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Abstract. The opacity property characterises the absence of confidential infor-
mation flow towards inquisitive attackers. Verifying opacity is well established
for finite automata but is known to be not decidable for more expressive models
like Turing machines or Petri nets. As a consequence, for a system dealing with
confidential information, formally certifying its confidentiality may be impossi-
ble, but attackers can still infer confidential information by approximating sys-
tems’ behaviours. Taking such attackers into account, we investigate the verifica-
tion of opacity using abstraction techniques to compute executable counterexam-
ples (attack scenarios). Considering a system and a predicate over its executions,
attackers are modelled as semi-conservative decision process determining from
observed traces the truth of that predicate. Moreover, we will show that the most
precise the abstraction is, the most accurate(and then dangerous) the correspond-
ing class of attackers will be. Consequently, when no attack scenario is detected
on an approximate analysis, we know that this system is safe against all “less
precise” attackers. Therefore, this can be used to provide a level of certification
relative to the precision of abstractions.

Introduction

Ensuring the confidentiality of critical information stored on or transferred through
computer systems has become one of the most challenging objectives of modern hard-
ware and software design. Interconnected networks like Internet or mobile phones are
open by nature and then vulnerable to malicious attacker. But in practise, the level of
security is often determined by the quantity of known and public vulnerabilities. This
approach, possibly forgetting vulnerabilities that are only known by a malicious group
of users, is not satisfying regarding the significant place of information technologies in
some critical sectors like medicine, e-government or finance. For example, large scale
stealing of medical records or massive modification of votes on e-voting systems can
be very dangerous. Then, there should be no security breaches on such infrastructures.
Furthermore, security of systems alone is not sufficient, the confidence users have in
their security is also imperative. Indeed, even if a system happens to be secure, it is cru-
cial for users to know that it is secure. This situation implies the development of reliable
methods for certifying the absence of security breaches on such critical services. When
a service needs to keep information secret, formal certification is essentially the only
way to gain confidence since information flow attacks may be hard to detect and the
damages intricate to recover. Unfortunately, manual analysis is very expensive and re-
quires a high level of expertise. Moreover, it such analysis is often impossible to achieve
in practise for large infrastructures, especially when updates are regularly performed.



In order to automate the certification process, security requirements have to be for-
malised. For this purpose security properties are generally classified into three cate-
gories [3]:

– integrity (users cannot perform some illegal actions),
– availability (some user process can always be performed), and
– confidentiality (unauthorised users cannot acquire secret information).

For example, it is expected for an e-voting system that votes cannot be modified by a
third party: this is a concern of integrity. Also, requiring that every elector can vote is
a concern of availability. Finally, requiring that no third party can know the vote of an
elector is a concern of confidentiality. A security policy is a set of security properties
that have to be simultaneously satisfied.

In this article, we will only focus on confidentiality properties. We consider a critical
system, modelled by a possibly infinite labelled transition system, required to keep
secret some confidential information against inquisitive attackers. For security analysis,
it is generally safer to consider that potential attackers have a complete knowledge of
the system structure and we will make similar assumptions throughout the article. As
an example this would be the case when analysing standardised protocols or software
with sources publicly available. We also assume that attackers are partially observing
the system. Attackers typically observe the interactions, i.e. the inputs and outputs, but
we can also consider timing information, power consumption, or electromagnetic leaks
to be observable as long as they can be modelled in an event based fashion. The partial
observation is given by a function mapping the runs to a set of observed traces.

The notion of opacity, introduced in [22], is a formalisation of the ability of a sys-
tem to keep secret some critical information. Considering a predicate over the runs, the
confidential information consists in the occurrence of a run executed by the system sat-
isfying the predicate. In [4], the authors proved that opacity is general enough to model
a significant set of confidentiality properties like anonymity and non-deductibility. The
notion of trace-based non-interference, defined in [14,15] and generalising the non-
interference introduced in [18], can also be considered using opacity. A predicate φ is
said to be opaque on a system M if whenever a run r satisfying φ is executed, there
exists another run r′ which is observationally equivalent to r from the attacker point of
view and does not satisfy φ. In that case, if ν is the observed trace of r, the attacker
cannot discern if r or r′ has been executed and then cannot infer from ν whether the
run executed satisfies φ.

For example, consider a program P to be an implementation of a cryptographic
component that needs to keep secret the value of some key k. This value is randomly
generated when P is launched and is not modified during execution. Let the predicate
φ be defined as the set of executions of P that are only possible when the value of k is
smaller than a given value k0. If φ is not opaque on P , then for some observation ν, the
attacker knows that the current execution of P belongs to φ and then that 0 ≤ k ≤ k0.
In this example, the program P also leaks information if the attacker can infer that
k0 ≤ k. This idea is formalised in [2] with the notion of secrecy where a system leaks
information about a predicate φ when for a run r, the attacker knows that r |= φ or
that r |= ¬φ. Secrecy can be handled considering the opacity of φ and ¬φ but the
information ¬φ may not always be relevant as the following example will point out.



