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Abstract. In this paper, we address the problem of synthesizing opaque systems
by selecting the set of observable events. We first investigate the case of static
observability where the set of observable events is fixed a priori. In this context,
we show that checking whether a system is opaque and computing an optimal
static observer ensuring opacity are both PSPACE-complete problems. Next, we
introduce dynamic partial observability where the set of observable events can
change over time. We show how to check that a system is opaque w.r.t. a dynamic
observer and also address the corresponding synthesis problem: given a system
G and secret states S, compute the set of dynamic observers under which S is
opaque. Our main result is that the synthesis problem can be solved in EXPTIME.

1 Introduction

Security is one of the most important and challenging aspects in designing services de-
ployed on large open networks like Internet or mobile phones, e-voting systems etc. For
such services, naturally subject to malicious attacks, methods to certify their security
are crucial. In this context there has been a lot of research to develop formal methods for
the design of secure systems and a growing interest in the formal verification of secu-
rity properties [1,2,3] and in their model-based testing [4,5,6,7,8]. Security properties
are generally divided into three categories: integrity, availability and confidentiality.
We focus here on confidentiality and especially information flow properties. We use the
notion of opacity defined in [9] formalizing the absence of information flow, or more
precisely, the impossibility for an attacker to infer the truth of a predicate (it could be
the occurrence in the system of some particular sequences of events, or the fact that
the system is in some particular configurations). Consider a predicate ϕ over the runs
of a system G and an attacker observing only a subset of the events of G. We assume
that the attacker knows the model G. In this context, the attacker should not be able to
infer that a run of G satisfies ϕ. The secret ϕ is opaque for G with respect to a given
partial observation if for every run of G that satisfies ϕ, there exists a run, observation-
ally equivalent from the attacker’s point of view, that does not satisfy ϕ. In such a case,
the attacker can never be sure that a run of G satisfying ϕ has occurred. In the sequel,
we shall consider a secret ϕ corresponding to a set of secret states. Finally, note that
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the definition of opacity is general enough to define other notions of information flow
like trace-based non-interference and anonymity (see [9]). Note also that secrecy [10]
can be handled as a particular case of opacity (see Section 3) and thus our framework
applies to secrecy as well.

Related Work. Methods for the synthesis of opaque systems have already been inves-
tigated from the supervisory control point of view. In these frameworks, some of the
events are uncontrollable and the set of events an external attacker can observe is fixed.
If the system is G, the approach is then to restrict G (remove some of its behaviors) us-
ing a supervisor (or controller) C, in order to render a secret ϕ opaque in the supervised
system C(G). In [11], the authors consider several secrets and attackers with differ-
ent sets of observable events. They provide sufficient conditions to compute an optimal
controller preserving all secrets assuming that the controller has complete knowledge
of the system and full control on it. In [12,13], the authors consider a control problem
under partial observation and provide algorithms to compute the optimal controller en-
suring the opacity of one secret against one attacker. Other works on the enforcement
of opacity by means of controllers can be found in [14]. Note that these approaches are
intrusive in the sense that the system G has to be modified.

Our Contribution. In this paper, instead of restricting the behavior of the system by
means of a controller C which disables some actions, we consider dynamic observers
that will dynamically change the set of observable events in order to ensure opacity.
Compared to the previous approaches related to the supervisory control theory, this
approach is not intrusive in the sense that it does not restrict G but only hides some
events at different points in the course of the execution of the system. Indeed, one can
think of a dynamic observer as a filter (See Figure 1) which is added on top of G.

System G Filter D Attacker U
u ∈ Σ∗ D(u)

Fig. 1. Architecture Filtering out Sequences of Events in G

The main contributions of this paper are two-fold. First, we extend the notion of
opacity for static observers (i.e., the natural projection) to dynamic observers.1 We show
how to check opacity when the dynamic observer is given by a finite automaton. Second
we give an algorithm to compute the set of all dynamic observers which can ensure
opacity of a secret ϕ for a given system G. Finally we consider an optimization problem
which is to compute a least expensive dynamic observer.

The notion of dynamic observers was already introduced in [15] for the fault diag-
nosis problem. Notice that the fault diagnosis problem and the opacity problems are
not reducible one to the other and thus we have to design new algorithms to solve the
opacity problems under dynamic observations.

Organization of the Paper. In Section 2 we introduce some notations for words, lan-
guages and finite automata. In Section 3 we define the notion of opacity with static

1 At this point, it should be mentioned that we assume the attacker has not only a perfect knowl-
edge of the system but also of the observer.
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observers and show that deciding opacity for finite automata is PSPACE-complete. We
also consider the optimization problem of computing a largest set (cardinality-wise) of
observable events to ensure opacity and we show that this problem is PSPACE-complete
as well. Section 4 is the core of the paper and considers dynamic observers for ensuring
opacity. We prove that the set of all observers that ensure opacity can be computed in
EXPTIME. In Section 5 we briefly discuss how to compute optimal dynamic observers.
Omitted proofs and details are given in Appendix or available in the extended version
of this paper [16].

