
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
72

47
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Supervisory Control for Modal Specifications of
Services

Philippe Darondeau — Jérémy Dubreil — Hervé Marchand

N° 7247

April 2010

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

http://hal.inria.fr/inria-00472736/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Supervisory Control for Modal Specifications of Services

Philippe Darondeau , Jérémy Dubreil , Hervé Marchand

Thème COM — Systèmes communicants
Équipes-Projets S4, Comète and VerTeCs

Rapport de recherche n° 7247 — April 2010 — 14 pages

Abstract: In the service oriented architecture framework, a modal specification, as defined by Larsen
in [6], formalises how a service should interact with its environment. More precisely, a modal specification
determines the events that the server may or must allow at each stage in an interactive session. Therefore,
techniques to enforce a modal specification on a system would be useful for practical applications. In
this paper, we investigate the adaptation of the supervisory control theory of Ramadge and Wonham to
enforce a modal specification (with final states marking the ends of the sessions) on a system modelled
by a finite LTS. We prove that there exists at most one most permissive solution to this control problem.
We also prove that this solution is regular and we present an algorithm for the effective computation of
the corresponding controller.

Key-words: discrete event systens, supervisory control, modal specifications, services, partial obser-
vation.in

ria
-0

04
72

73
6,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
0

Synthèse de contrôleurs pour des services décrits par des
spécifications modales

Résumé : Dans le cadre d’une architecture orientée services, une spécification modale décrit les
interactions possibles ou nécessaires entre un service et l’environnement utilisateur de ce service. Plus
précisément, une spécification modale détermine les actions que le serveur peut ou doit permettre à son
utilisateur à chaque étape d’une session interactive. Développer des techniques de supervision permettant
de forcer la conformité d’un système à une spécification de service s’avère utile. Dans cet article, nous
cherchons à adapter les techniques de synthèse de contrôleurs afin de forcer la conformité de systèmes
finis à des spécifications modales (avec des états marquant les fins de sessions). Nous montrons que
ce problème de contrôle a une plus grande solution. Nous montrons également que cette solution est
régulière et donnons un algorithme pour la calculer.

Mots-clés : systèmes à événements discrets, théorie du contrôle, spécifications modales, services,
observation partielle.

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 3

1 Introduction

In [11, 12, 13], Ramadge and Wonham laid the foundations of the theory of supervisory control for
discrete event systems and proposed solutions to the Basic Supervisory Control Problem, or BSCP, that
may be stated as follows. Let G be a finite automaton, with a subset of final (or marked) states, over
a set of events Σ with two independent partitions Σ = Σc ∪ Σuc and Σ = Σo ∪ Σuo. The automaton G
represents a plant. The plant’s events in Σo and Σc may be observed and controlled, respectively, from
the environment of the plant. Let Lmax be a regular language over Σ. BSCP is the problem whether
there exists some proper controller C such that the language L(C/G) of the controlled system satisfies
the relation L(C/G) ⊆ Lmax. The plant and the controller produce joint runs, in which the controller
acts by disabling at each step a subset of events of the plant. The set of disabled events must be a
function of the subsequence of events currently observed. A proper controller should be admissible (it
never disables uncontrollable events) and non-blocking (it always leaves a possibility to reach some final
state of the plant). Ramadge and Wonham’s theory characterizes the existence of proper controllers
and proposes algorithms for computing the maximally permissive controller C under the assumption
Σc ⊆ Σo.

Ramadge and Wonham’s theory aims chiefly at enforcing safety properties on autonomous or semi-
autonomous systems, e.g. automated manufacturing systems, but it takes special care of the property of
nonblocking (w.r.t. final states), which is a particular form of progress or liveness. An extension of the
supervisory control theory taking liveness properties into full account was proposed in [17]. Two other
types of general properties often expected from systems are security and conformance to specified service.
Several works, e.g. [14, 2, 3, 15, 16] recently addressed the problem of adapting supervisory control in
order to enforce opacity, a formal notion that covers a variety of more specific security properties [1].
Our goal in this paper is to adapt the theory and algorithms of supervisory control for enforcing on a
plant G the conformance to the modal specifications of a service.

We assume that the plant is described by a finite automaton G over Σ, with a set of final states QF ,
and the service expected from the plant is specified by a modal automaton S over Σo, with a set of final
states SF . We assume moreover that Σc ⊆ Σo. We want to compute a proper and maximally permissive
controller C under which the controlled system C/G conforms to S, i.e., it provides the specified service.
This means in particular that under the considered control C, both sets of final states QF and SF stay
forever jointly reachable so that any interactive session can terminate.

Modal specifications, also called modal transition systems, were introduced in [6] in the form of transition
systems (S,Σ,→2,→3, s0), with two modal transition relations: the must transitions denoted →2 and
the may transitions denoted →3, such that →2⊆→3. Every modal transition system MTS determines
a corresponding family M of labelled transition system (LTS) which are called the models of MTS.
Intuitively, an LTS is a model of MTS if there exists a relation |= between their respective sets of states
S and Q such that |= holds between the initial states and whenever s |= q, all must transitions from s
are simulated by transitions from q, all transitions from q are simulated by may transitions from s and
|= is preserved under simulation of transitions in both directions. We denote G |= MTS the fact that G
is an LTS that is a model of MTS.

Example 1 The modal specification depicted in Figure 1, where the relations →2 and →3 are repre-
sented with plain arrows and dashed arrows respectively, expresses the fact that the presence of the first
transition a is mandatory while the second one is not, and that after any a the system must be able to
trigger a b. Finally, the presence of a transition b returning to the initial state is optional.