Let M be a basic authorisation service. Users send their logins and passwords to
M which read from a database file pwd if the values match and decide whether to let
users proceed to the next step. The file pwd is normally protected, nobody can read its
content, but in order to make the comparison,M enables read access on pwd, compares
the values and then disables read access. The attacker wants to infer that pwd can be
read and then launch a print pwd command to steal all login information. We can
see on this example, inspired from a security issue on early UNIX systems, that the
attacker is not interested in the information “pwd is not read accessible“ which is likely
to be the case most of the time during execution. This case of attacks also suggests
that attackers want to know “the current run executed by M satisfies φ” rather than “a
run satisfying φ has been executed by M”. In the previous example, when the login is
successful, the attacker knows that pwd has been, at some time, read accessible but this
is not a useful information. This makes a difference with works on failures diagnosis of
discrete events systems [23,20].

We reformulate the notion of opacity of [4], showing that the property finds roots
in the possible world model of epistemic logic [19,13]. Such formulation will help
us to investigate what information is lost and what is preserved when reasoning with
overapproximations and underapproximations of the semantic of M . Then, given an
approximation framework based on Galois connections, we provide a construction of
monitors allowing an attacker to infer confidential information from observed traces.
Finally, using together an overapproximation and an underapproximation of M , we
give a method to statically detect cases of information flow.

In section 1, we present the notation for the considered models of system. In sec-
tion 2 we detail our model of attacker from which we derive the notion of property
inference from imperfect information through the K (“knows”) modality of epistemic
logic. Opacity is then defined as the impossibility to acquire from observations that
systems behaviours belongs to a secret. We study in section 3 the opacity verification
problem for finite automata and proves its PSPACE-complete complexity. We use these
results in section 4 to apply abstraction techniques for the verification of opacity on
infinite systems.

1 Notations and Definitions

Relations Let S be a set. A relation r over S is a subset of S × S. We say that this
relation r is

– reflexive: ∀x ∈ S, (x, x) ∈ r
– symmetric: ∀x, y ∈ S, (x, y) ∈ r ⇒ (y, x) ∈ r
– antisymmetric: ∀x, y ∈ S, (x, y) ∈ r ∧ (y, x) ∈ r ⇒ x = y
– transitive: ∀x, y, z ∈ S, (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r

A relation θ over S is an equivalence relation if θ is reflexive, symmetric and tran-
sitive. We use the notation x ∼θ y for (x, y) ∈ θ and [x]θ = {y ∈ s : y ∼θ x}.

Lattice Theory Let v be a relation over S. We say that v is an order relation if v is
reflexive, antisymmetric and transitive. In that case, (S,v) is called a partially ordered



set. Let (A,va) and (B,vb) be two partially ordered set and f : A→ B. The function
f is monotone if for all x, y ∈ A, f(x) vb f(y) whenever x va y. Two functions
α : A→ B and γ : B → A establish a Galois connection between A and B, denoted
(A,va) −−→←−−α

γ
(B,vb), when for all x ∈ A and y ∈ B, α(x) vb y if and only if

x va γ(y). In that case, both α and γ are monotone.
For X ⊆ A and y ∈ A we say that y is an upper bound (resp. lower bound) if for all

x ∈ X , x va y (resp. y va x). Also, y is a least upper bound, if for every other upper
bound z, we have y va z. When such upper bound exists, it is unique and denoted
lub(X). Similarly, glb(X) denotes the greatest lower bound. A partially ordered set
(A,va) is a lattice whenever lub({x, y}) and glb({x, y}) exists for every x, y ∈ A
and is a complete lattice whenever lub(X) and glb(X) exists for every X ⊆ A. We
also note xua y, xta y, uaX , taX , ⊥a and >a for glb({x, y}), lub({x, y}), glb(X),
lub(X), glb(A) and lub(A) respectively. For example, if S is a set, then (P(S),⊆), the
subsets of S forms a complete lattice for the inclusion order relation, with u = ∩ and
t = ∪.

We note x <a y when x va y and x 6= y. A set {xn}n∈N ⊆ A is an increasing
chain if for all i ∈ N, xi va xi+1. We say that the chain is stricly increasing if for
all i ∈ N, xi <a xi+1. The height of a lattice A is the maximum number of pairwise
disjoint element in a chain on A. It is denoted height(A). Typically, height(A) < ∞
if |A| <∞.

Let (A,va) and (B,vb) be complete lattices and g : A → B. We say that g is
ω-continuous if for every increasing chain {xn}n∈N ⊆ A, g(ta{xn : n ∈ N}) =
tb{g(xn) : n ∈ N}. Let idA : A → A denote the identity function: for every x ∈ A,
idA(x) = x, and let f : A → A be a function. The iterations of f are defined by
f0 = idA and for n ∈ N, fn = fn−1 ◦ f . An element x ∈ A is a fixed point of f
if f(x) = x. If f is monotone and ω-continuous, then there exists a least fixed point
of f , denoted lfp(f) ∈ A which can be computed by lfp(f) = ta({fn(⊥)}). If
height(A) < ∞, then there exists N ∈ N such that lfp(f) = fN (⊥). Similarly for
the greatest fixed point gfp(f) = u({fn(>)}).