2 Notation and Preliminaries

Let Σ be a finite alphabet. Σ∗ is the set of finite words over Σ and contains the empty
word ε. A language L is any subset of Σ∗. Given two words u ∈ Σ∗ and v ∈ Σ∗, we
denote u.v the concatenation of u and v which is defined in the usual way. |u| stands
for the length of the word u (the length of the empty word is zero). We let Σn with
n ∈ N denote the set of words of length n over Σ. Given Σ1 ⊆ Σ, we define the
projection operator on finite words, PΣ1 : Σ∗ → Σ∗

1 , that removes in a sequence of Σ∗

all the events that do not belong to Σ1. Formally, PΣ1 is recursively defined as follows:
PΣ1(ε) = ε and for λ ∈ Σ, s ∈ Σ∗, PΣ1(s.λ) = PΣ1(s).λ if λ ∈ Σ1 and PΣ1(s)
otherwise. Let K ⊆ Σ∗ be a language. The definition of projection for words extends
to languages: PΣ1(K) = {PΣ1(s) | s ∈ K}. Conversely, let K ⊆ Σ∗

1 . The inverse
projection of K is P−1

Σ,Σ1
(K) = {s ∈ Σ∗ | PΣ1(s) ∈ K}. We omit the subscript Σ1 in

the sequel when it is clear from the context.
We assume that the system is given by an automaton G which is a tuple (Q, q0,Σ, δ,

F ) with Q a set of states, q0 ∈ Q is the initial state, δ : Q × Σ → 2Q is the transition
relation and F ⊆ Q is the set of accepting states. If Q is finite, G is a finite automaton

(FA). We write q
λ−−→ whenever δ(q,λ) &= ∅. An automaton is complete if for each

λ ∈ Σ and each q ∈ Q, q λ−−→. G is deterministic if for all q ∈ Q,λ ∈ Σ, |δ(q,λ)| ≤ 1.

A run ρ from state q0 in G is a finite sequence of transitions q0
λ1−→ q1

λ2−→
q2 · · · qi−1

λi−→ qi · · · qn−1
λn−−→ qn s.t. λi+1 ∈ Σ and qi+1 ∈ δ(qi,λi+1) for

0 ≤ i ≤ n − 1. The trace of the run ρ is tr(ρ) = λ1.λ2 · · ·λn. We let last(ρ) = qn,
and the length of ρ, denoted |ρ|, is n. For i ≤ n we denote by ρ[i] the prefix of the run

ρ truncated at state qi, i.e., ρ(i) = q0
λ1−−→ q1 · · · qi−1

λi−−→ qi. The set of finite runs
from q0 in G is denoted Runs(G). A word u ∈ Σ∗ is generated by G if u = tr(ρ) for
some ρ ∈ Runs(G). Let L(G) be the set of words generated by G. The word u ∈ Σ∗

is accepted by G if u = tr(ρ) for some ρ ∈ Runs(G) with last(ρ) ∈ F . The language
of (finite) words LF (G) of G is the set of words accepted by G. If G is a FA such that
F = Q we simply omit F in the tuple that defines G.

In the sequel we shall use the Post operator defined by: let X ⊆ Q, Post(X, ε) = X
and for u ∈ Σ∗,λ ∈ Σ, Post(X, u.λ) = ∪q∈Post(X,u)δ(q,λ). We also let Post(X, L) =
∪u∈LPost(X, u) for a non empty language L.

The product of automata is defined in the usual way: the product automaton repre-
sents the concurrent behavior of the automata with synchronization on the common
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events. Given G1 = (Q1, q1
0 ,Σ1, δ1, F1) and G2 = (Q2, q2

0 ,Σ2, δ2, F2) we denote
G1 × G2 the product of G1 and G2.

3 Opacity with Static Projections

In the sequel, we let G = (Q, q0,Σ, δ, F ) be a non-deterministic automaton overΣ and
Σo ⊆ Σ. Enforcing opacity aims at preventing an attacker U , from deducing confiden-
tial information on the execution of a system from the observation of the events in Σo.
Given a run of G with trace u, the observation of the attacker U is given by the static
natural projection PΣo(u) following the architecture of Figure 1 with D(u) = PΣo(u).
In this paper, we shall consider that the confidential information is directly encoded in
the system by means of a set of states F 2. If the current trace of a run is u ∈ L(G), the
attacker should not be able to deduce, from the knowledge of PΣo(u) and the structure
of G, that the current state of the system is in F . As stressed earlier, the attacker U
has full knowledge of the structure of G (he can perform computations using G like
subset constructions) but only has a partial observation upon its behaviors, namely the
observed traces in Σ∗

o . The set of Σo-traces of G is TrΣo(G) = PΣo(L(G)). We
define the operator [[·]]Σo by: [[ε]]Σo = {ε} and for µ ∈ Σ∗

o and λ ∈ Σo, [[µ.λ]]Σo =
P−1

Σ (µ).λ ∩ L(G). In other words, u ∈ [[µ.λ]]Σo iff (1) the projection of u is µ.λ and
(2) the sequence u ends with an observable “λ” event and (3) u ∈ L(G).

Remark 1. We suppose that U is reacting faster than the system. Therefore, when an
observable event occurs, U can compute the possible set of states of G before G moves
even if G can do an unobservable action. +

Next we introduce the notion of opacity defined in [9]. Intuitively, a set of states F is
said to be opaque with respect to a pair (G,Σo) if the attacker U can never be sure that
the current state of G is in the set F .