The two LTSs on the right hand side of Figure 1 are models of the specification, whereas the one
depicted in Figure 2 is not. Indeed, after the sequence aa, the specification imposes a transition labelled
by b which in not present in this LTS. �

It is worthwhile noticing that a language generated by an LTS G which is a model of a specification
MTS belongs to a language interval [Lmin, Lmax] whose endpoints Lmin and Lmax are the languages
of the labelled transition systems (S,Σ,→2, s0) and (S,Σ,→3, s0), respectively. However, not all the
languages in the interval [Lmin, Lmax] are languages generated by models of MTS. Consider for instance

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

4 Darondeau & Dubreil& Marchand

a
a b

b

b
a a b

b

a b

b

Figure 1: A modal specification MTS and some associated models

a a

b

Figure 2: A labelled transition system that is not a model of MTS

the modal transition system MTS depicted in Fig. 1. then Lmin = {ε, a, ab} and Lmax is the prefix-
closure of (a(ab + b)b)∗. However, for L = {ε, a, ab, aa}, there exists no LTS G generating L such that
G |= MTS.

The expressive power of modal specifications added over language specifications comes precisely from
the possibility they offer to formulate service requirements in a conditional way, e.g. if the system
serves an a request, then the next b request will be served. This feature makes modal specifications
very convenient for describing the interface between a partially observed plant (service provider) and its
environment (service requester). For instance, after a coin has been inserted into a coffee machine, the
client should always get a cup of coffee or the coin back but there is no guarantee that coins can always
be entered, which depends on unobservable phenomena inside the machine.

In [6], determinism was required neither from the labelled transition relations →2 and →3 of modal
transition systems, nor from the labelled transition relations → of their transition system models. In
this paper, for simplicity, we shall limit ourselves to deterministic transition systems and to deterministic
modal transition systems.

However, we shall extend modal transition systems in another respect since we will introduce a sat-
isfaction relation |= between LTS’s over Σ (modelling the plant) and MTS’s over Σo ⊆ Σ (specifying
the expected service as observed from the environment of the plant). The proposed extension is based
on the assumption that the plant interacts fairly with its environment, i.e. it does not refuse possible
interactions forever. Consequently, infinite unobservable behaviours are considered impossible.

We shall also extend modal transition systems in a second direction by providing them with marked or
final states, thus obtaining modal automata. In modal specifications of services, final states serve to
represent the potential points of termination of a session from the service requester’s perspective. In
a similar way, we replace labelled transition systems with automata for modelling plants, where final
states represent the potential points of termination of a session from the service provider’s perspective.
We end up thus with final states in G (the plant) and S (the specification), whose joint reachability is
to be taken care of in the search for non-blocking controllers C such that C/G |= MTS. There, G is an
automaton over Σ, S is a modal specification over Σo ⊆ Σ, and C is a labelled transition system over Σo

that includes Σc (the set of controllable events).

An earlier adaptation of the theory of supervisory control to modal specifications was proposed in [4].
In that work, total observation was assumed and nonblocking was not considered. The contribution of
the present paper is to lift these two limitations. The working assumptions of [4] are retrieved in the
particular case where Σ = Σo and all states of the plant automaton and the modal specification are final
states.

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 5

The remaining sections of the paper are organized as follows. We recall in Section 2 some basic con-
cepts and notations concerning automata, supervisory control and modal specifications of services. In
Section 3, we investigate the supervisory control problem for modal specifications. We show that when
there exists a solution to this problem, there exists a unique supremal controller enforcing the given
modal specification and we show in a non-constructive way that this optimal supervisor is finite state.
We present in Section 4.5 an algorithm to compute this supervisor. When there is no solution to the
control problem, the algorithm produces an empty supervisor.

2 Background

We recall in this section basic definitions and results about transition systems and supervisory control.

2.1 Transition Systems and Automata

A deterministic labelled transition system (or LTS) over Σ is a 4-tuple LTS = (Q,Σ, δ, q0) where Q is a
finite set of states, q0 ∈ Q is an initial state, and δ is a partial map from Q×Σ to Q, called the labelled
transition map. This map is extended inductively to δ : Q × Σ∗ → Q by setting δ(q, ε) = q (where ε is
the empty word), and δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ. A state q ∈ Q is reachable
(from q0) if δ(q0, w) = q for some word w ∈ Σ∗. An LTS is finite if Q and Σ are finite; it is reduced if all
states in Q are reachable and every event a ∈ Σ is enabled at some state q, i.e. δ(q, a) is defined for the
considered state q. In the sequel, we always consider reduced transition systems unless explicitly stated
otherwise. The language of LTS is the set of words L(LTS) = {w ∈ Σ∗ | δ(q0, w) defined }.

Given labelled transition systems LTS = (Q,Σ, δ, q0) and LTS′ = (Q′,Σ′, δ′, q′0), their product is the
(reachable restriction of the) labelled transition system LTS×LTS′ = (Q×Q′,Σ∪Σ′, δ×δ′, (q0, q

′
0)) where

(δ× δ′)((q, q′), a) is defined as (δ(q, a), q′) for a ∈ Σ \Σ′, (q, δ′(q′, a)) for a ∈ Σ′ \Σ, and (δ(q, a), δ′(q′, a))
for a ∈ Σ ∩ Σ′.

A deterministic automaton over Σ is a labelled transition system with final states, i.e. A = (Q,Σ, δ, q0, QF)
with QF ⊆ Q. The labelled transition system underlying A is U(A) = (Q,Σ, δ, q0). The language of the
automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ QF }. Thus, L(A) ⊆ L(U(A)) ⊆ Σ∗. In the sequel, we
sometimes consider also (for technical convenience) automata A = (Q,Σ, δ, Q0, QF) with a set Q0 of final
states.

Given a language L ⊆ Σ∗, its prefix-closure is L = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}. A language L
is prefix-closed if L = L. A prefix-closed language L induces a (possibly infinite) transition system
LT S(L) = (L,Σ, δ, ε) where δ(u, a) = ua for every word ua ∈ L with a ∈ Σ.

