
Monitoring Confidentiality by Diagnosis Techniques

Jérémy Dubreil, Thierry Jéron, Hervé Marchand
INRIA Rennes Bretagne-Atlantique, Email: {first.last}@irisa.fr

Abstract— We are interested in constructing monitors for
the detection of confidential information flow in the context
of partially observable discrete event systems. We focus on
the case where the secret information is given as a regular
language. We first characterize the set of observations allowing
an attacker to infer the secret information. Further, based on
the diagnosis of discrete event systems, we provide necessary
and sufficient conditions under which detection and prediction
of secret information flow can be ensured, and construct a
monitor allowing an administrator to detect it.

I. INTRODUCTION

There has been an increasing interest in research about
computer security in the past decades. Indeed, the emergence
of web services and the improvements of the possibilities
of mobile and embedded systems allow lots of new and
interesting features. But some of these services such as online
payment, medical information storage or e-voting system
may deal with some critical information. In the meantime,
having more applications and devices for accessing these
services also increases the possibilities for such information
to flow. To avoid security breach, using automatic tools based
on formal methods for security analysis can be beneficial. In
this context, there has been a growing interest in verification
[1], [2] and testing of security properties [3] in past years.
In order to specify such automatic analysis methods, security
properties are generally separated into three different cate-
gories: availability (a user can always perform the actions
that are allowed by the security policy), integrity (something
illegal cannot be performed by a user) and confidentiality
(some secret information cannot be inferred by a user) [4].

In this paper, we focus on confidentiality and more partic-
ularly on the notion of opacity as defined in [4]. The general
problem of confidentiality consists in determining whether
an attacker, that knows the system and having only a partial
observations of the system, is able or not to discover some
secret behaviors (e.g. a password stored in a file, the value of
some hidden variables, etc) occurring during execution. The
motivation of this paper is to provide an analysis method for
detecting information flows. Therefore we proceed first from
an attacker point of view, by generating the set of possible
attacks, and second from the administrator point of view
interested in monitoring those attacks.

Monitor AttackerSystem

G

ΠM ΠA

M A

Fig. 1. Architecture

This work is partially funded by the RNRT Politess project.

Overview of the problem. We consider three components:
a system G, an attacker A and a monitor M (modelling for
example the administrator of the system). We assume that
the system G is modeled by a finite transition system. Users
interact with G through an interface, corresponding to the
inputs/outputs of the system given as a function ΠA. For
this system, one can define some confidentiality policies.
Following the approach [5], [4], a secret is modeled by a
property ϕ given as a regular language over the alphabet Σ
of the system. The secret is preserved as far as the attacker
cannot surely infer that the property ϕ is satisfied by the
current execution of the system based on the observations
performed through the interface ΠA. We characterize the
set of observations allowing the attacker A to infer the
secret information. A contrario, the monitor M tries to
analyze the information flow between the system G and the
attacker A in order to raise an alarm whenever the secret
has been revealed. To do so, we assume that M knows
the power of the attacker (i.e. he knows the model of the
system G and the interface ΠA of the attacker). He observes
the system through the interface ΠM (we do not assume
any link between the two interfaces). Further, based on the
set of observations allowing the attacker to infer the secret
information, we provide necessary and sufficient conditions
under which detection and prediction of secret information
flows can be ensured, and construct a monitor M allowing
an administrator to detect the attacks. This supervision is
performed on-line, the monitor raising an alarm whenever
an information flow occurs.

The structure of the document is as follows: Section II
introduces the mathematical terminology and notions used
throughout the paper. In Section III, we show how to
build a monitor in charge of the supervision of the system
according to a given property. Section IV defines the notion
of opacity formalizing information flow. With this notion,
we can characterize the set of observations for which an
attacker can infer confidential information. In Section V, we
use diagnosis techniques to exhibit necessary and sufficient
conditions under which a monitor can diagnose or predict
the information flow.