Definition 1 (State Based Opacity). Let F ⊆ Q. The secret F is opaque with respect
to (G,Σo) if for all µ ∈ TrΣo(G), Post({q0}, [[µ]]Σo) &⊆ F.

We can extend Definition 1 to a (finite) family of sets F = {F1, F2, · · · , Fk}: the secret
F is opaque with respect to (G,Σo) if for each F ∈ F , F is opaque w.r.t. (G,Σo).
This can be used to express other kinds

q0 q1 q2 q3

q4 q5 q6b

a

a

b a
a,b

b

a

b
a,b

Fig. 2. State based opacity illustration

of confidentiality properties. For exam-
ple, [10] introduced the notion of secrecy
of a set of states F . Intuitively, F is not
secret w.r.t. G and Σo whenever after an
observation µ, the attacker either knows
that the system is in F or knows that it
is not in F . Secrecy can thus be han-
dled considering the opacity w.r.t. a fam-
ily {F, Q \F}. In the sequel we consider only one set of states F and, when necessary,
we point out what has to be done for solving the problems with family of sets.

2 Equivalently, the secret can be given by a regular language over Σ∗, see [16].



356 F. Cassez, J. Dubreil, and H. Marchand

Example 1. Consider the automaton G of Figure 2, with Σo = Σ = {a, b}. The secret
is given by the states F = {q2, q5}. The secret F is certainly not opaque with respect
to (G,Σ), as by observing a trace b∗.a.b, the attacker U knows that the system is in a
secret state. Note that he does not know whether it is q2 or q5 but still he knows that the
state of the system is in F . !
In the sequel we shall focus on variations of the State Based Opacity Problem:

Problem 1 (Static State Based Opacity Problem).
INPUT: A non-deterministic FA G = (Q, q0,Σ, δ, F ) and Σo ⊆ Σ.
PROBLEM: Is F opaque w.r.t. (G,Σo) ?

3.1 Checking State Based Opacity

In order to check for the opacity of F w.r.t. (G,Σo), we first introduce the classical
notion of determinization via subset construction adapted to our definition of opacity:
Deto(G) = (X , X0,Σo,∆, Fo) denotes the deterministic automaton given by:

– X ⊆ 2Q \ ∅, X0 = {q0} and Fo = 2F ,
– given λ ∈ Σo, if X ′ = Post(X, (Σ \Σo)∗.λ) &= ∅ then ∆(X,λ) = X ′.

Checking whether F is opaque w.r.t. (G,Σo) amounts to checking whether a state in
Fo is reachable. To check opacity for a family {F1, F2, · · · , Fk}, we define Fo to be the
set 2F1 ∪ 2F2 ∪ · · · ∪ 2Fk (as pointed out before, this enables us to handle secrecy).

The previous construction shows that opacity on non-deterministic FA can be
checked in exponential time. Actually, checking state based opacity for (non-
deterministic) FA is PSPACE-complete. Given a FA G over Σ and F the set of ac-
cepting states, the (language) universality problem is to decide whether LF (G) = Σ∗.
If not, then G is not universal. Checking language universality for non-deterministic FA
is PSPACE-complete [17] and Problem 1 is equivalent to universality.

Theorem 1. Problem 1 is PSPACE-complete for non-deterministic FA.

Proof. We assume that G is complete i.e., L(G) = Σ∗. Note that [[u]]Σ = u. Now, G
is not universal iff there exists u ∈ Σ∗ such that Post({q0}, [[u]]Σ) ⊆ Q \ F . With the
definition of state based opacity, taking Σo = Σ, we have:

Q \ F is not opaque w.r.t. (G,Σ) ⇐⇒ ∃µ ∈ Σ∗s.t. Post({q0}, [[µ]]Σ) ⊆ Q \ F. !
PSPACE-easiness was already known and follows from a result in [18]: the model-
checking problem for a temporal logics which can specify security properties is proved
to be PSPACE-complete.

3.2 Maximum Cardinality for Static Projections

If a secret is opaque w.r.t. a set of observable events Σo, it is worthwhile noticing that
it will still be opaque w.r.t. any subset of Σo. It might be of interest to hide as few
events as possible from the attacker still preserving opacity of a secret. Indeed, hiding
an event can be seen as energy consuming or as limiting the interactions or visibility
for users of the system (and some of them are not malicious attackers) and thus should
be avoided. Given the set of events Σ of G, we can check whether the secret is opaque
w.r.t. Σo ⊆ Σ. In that case, we may increase the number of visible letters and check
again if the secret remains opaque. This suggests the following optimization problem:
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Problem 2 (Maximum Cardinality of Observable Events).
INPUT: A non-deterministic FA G = (Q, q0,Σ, δ, F ) and n ∈ N s.t. n ≤ |Σ|.
PROBLEMS:
(A) Is there any Σo ⊆ Σ with |Σo| = n, such that F is opaque w.r.t. (G,Σo) ?
(B) If the answer to (A) is “yes”, find the maximum n0 such that there exists Σo ⊆ Σ

with |Σo| = n0 and F is opaque w.r.t. (G,Σo).

Theorem 2. Problem 2.(A) and Problem 2.(B) are PSPACE-complete.