Labelled Transition Systems Let Λ and S be possibly infinite sets representing respec-
tively the labels for possible actions and the labels for possible states, or configurations,
of a system. If a finite set of variables are used within a program P then S can repre-
sent all the possible valuations of the variables in the semantics of P . If A and B are
two subsets of Λ, we note AB = {λλ′ : λ ∈ A, λ′ ∈ B}. We denote Λn = Λn−1Λ,
assuming that Λ0 = {ε}, where ε denote the empty word, and Λ∗ = ∪n∈NΛ

n is the set
of finite words over Λ. For w ∈ Λ∗, |w| denotes the number of letters occuring in w. A
set L of finite words over Λ, L ⊆ Λ∗, is called a language.

Definition 1. A LTS is a tuple M = (Λ, S, δ, S0) where:

– Λ is an alphabet of events;
– S is a set of states;
– δ : Λ× S → P(S) is the transition function;
– S0 ⊆ S are the initial states.



The LTS M is deterministic if for all λ ∈ Λ and s ∈ S, |δ(λ, s)| ≤ 1. A finite run
(or execution) of M is a sequence of the form

r = s0
λ1→ s1

λ2→ s2 · · · sn−1
λn→ sn (1)

constructed by alternating labels of Λ and states of S such that si+1 ∈ δ(λi+1, si), 0 ≤
i < n. The trace tr(r) of the run in (1) is the word λ0λ1λ2 ... λn. The operators fst(·)
and lst(·) denote respectively the first and the last state of a run. For r in (1), fst(r) =
s0 and lst(r) = sn. The length of a run is defined by length(r) = |tr(r)|. The set of all
finite runs which can be constructed from S and Λ is denoted E(Λ, S) = S(ΛS)∗. The
set S is identified to {sε : s ∈ S} ⊂ E(Λ, S). The set of runs of M , denoted R(M)
is defined by R(M) = lfp(f), where the function f : R 7→ {S0} ∪ {r

λ→ s : r ∈
R, s ∈ δ(λ, lst(r))} is monotone on the complete lattice P(E(Λ, S)). For X and Y
subsets of S, we note L(M,X, Y ) = {tr(r) : r ∈ R(M), fst(r) ∈ X, lst(r) ∈ Y }.
The language of M is L(M) = L(M,S0, S). Finally, we define the concatenation of
two runs by :

cat : E(Λ, S)× E(Λ, S)→ E(Λ, S)

r, s 7→
{
r if lst(r) = s
undefined otherwise

r, s
λ→ r′ 7→

{
cat(r λ→ fst(r′), r′) if lst(r) = s
undefined otherwise

In the sequel, we will simply denote r · r′ for cat(r, r′). We say that r is a prefix of
r′, denoted r ≤ r′, when there exists r′′ ∈ E(Λ, S) such that r′ = r · r′′. Then, ≤ is an
order relation over E(Λ, S).

2 Model of attackers and Notion of Opacity

Considering a LTS M = (Λ, S, δ, S0) as above and a predicate φ over the runs of M
modelling the secret. We do not put restriction on Λ and S which can be possibly infi-
nite sets. This allow the following definitions to be general enough to apply our results
to more specific models like process algebras or Petri nets. The occurrence of a run
in M satisfying φ is the information that should remain confidential. Let A denotes
an attacker whose aim is to infer that the current run executed by M satisfies φ. We
understand A to be a machine, or a class of machines, and not a real person. In that
case we can define precisely its capabilities and knowledge. We suppose that A has an
imperfect information about what really happens when a run is executed by M . This
is modeled by a equivalence relation θ over the runs of M whose semantic is: when a
run r is executed by M , if there exists an other r′ ∈ E(Λ, S) such that r ∼θ r′, then
A cannot discern if r or r′ has been executed but knows that at least one run of [r]θ
has been executed. So in this context of imperfect information, when an unknown run
x ∈ R(M) is executed, A has to infer whether x satisfies φ, denoted x |= φ, from
the known fact [x]θ. In particular, A will be sure that x |= φ when every run of [x]θ
satisfies φ. The notion of opacity defined in [4] is based on this idea. This concept is



also known in the context of modal logic with the formalisation of knowledge using the
possible world model [19]. In this setting, agents are considered to know a fact φ if this
fact is true in every world that are possible from their point of view. Then, for analysing
confidentiality for a system M , knowledge about the set of runs R(M) that are pos-
sible according to the transition relation plays a central role in the ability of attackers
to acquire information during system’s executions. But, computing the exact semantic
R(M) may be impossible when Λ and S are infinite. So, we have to consider attack-
ers reasoning according to an imprecise semantic R of M . To this end, we reformulate
the notion of opacity using epistemic modalities to establish links between an attacker
reasoning with R and a, possibly only theoretical, ideal attacker reasoning withR(M).
This considerations will allow us to model the more realistic case of attackers reasoning
from an overapproximation or an underapproximation ofR(M).