II. MODELS & NOTATIONS

Let Σ be a finite alphabet of events. A string is a finite-
length sequence of events in Σ. ε denotes the empty string.
Given a string s, the length of s is denoted by |s|. The set
of all strings formed by events in Σ is denoted by Σ∗. Any
subset of Σ∗ is called a language over Σ. Let L be a language
over Σ. Given a string s ∈ L, L/s

∆= {t ∈ Σ∗ | s.t ∈ L} is

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB8.2

ISBN 978-963-311-369-1
© Copyright EUCA 2009 2584

called the post-language of L after s and defined as L/s. L
is said to be extention-closed when L.Σ∗ = L. We assume
that the systems are modeled as Labelled Transitions Systems
(LTS for short). The formal definition of an LTS is as follows.

Definition 1 (LTS): An LTS over Σ is defined by a 4-tuple
G = (QG, Σ,→G, q0

G) where QG is a finite set of states, Σ is
the set of events of G, q0

G ∈ QG is the initial state, and →G⊆
QG × Σ × QG is the partial transition relation. %

Notations. In the remainder of this section, we consider
a given LTS G = (QG, Σ,→G, q0

G). We write q
a→G q′ if

(q, a, q′) ∈→G and q
a→G for ∃q′ ∈ QG, q

a→G q′. We extend
→G to arbitrary sequences by setting: q

ε→G q for all states
q, and q

sσ→G q′ whenever q
s→G q′′ and q′′

σ→G q′, for some
q′′ ∈ QG. Σ(q) ∆= {a ∈ Σ | q

a→G} corresponds to the set of
events admissible in state q of G. G is said to be complete
whenever ∀q ∈ QG, Σ(q) = Σ. It is said to be live if Σ(q) (=
∅, for each q ∈ QG. We set ∆G(q, l)

∆= {q′ ∈ QG | q
l→G q′}.

By a slight abuse of notation, for any language L ⊆ Σ∗,
∆G(q, L) ∆= {q′ ∈ QG | ∃s ∈ L, q

s→G q′}. For any X ⊆ QG,
∆G(X, L) =

⋃
q∈X ∆G(q, L). Also, X is said to be stable if

∆G(X, Σ∗) ⊆ X . We denote by L(G) = {l ∈ Σ∗, qo
l→G}

the set of trajectories of the system G.
Given a special set of states FG ⊆ QG, the notions above

are extended in this setting by letting the language LFG(G) =
{l ∈ Σ∗ | ∃q ∈ FG, qo

l→G q} be the set of trajectories that
end in a state of FG. Note that FG is stable if LFG(G) is
extention-closed. Also, if G is complete and FG is stable,
then LFG(G) is extention-closed.

Definition 2: (Synchronous product) Let Gi =
(Qi, Σ,→Gi , q0

Gi), i = 1, 2 be two LTSs. The
synchronous product between G1 and G2 is an LTS
G1 × G2 = (Q1 × Q2, Σ,→G1 × G2 , (q0

G1 , q0
G2)), where

(q1, q2) σ→G1 × G2 (q′1, q′2) whenever q1 σ→G1 q′1 and
q2 σ→G2 q′2.

Clearly, L(G1 × G2) = L(G1) ∩ L(G2) and for Fi ⊆
Qi, i = 1, 2, we also have LF1×F2(G1 × G2) = LF1(G1) ∩
LF2(G2). Also, if for i = 1, 2 the set Fi is stable in Gi,
F1 × F2 is stable in G1 × G2.

Given a set of states E ⊆ QG of an LTS G, the operators
pre∀G et pre∃G are defined as follows:

Pre∃G (E) = {q ∈ Q | ∃a ∈ Σ, ∆G(q, a) ∩ E (= ∅}
Pre∀G (E) = {q ∈ Pre∃G (E) | ∀a ∈ Σ, ∆G(q, a) ⊆ E}
The states belonging to Pre∀G (E) are the states such

that all immediate successors belong to E, while the states
belonging to Pre∃M(E) are such that at least one immediate
successor belongs to E.