Proof. PSPACE-easiness follows directly as we can guess a set Σo with |Σo| = n
and check in PSPACE whether F is opaque w.r.t. (G,Σo). Thus Problem 2.(A) is in
NPSPACE and thus in PSPACE. PSPACE-hardness is also easy because taking n = |Σ|
amounts to checking that F is opaque w.r.t. (G,Σ) which has been shown equivalent
to the universality problem (proof of Theorem 1).

To solve Problem 2.(B) it suffices to iterate a binary search and thus Problem 2.(B)
is also in PSPACE. To see it is PSPACE-complete, to check whether F is opaque
w.r.t. (G,Σ), it suffices to solve Problem 2.(B) and then check whether n0 = |Σ|. !

4 Opacity with Dynamic Projection

So far, we have assumed that the observability of events is given a priori and this is why
we used the term static projections. We generalize this approach by considering the
notion of dynamic projections encoded by means of dynamic observers as introduced
in [15]. Dynamic projection allows us to render unobservable some events after a given
observed trace (for example, some outputs of the system). To illustrate the benefits of
such projections, we consider the following example:

Example 2. Consider again the automaton G of Example 1, Figure 2, where F =
{q2, q5}. With Σo = Σ = {a, b}, F is not opaque. If either Σo = {a} or Σo = {b},
then the secret becomes opaque. Thus if we have to define static sets of observable
events, at least one event will have to be permanently unobservable. However, the less
you hide, the more important is the observable behavior of the system. Thus, we should
try to reduce as much as possible the hiding of events. We can be more efficient by us-
ing a dynamic projection that will render unobservable an event only when necessary.
Indeed, after observing b∗, the attacker knows that the system is in the initial state.
However, if a subsequent “a” follows, then the attacker should not be able to observe
“b” as in this case it could know the system is in a secret state. We can then design a
dynamic events’s hider as follows: at the beginning, everything is observable; when an
“a” occurs, the observer hides any subsequent “b” occurrences and permits only the
observation of “a”. Once an “a” has been observed, the observer releases its hiding
by letting both “a” and “b” be observable again. +

4.1 Opacity Generalized to Dynamic Projection

We now define the notion of dynamic projection and its associated dynamic observer.
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Dynamic Projections and Observers. A dynamic projection is a function that will de-
cide to let an event be observable or to hide it, thus playing the role of a filter between
the system and the attacker to prevent information flow (see Figure 1).

Definition 2. A dynamic observability choice is a mapping T : Σ∗ → 2Σ . The (obser-
vation-based) dynamic projection induced by T is the mapping D : Σ∗ → Σ∗ defined
by D(ε) = ε, and for all u ∈ Σ∗ and all λ ∈ Σ,

D(u.λ) = D(u).λ if λ ∈ T (D(u)) and D(u.λ) = D(u) otherwise. (1)

Assuming that u ∈ Σ∗ occurred in the system and µ ∈ Σ∗ has been observed by the
attacker i.e., µ = D(u), then the events of T (µ) are the ones currently observable.
Note that this choice does not change until an observable event occurs. Given µ ∈ Σ∗,
D−1(µ) = {u ∈ Σ∗ | D(u) = µ} is the set of sequences that project onto µ.

Example 3. A dynamic projection D : Σ∗ → Σ∗ corresponding to the one of Exam-
ple 2 can be induced by the dynamic observability choice T defined by T (u) = {a} for
all u ∈ b∗.a and T (u) = {a, b} for all the other sequences u ∈ Σ∗. +

Given a FA G and a dynamic projection D, we denote by TrD(G) = D(L(G)), the set
of observed traces. Conversely, given µ ∈ TrD(G), the set of words [[µ]]D of G that are
compatible with µ is defined by:

[[ε]]D = {ε} and for µ ∈ Σ∗, λ ∈ Σ : [[µ.λ]]D = D−1(µ).λ ∩ L(G).

Given two different dynamic projections D1 and D2 and a system G over Σ, we say
that D1 and D2 are G-equivalent, denoted D1 ∼G D2, whenever for all u ∈ L(G),
D1(u) = D2(u). The relation ∼G identifies two dynamic projections when they agree
on L(G); they can disagree on other words in Σ∗ but since they will not be generated
by G, it will not make any difference from the attacker point of view. In the sequel we
will be interested in computing the interesting part of dynamic projections given G, and
thus will compute one dynamic projection in each class.

Opacity with Dynamic Projection. We generalize Definition 1 by taking into account
the new observation interface given by D.

Definition 3. Given a FA G = (Q, q0,Σ, δ, F ), F is opaque with respect to (G, D) if

∀µ ∈ TrD(G), Post({q0}, [[µ]]D) &⊆ F. (2)

Again, this definition extends to family of

1

Γ (1) = {a, b}

2

Γ (2) = {a}

3

Γ (3) = {a, b}

b b a, b

a a

Fig. 3. Example of a Dynamic Observer

sets. We say that D is a valid dynamic pro-
jection if (2) is satisfied (i.e., whenever F is
opaque w.r.t. (G, D)) and we denote by D
the set of valid dynamic projections. Obvi-
ously if D1 ∼G D2, then D1 is valid if and
only if D2 is valid. We denote by D∼G the
quotient set of D by ∼G.
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Remark 2. Let Σo ⊆ Σ, then if D is a dynamic projection that defines a constant map-
ping making actions in Σo always observable (and the others always unobservable),
we have D(u) = PΣo(u) and we retrieve Definition 1. The property of secrecy can be
extended as well using dynamic projection. +

In the sequel, we shall be interested in checking the opacity of F w.r.t. (G, D) or to syn-
thesize such a dynamic projection D ensuring this property. In Section 3, the dynamic
projection was merely the natural projection and computing the observational behavior
of G was easy. Here, we need to find a characterization of these dynamic projections
that can be used to check opacity or to enforce it. To do so, we introduce the notion of
dynamic observer [15] that will encode a dynamic projection in terms of automata.

