a binary partition (it is known that $a_n(\sigma) = 0$ otherwise), then

$$a_n(\sigma) = \ell(\lambda) \prod_{i=2}^{\ell(\lambda)} (2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1),$$

and they derive from it a formula and random generation procedure for tanglegrams (and more generally for tangled chains). Our main result is a combinatorial proof of the formula for $a_n(\sigma)$, which yields a simplification of the random sampler for tangled chains.

1. Introduction

For A a finite set of cardinality $n \geq 1$, we denote by $\mathcal{B}[A]$ the set of rooted binary trees that are non-embedded (i.e., the order of the two children of each node does not matter) and have n leaves with distinct labels from A. Such trees are known as phylogenetic trees, where typically A is the set of represented species. Note that such a tree has $n - 1$ nodes and $2n - 1$ edges (we take here the convention of having an additional root-edge above the root-node, connected to a ‘fake-vertex’ that does not count as a node, see Figure 1).

![A phylogenetic tree with label-set [1..6], and the tree with relabeling action](image)

Figure 1. (a) A phylogenetic tree γ with label-set [1..6]. (b) The tree $\gamma' = \sigma \cdot \gamma$, with $\sigma = (1, 4, 3)(5)(2, 6)$. Since $\gamma' \neq \gamma$, γ is not fixed by σ (on the other hand γ is fixed by $(2, 3)(1, 4, 6, 5)$).

The group $\mathfrak{S}(A)$ of permutations of A acts on $\mathcal{B}[A]$: for $\gamma \in \mathcal{B}[A]$ and $\sigma \in \mathfrak{S}(A)$, $\sigma \cdot \gamma$ is obtained from γ after replacing the label i of every leaf by $\sigma(i)$, see

∗LIX, École Polytechnique, Palaiseau, France, fusy@lix.polytechnique.fr. Partly supported by the ANR grant “Cartaplus” 12-JS02-001-01 and the ANR grant “EGOS” 12-JS02-002-01.
Figure 1(b). We denote by $\mathcal{B}_\sigma[A]$ the set of trees fixed by the action of σ, i.e., $\mathcal{B}_\sigma[A] := \{\gamma \in \mathcal{B}[A] \text{ such that } \sigma \cdot \gamma = \gamma\}$. We also define $\mathcal{E}_\sigma[A]$ (resp. $\mathcal{E}[A]$) as the set of pairs (γ, e) where $\gamma \in \mathcal{B}_\sigma[A]$ (resp. $\gamma \in \mathcal{B}[A]$) and e is an edge of γ (among the $2n - 1$ edges). Define the cycle-type of σ as the integer partition $\lambda \vdash n$ giving the sizes of the cycles of σ (in non-increasing order). For $\lambda \vdash n$ an integer partition, the cardinality of $\mathcal{B}_\sigma[A]$ is the same for all permutations σ with cycle-type λ, and this common cardinality is denoted by r_λ. It is known (e.g. using cycle index sums [1, 3]) that $r_\lambda = 0$ unless λ is a binary partition (i.e., an integer partition whose parts are powers of 2). Billey et al. [2] have recently found the following remarkable formula, valid for any binary partition λ:

$$ r_\lambda = \prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_1 + \cdots + \lambda_{\ell(\lambda)}) - 1\right). \tag{1} $$

They prove the formula by a guessing/checking approach. Our main result here is a combinatorial proof of (1), which yields a simplification (see Section 3) of the random sampler for tanglegrams (and more generally tangled chains) given in [2].

Theorem 1. For A a finite set and σ a permutation on A whose cycle-type is a binary partition:

- If σ has one cycle, then $|\mathcal{B}_\sigma[A]| = 1$.
- If σ has more than one cycle, let c be a largest cycle of σ; denote by A' the set A without the elements of c, and denote by σ' the permutation σ restricted to A'. Then we have the combinatorial isomorphism

$$ \mathcal{B}_\sigma[A] \simeq \mathcal{E}_{\sigma'}[A']. \tag{2} $$

As we will see, the isomorphism (2) can be seen as an adaptation of Rémy’s method [7] to the setting of (non-embedded rooted) binary trees fixed by a given permutation. Note that Theorem 1 implies that the coefficients r_λ satisfy $r_\lambda = 1$ if λ is a binary partition with one part and $r_\lambda = (2|\lambda\lambda_1| - 1) \cdot r_{\lambda\lambda_1}$ if λ is a binary partition with more than one part, from which we recover (1).