Given a live LTS G, let InevG(E) be the set of states that
inevitably lead to a set E in a finite number of steps and
CoReachG(E) the set of states from which E is reachable.
These sets are given by the following least fix-points (lfp):

InevG(E) = lfp(λX.E ∪ pre∀G(X))
CoReachG(E) = lfp(λX.E ∪ pre∃G(X))

Observable behavior. The key point of our approach
concerns the ability of an user U to deduce information from

a system by observing only a subset of the events or only
an abstraction of them. For this purpose, we introduce the
concept of observation mask modeling the interface between
a user and the system. An observation mask is a function
ΠU : Σ → ΣU ∪ {ε}, where ΠU is defined for all σ ∈ Σ.
The set ΣU is another event set called the set of observed
events. We denote by Σ−1

U = {σ ∈ Σ | ΠU (σ) (= ε} the
set of observable events, i.e. the events of Σ inducing an
observation for U . The observation mask is extended to any
trajectory by assigning ΠU (ε) = ε and ∀s ∈ Σ∗, σ ∈ Σ,
ΠU (sσ) = ΠU (s)ΠU (σ). This is further extended to any
language L ⊆ Σ∗ by letting ΠU (L) = {ΠU (s) | s ∈ L}.
The inverse observation mask for T ⊆ Σ∗

U is given by:

Π−1
U (T) = {l ∈ Σ∗ | ΠU (l) ∈ T}.

We say that G is ΣU -live if ∀q ∈ Q,∃s ∈ Σ∗, σ ∈ Σ−1
U , q

sσ→,
meaning that there is no terminal loop of events that cannot
be observed through the observation mask.

Starting from G and a set of observable events ΣU , the set
of observed traces of G is given by TU (G) = ΠU (L(G)).

We define the semantic [[µ]]U of a trace µ ∈ T (G) as the
set of trajectories of G that are compatible with the trace µ:

[[µ]]U
∆=

{
Π−1

U (µ) ∩ L(G) ∩ Σ∗Σ−1
U if µ (= ε

{ε} otherwise.

This means that (except for the empty trace), trajectories
compatible with a trace µ are trajectories of G ending with an
observable event and having trace µ. This is consistent with
an on-line observation performed by a user of the system for
whom the system is only seen through the interface given by
the observation mask ΠU when we suppose that the observers
are reacting faster than the system.

An LTS G is said to be deterministic if for all q ∈ QG,
for all a ∈ Σ, q

a→G q′ and q
a→G q′′ implies q′ = q′′.

In order to build monitors in charge of the observation
of the system, we need to build, starting from a non-
deterministic LTS G, a deterministic LTS DetU (G) over the
alphabet ΣU preserving the set of traces, i.e. L(DetU (G)) =
TU (G).

Definition 3: Let G = (QG, Σ,→G, q0
G) be an LTS and ΠU

an observation mask. The determinization of G w.r.t. ΠU is
the LTS DetU (G) = (X , ΣU ,→d, X 0) where X = 2QG (the
set of subsets of QG called macro-states), X 0 = {q0

G} and
→d= {(X, ΠU (a), ∆G(X, (Σ \ Σ−1

U)∗.a) | X ∈ X and a ∈
Σ−1

U }.
Notice that this definition is consistent with the above

semantic of observations [[.]]U : the target macro-state X ′ of
a transition X

σ→d X ′ is composed of the set of states q′

of G which are targets of sequences of transitions q
s.a→ q′

ending with an observable event a such that ΠU (a) = σ and
ΠU (s) = ε, with q ∈ X . From the definition of →d, we
get ∆DetU (G)(X 0, µ) = {∆G(q0

G, [[µ]]U)}. This means that a
macro-state that is reached from X 0 by µ in DetU (G) is
composed of states that are reached from q0

G by trajectories
of [[µ]]U in G.

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB8.2

2585

III. INFERENCE OF PROPERTIES

In this section, we consider a user U interacting with a
system modeled by a LTS G through an interface modeled
by an observation mask ΠU . We consider properties modeled
by regular languages over Σ that are defined as follows.

Definition 4: A property is given by a marked language
LFψ (ψ) ⊆ Σ∗ of a complete and deterministic LTS ψ =
(Qψ, Σ,→ψ, q0

ψ) equipped with a distinguished set Fψ ⊆
Qψ .

We say that a trajectory s ∈ L(G) is recognized by ψ,
noted s |= ψ whenever s ∈ LFψ (ψ). As ψ is complete, we
get L(G × ψ) = L(G) and LQG×Fψ

(G × ψ) = L(G) ∩
LFψ (ψ) is the set of trajectories of G satisfying ψ.