Definition 4 (Dynamic observer). A dynamic observer is a complete deterministic la-
beled automaton O = (X, x0,Σ, δo,Γ ) where X is a (possibly infinite) set of states,
x0 ∈ X is the initial state, Σ is the set of input events, δo : X×Σ → X is the transition
function (a total function), and Γ : X → 2Σ is a labeling function that specifies the set
of events that the observer keeps observable at state x. We require that for all x ∈ X
and for all λ ∈ Σ, if λ /∈ Γ (x), then δo(x,λ) = x, i.e., if the observer does not want
an event to be observed, it does not change its state when such an event occurs.

We extend δo to words of Σ∗ by: δo(q, ε) = q and for u ∈ Σ∗,λ ∈ Σ, δo(q, u.λ) =
δo(δo(q, u),λ). Assuming that the observer is at state x and an event λ occurs, it outputs
λ whenever λ ∈ Γ (x) or nothing (ε) if λ /∈ Γ (x) and moves to state δo(x,λ). An
observer can be interpreted as a functional transducer taking a string u ∈ Σ∗ as input,
and producing the output which corresponds to the successive events it has chosen to
keep observable. An example of dynamic observer is given in Figure 3. We now relate
the notion of dynamic observer to the one of dynamic projection.

Proposition 1. Let O = (X, x0,Σ, δo,Γ ) be an observer and define DO by: DO(ε) =
ε, and for all u ∈ Σ∗, DO(u.λ) = DO(u).λ if λ ∈ Γ (δo(x0, u)) and DO(u) other-
wise. Then DO is a dynamic projection. In the sequel, we write [[µ]]O for [[µ]]DO .

Proof. To prove that DO defined above is a dynamic projection, it is sufficient to exhibit
a dynamic observability choice T : Σ∗ → 2Σ and to show that (1) holds. Let T (u) =
Γ (δo(xo, DO(u))). It is easy to show by induction that δo(xo, u) = δo(xo, DO(u))
because δo(x,λ) = x when λ /∈ Γ (x). We can then define T (u) = Γ (δo(xo, u)) and
the result follows from this remark. !
Proposition 2. Given a dynamic projection D induced by T , let OD = (Σ∗, ε,Σ, δD,
T ) where δD(w,λ) = D(w.λ). Then OD is a dynamic observer.

Proof. OD is complete and deterministic by construction. Moreover after a sequence u
if D(u.λ) = D(u) then δD(u,λ) = u. !

Note that there might exist several equivalent observers that encode the same dynamic
projection. For example, the observer depicted in Figure 3 is one observer that encodes
the dynamic projection described in Example 3. But, one can consider other observers
obtained by unfolding an arbitrary number of times the self-loops in states 1 or 3. Fi-
nally, to mimic the language theory terminology, we will say that a dynamic projection
D is regular whenever there exists a finite state dynamic observerO such that DO = D.



360 F. Cassez, J. Dubreil, and H. Marchand

To summarize this part, we can state that with each dynamic projection D, we can as-
sociate a dynamic observer OD such that D = DOD . In other words, we can consider
a dynamic projection or one of its associated dynamic observers whenever one repre-
sentation is more convenient than the other. If the dynamic projection D derived from
O is valid, we say that O is a valid dynamic observer. In that case, we will say that F is
opaque w.r.t. (G,O) and we denote by OBS(G) the set of all valid dynamic observers.

4.2 Checking Opacity with Dynamic Observers

The first problem we are going to address consists in checking whether a given dynamic
projection ensures opacity. To do so, we assume given a dynamic observer which defines
this projection map. The problem, we are interested in, is then the following:

Problem 3 (Dynamic State Based Opacity Problem).
INPUT: A non-deterministic FA G = (Q, q0,Σ, δ, F ) and a dynamic observer

O = (X, x0,Σ, δo,Γ ).
PROBLEM: Is F opaque w.r.t. (G,O) ?

We first construct an automaton which represents what an attacker will see under the
dynamic choices of observable events made by O. To do so, we define the automaton
G ⊗O = (Q × X, (q0, x0),Σ ∪ {τ}, δ, F × X) where τ is a fresh letter not in Σ and
δ is defined for each λ ∈ Σ ∪ {τ}, and (q, x) ∈ Q × X by:

– δ((q, x),λ) = δG(q,λ) × {δo(x,λ)} if λ ∈ Γ (x);
– δ((q, x), τ) =

(
∪λ∈Σ\Γ (x)δG(q,λ)

)
× {x}.

Proposition 3. F is opaque w.r.t. (G,O) iff F × X is opaque w.r.t. (G ⊗O,Σ).

Proof. Let µ ∈ TrO(G) be a trace observed by the attacker. We prove the following by
induction on the length of µ:

q ∈ PostG({q0}, [[µ]]O) ⇐⇒ (q, x) ∈ PostG⊗O({(q0, x0)}, [[µ]]Σ) for some x ∈ X .