2. Proof of Theorem 1

2.1. Case where the permutation σ has one cycle.

The fact that $|\mathcal{B}_\sigma[A]| = 1$ if σ has one cycle of size 2^k (for some $k \geq 0$) is well known from the structure of automorphisms in trees [6], for the sake of completeness we give a short justification. Since the case $k = 0$ is trivial we can assume that $k \geq 1$. Let c_1, c_2 be the two cycles of σ^2 (each of size 2^{k-1}), with the convention that c_1 contains the minimal element of A; denote by A_1, A_2 the induced bi-partition of A, and by $\sigma_1 = c_1$ (resp. $\sigma_2 = c_2$) the permutation σ^2 restricted to A_1 (resp. A_2). For $\gamma \in \mathcal{B}_\sigma[A]$ let γ_1, γ_2 be the two subtrees at the root-node of γ, such that the minimal element of A is in γ_1. Then clearly $\gamma_1 \in \mathcal{B}_{\sigma_1}[A_1]$ and $\gamma_2 \in \mathcal{B}_{\sigma_2}[A_2]$, and conversely for $\gamma_1 \in \mathcal{B}_{\sigma_1}[A_1]$ and $\gamma_2 \in \mathcal{B}_{\sigma_2}[A_2]$ the tree γ with (γ_1, γ_2) as subtrees at the root-node is in $\mathcal{B}_\sigma[A]$. Hence

$$ \mathcal{B}_\sigma[A] \simeq \mathcal{B}_{\sigma_1}[A_1] \times \mathcal{B}_{\sigma_2}[A_2], \tag{3} $$

which implies $|\mathcal{B}_\sigma[A]| = 1$ by induction on k (note that, also by induction on k, the underlying unlabelled tree is the complete binary tree of height k).
2.2. Case where the permutation σ has more than one cycle. Let $k \geq 0$ be the integer such that the largest cycle of σ has size 2^k. A first useful remark is that σ induces a permutation of the edges (resp. of the nodes) of γ, and each σ-cycle of edges (resp. of nodes) has size 2^i for some $i \in [0..k]$. We present the proof of (2) progressively, treating first the case $k = 0$, then $k = 1$, then general k.

Case $k = 0$. This case corresponds to σ being the identity, so that $B_\sigma[A] \simeq B[A]$, hence we just have to justify that $B_\sigma[A] \simeq E[B_{\sigma}[A\{i\}]$ for each fixed $i \in A$. This is easy to see using Rémy’s argument \cite{7}, used here in the non-embedded leaf-labelled context: every $\gamma \in B_\sigma[A]$ is uniquely obtained from some $(\gamma',e) \in E[B_{\sigma}[A\{i\}]$ upon inserting a new pending edge from the middle of e to a new leaf that is given label i, see Figure 2(a).

Case $k = 1$. Let $c = (a_1, a_2)$ be the selected cycle of σ, with $a_1 < a_2$. Two cases can arise (in each case we obtain from γ a pair (γ',e) with $\gamma' \in B_{\sigma'}[A']$ and e an edge of γ'):

- if a_1 and a_2 have the same parent v, we obtain a reduced tree $\gamma' \in B_{\sigma'}[A']$ by erasing the 3 edges incident to v (and the endpoints of these edges, which are a_1, a_2, v and the parent of v), and we mark the edge e of γ' whose middle was the parent of v, see the first case of Figure 2(b).
- if a_1 and a_2 have distinct parents, we can apply the operation of Figure 2(a) to each of a_1 and a_2, which yields a reduced tree $\gamma' \in B_{\sigma'}[A']$. We then mark the edge e of γ' whose middle was the parent of a_1, see the second case of Figure 2(b).

Conversely, starting from $(\gamma',e) \in E[A']$, the σ'-cycle of edges that contains e has either size 1 or 2:

- if it has size 1 (i.e., e is fixed by σ'), we insert a pending edge from the middle of e and leading to “cherry” with labels (a_1,a_2),
- if it has size 2, let $e' = \sigma'(e)$; then we attach at the middle of e (resp. e') a new pending edge leading to a new leaf of label a_1 (resp. a_2).

