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Abstract. This note gathers observations on symmetric quadrangulations, with enumerative con-

sequences. In the first part a new method for the enumeration of rooted simple quadrangulations is
presented, based on quotienting symmetric simple quadrangulations in two different ways (one stand-

ard, the other one new). In the second part, based on results of Bouttier, Di Francesco and Guitter

and on quotient and substitution operations, the series of several families of symmetric quadrangular
dissections (general, without multiple edges, without nonfacial 4-cycle, respectively) is computed, with

control on the distance from the central vertex to the outer boundary.

Introduction

A planar map is a connected graph embedded in the plane up to continuous deformation; the unique
unbounded face of a planar map is called the outer face, the other ones are called inner faces. A map
is said to be rooted if an edge of the outer face is marked and oriented so as to have the outer face on
its left. A quadrangulation is a map with all faces of degree 4. For k ≥ 1, a quadrangular dissection of
a 2k-gon or k-dissection for short is a map whose outer face contour is a simple cycle of length 2k, and
with all inner faces of degree 4. A map is said to be simple if it has no multiple edges; a k-dissection is
called irreducible if every 4-cycle delimits a face (possibly the outer one).

The enumeration of families of rooted maps has received a lot of attention for more than 40 years;
several methods can be applied: the recursive method introduced by Tutte [13], the random matrix
method introduced by Brézin et al [3], and the bijective method introduced by Cori and Vauquelin [5]
and Schaeffer [12]. In the first part of this note, we show another method for the enumeration of rooted
simple quadrangulations based on quotienting symmetric simple quadrangulations. Historically, the
enumeration of symmetric maps of order k in a familyM (i.e., such that a rotation of order k fixes the
map) was reduced to the enumeration of rooted maps inM via a quotient argument, a method used by
Liskovets [9]. We proceed in the reverse way, namely we use symmetric simple quadrangulations to build
an algebraico-differential equation satisfied by the series of rooted simple quadrangulations. Precisely
the two sides of the equation correspond to two different ways of quotienting a symmetric map; one is
classical, the other one is new and relies deeply on the existence and properties of α-orientations which
we recall in Section 1.1. From the functional equation we recover (by standard guessing/checking) that
there are 4(3n)!

n!(2n+2)! rooted simple quadrangulations with n + 1 faces.
Let us now describe the classical quotient operation, which is central in our work; for k ≥ 2, a

k-dissection D is called k-symmetric if the plane embedding (conveniently deformed) is invariant by
a rotation of angle 2π/k centered at a vertex – called the center of the dissection. As observed by
Liskovets [9], any two semi-infinite straight lines starting from the center and forming an angle of 2π/k
delimit a sector of D. When keeping only this sector and pasting these two lines together, we obtain a
planar map, called the quotient-map of D; note that in our case, this map has outer degree 2.

The results in the second part of the note (rather independent from the first part) are expressions
of the series of several families of symmetric quadrangular dissections with control on a distance para-
meter. Families of k-symmetric dissections have been counted according to the number of inner faces by
Brown [4, 8] using the recursive method (Liskovet’s quotient method [9] can also be applied, reducing
the enumeration to rooted quadrangular dissections). In Section 2, combining results by Bouttier et
al. [1] with the quotient method and substitution operations, we count – for any k ≥ 2 – k-symmetric
general (resp. simple, irreducible) dissections according to the number of inner faces and the distance
of the center from the outer boundary. This is the first result on a distance parameter for irreducible
quadrangulations (which are well known to be in one-to-one correspondence with 3-connected maps);
and it illustrates again the property that the series expression of a “well behaved” map familyM refined
by a distance parameter d is typically expressed in terms of the dth power of an algebraic series of
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Figure 1. Starting from a symmetric simple quadrangulation endowed with its minimal
2-orientation (a), we can perform either a classical quotient (b), (d) or the new quotient
(c), (e).

singularity type z1/4 (implying that asymptotically the distance parameter d on a random map of size n
inM converges in the scale n1/4 as a random variable).

1. Enumeration of simple quadrangulations via symmetric quadrangulations

In this section, simple quadrangulation are required to have at least 2 faces (to avoid the degenerated
case with two edges and one face) and we call symmetric simple quadrangulations the simple 2-symmetric
dissections. Edges and vertices of a map are called outer or inner depending on whether they are incident
to the outer face or not.