2.2 Supervisory Control

The presentation given here has been adapted from [3]. Let Σo ⊆ Σ and Σc ⊆ Σ be the sets of observable
and controllable events, respectively.

A run of a plant automaton G = (Q,Σ, δ, q0, QF) is a sequence ρ = q0, a1, q1, a2, . . . , qn−1, an−1, qn such
that n ≥ 0 and δ(qi−1, ai−1) = qi for all i ≤ n. The run is accepted if qn ∈ QF . The trace of the run
is the (possibly empty) word a1a2 . . . an−1. The observable trace of the run (w.r.t. Σo) is the natural
projection of a1a2 . . . an−1 on Σ∗o, defined inductively with πo(ε) = ε and

• πo(a1a2 . . . ai) = πo(a1a2 . . . ai−1)ai if ai ∈ Σo,

• πo(a1a2 . . . ai) = πo(a1a2 . . . ai−1) otherwise.

An admissible control w.r.t. Σc ⊆ Σ is a map f : Σ∗o → 2Σ such that all values taken by this map
are supersets of Σ \ Σc. Applying the control f to G means disabling after a trace w all events which
do not belong to f(πo(w)). The induced restrictions of L(G) and L(U(G)) under the control f are
denoted L(f/G) and L(f/U(G)), respectively. The control f is non-blocking if L(f/U(G)) is equal to

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

6 Darondeau & Dubreil& Marchand

the prefix-closure of L(f/G), i.e. every run of G under the control f can be extended to an accepted run
compatibly with f . An admissible and non-blocking control is said to be a proper control.

Given a control f , let C be any (possibly infinite) LTS such that the language of C is equal to
L(f/LT S(Σ∗)). Then L(f/U(G)) = L(U(G) × C) and L(f/G) = L(G × C) where the final states
of G×C are all pairs (q, s) with q final in G. Moreover, if one considers exclusively the maximal control
maps f such that L(f/G) = L(G × C), where f ≤ f ′ if f(ω) ⊆ f ′(ω) for all ω ∈ Σ∗o, then f and C
determine each other up to the above equality relation. For this reason, C is called a controller, and
G× C and U(G)× C are rewritten C/G and C/U(G) to stress this view.

In order to characterize the behaviours that may be enforced on a given plant by supervisory control,
Ramadge and Wonham introduced two central concepts.

Definition 1 A prefix-closed language K ⊆ L(U(G)) is controllable w.r.t. Σc if K ·(Σ\Σc)∩L(U(G)) ⊆
K.

Definition 2 A prefix-closed language K ⊆ L(U(G)) is observable w.r.t. Σo and Σc if, for any w,w′ ∈ K
with identical observations πo(w) = πo(w′) and for any controllable event a ∈ Σc, (wa ∈ L(U(G))∧w′a ∈
K)⇒ wa ∈ K.

A classical Ramadge and Wonham’s theorem states that, given a prefix-closed sublanguageK ⊆ L(U(G)),
K = L(f/U(G)) for some control f if and only if K is controllable and observable. Similarly, if K is a
sublanguage of L(G), then K = L(f/G) for some non-blocking control f if and only if K = K ∩ L(G)
and K is controllable and observable.

In the particular case where every controllable event is observable, i.e. Σc ⊆ Σo, a prefix-closed language
K ⊆ L(U(G)) is observable if and only if it is normal according to the following definition.

Definition 3 A prefix-closed language K ⊆ L(U(G)) is normal w.r.t. Σo if π−1
o ◦πo(K)∩L(U(G)) ⊆ K.

Prefix-closedness, controllability and normality are preserved under arbitrary unions of languages. There-
fore, if K is a prefix-closed sublanguage of L(U(G)), then there exists a supremal prefix-closed, control-
lable and normal sublanguage K† of K. Similarly, if K is a sublanguage of L(G), then there exists a

supremal sublanguage K† of K such that K
†

is controllable and normal. In both situations, Ramadge
and Wonham have shown that the induced control f† such that K† = L(f†/U(G)) or K† = L(f†/G)
is regular, i.e. K† = L(C/U(G)) or K† = L(C/G) for some finite state controller C, and they have
given algorithms for computing C. In the particular case where Σc ⊆ Σo, such a controller is said
to be maximally permissive because L(C ′/G) ⊆ L(C/G) for any other proper controller C ′ such that
L(C ′/G) ⊆ K. Moreover in that case, one may assume w.l.o.g. that δ(r, a) = r in C = (R,Σ, δ, r0) for
all r ∈ R and for all a ∈ (Σ \ Σo), hence one may as well consider C as an LTS over Σo. This is the
kind of supervisors we shall consider in the sequel. Note that when Σc ⊆ Σo, if a supervisor C is given
as an LTS over Σo, then L(C/G) is normal by construction with respect to Σo and L(G) and thus it is
observable.

2.3 Modal Specifications of Services

In this section, we propose to specify services using an extended form of Larsen’s modal specifications
[6]. The extension is twofold. On the one hand, service specifications express requirements about the
behaviour of the service seen from the environment (service requester), hence they may abstract from
some unobservable events of the service provider. Given modal specifications over a set of observable
events Σo, we shall therefore consider as an associated class of models a family of LTS’s over a larger
alphabet of events Σ ⊇ Σo (drawing some inspiration from Hüttel and Larsen’s observable refinements
which were introduced for a similar but different purpose in [7]). On the other hand, we shall provide
modal specifications with final states, and similarly for their LTS models (service providers), so that the
ability to terminate interactive sessions can be taken into account as a main requirement in the definition
of the satisfaction relation.

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 7

In the sequel, Σ and Σo are two fixed finite sets of events, with Σo ⊆ Σ, and we let Σuo = Σ \Σo. Given
an automaton A = (Q,Σ, δ, q0, QF), we say that a subset of states P ⊆ Q is closed under unobservable
transitions if δ(P,Σ∗uo) ⊆ P .