The general case $k \geq 0$. Recall that the marked cycle of σ is denoted by c. A node or leaf of the tree is generically called a vertex of the tree. We define a c-vertex as a vertex v of γ such that:

1 A similar argument in the context of triangulations of a polygon dates back to Rodrigues \cite{8}.
A c-vertex is called maximal if it is not the descendant of any other c-vertex; define a c-tree as a subtree formed by a maximal c-vertex v and its hanging subtree (if v is a leaf then the corresponding c-tree is reduced to v). Note that the maximal c-vertices are permuted by σ. Moreover since the leaves of c are permuted cyclically, the maximal c-vertices actually have to form a σ-cycle of vertices, of size 2^i for some $i \leq k$; and in each c-tree, σ^2 permutes the $2^k - i$ leaves of the c-tree cyclically. Let ℓ be the leaf of minimal label in c, and let w be the maximal c-vertex such that the c-tree at w contains ℓ. We obtain a reduced tree $\gamma' \in B_{\sigma'}[A']$ by erasing all c-trees and erasing the parent-edges and parent-vertices of all maximal c-vertices; and then we mark the edge e of γ' whose middle was the parent of w, see Figure 3.

Conversely, starting from $(\gamma', e) \in E_{\sigma'}[A']$, let $i \in [0..k]$ be such that the σ^i-cycle of edges that contains e has cardinality 2^i; write this cycle as e_0, \ldots, e_{2^i-1}, with $e_0 = e$. Starting from the element of c of minimal label, let (s_0, \ldots, s_{2^i-1}) be the 2^i (successive) first elements of c. And for $r \in [0..2^i - 1]$ let c_r be the cycle of σ^r that contains s_r, and let A_r be the set of elements in c_r (note that A_0, \ldots, A_{2^i-1} each have size 2^{k-i} and partition the set of elements in c). Let T_r be the unique (by Section 2.1) tree in $B[A_r]$ fixed by the cyclic permutation c_r. We obtain a tree $\gamma \in B_\sigma[A]$ as follows: for each $r \in [0..2^i-1]$ we create a new edge that connects the middle of e_r to a new copy of T_r.

To conclude we have described a mapping from $B_\sigma[A]$ to $E_{\sigma'}[A']$ and a mapping from $E_{\sigma'}[A']$ to $B_\sigma[A]$ that are readily seen to be inverse of each other, therefore $B_\sigma[A] \simeq E_{\sigma'}[A']$.

3. Application to the random generation of tangled chains

For $n \geq 1$, denote by n the set $\{1, \ldots, n\}$. A tanglegram of size n is an orbit of $B[n] \times B[n]$ under the relabelling action of S_n (see Figure 4 for an example). More generally, for $k \geq 1$, a tangled chain of length k and size n is an orbit of $B[n]^k$ under the relabelling action of S_n, see [5, 2, 3]. Let $T_n^{(k)}$ be the set of tangled chains of length k and size n, and let $t_n^{(k)}$ be the cardinality of $T_n^{(k)}$. Then it follows from Burnside’s lemma (see [2] for a proof using double cosets and [3] for a proof using
Figure 4. (a) A pair of (rooted non-embedded leaf-labelled) binary trees. (b) the corresponding (unlabelled) tanglegram.

the formalism of species) that
\[t_n^{(k)} = \frac{1}{n!} \sum_{\sigma \in S_n} |B_{\sigma}[n]|^k = \sum_{\lambda \vdash n} \frac{r_{\lambda}^k}{z_{\lambda}}, \]
where \(z_{\lambda} = 1^{m_1}m_1! \cdots r^{m_r}m_r! \) if \(\lambda \) has \(m_1 \) parts of size \(1, \ldots, m_r \) parts of size \(r \) (recall that \(n!/z_{\lambda} \) is the number of permutations with cycle-type \(\lambda \)). At the level of combinatorial classes, Burnside’s lemma gives
\[S_n \times T_n^{(k)} \simeq \sum_{\sigma \in S_n} B_{\sigma}[n]^k, \]
and thus the following procedure is a uniform random sampler for \(T_n^{(k)} \) (see [2] for details):

1. Choose a random binary partition \(\lambda \vdash n \) under the distribution
 \[P(\lambda) = \frac{r_{\lambda}^k}{S_n}, \]
 where \(S_n = \sum_{\lambda \vdash n} r_{\lambda}^k \).
2. Let \(\sigma \) be a permutation with cycle-type \(\lambda \). For each \(r \in [1..k] \) draw (independently) a tree \(T_r \in B_{\sigma}[n] \) uniformly at random.
3. Return the tangled chain corresponding to \((T_1, \ldots, T_k) \).