Let s ∈ L(G) be a trajectory that has been triggered by
the system. The user U aims to infer whether s satisfies the
property ψ by observing µ = ΠU (s) ∈ TU (G). However,
the user cannot distinguish s from any trajectory s′ ∈ [[µ]]U
compatible with the observation µ. Thus, U can only infer
partial information regarding s |= ψ from [[µ]]U . Especially,
U is sure that s |= ψ if [[µ]]U ⊆ LFψ (ψ). Meanwhile, if
there exists s′ ∈ [[µ]]U and s′ (|= ψ, then it is impossible
for U to know if the current trajectory is s or s′ and then
U cannot infer whether s |= ψ. To go further, U might be
also interested in the fact that after observing µ, ψ will be
inevitably satisfied, or will not be satisfied anymore by the
trajectories of G extending s.

Next, we formalize these ideas and propose a way to build
a function Oψ

U , inspired by [6], which captures, for each
observation µ ∈ T (G) what a user U can infer about s and
ψ. Formally, if s is the current execution of the system and
µ = ΠU (s) is the corresponding observation, the verdicts we
are interested in are defined by the following function:

Oψ
U : Σ∗

U → V = {Y es, Inev, Inev Y es, Never, No, ?}

where the semantic of the verdicts is as follows:
1) Oψ

U (µ) = Y es if U knows that for the current
execution s (s.t. ΠU (s) = µ), s |= ψ;

2) OU(µ) = Inev if U knows that s (|= ψ but also that
ψ will eventually be satisfied by all the possible
extension of s;

3) Oψ
U (µ) = Inev Y es if U knows that s |= ψ or

that ψ will inevitably be satisfied in the future but
cannot distinguish between the two cases so far

4) Oψ
U (µ) = Never if U knows that ψ will never be

satisfied by the executions of G extending s;
5) Oψ

U (µ) = No if U knows that s (|= ψ, but ψ is
neither unavoidable nor impossible;

6) Oψ
U (µ) = ? in all the other cases, meaning that U

cannot infer any useful information with regards to
s and ψ after the observation µ = ΠU (s).

A. Construction of Oψ
U

In this section, we now explain how to construct the
function Oψ

U : Σ∗
U → V :

Step 1. Construct the synchronous product Gψ = G ×
ψ = (QGψ , Σ,→Gψ , q0

Gψ
) as well as the set of final states

FGψ = QG × Fψ. By the property of the synchronous
product, and using the fact that ψ is complete, we get
L(Gψ) = L(G) and LFGψ

(Gψ) = L(G)∩LFψ (ψ). Thus, the
accepted trajectories of Gψ in FGψ , LFGψ

(Gψ), are exactly
the trajectories of G accepted by ψ.

Step 2. Compute InevGψ (FGψ) on Gψ and consider the
following partition: QGψ = FGψ ∪IGψ ∪PGψ ∪NGψ , where

• IGψ = InevGψ (FGψ) \ FGψ is the set of states not
belonging to FGψ but from which FGψ is unavoidable;

• PGψ = QGψ \ CoReachGψ (FGψ) is the set of states
from which FGψ is unreachable;

• NGψ = QGψ \(FGψ ∪IGψ ∪PGψ) is the set of all other
states.

Step 3. Build χψ
U (G) = DetU (Gψ) = (X , ΣU ,→d, X 0).

We thus have L(χψ
U (G)) = TU (G). For each observation

µ ∈ TU (G), we get ∆χψ
U (G)(X

0, µ) = {∆Gψ (q0
Gψ

, [[µ]]U)}.
Step 4. We finally compute the function Oψ

U from χψ
U (G)

and the sets FGψ , IGψ , PGψ , NGψ as follows:
∀µ ∈ TU (G),Oψ

U (µ) =





Y es, if ∆χψ
U (G)(X

0, µ) ⊆ FGψ

Inev, if ∆χψ
U (G)(X

0, µ) ⊆ IGψ

Inev Y es, if ∆χψ
U (G)(X

0, µ) ⊆ (IGψ ∪ FGψ)
∧ ∆χψ

U (G)(X
0, µ) ∩ IGψ (= ∅

∧ ∆χψ
U (G)(X

0, µ) ∩ FGψ (= ∅
No, if ∆χψ

U (G)(X
0, µ) ⊆ NGψ

Never if ∆χψ
U (G)(X

0, µ) ⊆ PGψ

? otherwise.