2.1 Possible Worlds Model

We model the knowledge of the attacker A using the possible worlds model of epis-
temic logic [19]. More details can be found in [26,13,17]. We also consider the order
relation ≤ over E(Λ, S) to express the behavioural aspects of the computations of M .
Let Atm = {t1, t2, ..., tk} be a finite set of atomic propositions and π : E(Λ, S) →
P(Atm) a valuation function. Let the language Fml(Atm) to be the smallest set of
formulae such that:

– The predicates of Atm, true and false belong to Fml(Atm);
– if φ and ψ are in Fml(Atm), then so are ¬φ and φ ∧ ψ;
– if φ is in Fml(Atm), then so is �φ;
– if φ is in Fml(Atm), then so is Kφ.

Consider an attacker A reasoning from a set of runs R ⊆ E(Λ, S) with the indis-
tinguishability relation θ over R. The formulae of Fml(Atm) are interpreted on the
Kripke structure (R,≤, θ, π) as follows, for r ∈ R:

– (R, r) |= true;
– (R, r) |= t when t ∈ π(r);
– (R, r) |= ¬φ when (R, r) 6|= φ;
– (R, r) |= φ ∧ ψ when (R, r) |= φ and (R, r) |= ψ;
– (R, r) |= �φ when for all r′ ∈ R such that r ≤ r′, (R, r′) |= φ;
– (R, r) |= Kφ when for all r′ ∈ R such that r′ ∼θ r, (R, r′) |= φ.

The connectives ∨,⇒ and⇔ can be derived from ¬ and ∧ in the usual way. The
modality � in (R, r) |= �φ expresses that the predicate φ holds for every run of R ex-
tending r. Following classical notations of modal logic, we denote by 3 the possibility
modality, defined by 3φ = ¬�¬φ. In other words, (R, r) |= 3φ if and only if there
exists a run r′ ∈ R extending r such that (R, r′) |= φ.

The modality K, for knowledge, is also a necessity modality of modal logic but
depends on θ instead of ≤. If (R, r) |= Kφ, then A knows that φ is true for every run
that A thinks possible when r is executed. Similarly to 3, we can define the possibility
modality P by (R, r) |= Pφ whenever (R, r) |= ¬K¬φ, expressing that for A, φ is



possibly true when r is executed. Note that we can identify A to θ since considering
an other attacker A′ with the same indistinguishably relation θ will lead to the same
analysis. We will say that a formula φ is satisfiable on (R,≤, θ, π) if there exists r ∈ R
such that (R, r) |= φ.

This simple logic allows us to express information flow properties through the gen-
eral notion of opacity. Considering temporal modalities allows us to express situations
where the confidentiality concerns behavioural aspects of the system. This approach is
followed by [25,12,10,11] where the set of confidential behaviour is given as a reg-
ular language over the labels of the system. In this paper, we consider a finite set
of predicates Ω that are expressed by the accessibility of certain states: there exists
F : Ω → P(S) such that for φ ∈ Ω, (R, r) |= φ whenever lst(r) ∈ F (φ).

2.2 Definition of Opacity

Definition 2 (Opacity). We say that the predicates Ω are θ-opaque on M if for all
φ ∈ Ω, A cannot acquire whether the run executed by M satisfies φ. Formally, using
the logic above, Ω is θ-opaque on M when no formula of {Kφ, φ ∈ Ω} is satisfiable
on (R(M),≤, θ, π).

Remark 1. An equivalent definition of θ-opacity would be to require that the formulae
P¬φ, φ ∈ Ω, are always satisfied on (R(M),≤, θ, π). In other words, there always
exists at least one run, that the attacker A thinks possible, not ending in one of the
F (φ). This prevents A to be sure that the current execution of M ends in one the set of
states F (φ).

Remark 2. We can use temporal modalities to express the evolution of the attacker’s
knowledge during the execution of M . Opacity can then be interpreted on the initial
states of M : Ω is θ-opaque on M if and only if for all s0 ∈ S0 and for all φ ∈ Ω,
(R(M), s0) |= �¬Kφ.

Example 1. Let V ar = {x1, x2, . . . , xm} be a finite set of variables used in a program
implementing a cryptographic primitive. LetDom(x) denote the domain of the variable
x. Suppose now that x0 is used to store the value of a cryptographic key. For such
system, it is required that an attacker cannot acquire more precise information about
the value of x0 that its domain Dom(x0). Let Λ denote the set of internal and external
transition labels, S = Dom(x0) × Dom(x1) × · · · × Dom(xm) and M denotes the
execution graph of the program. Let η ∈ Dom(x0) and consider F≤η = {s ∈ S :
x0 ≤ η}, F>η = S \ F≤η and the corresponding set of predicates Ω = {t≤η , t>η } where
F (t≤η ) = F≤η and F (t>η ) = F>η . Consider an attacker observing the inputs and the
outputs, with the corresponding indistinguishability relation denoted θ. This attacker
will be able to acquire that the value of x0 is less than (resp. greater than) η when a run
r such that (R(M), r) |= Kt≤η (resp. (R(M), r) |= Kt>η ) is executed by M .

As suggested by the previous example, the notion of opacity can be used to define
the notion of secrecy like in [2], where we consider the system to be unsafe when A ei-
ther knows that a confidential predicate is satisfied or knows that is is not satisfied. This
notion of secrecy is especially suitable to reason about the confidentiality of variables.



Definition 3 (Secrecy). A predicate φ is θ-secret on M when the predicates {φ,¬φ}
are θ-opaque on M .