A recursive procedure (using (1)) is given in [2] to sample uniformly at random from \(B_{\sigma}[n] \). From Theorem 1 we obtain a simpler random sampler for \(B_{\sigma}[n] \). We order the cycles of \(\sigma \) as \(c_1, \ldots, c_{\ell(\lambda)} \) such that the cycle-sizes are in non-decreasing order. Then, with \(A_1 \) the set of labels in \(c_1 \), we start from the unique tree (by Section 2.1) in \(B_{c_1}[A_1] \) (where \(c_1 \) is to be seen as a cyclic permutation on \(A_1 \)). Then, for \(i \) from 2 to \(\ell(\lambda) \) we mark an edge chosen uniformly at random from the already obtained tree, and then we insert the leaves that have labels in \(c_i \) using the isomorphism (2).

The complexity of the sampler for \(B_{\sigma}[n] \) is clearly linear in \(n \) and needs no precomputation of coefficients. However step (1) of the random generator requires a table of \(p(n) \) coefficients, where \(p(n) \) is the number of binary partitions of \(n \), which is slightly superpolynomial [4], \(p(n) = n^{\Theta(\log(n))} \). It is however possible to do step (1) in polynomial time. For this, we consider, for \(i \geq 0 \) and \(n, j \geq 1 \) the coefficient \(S_n^{(i,j)} \) defined as the sum of \(r_{\lambda}^k/z_{\lambda} \) over all binary partitions of \(n \) where the largest part is \(2^i \) and has multiplicity \(j \); note that \(S_n^{(i,j)} = 0 \) unless \(j \cdot 2^i \leq n \), we denote by \(E_n \) the set of such pairs \((i, j) \). Since \(r_{\lambda} = 1 \) and \(z_{\lambda} = (|\lambda| - 1)! \) if \(\lambda \) has one part, we have the initial condition \(S_n^{(i,j)} = 1/(n - 1)! \) for \(j = 1 \) and \(2^i = n \).
In addition, using the fact that \(r_\lambda = (2|\lambda| \lambda_1 - 1) \cdot r_{\lambda \lambda} \) if \(\lambda \) has at least 2 parts, and the formula for \(z_\lambda \), we easily obtain the recurrence:

\[
S_n^{(i,j)} = \frac{(2(n - 2^i) - 1)^{k}}{2^i j} S_{n - 2^i}^{(i,j - 1)} \quad \text{for} \ (i,j) \in E_n \text{ with } 2^i < n,
\]

valid for \(j = 1 \) upon defining by convention \(S_n^{(i,0)} \) as the sum of \(S_n^{(i',j')} \) over all pairs \((i',j') \in E_n \) such that \(i' < i \).

Thus in step (1), instead of directly drawing \(\lambda \) under \(P(\lambda) \), we may first choose the pair \((i,j)\) such that the largest part of \(\lambda \) is \(2^i \) and has multiplicity \(j \), that is, we draw \((i,j) \in E_n \) under distribution \(P(i,j) = S_n^{(i,j)} / S_n \). Then we continue recursively at size \(n' = n - 2^i j \), but conditioned on the largest part to be smaller than \(2^i \) (that is, for the second step and similarly for later steps, we draw the pair \((i',j') \) in \(E_{n'} \cap \{ i' < i \} \) under distribution \(S_n^{(i',j')}/S_n^{(i,0)} \)). Note that \(|E_n| = \sum_{i \leq \log_2(n)} n/2^i| = \Theta(n)\). Since we need all coefficients \(S_m^{(i,j)} \) for \(m \leq n \) and \((i,j) \in E_m \), we have to store \(\Theta(n^2) \) coefficients. In addition it is easy to see (looking at the first expression in (4)) that each coefficient \(S_m^{(i,j)} \) is a rational number of the form \(a/m! \) with \(a \) an integer having \(O(m \log(m)) \) bits. Hence the overall storage bit-complexity is \(O(n^3 \log(n)) \). About time complexity, starting at size \(n \) we first choose the pair \((i,j)\) (with \(2^i \) the largest part and \(j \) its multiplicity), which takes \(O(|E_n|) = O(n) \) comparisons, and then we continue recursively at size \(n - j \cdot 2^i \). At each step the choice of a pair \((i,j)\) takes time \(O(m) \) with \(m \leq n \) the current size, and the number of steps is the number of distinct part-sizes in the finally output binary partition \(\lambda \vdash n \). Since the number of distinct part-sizes in a binary partition of \(n \) is \(O(\log(n)) \), we conclude that the time complexity (in terms of the number of real-arithmetic comparisons) to draw \(\lambda \) is \(O(n \log(n)) \).

Acknowledgements. I thank Igor Pak for interesting discussions.

References