Definition 4 A deterministic modal transition system (or MTS) is a 5-tuple MTS = (S,Σo, δ
2, δ3, s0)

where δ2 : S × Σo → S and δ3 : S × Σo → S are two partial maps, called the strong and weak labelled
transition maps, respectively, subject to the constraint that δ2 is a restriction of δ3. A deterministic
modal automaton or modal specification over Σo is a modal transition system with final states, i.e. S =
(S,Σo, δ

2, δ3, s0, SF) with SF ⊆ S. The plain transition system underlying S is U(S) = (S,Σo, δ
3, s0).

We use s
a−→2 s′ and s

a−→3 s′ as abbreviations respectively for δ2(s, a) = s′ and δ3(s, a) = s′. This
notation is extended inductively from letters a ∈ Σo to words ω ∈ Σ∗o.

Definition 5 An automaton A = (Q,Σ, δ, q0, QF) satisfies a modal specification S = (S,Σo, δ
2, δ3, s0, SF)

(noted A |= S) if Q0 |= s0 where Q0 = δ(q0,Σ
∗
uo) and |= is the largest relation between subsets of states

P closed under unobservable transitions and states of S such that P |= s entails the following properties
for all a ∈ Σo and q ∈ P :

1. δ(q, a) defined ⇒ s
a−→3 s′ and P ′ |= s′ for P ′ = δ(P, aΣ∗uo),

2. s
a−→2 s′ ⇒ δ(q,Σ∗uoa) 6= ∅,

3. QF × SF can be reached from (q, s) in A× U(S).

According to the above definition, A satisfies S if the fair abstraction of A w.r.t. the unobservable
transitions satisfies S with the definition given in [6] and moreover, any interactive session in which A is
used as specified in S can be completed (the service provider and the service requester can always reach
final states jointly). An illustration of the use of modal automata for specifying services is proposed
below.

Example 2 Consider the modal specification S depicted in Figure 3. S defines the service offered by a
(special) coffee-machine1. The initial state is s0. The final states are s0 and s5. Initially, the user must

s0 s1

s2

s3

s4 s5
?E ?T

?C

!C !E

!T !E

?C

?T
?E

Figure 3: Specification S of a coffee-machine

be enabled to insert a coin (?E) in the machine and further to order a tea (?T). He may also have the
possibility to order a coffee (?C), but this is optional. Afterwards, the machine may deliver the requested
beverage (!C or !T)) or return the coin (!E) and the service may then end (in state s0 or s5). If the
coin is returned, there is no guarantee that the user can insert a new coin and order a coffee or a tea
(all these transitions are optional). However, if the user succeeds to have his beverage, then he must be
enabled to insert a new coin and order a tea.

The automaton A of Figure 4 represents a possible coffee-machine plant, where Σuo = {NC, NT, R}
(NC (resp. NT) means no coffee (resp. no tea) and R stands for Reset) and QF = {1, 2, 3}. It is easy
to check that the coffee-machine plant A fulfills properties 1. and 2. of Definition 5 w.r.t. S whereas
requirements 3. is not satisfied. Indeed, after the observation ?E?C!E?E?C, S is in state s3 and A is
either in states 11 or 1, i.e. P = {11, 1} and in A× U(S), the state (1,s3) is a deadlock state. So there
is no possibility for A and S to reach final states jointly. Note that state 1 is not a blocking state of A
considered alone, since it is a final state. �

1The transitions →2 and →3 are respectively represented with plain arrows and dashed arrows

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

8 Darondeau & Dubreil& Marchand

4 5 6

7 1 8 32

10 11 15 12 139 14

16

?C ?T

!C
NC

!T
NT

!E!E

?E ?ER
R!E R !E

?T ?C

!C

?C?T

!T

NT NC
!E

?E

Figure 4: A possible implementation A of the coffee-machine

Modal specifications of services diverge notably from the operating guidelines for services introduced
in [8] and further studied in [9], although they have much in common. Operating guidelines abstract from
unobservable events, and they take final states into account for guaranteeing the absence of deadlock in
the closed system formed by the service provider and the service requester. However, operating guidelines
do not guarantee that this closed system is free of dead-ends, i.e. global states which are not deadlocks
but from which global final states cannot be reached. For the rest, operating guidelines are technically
closer to acceptance automata [5] than to modal automata [6]. In the absence of final states, modal
automata are less expressive than acceptance automata, see [10] for a comparison. Nevertheless, this
weakness seems to be overcompensated by the provision of a satisfaction relation for modal specifications
which guarantees the absence of deadends.

3 Any service specification has an optimal finite state supervi-
sor

In the rest of the paper, Σc ⊆ Σo ⊆ Σ, where Σo and Σc are the subsets of observable and controllable
events, respectively. We let Σuo = Σ \ Σo, respectively Σuc = Σ \ Σc denote the subset of unobservable,
respectively uncontrollable events. We consider a plant G = (Q,Σ, δQ, q0, QF), or service provider, and
a modal specification of the expected service S = (S,Σo, δ

2
S , δ

3
S , s0, SF). The control problem, we want

to solve is the following:

Problem 1 Given a plant G and an expected service as above, we search for the optimal (i.e. maximally
permissive) supervisor C = (R,Σo, δR, r0) such that C/G |= S and C is an admissible controller for G
w.r.t. Σc.

Let us recall that C/G denotes the reachable restriction of the automaton (Q×R,Σ, δQ×R, (q0, r0), QF ×
R) where δQ×R((q, r), a) = (δQ(q, a), δR(r, a)) if a ∈ Σo and δQ×R((q, r), a) = (δQ(q, a), r) otherwise
(assuming that the right members of these equations are defined).