We consider now thatA observes a subset Λo of the events of Λ and we note Λuo =
Λ \ Λo the set of unobservable events. The observed trace of a run is given by the
observation function p defined by:

p : E(Λ, S)→ Λ∗o
s 7→ ε

r
λ→ s 7→

{
p(r)λ if λ ∈ Λo
p(r) otherwise

We suppose that A knows R(M). The corresponding equivalence relation over R(M)
is: r ∼θ r′ if p(r) = p(r′). In that case, if a run r is executed by M , A thinks that all
the runs of [r]θ = p−1(p(r)) ∩R(M) are possible.

We note that θ is such that for all φ ∈ Ω, if p(r) = p(r′), then (R(M), r) |= Kφ
if and only if (R(M), r′) |= Kφ. So, the attacker can decide the truth of the predicates
of Ω on the basis of the observed traces.

Definition 4. The set of observed traces such that the secret is disclosed is denoted
Discloser(Ω,R(M), p) = p({r ∈ R(M) : ∃φ ∈ Ω, (R(M), r) |= Kφ}).

The predicates Ω are θ-opaque on M if and only if Discloser(Ω,R(M), p) = ∅ and
we will see now how to verify θ-opacity. From the attacker’s point of view, the objec-
tive is to compute the set Discloser(Ω,R(M), p) and, when non empty, observe (or
execute) at least one of it traces. We can write this set of traces in a form that will be
easier to manipulate for verification purpose: Discloser(Ω,R(M), p) = {ν ∈ Λ∗o :
p−1(ν) ∩R(M) 6= ∅ ∧ ∃φ ∈ Ω, ∀r ∈ p−1(ν) ∩R(M), lst(r) ∈ F (φ)}.

Definition 5. The set of observed traces such that the secret is preserved is denoted
Safe(Ω,R(M), p) = p({r ∈ R(M) : ∀φ ∈ Ω, (R(M), r) |= P¬φ}).

We can also write: Safe(Ω,R(M), p) = {ν ∈ Λ∗o : ∀φ ∈ Ω, ∃r ∈ p−1(ν) ∩
R(M), lst(r) 6∈ F (φ)}. Then, the set of states Ω are θ-opaque on M if and only if
p(R(M)) = Safe(Ω,R(M), p).

3 Opacity Verification Problem

Given a LTS M = (Λ, S, δ, S0) and an inquisitive attacker A, observing the events of
Λo ⊆ Λ, trying to infer the truth of secret state-based predicatesΩ. We will investigates
in this section a method to exhibit attack scenarios. This method can be used to verify
whether φ opaque on M for an attacker with full knowledge of the semanticR(M).

This method is based on the operators post and reach : P(Λ)→ (P(S)→ P(S))
defined as follows, for B ∈ P(Λ) and X ∈ P(S):

– post(B)(X) = ∪{δ(λ, s) : λ ∈ B, s ∈ X};
– reach(B)(X) = lfp(Y 7→ X ∪ post(B)(Y ));



Note that reach is always defined but its computation may not terminate. In section 4,
we will circumvent this problem by approximating reach. In the sequel, we will use the
notations reachuo(·) and coreachuo(·) instead of reach(Λuo)(·) and coreach(Λuo)(·).
The first step consists in defining the behaviours of the system as observed by the at-
tacker. This is done by the determinisation operation defined as follows:

Definition 6. The determinization ofM , with respect toΛo, gives the deterministic LTS
deto(M) = (Λo,P(S), ∆,X0) where X0 = reachuo(S0)1 and

∆ : Λo × P(S)→ P(S)
λ,X 7→ reachuo ◦ post({λ})(X)

The transition relation ∆ is extended to words for X ∈ P(S) by ∆(ε,X) = X and for
ν ∈ Λ∗, λ ∈ Λ, ∆(νλ,X) = ∆(λ,∆(ν,X)).

Proposition 1. For all ν ∈ Λ∗o, ∆(ν,X0) = {s ∈ S : ∃r ∈ R(M), p(r) = ν ∧
lst(r) = s}

Proof. For ν ∈ Λ∗o, let Z(ν) = {s ∈ S : ∃r ∈ R(M), p(r) = ν ∧ lst(r) = s}.
It is clear from the definition of ∆ that for all ν ∈ Λ∗o, ∆(ν,X0) ⊆ Z(ν). Suppose
that for n ∈ N and for all ν ∈ Λno , ∆(ν,X0) = Z(ν). This holds for n = 0. Now,
let νλ ∈ Λn+1

o and s ∈ Z(νλ). There exists r ∈ R(M) such that p(r) = νλ and
lst(r) = s. Let r1 be the longest prefix of r such that p(r1) = ν. Then we can write
r = r1 · r2 with r2 = s1

λ→ s2
u→ s, u ∈ Λ∗uo and s1 ∈ Z(ν). So s ∈ ∆(λ, {s1}) ⊆

∆(λ, Z(ν)). Since |ν| = n, ∆(ν,X0) = Z(ν) so s ∈ ∆(λ,∆(ν,X0)) = ∆(νλ,X0).
Finally ∆(νλ,X0) = Z(νλ) which proves the proposition by induction.