1.1. A new way of quotienting a symmetric quadrangulation based on minimal 2-orientations.
De Fraysseix and Ossona de Mendez [6] have shown that a quadrangulation is simple iff it admits an
orientation of its inner edges so that inner vertices have outdegree 2 and outer ones have outdegree
0; such an orientation is called a 2-orientation. By a general result of Felsner [7] on orientations with
prescribed outdegrees, any simple quadrangulation Q admits a unique 2-orientation with no counterclock-
wise circuit, called the minimal 2-orientation of Q, see Figure 1(a). We now fix a 2-symmetric simple
quadrangulation Q and describe a new way of quotienting Q relying on its minimal 2-orientation O.
Note that unicity of the minimal 2-orientation implies that O is itself stable by the π-rotation fixing Q.
For each inner edge e of Q, call leftmost path starting at e the unique oriented path P starting at e,
ending at one outer vertex, and such that for any triple v, v′, v′′ of successive vertices along P , (v′, v′′)
is the first outgoing edge after (v, v′) in clockwise order around v′. It can be shown (the proof, omitted
here and working for any simple quadrangulation, is based on Euler relation, outdegrees and minimality)
that the leftmost path is well defined and is a simple path ending at an outer vertex of Q.

Let u be the central vertex, e1, e2 its two outgoing edges, and P1 = (u = v0, v1, . . . , vp), P2 = (u =
w0, w1, . . . , wp) the leftmost paths of e1 and e2 respectively. Since the minimal 2-orientation is stable by
the π-rotation fixing Q, e2 is clearly the image of e1, and P2 is the image of P1 by this rotation. Hence
P1 and P2 can not meet except at their starting point u. Call P the union of P1 and P2; note that P
is a simple path connecting an outer vertex of Q to a diagonally opposed outer vertex of Q, and P is
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Figure 2. The decomposition of a quasi-simple quadrangular 1-dissection

stable by the π-rotation fixing Q. Hence if we cut along P we split Q into two isomorphic dissections,
see Figure 1(c). Let Q1 be the one with clockwise contour u, v1, v2, . . . If Q1 is a quadrangulation, we
set Φ(Q) := Q1 and mark the edge (u, v1). Otherwise, for any i ∈ {0, . . . , p − 2}, we identify in Q1

vertices vi+2 with wi, and merge corresponding edges; this defines the map Φ(Q), in which we then
mark the edge (v1, v2). Concerning orientations, the identification of vi+2 with wi creates an orientation
conflict only when merging (u, v1) with (v1, v2). We choose to orient the merged edge from v1 to v2.
With this convention, Φ(Q) is naturally endowed with a 2-orientation, and it can be checked that this
2-orientation is the minimal one and the leftmost path of the marked edge (v1, v2) is (v1, v2, . . . , vp).
From these observations it is easy to describe the inverse mapping (mapping a simple quadrangulation
with a marked edge to a symmetric simple quadrangulation). We obtain:

Theorem 1. The mapping Φ is a one-to-one correspondence between symmetric simple quadrangulations
with 2n inner faces and simple quadrangulations with n inner faces and a marked edge.

1.2. Classical quotient vs. new quotient, and getting a functional equation. A quadrangular
dissection is said to be pointed if it has a marked vertex. As any k-symmetric dissection is implicitly
pointed (at the center), its k-quotient is a pointed 1-dissection (i.e. with outer face of degree 2). A
pointed dissection is called quasi-simple if the marked vertex lies strictly in the interior of any 2-cycle.
Then the following can be shown (see Lemma 5 in Section 2 for a more general statement):

Proposition 2. The 2-quotient is a one-to-one correspondence between symmetric simple quadrangula-
tions with 2n inner faces and quasi-simple pointed 1-dissections with n inner faces.

Corollary 3. Simple quadrangulations with n inner faces and a marked edge are in one-to-one corres-
pondence with quasi-simple pointed 1-dissections with n inner faces.

This correspondence allows us to get a functional equation for the generating series of rooted simple
quadrangulations. Let us first observe that any edge of a simple quadrangulation has an implicit orient-
ation given by the minimal 2-orientation of the quadrangulation. And a pointed 1-dissection also has an
implicit rooting. Hence Corollary 3 is equivalent (by doubling each object) to: simple quadrangulations
with n inner faces and a marked oriented edge are in one-to-one correspondence with rooted quasi-simple
pointed 1-dissections with n inner faces.

Let us now define the family Q̃ of rooted simple quadrangulations, including the two degenerated
ones with one face and two edges, and Q the family of nondegenerated ones; let q(x) =

∑
n≥2 qnxn and

q̃(x) =
∑

n≥1 qnxn be respectively the series of Q and of Q̃ according to the number of faces (including
the outer one). Since q1 = 2, q̃(x) = q(x) + 2x. We will decompose both families involved in Corollary 3
in terms of Q.