(1)

It is easy to check that the construction of Oψ
U conforms to

the informal definition previously introduced. For example,
for the verdict Y es, consider an execution s ∈ L(G)
together with its corresponding observation µ = ΠU (s) and
Oψ

U (µ) = Y es. We thus have ∆χψ
U (G)(X

0, µ) ⊆ FGψ . Now,
according to the definition of χψ

U (G), for all s′ ∈ [[µ]]U ,
∆Sψ (q0

Gψ
, s′) ⊆ ∆χψ

U (G)(X
0, µ) ⊆ FGψ , thus s′ |= ψ.

Hence, for all trajectories s′ ∈ [[µ]]U , s′ |= ψ and in
particular s |= ψ. Similarly for Oψ

U (µ) = Inev. It implies
that ∆Sψ (q0

Gψ
, [[µ]]U) ⊆ IGψ . Then, the trajectories in [[µ]]U

are for sure not satisfying ψ and all their continuations will
evetually satisfy ψ. Then this also holds for s.

To conclude this section, given a system G that is observed
by a user U through the interface ΠU , we know how to
construct a function Oψ

U : Σ∗
U → V that gives access to all

the information that the user U can deduce with respect to
the executions of G and the property ψ.

IV. CHARACTERIZATION AND VERIFICATION OF OPACITY

Assume now that the attacker A is a user of a system G
trying to infer confidential information. We assume that the
attacker perfectly knows the model of G, but only observes
it through the interface ΠA. We consider a secret ϕ given
by a marked language of a complete deterministic LTS, ϕ =
(Qϕ, q0

ϕ, Σ,→, Fϕ). We assume that A knows how to build
an observation function following the methodology described

J. Dubreil et al.: Monitoring Con! dentiality by Diagnosis Techniques TuB8.2

2586

in the section and III-A for whom the aim is simply to know
whether the current execution s ∈ L(G) reveals the secret
ϕ.

Example 1: Let G be a LTS with Σ = {τ, τϕ, a, b, c},
ΣA = {a, b, c} (the observation mask is reduced to the natural
projection). The secret under consideration is the occurrence
of the event τϕ. This should not be revealed to the users of the
system, knowing that τϕ is not observable. However, users

τϕτ

a a bc

c c

Fig. 2. An example of implicit information dlow

can infer that τϕ has occurred by observing the event b. Such
a system is not secure because the fact that τϕ occurs during
execution is modifying what A can observe. However, for a
different mask, e.g. ΠA(a) = ΠA(b), the occurrence of p does
not change the observations and G is safe.

A. Definition of Opacity

Intuitively, a secret ϕ is said to be opaque with respect to
a system G and a mask ΠA if the attacker A can never be
sure that the current execution of G satisfies ϕ [5], [4], [7].

Definition 5: [Opacity] Given a system G and a secret ϕ,
ϕ is opaque w.r.t. G and ΠA if ∀s ∈ L(S), [[ΠA(s)]]A (⊆
LFϕ(ϕ).
In other words, ϕ is opaque w.r.t. G and ΠA if and only if
∀µ ∈ TA(G), [[µ]]A (⊆ LFϕ(ϕ), and ϕ is non-opaque w.r.t.
G Based on the semantics of Oϕ

A described in the preceding
section, one can say that ϕ is opaque w.r.t. G and ΠA if

∀s ∈ L(G), Oϕ
A(ΠA(s)) (= Y es

B. Verification of Opacity

In this section, we are interested in checking whether
a secret ϕ is opaque with respect to a system G and an
interface ΠA. This is a particular case of the inference
of property presented in Section III. To do so, consider
χϕ
A(G) = DetA(G × ϕ) = (X , ΣA,→d, X 0) equipped with

the set of final states F = 2QG×Fϕ . By construction, we get

[[LF (χϕ
A(G))]]A = {s ∈ L(S)∩Σ.Σ−1

A | [[ΠA(s)]]A ⊆ LFϕ(ϕ)}

which gives a characterization of opacity:
Proposition 1: ϕ is opaque with respect to G and the

interface ΠA if and only if LF (χϕ
A(G)) = ∅. %

Hence, checking the opacity of a secret ϕ consists in check-
ing that the set of states F is not reachable in χϕ