Proposition 2. If r ∈ R(M), then lst(r) ∈ ∆(p(r), X0).

Proof. We will prove this proposition by recurrence on the length of the run r. If
length(r) = 0, then p(r) = ε and r = s0 ∈ S0 ⊆ X0 = ∆(ε,X0). Suppose
now that the proposition is true for runs of length n and let r ∈ R(M) such that
length(r) = n+1. Then, we can write r = r′

λ→ swith length(r′) = n. Let ν = p(r′)
and s′ = lst(r′). There are two possibilities. First, suppose that λ ∈ Λuo. Then,
p(r) = ν. Also, s ∈ reachuo({s′}) and s′ ∈ ∆(ν,X0). Since reachuo(∆(ν,X0)) =
∆(ν,X0), we get s ∈ ∆(ν,X0). Suppose now that λ ∈ Λo. Then, p(ν) = νλ and
s ∈ post({λ})({s′}) ⊆ post({λ})(∆(ν,X0)) ⊆ reachuo ◦ post({λ})(∆(ν,X0)) =
∆(νλ,X0).

Proposition 3. Discloser(Ω,R(M), p) =
⋃
φ∈Ω{L(deto(M), X0,P(F (φ)))}

Proof. Let φ ∈ Ω such that ν ∈ L(deto(M), X0,P(F (φ))). According to proposi-
tion 2, for all r ∈ p−1(ν) ∩ R(M), lst(r) ∈ ∆(ν,X0) ⊆ F (φ). This implies that ν ∈
Discloser(Ω,R(M), p). For the other inclusion, let ν ∈ Discloser(Ω,R(M), p).
There exists r ∈ R(M) such that p(r) = ν, so ν ∈ L(deto(M)). Let s ∈ ∆(ν,X0),
there exists r′ ∈ R(M) such that p(r′) = ν and s = lst(r′). According to proposition 1
and the definition of Discloser, s = lst(r′) ∈ F (φ) for some φ ∈ Ω. We conclude
then ∆(ν,X0) ⊆ F (φ) and ν ∈ L(deto(M), X0,P(F (φ))).

1 X0 is the set of states that are reachable when the attacker observes nothing (i.e. the trace ε)



Those two propositions implies the following theorem which provides a methodol-
ogy for verifying opacity based on reachability analysis.

Theorem 1. The predicates Ω are opaque on (M, θ) if and only if the states P(F (φ)),
φ ∈ Ω are not reachable in deto(M).

3.1 Verification Opacity on Finite Models

If Λ and S are finite sets, deto(M) can always be computed so the verification problem
is decidable for finite LTS. We will see that verifying opacity is PSPACE-complete.
To prove this, we will see that the universality problem for NFA can be encoded as an
opacity problem.

Let G = (Q,Σ, δ, q0) be a finite and possibly non-deterministic LTS. Let F ⊆ Q a
set of final states. We say that G is language universal when L(G, q0, F ) = Σ∗. Decid-
ing language universality on an automatonG is known to be complete for PSPACE [24].

Suppose now that an attacker A knows the model G and observes all Σ. The in-
distinguishably relation θ is then defined for all ρ, ρ′ ∈ R(G) by ρ ∼θ ρ′ when
tr(ρ) = tr(ρ′). Consider the predicate φ defined by the accessibility of the statesQ\F .

Proposition 4. G is language universal if and only if {φ} is θ-opaque on G.

Theorem 2. If M is a finite LTS and φ a state-based property, the opacity verification
problem is PSPACE-complete.

Let M be a finite LTS with a set Λo ⊆ Λ. In the case of a finite LTS we can al-
ways assume that the attacker knows R(M). Opacity can be encoded as k language
universality problem, one for each φ ∈ Ω, thanks to an ε-closure operation which
can be performed with a complexity polynomial in the size of M . In this context, the
opacity verification problem is equivalent to the language universality problem and is
then PSPACE-complete. We proposed an algorithm based on LTS determinization. But
a complete determinization procedure can be avoided, for example by applying an-
tichains techniques developed in [8,9] for solving universality problem and therefore
obtaining a more efficient algorithms for opacity verification on finite models.

3.2 Verifying Opacity on Infinite Models

Consider now that the sets Λ and S are not necessarily finite. In that case, the fixed
point computation required for the operators reachuo and coreachuo may not termi-
nate. Then, the determinization procedure used for verifying opacity on finite models
cannot be applied. Furthermore, in [4], the authors proved that verifying opacity is not
decidable for Turing machines and Petri nets. But for security purpose, we also have to
take into account attacker reasoning on approximations. In [4], the authors introduced
the notion of uo-opacity (for under/over-opacity) to handle approximations and apply
this approach for verifying uo-opacity (and then opacity) on Petri net using coverabil-
ity graphs. We borrow some ideas from uo-opacity but we follow a slightly different
presentation in order to connect approximations with the epistemic logic formalism and



abstract interpretation approaches based on Galois connections [5,6]. Following [16],
we place approximations as part the attacker’s model.