By definition, in order that C be an admissible controller for G w.r.t. (Σo and) Σc, the following condition
should hold for any state (q, r) of C/G and for any uncontrollable event a ∈ Σuc ∩ Σo:

• δQ(q, a) defined ⇒ δR(r, a) defined.

Note that as previously mentioned, as C is defined over Σo, the language of C/G is automatically normal
w.r.t. Σo and G.

In view of Definition 5, in order that C/G |= S, it is moreover necessary that (Q0, r0) |= s0 where
Q0 = δQ(q0,Σ

∗
uo) and |= is the largest relation on (2Q × R) × S such that, whenever (P, r) |= s, the

following properties hold for all a ∈ Σo and q ∈ P :

1. δQ(q, a) defined and δR(r, a) defined ⇒
s

a−→3 s′ and (P ′, r′) |= s′ for P ′ = δQ(P, aΣ∗uo) and r′ = δR(r, a),

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 9

2. s
a−→2 s′ ⇒ δQ(q,Σ∗uoa) 6= ∅ and δR(r, a) defined,

3. (QF ×R)× SF can be reached from ((q, r), s) in (U(G)× C)× U(S).

It is important to note that the above characterization applies unchanged to G′ = (Q,Σ, δQ, Q0, QF),
where Q0 = δQ(q0,Σ

∗
uo), i.e. to the original plant automaton G in which the initial state q0 has been

replaced with its unobservable reach Q0.

The state oriented and therefore co-inductive characterization of the admissible supervisors C such that
C/G |= S which we have presented above is not always convenient. Alternatively, a non-inductive
characterization of these supervisors may be given in terms of their languages L(C), as follows.

Given any non-empty prefix-closed language K ⊆ Σ∗o, let C = LT S(K) and hence K = L(C), then C is
an admissible supervisor for G if and only if

∀a ∈ Σuc ∩ Σo ∀ω ∈ K ∀w ∈ L(U(G)) :

ω = πo(w) ∧ wa ∈ L(U(G))⇒ ωa ∈ K

With the same definition as above, C/G |= S if and only if the following properties hold for all a ∈ Σo,
for all ω ∈ K, for all s ∈ S such that s0

ω−→3 s in U(S), and for all w ∈ L(U(G)) such that ω = πo(w):

1. wa ∈ L(U(G)) and ωa ∈ K ⇒ s
a−→3 s′ for some s′ ∈ S,

2. s
a−→2 s′ ⇒ ∃u ∈ Σ∗uo : wua ∈ L(U(G)) and ωa ∈ K,

3. ∃v ∈ Σ∗ ∃ν ∈ Σ∗o : wv ∈ L(G) ∧ ν = πo(v) ∧ ων ∈ K ∧ s
ν−→3 s′ for some s′ ∈ SF .

The two characterizations are equivalent since one may pass from the former to the latter by replacing
q with δQ(q0, w) and r by δR(r0, ω), and vice-versa. Therefore, in the latter characterization, after
applying universal quantification over w ∈ L(U(G)) subject to πo(w) = ω, one gets three conditions
that depend exclusively upon P = δQ(q0, π

−1
o (ω)), r = δR(r0, ω) and s. From now on, let K denote the

family of the non-empty prefix closed languages K ⊆ Σ∗o that satisfy the conditions stated in the second
characterization, and let K† = ∪K. It is straightforward to show that K† belongs to K. Therefore, if
K 6= ∅, there exists a unique solution to problem 1.

In the rest of the section we prove that, if there exists an admissible supervisor C such that C/G |= S, then
there exists such an optimal and moreover finite-state supervisor C†. Further, we show that R = 2Q×S
may be chosen as the set of states of C†.

Given any non-empty prefix-closed language K ⊆ Σ∗o, let C = LT S(K). Then C is an admissible
supervisor and C/G |= S if and only if K ∈ K. As K† is the supremal element of K, it follows clearly
that, unless K = ∅, LT S(K†) is an optimal supervisor. However, this supervisor may have an infinite
number of states. We prove below that K† is a regular language, showing that K† = L(C†) for some
finite state supervisor C†.

Proposition 1 K† is a regular language.

Proof For any ω ∈ K†, let ρ(ω) = {ν ∈ Σ∗o |ων ∈ K†} (thus ρ(ω) is a right derivative of K†), and let
ξ(ω) = (P, s) with P = δQ(q0, π

−1
o (ω)) and so

ω−→3 s. By Myhill and Nerode’s theorem, in order to show
that K† is regular, it suffices to construct ρ : 2Q × S → P(Σ∗o) such that ρ(ω) = ρ ◦ ξ(ω) for all ω ∈ K†.
We show that this relation is satisfied with ρ (P, s) = ∪{ρ(ω) | ξ(ω) = (P, s)}. Let ω, ω′ ∈ K† such that
ξ(ω) = ξ(ω′). By Lemma 1 given below, ρ(ω) = ρ(ω′), and therefore ρ(ω) = ρ ◦ ξ(ω). 2

Lemma 1 For any ω ∈ K†, let K† .ω = {ν ∈ Σ∗o |ων ∈ K†} (= ρ(ω)), and let S .ω = (S,Σo, δ
2
S , δ

3
S , so .

ω, SF) and G . ω = (Q,Σ, δQ, q0 . ω,QF) be defined with s0
ω−→3 (so . ω) and q0 . ω = δQ(qo, π

−1
o (ω)).

Then K† . ω is the language of an admissible controller enforcing the modal specification S . ω on the
plant G . ω, and moreover it is the largest language with this property.