If µ = ε, the result is immediate. Assume that µ′ = µ.λ. Let q ∈ PostG({q0}, [[µ′]]O).
By definition of [[µ′]]O we have q0

u→q′
v→q′′

λ→q with u ∈ [[µ]]O , u.v.λ ∈ [[µ.λ]]O .
By induction hypothesis, it follows that (q′, δo(x0, u)) ∈ PostG⊗O({(q0, x0)}, [[µ]]Σ)
where δo(x0, u) is the (unique) state of O after reading u. Then, there exists a word
w ∈ (Σ ∪ {τ})∗ such that PΣ(w) = µ and (q0, x0)

w→(q′, δo(x0, u)) is a run of
G ⊗ O. Assume v = v1.v2. · · · .vk, k ≥ 0. As O(u.v) = O(u) , we must have
vi &∈ Γ (δo(x0, u.v1. · · · .vi)) when 1 ≤ i ≤ k. Hence, by construction of G ⊗ O,
there is a sequence of transitions in G ⊗O of the form

(q′, δo(x0, u)) τ−−→ δo(x0, u.v1)
τ−−→ · · · τ−−→ (q′′, δo(x0, u.v))

with λ ∈ Γ (δo(x0, u.v)). Thus, (q0, x0)
w−−→ (q′, δo(x0, u)) τk.λ−−−−→ (q, δo(u.v.λ)) is

a run of G ⊗ O with PΣ(w.τk .λ) = µ.λ = µ′. This implies (q, δo(x0, u.v.λ)) ∈
PostG⊗O({(q0, x0)}, [[µ′]]Σ). For the converse if we have a sequence of τ transitions in
G ⊗O, they must originate from actions in G which are not observable. !
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The previous result is general, and if O is a FA we obtain the following theorem:

Theorem 3. For finite state observers, Problem 3 is PSPACE-complete.

Proof. As the size of the product G ⊗O is the product of the size of G and the size of
O and opacity can be checked in PSPACE, PSPACE-easiness follows. Now, checking
state based opacity with respect to (G,Σ) can be done using a simple observer with
one state which always let Σ observable and PSPACE-hardness follows. !

As Proposition 3 reduces the problem of checking opacity with dynamic observers to
the problem of checking opacity with static observers, Theorem 3 extends to family of
sets (and thus to secrecy).

4.3 Enforcing Opacity with Dynamic Projections

So far, we have assumed that the dynamic projection/observer was given. Next we will
be interested in synthesizing one in such a way that the secret becomes opaque w.r.t. the
system and this observer.

Problem 4 (Dynamic Observer Synthesis Problem).
INPUT: A non-deterministic FA G = (Q, q0,Σ, δ, F ).
PROBLEM: Compute the set of valid dynamic observers OBS(G)3.

Deciding the existence of a valid observer is trivial: it is sufficient to check whether
always hiding Σ is a solution. Moreover, note that OBS(G) can be infinite. To solve
Problem 4, we reduce it to a safety 2-player game. Player 1 will play the role of an
observer and Player 2 what the attacker observes. Assume the automaton G can be in
any of the states s = {q1, q2, · · · , qn}, after a sequence of actions occurred. A round of
the game is: given s, Player 1 chooses which letters should be observable next i.e., a set
t ⊆ Σ; then it hands it over to Player 2 who picks up an observable letter λ ∈ t; this
determines a new set of states G can be in after λ, and the turn is back to Player 1. The
goal of the Players are defined by:

– The goal of Player 2 is to pick up a sequence of letters such that the set of states
that can be reached after this sequence is included in F . If Player 2 can do this, then
it can infer the secret F . Player 2 thus plays a reachability game trying to enforce a
particular set of states, say Bad (the states in which the secret is disclosed).

– The goal of Player 1 is opposite: it must keep the game in a safe set of states where
the secret is not disclosed. Thus Player 1 plays a safety game trying to keep the
game in the complement set of Bad.

As we are playing a (finite) turn-based game, Player 2 has a strategy to enforce Bad
iff Player 1 has no strategy to keep the game in the complement set of Bad (turn-based
finite games are determined [19]).

We now formally define the 2-player game and show it allows us to obtain a finite
representation of all the valid dynamic observers. Let H = (S1 ∪S2, s0, M1∪M2, δH)
be the deterministic game automaton derived from G and given by:

3 Our aim is actually to be able to generate at least one observer for each representative of D∼G ,
thus capturing all the interesting dynamical projections.
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– S1 = 2Q is the set of Player 1 states and S2 = 2Q × 2Σ the set of Player 2 states;
– the initial state of the game is the Player 1 state s0 = {q0};
– Player 1 will choose a set of events to hide in Σ, then Player 1 actions are in the

alphabet M1 = 2Σ and Player 2 actions are in M2 = Σ;
– the transition relation δH ⊆ (S1 × M1 × S2) ∪ (S2 × M2 × S1) is given by:

• Player 1 moves (observable events): if s ∈ S1, t ⊆ Σ, then δH(s, t) = (s, t);
• Player 2 moves (observed events): if (s, t) ∈ S2, λ ∈ t and

s′ = Post(s, (Σ \ t)∗.λ) &= ∅, then δH((s, t),λ) = s′.