The complete operational semantic R(M) may not be computable. Nevertheless,
we consider A knowing R(M) as above. This attacker is only theoretical but we will
use it as a reference of the most accurate attacker. Let A] and A[ be two attackers
reasoning respectively on an overapproximation R], i.e. R(M) ⊆ R] ⊆ E(Λ, S)
and an underapproximation R[ ⊆ R(M). We suppose that R] and R[ can be effec-
tively computed. A, A] and A[ still observes the same set of events Λo ⊆ Λ with
the same projection p as above. We denote by θ, θ] and θ[ the corresponding equiva-
lence relations, defined through their equivalence classes by: [r]θ[ = p−1(p(r)) ∩ R[,
for r ∈ R[; [r]θ] = p−1(p(r)) ∩ R], for r ∈ R]. The sets Discloser(Ω,R[, p),
Discloser(Ω,R], p), Safe(Ω,R[, p) and Safe(Ω,R], p) are defined in the same way
that Discloser(Ω,R(M), p) and Safe(Ω,R(M), p).

As it is classically the case when reasoning with an overapproximation, we cannot
conclude fromDiscloser(Ω,R], p) 6= ∅ thatDiscloser(Ω,R(M), p) 6= ∅, i.e. that the
system is unsafe. It can happen that there exists ν ∈ Discloser(Ω,R], p) but it is not al-
ways possible to decide whether ν ∈ p(R(M)) and then to exhibit ν as a counterexam-
ple. But unlike the use of overapproximations for verifying safety properties for exam-
ple, Discloser(Ω,R], p) = ∅ does not imply neither that Discloser(Ω,R(M), p) =
∅, i.e. that the system is safe. Indeed, the equivalence classes of a given run being larger
in R], it is less likely that all the runs of a class satisfies the same atomic proposition.
ButDiscloser(Ω,R(M), p) = ∅ also means that for all r ∈ R], (R], r) |= P¬φ. Then
we know that no attacker reasoning from a superset of R] will be able to information
about Ω since the equivalence classes will be greater that the ones of θ] in that case.
Nevertheless, there are situations where an attacker reasoning with R] may be able to
acquire sound information about Ω. In the sequel, we consider the case of one secret
φ ∈ Ω.

Proposition 5. Let r ∈ R(M). If (R], r) |= Kφ then (R(M), r) |= Kφ.

Proof. Let r ∈ R(M), such that (R], r) |= Kφ. Then, for all r′ ∈ [r]θ] , lst(r′) ∈
F (φ). In particular, since [r]θ ⊆ [r]θ] , if r′ ∈ [r]θ then lst(r′) ∈ F (φ). We conclude
that (R(M), r) |= Kφ.

This implies thatA] can acquire sound information from a run r such that (R], r) |=
Kφ when A] knows that this run belongs to R(M). It is especially the case when A]
reasons on the basis of observed traces of M . The following proposition suggest how
the proposition 5 can be applied for the synthesis of monitor: computing an automaton
accepting the language Discloser(φ,R], p) can be used to monitor information flow
on the observed traces of M , exhibiting sound counterexamples:

Proposition 6. For all ν ∈ p(R(M)), such that ν ∈ Discloser(φ,M, θ]) we can
conclude that ν ∈ Discloser(φ,M, θ).

Proposition 7. Let r ∈ R[. If (R[, r) |= P¬φ then (R(M), r) |= P¬φ.

The main implication of this result is that Safe(φ,R[, p) ⊆ Safe(φ,R(M), p).
But, A[ cannot say anything about an observation ν ∈ p(R(M)) as long as we do



not know whether ν 6∈ Safe(φ,R[, p). Nevertheless, proving by some method that
the other inclusion Safe(φ,R(M), p) ⊆ Safe(φ,R[, p) holds provides a sufficient
condition for φ to be θ-opaque on M .

Finally, considering togetherR[ andR], we can statically exhibit a counterexample:

Proposition 8. If there exists r ∈ R[ such that (R], r) |= Kφ, then (R(M), r) |= Kφ.

We will see now how this considerations can be used using an abstract interpretation
framework based on Galois connection.

4 Construction of monitors using Galois Connections

In this section, we will investigate the computation of the monitors suggested at the end
of the previous section. We still consider the case LTS as before and one secret φ ∈ Ω.

Let (Q],v],u],t],>],⊥]) be a finite lattice that will used to represent overap-
proximations of the sets of states of S. Let (Σ],�]) be another finite lattice rep-

resenting overapproximations of the sets of events of Λ. Let P(S) −−−→←−−−
α]

γ]

Q] and

P(Λ) −−−→←−−−
a]

c]

Σ] be two Galois connections. We assume that the second connection

is consistent with the observation, in the sense that the observable events of Λo are not
assimilated by abstraction with unobservable events. Formally, we suppose that for all
X ⊆ Λ0, c] ◦ a](X) ⊆ Λ0. This is equivalent to impose that c] ◦ a](Λo) = Λo, and
also equivalent to c] ◦ a](Λuo) = Λuo. We will use the notation a](λ) for a]({λ}) to
denote the abstract representation of the event λ, and we extend this notation to words
by a](ν) = a](λ1)a](λ2) . . . a](λn) if ν = λ1λ2 . . . λn. We note Σ]

o = a](Λo) and
Σ]
uo = a](Λuo).