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

10 Darondeau & Dubreil& Marchand

Proof When specialized to words ωω′ ∈ K†, the conditions specified in the characterization of K in order
that K† should be an admissible controller enforcing S on G are the same as the conditions required in
order that K† . ω should be an admissible controller enforcing S . ω on G . ω. The second assertion may
be established by contradiction. If K† . ω was not the largest solution to the derived control problem,
then K† ∪ ω(K† . ω) would be a solution to the original control problem strictly larger than K†, which
is impossible. 2

4 An iterative algorithm for computing an optimal finite state
supervisor

With Proposition 1, we have obtained a non-constructive proof of the regularity of K†. In this section,
we propose an algorithm for constructing from G and S an optimal finite state supervisor C† or deciding
that no supervisor can enforce S on G. It will be proved in Section 4.5 that the proposed decision and
synthesis algorithm is correct: if it does not yield any supervisor, then K† = ∅, and in the converse case,
K† = L(C†). Not surprisingly, the set of states of C† is a subset of 2Q × S (Q and S are the respective
sets of states of G and S). As usual in supervisor synthesis, the algorithm starts with an expansion
stage (A), in which an abstraction of the reachable part of U(G) × U(S) is built inductively, and it
proceeds with reduction stages, performed in rounds until a fixpoint is reached. A particularity lays
in the (non-strict) alternation between two types of reduction stages, on the one hand stages (B) that
eliminate states inconsistent with modal transitions, and on the other hand stages (C) that eliminate
states from which joint termination is not possible. The algorithm has the control pattern A;(B;C)*.

4.1 The expansion stage A

Given U(G) = (Q,Σ, δQ, q0) and U(S) = (S,Σo, δ
3
S , s0), let r0 = (δQ(q0,Σ

∗
uo), s0) where Σuo = Σ \ Σo

and let C0 = (R,Σo, δR, r0) be the LTS defined inductively as follows. R ⊆ 2Q×S and δR : R×Σo → R
are the least set and partial function, respectively, such that r0 ∈ R and for any (P, s) ∈ R and a ∈ Σo,
δR((P, s), a) = (P ′, s′) ∈ R with P ′ = δQ(P, aΣ∗uo) and s′ = δ3S (s, a), unless δ3S (s, a) is undefined or
(∀q ∈ P) δQ(q, a) = ∅ or δ2S (s, a) is defined and (∃q ∈ P) δQ(q,Σ∗uoa) = ∅. As R is a subset of the finite
set 2Q × S, this inductive construction is finite.

4.2 The reduction stage B

Given Ci = (R,Σo, δR, r0) where i is an even number, one computes Ci+1 from Ci by removing iteratively
from Ci all states and transitions which are found inconsistent with the requirements expressed by the
modal transitions in S. This is done by applying the classical Ramadge-Wonham algorithm for state
based supervisory control, with Σuc = Σ \ Σc as the set of uncontrollable events.

Declare inconsistent w.r.t. controllability or modalities any state (P, s) ∈ R such that at least one of the
following two properties hold:

• ∃a ∈ Σuc ∩ Σo ∃q ∈ P : δQ(q, a) defined ∧ δR((P, s), a) undefined,

• ∃a ∈ Σo : δ2S (s, a) defined ∧ δR((P, s), a) undefined

Whenever some state (P, s) is found inconsistent, this state is removed from R and from the image
of the partial function δR, which may lead to new inconsistencies w.r.t. controllability or modalities.
Note that the inconsistencies w.r.t. δ3S have already been considered in the construction of C0 and new
inconsistency of this type may be introduced by restricting R and δR. As R is a finite set, this iterative
cleaning procedure terminates (possibly with R = ∅). The result does not depend upon the order in
which the states and transitions are removed.

4.3 The reduction stage C

Given Ci = (R,Σo, δR, r0) where i is an odd number, one computes Ci+1 from Ci by removing iteratively
from Ci all states and transitions that cannot lead to joint termination w.r.t. the final states of G and

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 11

S.

Define Hi = U(G)× Ci, thus any state of Hi is of the form (q, (P, s)) with q ∈ P . Declare inconsistent
w.r.t. termination any state (P, s) ∈ R such that, for some q ∈ P , q /∈ QF ∨ s /∈ SF and there is no path
in Hi from (q, (P, s)) to any (q′, (P ′, s′)) with q′ ∈ QF and s′ ∈ SF . Whenever some state (P, s) is found
inconsistent, it is simply removed from R and from the image of the partial function δR.

Remark 1 In practice, Hi may be computed from Hi−1 by just cancelling states whose second projection
is not in Ci.

4.4 The halting condition

The algorithm executes according to the pattern A;(B;C)*. The iteration is stopped as soon as Ci = Ci+2,
which must eventually occur since, at each step in the iteration, the set of states is decreased or left
constant. When the fixpoint is reached, one declares that the control problem has no solution if Ci has
an empty set of states, and one sets C† = Ci otherwise.

Example 3 To illustrate the algorithm, let us come back to example 2. We assume that the set of
controllable events is reduced to Σc = {?E, ?T} (note that there is however no direct relation between
may/must and controllable/uncontrollable). Figure 5 represents the LTS C0 computed from S (Figure 3)
and A (Figure 4) according to Section 4.1. As remarked in Example 2, there iss no inconsistent state

{1}
s0

{5}
s1

{4,7}
s3

{6,8}
s2

{3}
s5

{2}
s5

{10}
s4

{11,1}
s3

{13}
s4

{12,1}
s2

{5}
s4

{15,1}
s5

{9,16}
s2

{14,16}
s3

{3}
s0

{2}
s0

{10}
s1

{13}
s1

?E

?C ?T

!C

!E

!T

!E

?E

?E

?C ?T

?C

?T

?T

?C

!E !E

?E

!E !E

!T !C

?E ?E

?C

?T

?T

?C

Figure 5: C0

w.r.t. controllability or modality in C0. Thus, Stage B of the algorithm does not remove any states
in C0 and C1 = C0. However, state ({11, 1}, s3) as well as state ({12, 1}, s2) are inconsistent w.r.t.
termination and have to be removed from the state space. We thus obtain C2. As C2 6= C0, we need
to iterate the process. In C2, states ({10}, s4) and ({10}, s1) are now inconsistent w.r.t. controllability
and are removed. Moreover, ({13}, s1) has also become inconsistent w.r.t. modalities since in S, the
transition ?T is mandatory from s1. By removing this state, ({3}, s0) also becomes inconsistent w.r.t.
modalities and the same applies in turns to ({14, 16}, s3) and to ({13}, s4) due to the uncontrollability of
!C and ?C. We thus obtain the LTS C3 described in Figure 6.