Remark 3. If we want to exclude the possibility of hiding everything for Player 1, it
suffices to build the game H with this constraint on Player 1 moves i.e., ∀s ∈ S1, and
t &= ∅, δH(s, t) = (s, t). +

We define the set of Bad states to be the set of Player 1 states s s.t. s ⊆ F . For
a family of sets F1, F2, · · · , Fk, Bad is the set of states 2F1 ∪ 2F2 ∪ · · · ∪ 2Fk . Let
Runsi(H), i = 1, 2 be the set of runs of H that end in a Player i state. A strategy for
Player i is a mapping fi : Runsi(H) → Mi that associates with each run that ends
in a Player i state, the new choice of Player i. Given two strategies f1, f2, the game
H generates the set of runs Outcome(f1, f2, H) combining the choices of Players 1
and 2 w.r.t. f1 and f2. f1 is a winning strategy for Playing 1 in H for avoiding Bad
if for all Player 2 strategies f2, no run of Outcome(f1, f2, H) contains a Bad state.
A winning strategy for Player 2 is a strategy f2 s.t. for all strategy f1 of Player 1,
Outcome(f1, f2, H) reaches a Bad state. As turn-based games are determined, either
Player 1 has a winning strategy or Player 2 has a winning strategy.

We now relate the set of winning strategies for Player 1 in H to the set of valid
dynamic projections. Let PM2(*) = PΣ(tr(*)) for a run * of H . The proof of the
following Proposition 4 is given in Appendix.

Definition 5. Given a dynamic projection D, we define the strategy fD such that for
every * ∈ Runs1(H), fD(*) = TD(PM2 (*)).

Proposition 4. Let D be a dynamic projection. D is valid if and only if fD is a winning
strategy for Player 1 in H .

Given a strategy f for Player 1 in H , for all µ ∈ Σ∗, there exists at most one run
*µ ∈ Outcome1(f, H) such that PM2(tr(*µ)) = µ.

Definition 6. Let f be a strategy for Player 1 in H . We define the dynamic projection
Df induced by the dynamic observability choice Tf : Σ∗ → 2Σ given by: Tf (µ) =
f(*µ) if *µ is in Outcome(f, H) and Tf(µ) = Σ otherwise.

Notice that when *µ is not in Outcome(f, H), it does not really matter how we define
Tf because there is no word w ∈ L(G) s.t. µ = Df (w).

Proposition 5. If f is a winning strategy for Player 1 in H , then Df is a valid dynamic
projection.

Proof. Applying the construction of Definition 5 yields fDf = f . Since f is a winning
strategy, by Proposition 4, we get that Df is a valid dynamic projection. !
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Notice that we only generate a representative for each of the equivalence classes induced
by ∼G. However, an immediate consequence of the two previous propositions is that
there is a bijection between the set of winning strategies of Player 1 and D∼G .

4.4 Most Permissive Dynamic Observer

We now define the notion of most permissive valid dynamic observers. For an observer
O = (X, xo,Σ, δo,Γ ) and w ∈ Σ∗, recall that Γ (δo(xo, w)) is the set of events that O
chooses to render observable after observing w. Assume that w = λ1λ2 · · ·λk. Let w =
Γ (xo).λ1.Γ (δo(xo, w[1])).λ2.Γ (δo(xo, w[2])) · · ·λk.Γ (δo(xo, w[k])) i.e., w contains
the history of what O has chosen to observe at each step and the next observable event
that occurred after each choice.

Definition 7. Let O∗ : (2Σ .Σ)∗ → 22Σ
. The mapping O∗ is the most permissive valid

dynamic observer4 ensuring the opacity of F if the following holds:

O = (X, xo,Σ, δo,Γ ) is a valid observer ⇐⇒ ∀w ∈ L(G), Γ (δo(xo, w)) ∈ O∗(w).

The definition of the most permissive valid observer states that any valid observer O
must choose a set of observable events in O∗(w) on input w; if an observer chooses its
set of observable events in O∗(w) on input w, then it is a valid observer.

Theorem 4. The most permissive valid observer O∗ can be computed in EXPTIME.

Proof. The detailed proof is given in Appendix. For a sketch, the most permissive valid
dynamic observer is obtained using the most permissive winning strategy in the game
H . It is well-known result [20] that for a finite game, if there is a winning strategy, there
is a memoryless most permissive one. Moreover whether there is a winning strategy can
be decided in linear time in the size of the game. As the size of H is exponential in the
size of G and Σ the result follows. !
We let FH be the automaton representing the most permissive observer. Theorem 4
states that FH can be used to generate any valid observer. In particular, given a finite-
memory winning strategy, the corresponding valid observer is finite and thus its as-
sociated dynamic projection is regular. An immediate corollary of Theorem 4 is the
following:

Corollary 1. Problem 4 is in EXPTIME.