We suppose also that α] ◦ γ] = idQ] as it usually the case in abstract interpretation.
Let post] : Σ] → (Q] → Q]) be a sound approximation of the operator post defined
in section 3. This abstraction is sound in the sense that for all B ⊆ Λ and X ⊆ S:

post(B)(X) ⊆ γ] ◦ post](a](B)) ◦ α](X)

Which means that the set of states that are reachable according to reach are also reach-
able according to reach]. We define also the operator:

reach] : Σ] → (Q] → Q])
σ 7→ q 7→ lfp(q′ 7→ q t] post](σ)(q′))

Similarly to reachuo, we define reach]uo : q 7→ reach](Σ]
uo)(q). We define the finite

automaton G] = (Σ]
o, Q

], ∆], q]0, F
]) by q]0 = reach]uo ◦ α](S0), F ] = {q ∈ Q] :

γ](q) ⊆ F (φ)} and

∆] : Σ] ×Q] → Q]

σ, q 7→ reach]uo ◦ post](σ)(q)

With this definition, the automaton G] is an abstraction of the automaton deto(M)
defined in 6 and used to verify opacity. The main benefit of this approach is that the



computation of reach] always terminates whereas it may not be the case for reach. As
in the definition of 6, ∆] is extended to words on Σ]

o.

Proposition 9. For all ν ∈ Λ∗o and X ⊆ S, ∆(ν,X) ⊆ γ] ◦∆](a](ν), α](X)).

Proof. The operators post, reachuo, post] and reach]uo are monotone. Let λ ∈ Λo and
X ⊆ S.

∆(λ,X) = reachuo ◦ post(λ)(X)

⊆ reachuo ◦ γ] ◦ post](a](λ)) ◦ α](X)

⊆ γ] ◦ reach]uo ◦ α] ◦ γ] ◦ post](a](λ)) ◦ α](X)

⊆ γ] ◦ reach]uo ◦ post](a](λ)) ◦ α](X)

⊆ γ] ◦∆](a](λ), α](X))

Now, let ν = λ1λ2 ... λn ∈ Λ∗o.

∆(ν,X) = ∆(λn, ·) ◦ ... ◦∆(λ2, ·) ◦∆(λ1, ·)(X)

⊆ ∆(λn, ·) ◦ ... ◦∆(λ2, ·) ◦ γ] ◦∆](a](λ1), ·) ◦ α](X)

⊆ γ] ◦∆](a](λn), ·) ◦ . . . ◦ α] ◦ γ] ◦∆](a](λ1), ·) ◦ α](X)

⊆ γ] ◦∆](a](λn), ·) ◦ ... ◦∆](a](λ2), ·) ◦∆](a](λ1), ·) ◦ α](X)

⊆ γ] ◦∆](a](ν), α](X))

Theorem 3. For all ν ∈ p(R(M)) such that a](ν) ∈ L(G], q]0, F
]), we can deduce

that ν ∈ Discloser(φ,R(M), p).

Proof. Let r ∈ R(M) such that p(r) = ν. Since a](ν) ∈ L(G], q]0, F
]),∆](a](ν), q]0) ∈

F ], which means that γ](∆](a](ν), q]0)) ⊆ F (φ). According to proposition 9,∆(ν,X0) ⊆
γ] ◦ ∆](a(ν), α](X0)) and then ∆(ν,X0) ⊆ γ] ◦ ∆](a(ν), q]0). Also α](X0) =
α](reachuo(S0)) so α](X0) ⊆ reach]uo ◦ α](S0) = q]0. Finally ∆(ν, s0) ⊆ F (φ)
and then, according to theorem 1, r |= φ.

This result provides an effective methodology to monitor information flow as soon
as the two Galois connections are given. Practically, A] observes a trace ν from M and
when a](ν) is accepted by G], thenA] knows that φ is true on the current run executed
in M .

Conclusion

The main contribution of this article is to provide analysis methods for the opacity
property when considering an attacker reasoning on a approximate model, greater or
smaller than the real one. The reformulation of the definition of opacity using epis-
temic logic modalities allowed us to integrate the notion of approximation within the
model of attacker, through the parametrisability of the underlying equivalence relation



over the runs. Then, we could derive a monitoring methodology in the case of abstrac-
tion given as Galois connections. Other approaches with similar objectives have been
proposed in [21,7] and it would be interesting to investigate the connections between
them. In [11,10], the authors presented an application of the supervisory control theory
to ensure opacity on finite models. It would be useful to investigate how this synthesis
problem can be defined for infinite models and attackers reasoning on sound approxima-
tions. Also, we introduced temporal modalities in order to differentiate their formulation
from the less classical epistemic ones. But, it would be interesting to consider more dy-
namical aspect, especially for the evolution of attackers’ knowledge trough time. The
puropse would be then to formulate other security properties like information integrity
for example. Since system with security requirements inherently involves a multi-agent
environment, adding epistemic modalities to the logic ATL [1] seems to be a promis-
ing approach. Thus, we should be able to express in a unified way properties like the
existence of an attack scenario (i.e. non-opacity) by� A � 3Kφ or the supervisory
control problem by� C � �¬Kφ where C denotes a controller.
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