A(G). If
it is reachable, then ϕ is not opaque and there exists at
least one observation allowing the attacker to infer that ϕ
is satisfied. In other words, LF (χϕ

A(G)) corresponds to the
set of observations for which the attacker A knows that the
current execution reveals ϕ. In that case, the attacker A,
based on the preceding techniques, can compute the LTS
χϕ
A(G) and deduce an observation function Oϕ

A such that,
for a given observation µ of T (S):

• if Oϕ
A(µ) = Y es, then µ ∈ LF (χϕ

A(G)) and [[µ]]A ⊆
LFϕ(ϕ); the attacker, based on this observation, can de-
duce that ϕ is satisfied on G and there is an information
flow;

• if Oϕ
A(µ) =?A, A cannot deduce ϕ and

there is no information flow, where ?A =
{No, Inev, Inev Y es, Never, ?}1.

Example 2: Consider the system G described in Fig. 3 (a).
The alphabet of G is Σ = {a, b, c, X, Y, Z, τϕ, τ, δ}. We
assume here that the secret property is given by the LTS
described in Fig. 3 (b); The marked state is represented by
the black state. In this example, the attacker tries to infer the
occurrence of the event τϕ in the system.

a

Z

X ba Z

b

a Y c

c

c

ba

X Yes: A knows ϕ

δ

δ

δ

δ
τ

(a) The system G

(b) The opacity property ϕ
(c) The function Oϕ

A

τϕ

τϕ

τϕ

Σ
τϕ

Σ \ {τϕ}

δ

δ

?: A doesn’t know ϕ

δ

Fig. 3. G, ϕ and the function Oϕ
A based on χA

ϕ

The observation mask is here reduced to the natural pro-
jection. The interface of the attacker is reduced to ΣA =
{a, b, c, δ}. The observer Oϕ

A that the attacker A can build is
given by the LTS depicted in Fig. 3(c). If A observes a.b.δ∗

then ϕ is revealed to A (the set of compatible trajectories is
a.X.Z.τϕ.b.δ∗ and X.τϕ.a.b.Z.δ∗). A contrario, if A simply
observes a or a.c.δ∗, then he is not sure that ϕ is satisfied or
not. Some of the compatible trajectories satisfy the secret and
some other do not, thus A cannot infer the secret.

Remark 1: Within our framework, it is also possible to
consider other kinds of opacity. Indeed, one can consider that
there is an information flow as soon as the attacker knows
that either ϕ or ¬ϕ is satisfied (c.f. [5]). In other words, being
opaque (for this definition), means that ϕ has to be opaque as
well as ¬ϕ (according to definition 5).

V. MONITORING OPACITY

Given a secret ϕ, based on the techniques described in
the preceding sections, it is possible to check whether ϕ is
opaque w.r.t. G and the interface ΠA. When ϕ is not opaque,
it can be important for an administrator to supervise the
system on-line by means of a monitor M and raise an alarm
as soon as an information flow occurs. For this, we assume
that M knows the model of the system G and observes it
through the interface ΠM. Moreover, M knows the power
of the attacker A, meaning that the monitor knows that A
observes the system via the interface ΠA and can construct
an observation function Oϕ

A. We do not assume any relation
between ΠA and ΠM. Thus, M has to infer the attacker’s
knowledge based on the observation of TM(G) ⊆ Σ∗

M.

1Compared with (1), we consider here that the attacker A is only
interested by the detection of the secret.

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB8.2

2587

If ϕ is not opaque w.r.t. the system G and the interface
ΠA, an administrator would like to build an observation
function diagnosing the revelation of the secret. One can also
be more accurate and try to predict the fact that the secret
will be inevitably known by the attacker strictly before the
information flow, or that the secret will never be revealed
anymore.