Finally, in C3, the sink states ({2}, s5), ({3}, s5) map to final states in H3 × U(S), so C3 = C4 and
we have reached the fix-point. �

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

12 Darondeau & Dubreil& Marchand

{1}
s0

{5}
s1

{4,7}
s3

{6,8}
s2

{3}
s5

{2}
s5

?E

?C ?T

!C

!E

!T

!E

Figure 6: C3

4.5 Correctness of the algorithm: L(C†) = K†

In this section, we show that the finite state LTS C† constructed in section 4 realizes K†, thus in
particular C† has an empty set of states if and only if K† is an empty language.

For all i ≥ 0, let Hi = U(G)×Ci. Three observations about the LTS’s Hi and Hi×U(S) are fundamental
for the propositions established below. First, every state of Hi is of the form (q, (P, s)) with q ∈ P and
P closed under unobservable transitions in G. Second, every reachable state of Hi×U(S) is of the form
((q, (P, s)), s), where the same state s ∈ S occurs twice. Third, for i ≥ 1, Hi is isomorphic, as an LTS
over Σ, to the expansion Exp(Ci) of Ci defined as follows.

Definition 6 Given Ci = (R,Σo, δR, r0), let Exp(Ci) = (Exp(R),Σ, δi, E0) where the set of expanded
states is Exp(R) = {(q, (P, s)) | (P, s) ∈ R ∧ q ∈ P}, the initial state is E0 = (q0, (δQ(q0,Σ

∗
uo), s0)), and

the transition function δi : Exp(R)× Σ→ Exp(R) is defined as follows:

• for a ∈ Σuo, let δi((q, (P, s)), a) = (δQ(q, a), (P, s)),

• for a ∈ Σo, let δi((q, (P, s)), a) = (δQ(q, a), (δQ(P, aΣ∗uo), δ3S (s, a)) unless δQ(P, a) = ∅.

Remark 2 H0 is not necessarily isomorphic to Exp(C0) because in this particular case there may exist
(P, s) ∈ R, q, q′ ∈ P and a ∈ Σo such that δ2S (s, a) defined, δQ(q, a) defined, and δQ(q′,Σ∗uoa) = ∅, and
then δR((P, s), a) is undefined in C0 (see stage A of the synthesis algorithm).

Proposition 2 If C† has a non-empty set of states, then C† is an admissible controller and C†/G |= S.

Proof Suppose for a contradiction that C† is not an admissible controller, and let C† = Ci with i ≥ 2,
thus C†/G = Hi. In view of the isomorphism between Hi and Exp(Ci), the following situation is met
for some a ∈ Σuc ∩ Σo and for some reachable state (q, (P, s)) of Exp(Ci):

• δQ(q, a) is defined and δi((q, (P, s)), a) is undefined, but in this case, δQ(P, a) 6= ∅ since q ∈ P , hence
δ3S (s, a) must be undefined, and therefore (P, s) is an inconsistent state of Ci (w.r.t. controllability),
which is impossible.

Now suppose for a contradiction that C†/G does not satisfy the modal specification S. In view of
Definition 5 and the isomorphism between Hi and Exp(Ci), at least one of the following situations is
met for some a ∈ Σo and for some reachable state (q, (P, s)) of Exp(Ci):

• δi((q, (P, s)), a) is defined and δ3S (s, a) is undefined, but this is not possible because the first as-
sumption implies that δR((P, s), a) is defined in Ci and hence in C0, entailing that δ3S (s, a) is
defined,

• s
a−→2 s′ and δi((q, (P, s)),Σ∗uoa) = ∅, then by definition of δi, one of the following two situations

is met (recall that q ∈ P and P is closed under unobservable transitions):

– δQ(q, aΣ∗uoa) = ∅, but in this case, δR((P, s), a) would have been left undefined in C0 (see
Stage A of the synthesis algorithm), hence (P, s) would have been removed from R in C1 at
Stage B of the synthesis algorithm, showing a contradiction;

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Supervisory Control for Modal Specifications of Services 13

– δQ(P, a) 6= ∅ and (δQ(P, aΣ∗uo), δ3S (s, a)) is not a state of Ci, but then (P, s) in an inconsistent
state of Ci (w.r.t. modalities), which is impossible.

• one cannot reach any state (q′, (P ′, s′)) with q′ ∈ QF and s′ ∈ SF from (q, (P, s)) in Exp(Ci),
but then (P, s) in an inconsistent state of Ci (w.r.t. termination), which is impossible.

As all cases have been examined, the proposition obtains. 2

Proposition 3 If K† 6= ∅, then L(C†) = K†.

Proof For any ω ∈ Σ∗o, let ξ(ω) = (δQ(q0, π
−1
o (ω)), δ3S (so, ω)). By Lemma 1, ξ(ω) = ξ(ω′) ⇒ K† . ω =

K† . ω′ and moreover, K† . ω is the language of an admissible controller enforcing S . ω on G . ω.
Thus, if ω ∈ K† and ξ(ω) = (P, s), then for all a ∈ Σo such that δ2S (s, a) is defined, δQ(q,Σ∗uoa) is
non-empty for all q ∈ P (= δQ(qo, π

−1
o (ω))). Therefore, the prefix closed language K† may be generated

by a sub-system of C0, that is to say, by the induced restriction of C0 on specific subsets of states and
transitions. In particular, K† ⊆ L(C0).