Example 4. To illustrate this section, we consider the following small example. The sys-
tem is depicted by the automaton in Figure 4(a). The set of secret states is reduced to the
state (2). Figure 4(b) represents the associated game automaton. The states of Player 1
are represented by circles whereas the ones of Player 2 are represented by squares. The
only bad states is the state (2). The most permissive valid dynamic observer is obtained
when Player 1 does not allow transition {a, b} to be triggered in state (1) (otherwise,

4 Strictly speaking O∗ is not an observer because it maps to sets of sets of events whereas
observers map to sets of events. Still we use this term because it is the usual terminology in
the literature.
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Fig. 4. Most Permissive Dynamic Observer

Player 2 could choose to observe either event a or b and in this case the game will
evolve into state (2) and the secret will be revealed). The dashed lines represents the
transitions that are removed from the game automaton to obtain the most permissive
observer. Finally, Figure 4(c) represents a valid observer O generated from the most
permissive observer with the memoryless strategy f(1) = {a} and f(12) = {a, b}. +

5 Optimal Dynamic Observer

Among all the possible observers that ensure the opacity of the secret, it is worth-
while noticing that some are better (in some sense) than other: they hide less events
on average. We here define a notion of cost for observers which captures this intu-
itive notion. We first introduce a general cost function and we show how to compute
the cost of a given pair (G,O) where G is a system and O a finite state observer.
Second, we show that among all the valid observers (that ensure opacity), there is
an optimal cost, and we can compute an observer which ensures this cost. The prob-
lems in this section and the solutions are closely related to the results in [15] and use
the same tools: Karp’s mean-weight algorithm [21] and a result of Zwick and Pater-
son [22]. We want to define a notion of cost which takes into account the set of events
the observer chooses to hide and also how long it hides them. We assume that the ob-
server is a finite automaton O = (X, x0,Σ, δo,Γ ). With each set of observable events
Σ′ ∈ 2Σ we associate a cost of hiding Σ \ Σ′ which is a positive integer. We denote
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Cost : 2Σ → N this function. Now, if O is in state x, the current cost per time unit is
Cost(Γ (x)). Let Runsn(G) be the set of runs of length n in Runs(G). Given a run

ρ = q0
λ1−−→ q1 · · · qn−1

λn−−→ qn ∈ Runsn(G), let xi = δo(x0, wi) with wi = tr(ρ[i]).
The cost associated with ρ ∈ Runsn(G) is defined by:

Cost(ρ, G,O) =
1

n + 1
·

∑

i=0..n

Cost(Γ (xi)).

Notice that the time basis we take is the number of steps which occurred in G. Thus if
the observer is in state x, and chooses to observe Γ (x) at steps i and i + 1, Cost(Γ (x))
will be counted twice: at steps i and i+1. The definition of the cost of a run corresponds
to the average cost per time unit, the time unit being the number of steps of the run
in G. Define the cost of the set of runs of length n that belongs to Runsn(G) by:
Cost(n, G,O) = max{Cost(ρ, G,O) | ρ ∈ Runsn(G)}. The cost of an observer with
respect to a system G is

Cost(G,O) = lim sup
n→∞

Cost(n, G,O) (3)

(notice that the limit may not exist whereas the limit sup is always defined.) To compute
the cost of a given observer, we can use a similar algorithm as the one given in [15],
and using Karps’s maximum mean-weight cycle algorithm [21]:

Theorem 5. Computing Cost(G,O) is in PTIME.

Proof. We can prove that the cost of an observer is equal to the maximum mean-weight
cycle in G ⊗ O. The size of G ⊗ O is polynomial in the size of G and O. Computing
the maximum mean-weight cycle can be done in linear time w.r.t. the size of G⊗O. !

Finally we can solve the following optimization problem:

Problem 5 (Bounded Cost Observer).
INPUTS: an automaton G = (Q, q0,Σ, δ, F ) and an integer k ∈ N.
PROBLEMS:
(A) Is there any O ∈ OBS(G) s.t. F is opaque w.r.t. (G,O) and Cost(G,O) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness observer O s.t. Cost(G,O) ≤ k.

To solve this problem we use a result from Zwick and Paterson [22], which is an exten-
sion of Karp’s algorithm for finite state games.

Theorem 6. Problem 5 can be solved in EXPTIME.

The solution to this problem is the same as the one given in [15], and the proof for
the opacity problem is detailed in [16]. The key result is Theorem 4, which enables
us to represent all the winning strategies in H as a finite automaton. Synchronizing G
and the most permissive valid dynamic observer FH produces a weighted game, the
optimal value of which can be computed in PTIME (in the size of the product) using
the algorithm in [22]. The optimal strategies can be computed in PTIME as well. As
G × FH has size exponential in G and Σ, the result follows.
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6 Conclusion

In this paper, we have investigated the synthesis of opaque systems. In the context of
static observers, where the observability of events is fixed a priori, we provided an algo-
rithm (PSPACE-complete) to compute a maximal subalphabet of observable actions en-
suring opacity. We have also defined a model of dynamic observers determining whether
an event is observable after a given observed trace. We proved that the synthesis of dy-
namic observers can be solved in EXPTIME, and EXPTIME-hardness is left open.

We assumed that the dynamic observers can change the set observable events only
after an observable event has occurred. This assumption should fit most applications
since the knowledge of the attacker also depends on observed traces. It would be inter-
esting to investigate also the case where this decision depends on the word executed by
the system. The case where the observability depends on the state of the system should
also be considered as it would be easy to implement in practice. Finally, the notion of
semantics of an observed trace used throughout this article is based on the assumption
that the attacker can react, i.e., acquire knowledge, faster than the system’s evolution. It
would be interesting to adapt this work to other types of semantics.
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