OVERVIEW

Core decomposition partitions the graph in a hierarchical nested manner

Assume an "expensive" algorithm C e.g., Spectral Clustering as a black box

It is less expensive to compute in sections of the data separately

Utilize the vertical partition of k-core decomposition as incremental input to C

THE ALGORITHM

Procedure: **CoreCluster**(G_i)

Input: A graph G_i

Output: A partition of $U(G_i)$ into clusters.

1. $S = \emptyset$
2. $i = 0$
3. Let C_1, C_2, \ldots, C_k be the core expansion sequence of G_i
4. For $i = 0, \ldots, k$, let G_i be the k-core of G_i
5. Let $S = \emptyset$
6. Let $A_i = \bigcup_{C \in S} (C \setminus \{i\})$
7. For $i = 1$ to k do
8.
9.
10. Return $A_1 \cup \ldots \cup A_k$.

THE RESULTS

- Execution time
- Artificial data with ground truth
- Real data (Facebook)