Let us first consider simple quadrangulations with a marked oriented edge. Any of them can equi-
valently be seen as a (nondegenerated) rooted simple quadrangulation with a marked face (possibly the
outer one), hence their generating series according to inner faces is:

(1)
∑
n≥2

nqnxn−1 = q′(x).

On the other side, let D denote the family of rooted quasi-simple 1-dissections, and let us now describe
how to decompose a dissection D ∈ D (an equivalent decomposition for symmetric 2-connected maps is
described by Liskovets and Walsh [10]). First, observe that the separating 2-cycles of D are nested, so we

3



can consider these 2-cycles as forming an ordered sequence (from innermost to outermost). This yields
a decomposition of D as a sequence of components. Let A be the family of rooted pointed 1-dissections
where the unique 2-cycle is the outer face, and let B be the family of rooted maps with all faces of degree
4 except for two special faces of degree 2 one of which is the outer face, and such that there is at least
one quadrangular face and there is no other 2-cycle than the contours of the two special faces. We can
cut D along the nested 2-cycles to obtain a pointed 1-dissection in A and a sequence of maps in B (see
Figure 2). Denoting respectively by d(x), a(x), b(x) the series of D, A, and B according to the number
of quadrangular faces, we obtain

d(x) =
a(x)

1− b(x)
Starting from a dissection in A, and deleting the unique non-root outer edge, one obtains a rooted
quadrangulation in Q̃ with a pointed vertex not incident to the root-edge, and the mapping is invertible.
Since a quadrangulation with n faces has n + 2 vertices (hence n vertices not incident to the root-edge),
we conclude that

a(x) =
∑
n≥1

nqnxn = 2x + xq′(x).

Starting from a dissection in B, contracting the innermost 2-cycle into a single marked edge, and deleting
the unique non-root outer edge, one obtains a rooted quadrangulation in Q̃ with a marked non-root edge.
Since a quadrangulation with n faces has 2n edges, we conclude that

b(x) =
∑
n≥1

(2n− 1)qnxn = 2x + 2xq′(x)− q(x).

We finally obtain the equation

q′(x) =
x · (q′(x) + 2)

1 + q(x)− 2x− 2xq′(x)
,

which can be rearranged into the following equation:

(2) x =
q′(x) · (1 + q(x))

2 + 2q′(x)2 + 3q′(x)
.

From this equation, one readily extracts the development of q(x) incrementally:

q(x) = x2 + 2x3 + 6x4 + 22x5 + 91x6 + 408x7 + 1938x8 + · · · .

As shown next the exact expression of the coefficients (first obtained by Tutte from the recursive
method [13] and subsequently recovered by Schaeffer [12] using a bijection with ternary trees) can also
be recovered from (2):

Proposition 4. For n ≥ 1 let sn be the number of rooted simple quadrangulations with n faces. Then

sn =
4(3n)!

n!(2n + 2)!
.

Equivalently the series q(x) =
∑

n≥1 snxn+1 =
∑

n≥2 qnxn is expressed as q(x) = x · (−α2 + 3α − 2),
where α ≡ α(x) is specified by α = 1 + xα3 (α is the series of rooted ternary trees).

Proof. Equation (2) above admits a unique power series solution that is equal to 0 at 0 (indeed the
equation is enough to extract the coefficients iteratively), so it remains to check that f ≡ f(x) :=
x · (−α2 + 3α− 2) is solution of (2), i.e., to check that

x =
f ′(x) · (1 + f(x))

2 + 2f ′(x)2 + 3f ′(x)
.

Note that x, f(x) and f ′(x) all have rational expressions in terms of α ≡ α(x); after simple computations:

x =
α− 1
α3

, f(x) =
α− 1

(3α− α2 + 2)α3
, f ′(x) = 2α− 2.

so it suffices to check that the expression of x in terms of α (which is (α − 1)/α3) coincides with the
expression R(α) of f ′(x) · (1 + f(x))/(2 + 2f ′(x)2 + 3f ′(x)) in terms of α. After simplification we find
indeed that R(α) = (α− 1)/α3, which concludes the proof. �
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2. Distance from the central vertex to the outer boundary

For k ≥ 2, i > 0, and D(k) a family of k-symmetric dissections, let D(k)
i be the family of dissections

in D(k) where the centre is at distance i from the outer face boundary (for instance, in the example
of Figure 1(a), the central vertex is at distance 3 from the outer boundary). Let a

(k)
n,i be the number

of dissections in D(k)
i with nk inner faces; and let D

(k)
i (x) =

∑
n a

(k)
n,i be the corresponding series. A

dissection is called irreducible if all 4-cycles are the boundary of a face (possibly the outer one). We
compute here in each k ≥ 2 the expression of D

(k)
i (x) for 3 classical families of quadrangulations: general,

simple, and irreducible. We use the letter F , G, H (instead of D) for the general, simple, and irreducible
case respecively.