Note that it is not necessary to diagnose the fact that the
system performed a sequence satisfying the secret if this
sequence does not correspond to a non-opaque execution
(this sequence does not reveal anything to the attacker);
only the executions that lead to an information flow have
to be taken into account. Indeed, the secret ϕ is revealed
to the attacker by an execution s ∈ L(G) if and only if
ΠA(s) ∈ LF (χϕ

A(G)). In other words, we are interested in
diagnosing the property: ”The secret ϕ has been revealed
to the attacker”, which corresponds to the extention-closed
language: Π−1

A (LF (χϕ
A(G))) · Σ∗. This language can be

recognized by an LTS Ω, equipped with a set of final states
FΩ such that:

LFΩ(Ω) = Π−1
A (LF (χϕ

A(G))) · Σ∗ (2)

Example 3: To illustrate the computation of LFΩ(Ω), let us
come back to Example 2. The corresponding LTS Ω is shown
in Fig. 3

Fig. 4. The LTS Ω computed from χϕ
A(G))

A. Supervision of Information Flow
Given a system G, an attacker A observing G through

the interface ΠA and a secret ϕ (that we assume to be
non-opaque), we describe now a method allowing an ad-
ministrator M observing G via the interface ΠM to know
whether there is an information flow or not. We assume that
the monitor in charge of the supervision has a full knowledge
of G and knows the observation mask ΠA.

As mentioned in the introduction of this section, M does
not directly observe ϕ. Only the trajectories corresponding to
an information flow have to be supervised. We then consider
the stable property Ω corresponding to the trajectories of G
inducing an information flow from G to A (see (2)).

In order to construct the observer OΩ
M in charge of the

supervision of Ω (i.e. corresponding to the information leak
of ϕ), we first build GΩ = G × Ω and the sets FGΩ , IGΩ ,
PGΩ , NGΩ (as described in Step 2., Section III-A).

Now, based on the techniques of the section III-A, one
can compute the LTS χΩ

M(G) over ΣM from which we can
derive an observer OΩ

M with the following verdicts: for µ ∈
TM(G),

• OΩ
M(µ) = Y es: M infers that Ω is satisfied and thus

can deduce that A knows ϕ;
• OΩ

M(µ) = No: M knows that A does not know ϕ but
might know it in the future;

• OΩ
M(µ) = Inev: M knows that A will inevitably know

ϕ but does not know it yet;
• OΩ

M(µ) = Inev Y es: M knows that A already knows
or will know ϕ;

• OΩ
M(µ) = Never: M knows that A will never know

ϕ.
• OΩ

M(µ) =? means that M cannot deduce anything
about the knowledge of A.

Unfortunately, the case OΩ
M(µ) =? does not imply that

the attacker A does not know ϕ. As M and A observe
the system via different interfaces, it might be the case
that A already knows ϕ and that M will never infer this
information. This corresponds to the non-diagnosability of
Ω [6]. This can occur when there exist two arbitrarily long
trajectories s and s′ corresponding to the same observation
µ such that s ∈ LFΩ(Ω) (thus a non-opaque trajectory of ϕ)
and s′ (∈ LFΩ(Ω). In the next section, we give necessary and
sufficient conditions under which this case does not occur.

B. Necessary and sufficient conditions for detec-
tion/prediction of information flow

Consider the system G as well as the property Ω described
in the previous section.

1) Diagnosability and predictability: Intuitively, G is Ω-
diagnosable ([9], [6]) if there exists n ∈ N such that for
any trajectory s of G such that s |= Ω, Ω becomes non-
opaque after waiting for at most n observations. This can be
formalized as follows

Definition 6: Given a system G, a stable property Ω and an
interface ΠM, G is Ω-diagnosable if,

∃n ∈ N,∀s ∈ L(G) ∩ LFΩ(Ω) ∩ Σ∗.Σ−1
M ,

∀t′ ∈ L(G), t′ = s · t ∧ |ΠM(t)| ≥ n
⇒ [[ΠM(s · t)]]M ⊆ LFΩ(Ω)

The Ω-diagnosability property means that if a trajectory s of
the system satisfies Ω, then whatever the extension t of s, t
having at least n observable events w.r.t. ΠM, all trajectories
compatible with the observation ΠM(s.t) satisfy Ω.

In the case of monitoring opacity, this means that when
the monitor is observing a trace in LFΩ(Ω), a “Yes” answer
should be produced by the observer after finitely many
observed events. Indeed, if there exists s ∈ L(G) triggered
by the system such that ϕ is non-opaque for A, it means that
Π(s) ∈ LF (χϕ

A(G)) and consequently s ∈ LFΩ(Ω). Then
according to the definition of diagnosability, M will certainly
know it at most n observed events after the observation of
ΠM(s).