Assume by induction on i ≥ 0 that K† ⊆ L(Ci).

• If Ci = Ci+2 then C† = Ci and by Proposition 2, L(C†) ⊆ K† ⊆ L(C†), showing the result.

• In the converse case, Ci is not an admissible controller or Ci/G does not satisfy S. By the proof
of Proposition 2, Ci contains inconsistent states (P, s). Therefore, Ci+2 has a strictly smaller set
of states. We claim that no reachable sub-system of Ci containing a state missing in Ci+2 can
generate a language in K. Therefore, necessarily K† ⊆ L(Ci+2), and the proposition obtains by
the induction on i.

The claim may be established by an induction on the set of inconsistent states successively removed,
using at each step the isomorphism between C/G and Exp(C) for any reachable sub-system C of
Ci for i ≥ 1. 2

5 Conclusion

In this paper, we have investigated the application of the supervisory control theory to enforce the modal
specification of a service on a given plant automaton. We have established that this control problem has
at most one solution and that this solution can be represented as a finite state supervisor. Finally, we
have shown how to compute this supervisor. In this paper, we have made the assumption that the set of
events that are observed by the controller is the set of events involved in the modal specification of the
service. In order to obtain a more general framework, it would be interesting to investigate the control
problem for modal specifications in the different setting where the controller’s view of the system is not
directly related with the interactive user’s view. In the context of computer security, modal specifications
could also serve to express additional availability constraints. For that reason, it would be interesting to
define a common extension of this work and the one in [3] and then to consider a wide range of security
properties mixing integrity constraints given by safety properties, confidentiality properties given by
opacity predicates and availability properties given by modal specifications. Modal specifications are a
simple but powerful description of the functional service that a user expects from an implementation.
Among the set of controlled systems satisfying the specification, some implementations may be preferred
to others because, e.g., the average elapsed time between the requests and the answers is shorter. It
would be interesting to add quantitative criteria to help a selection among the non necessarily maximally
permissive solutions of the control problem for modal specifications.

References

[1] J.W. Bryans, M. Koutny, L. Mazaré, P.Y.A. Ryan: Opacity Generalized to Transition Systems. Int.
Journal of Computer Security, vol. 7(6), 2008, pp 421-435.

[2] J. Dubreil, P. Darondeau, H. Marchand: Opacity Enforcing Control Synthesis. Proc. of the 9th Int.
Workshop on Discrete Event Systems, WODES, 2008, pp 28-35.

RR n° 7247

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

14 Darondeau & Dubreil& Marchand

[3] J. Dubreil, P. Darondeau, H. Marchand: Supervisory Control for Opacity. IEEE Trans. Automatic
Control, 2009, to appear.

[4] G. Feuillade, S. Pinchinat: Modal Specifications for the Control Theory of Discrete Event Systems.
Discrete Event Dyn Syst, vol. 17, 2007, 211-232.

[5] M. Hennessy: Acceptance Trees. J. ACM, vol. 32, 1985, 896-928.

[6] K.G. Larsen: Modal Specifications. in: Automatic Verification Methods for Finite State Systems,
Springer-Verlag, LNCS vol. 407, 1990, pp 232-246.

[7] H. Hüttel and K. G. Larsen. The use of static constructs in a modal process logic. In Logic at Botik,
pages 163–180, 1989.

[8] N. Lohmann, P. Massuthe, K. Wolf: Operating Guidelines for Finite-State Services. Proc. ICATPN,
Springer-Verlag, LNCS vol. 4546, 2007, pp. 321-341.

[9] N. Lohmann, K. Wolf: Petrifying Operating Guidelines for Services. Proc. ACSD, IEEE Computer
Society, 2009, pp. 80-88.

[10] J.B. Raclet: Residual for Component Specifications. ENTCS vol. 215, 2008, pp. 93-110.

[11] P.J. Ramadge, W.M. Wonham: Supervisory Control of a Class of Discrete Event Processes. SIAM
Journal of Control and Optimization, vol. 25, 1987, pp 206-230.

[12] P.J. Ramadge, W.M. Wonham: On the Supremal Controllable Language of a Given Language.
SIAM Journal of Control and Optimization, vol. 25, 1987, pp 637-659.

[13] P.J. Ramadge, W.M. Wonham: The Control of Discrete Event Systems. Proc. of the IEEE, Special
Issue on Dynamics of Discrete Event Systems, vol. 77, 1989, pp 81-98.

[14] S. Takai, Y. Oka: A formula for the supremal controllable and opaque sublanguage arising in
supervisory control. SICE Journal of Control, Measurement, and System Integration vol. 1(4), 2008,
pp 307-312.

[15] A. Saboori and C.N. Hadjicostis: Opacity-Enforcing Supervisory Strategies for Secure Discrete
Event Systems. Proceedings of CDC 2008, the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, 2008.

[16] S. Takai, R. Kumar: Verification and Synthesis for Secrecy in Discrete-event Systems. Proc. of the
American Control Conference, 2009, pp 4741-4746.

[17] J.G. Thistle, W.M. Wonham: Supervision of Infinite Behavior of Discrete-Event Systems. SIAM J.
Control Optim. vol. 32(4), 1994, pp 1098-1113.

INRIA

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

in
ria

-0
04

72
73

6,
 v

er
si

on
 1

 -
13

 A
pr

 2
01

0

	Introduction
	Background
	Transition Systems and Automata
	Supervisory Control
	Modal Specifications of Services

	Any service specification has an optimal finite state supervisor
	An iterative algorithm for computing an optimal finite state supervisor
	The expansion stage A
	The reduction stage B
	The reduction stage C
	The halting condition
	Correctness of the algorithm: L(C)=K

	Conclusion