To obtain these expressions we combine results of Bouttier et al. [1, 2] on the 2-point functions of
quadrangulations with quotient and substitution operations. Our arguments rely on the following lemma
whose proof is omitted here:

Lemma 5. For k ≥ 2 let D be a k-symmetric dissection, and E the k-quotient of D (both D and E are
pointed dissections). Given a pointed dissection P of pointed vertex u, denote by o(P ) the outer degree
of P , `(P ) the length of a shortest cycle not equal to the outer face boundary and strictly enclosing u,
m(P ) the length of a shortest cycle not strictly enclosing u, m̃(P ) the length of a shortest non-empty
cycle not strictly enclosing u, and d(P ) the distance of the pointed vertex to the outer boundary. Then

o(D) = k · o(E), `(D) = k · `(E), m(D) = m(E), m̃(D) = m̃(E), d(D) = d(E).

Let F(k)
i , G(k)

i , H(k)
i be respectively the images of F (k)

i , G(k)
i , H(k)

i by the k-quotient operation. Note
that the counting series x 7→ F

(k)
i (x) (resp. y 7→ G

(k)
i (y), z 7→ H

(k)
i (z)) of F (k)

i (resp. G(k)
i , H(k)

i )
according to the number of orbites of inner faces is also the series of F(k)

i (resp. G(k)
i , H(k)

i ) according
to the number of inner faces. By Lemma 5, F(k)

i is the family of pointed 1-dissections where the pointed
vertex is at distance 1 from the outer face. Notice that the outer face can be contracted into a single
edge, yielding a quadrangulation of the sphere with a marked edge e and pointed vertex v at distance i
from e. The counting series of such quadrangulations has been computed by Bouttier et al. [1], yielding
the expression (not depending on k):

(3) F
(k)
i (x) = Xi−Xi−1, with Xi = X∞

(1−Xi)(1−Xi+3)
(1−Xi+1)(1−Xi+2)

, X+
1
X

+1 =
1

xX∞2
, X∞ = 1+3xX∞

2,

where X, Xi, X∞ are series in x, and the dependency between these series is X∞ → X → Xi.
We now compute y 7→ G

(k)
i (y). By Lemma 5, G(k)

i is the family of quasi-simple pointed 1-dissections
where the pointed vertex is at distance i from the outer boundary (note that G(k)

i does not depend on
k). We proceed by substitution (an equivalent approach formulated on some labelled trees is discussed
in [2]). The core of γ ∈ F(k)

i is obtained by collapsing each 2-cycle of γ not strictly enclosing the pointed
vertex into a single edge; this yields a quasi-simple 1-dissection, and the distance of the pointed vertex
u to the outer boundary is still i (because there is no way of shortening this distance by travelling inside
a 2-cycle not enclosing u). Conversely each γ ∈ F(k)

i is uniquely obtained from κ ∈ G(k)
i – with n

inner faces – where each of the 2n + 1 edges is either left unchanged or blown into a double edge in
the interior of which a rooted quadrangulation is patched. Denoting by f ≡ f(x) the series of rooted
quadrangulations according to the number of faces, we obtain

F
(k)
i (x) =

∑
n≥1

[yn]G(k)
i (y)xn · (1 + f)2n+1 = (1 + f) ·G(k)

i (x · (1 + f)2).

The series f(x) is well known to be algebraic: 1 + f = X∞ − xX∞
3. Define Y∞(y) as the series in

y such that Y∞(y) = X∞(x)/(1 + f) under the change of variable relation y = x(1 + f)2. Then it
is easily checked that Y∞(y) satisfies (and is specified by) the equation Y∞ = 1 + yY∞

3 (see [11, 2]).
Define Y (y) as Y (y) := X(x) under y = x(1 + f)2. One easily checks that xX∞(x)2 = yY∞(y)2 when
y = x · (1 + f)2, hence Y (y) satisfies (and is specified by) the equation Y + 1/Y + 1 = 1/(yY∞

2). Now
define Yi(y) = Xi(x)/(1 + f) under y = x · (1 + f)2. Since Y (y) = X(x) and Y∞(y) = X∞(x)/(1 + f),
the expression of Xi above ensures that

Yi = Y∞
(1− Y i)(1− Y i+3)

(1− Y i+1)(1− Y i+2)
.
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Since G
(k)
i (y) = F

(k)
i (x)/(1 + f) under the relation y = x(1 + f)2, and since F

(k)
i (x) = Xi −Xi−1, we

have G
(k)
i (y) = Yi − Yi−1. To summarize we obtain the following expression for G

(k)
i (y) (note that the

expression does not depend on k ≥ 2):

(4) G
(k)
i (y) = Yi − Yi−1, with Yi = Y∞

(1− Y i)(1− Y i+3)
(1− Y i+1)(1− Y i+2)

, Y +
1
Y

+ 1 =
1

yY∞2
, Y∞ = 1 + yY∞

3.

We now use a substitution approach at faces (instead of edges) to get an expression for H
(k)
i (z) for

k ≥ 2 and i > 0; this time the expressions for k = 2 and for k > 2 are different; we start with the case
k > 2 which is simpler. By Lemma 5, H(k)

i is the family of pointed 1-dissections where the 2-cycles and
non-facial 4-cycles strictly enclose the pointed vertex u; we call such pointed dissections quasi-irreducible.
The core of γ ∈ G(k)

i is obtained by emptying each maximal (for the enclosed area) 4-cycle of γ not
strictly enclosing u; this yields a quasi-irreducible 1-dissection, and the distance of the pointed vertex u
to the outer boundary is still i (because there is no way of shortening this distance by travelling inside
a 4-cycle not enclosing u). Conversely each γ ∈ G(k)

i is uniquely obtained from κ ∈ H(k)
i where at each

face a rooted (non-degenerated) simple quadrangulation is patched. Denoting by g ≡ g(y) the series of
rooted quadrangulations according to the number of inner faces, we obtain, for k ≥ 3 and i > 0:

G
(k)
i (y) = H

(k)
i (g(y)).

Again the series g(y) is algebraic: g(y) = y · (−Y∞
2 + 3Y∞ − 2). Define Z∞ ≡ Z∞(z) as the series

in z specified by Z∞(z) := Y∞(y) under the change of variable relation z = g(y). It is easily checked
(see [11]) that Z∞(z) satisfies (and is specified by) the equation Z∞(z) = 1 + z + (Z∞ − 1)2. Define
Z ≡ Z(z) as the series such that Z(z) := Y (y) under the relation z = g(y). Then it is easy to compute
that 1/(yY 2

∞) = 1 + 1/(Z∞ − 1) when z = g(y), hence Z is specified by Z + 1/Z = 1/(Z∞ − 1). Now
define Zi ≡ Zi(z) as Zi(z) := Yi(y) under z = g(y). Since Z(z) = Y (y) and Z∞(z) = Y∞(y) under the
relation z = g(y), the expression of Yi above ensures that

Zi = Z∞
(1− Zi)(1− Zi+3)

(1− Zi+1)(1− Zi+2)
.

Since H
(k)
i (z) = G

(k)
i (y) under z = g(y) and G

(k)
i (y) = Yi − Yi−1, we have H

(k)
i (z) = Zi − Zi−1. To

summarize we obtain the following expression for H
(k)
i (z) for k ≥ 3 (again the expression does not depend

on k):

(5)

H
(k)
i (z) = Zi−Zi−1, with Zi = Z∞

(1− Zi)(1− Zi+3)
(1− Zi+1)(1− Zi+2)

, Z +
1
Z

=
1

Z∞ − 1
, Z∞ = 1+ z +(Z∞− 1)2.

For k = 2 and i > 0, by Lemma 5, H(k)
i is the family of pointed 1-dissections where the unique

2-cycle is the outer boundary and where non-facial 4-cycles strictly enclose the pointed vertex u. These
dissections are the cores of pointed 1-dissections where the unique 2-cycle is the outer boundary and the
pointed vertex is at distance i from the outer boundary. Contracting the outer 2-cycle, one gets a simple
quadrangulation on the sphere with a marked edge e and a pointed vertex at distance i from e. The
series Ki(y) of such quadrangulations was computed by Bouttier and Guitter [2] (δi,j is the Kronecker
symbol):

Ki(y) = δi,1 − [ui−1]
1∑

i>0(Yi+1Yi − YiYi−1)ui−1
.

The above substitution approach ensures that Ki(y) = H
(2)
i (g(y)). We obtain

(6) H
(2)
i (z) = δi,1 − [ui−1]

1∑
i>0(Zi+1Zi − ZiZi−1)ui−1

.
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