Based on these remarks, we can state that:
Proposition 1: With the preceding notations, an informa-

tion flow from G to A is certainly detected by M if and only
if G is Ω-diagnosable w.r.t. ΠM, where Ω is given by (2).

If the system is Ω-diagnosable, then it might be interesting
to refine the verdict by predicting the satisfaction of the
property strictly before its actual occurrence [10]. Roughly
speaking, Ω is predictable if it is always possible to detect
the future satisfaction of Ω, strictly before this happens, only
based on the observations.

Definition 7: Given a system G, a property Ω and an

J. Dubreil et al.: Monitoring Con! dentiality by Diagnosis Techniques TuB8.2

2588

interface ΠM, G is Ω-predictable if

∃n ∈ N,∀s ∈ L(G) ∩ LFΩ(Ω) ∩ Σ∗.Σ−1
M ,

∃t ∈ (L(G) ∩ Σ∗.Σ−1
M) ∪ {ε}, t < s ∧ t /∈ LFΩ(Ω) s.t.

∀u ∈ [[ΠM(t)]]M,∀v ∈ L(G)/u, |ΠM(v)| ≥ n
⇒ u.v ∈ LFΩ(Ω)

This property means that for any trajectory s that satisfies
Ω, there exists a strict prefix t that does not satisfy Ω, such
that any trajectory u compatible with observation ΠM(t)
will inevitably be extended into a trajectory u.v satisfying
Ω. Note that predictability implies diagnosability [10].

Remark 2: There is an algorithm of polynomial complex-
ity for verifying that a system G is Ω-diagnosable or Ω-
predictable. More details can be found in [6], [10].
In our setting, predictability means that M can always
predict that A will know ϕ and then the system operator
can be warned in advance to halt the system or can take
counter-measures in order to avoid the secret to be revealed.
In other words, if M observes a trace µ ∈ TM(G) such that
µ = ΠM(t), then M knows that the secret is not revealed
to A, but will be after at most n observations.

Proposition 2: With the preceding notations, an informa-
tion flow from G to A is certainly detected by M strictly
before its occurrence if and only if G is Ω-predictable w.r.t.
ΠM, where Ω is computed as in (2).

Example 4: To illustrate this section, we still consider the
system G and the secret ϕ defined in Example 2. The property
Ω and the set of non-opaque trajectories (i.e. the ones that
reveal the secret ϕ) are given by the LTS described in Fig. 3.

Y

X

Y

Z

(A will but does not know yet ϕ)

(A will never know ϕ)
Never: M knows that

Yes: M knows that
(A knows ϕ)knows or will know ϕ)

(b) ΣM = {X, Y, δ}

Pred: M knows that
(A knows ϕ)

Yes: M knows that

δ

δδ

δ

Never: M knows that
(A will never know ϕ)

δ

δ
δ

δ

(a) ΣM = {Z, Y, δ}

Yes: M knows that

Fig. 5. Observation function OΩ
M w.r.t. two different interfaces

Assume that the interface of the monitor M is reduced
to ΣM = {Z, Y, δ}. Then, one can show that G is Ω-
diagnosable, but not Ω-predictable. The corresponding OΩ

M

is represented in Figure 5(a). If the interface of the monitor
M is ΣM = {X, Y, δ}, then the system is Ω-predictable.
Indeed, after the observation of X , M knows that all the
possible extensions will satisfy Ω and thus that the secret will
be revealed (C.f. Figure 5(b)).

VI. CONCLUSION

Given a system modeled by a labeled transition system and
a secret property modeled by a regular language, we have
shown how to characterize cases of confidential information
flow. Then we exposed how an administrator can construct
a monitor raising an alarm whenever an attack is detected.
Further, we provide necessary and sufficient conditions for
such information flows to be always detected by the admin-
istrator; in a bounded delay in the case of diagnosability or
before they occur in the case of predictability.

Future Work: We first plan to extend these results to
more expressive models mixing control and data using ap-
proximate analysis. Moreover, in this paper, we focused on
the detection of information flow. The monitors are passive,
they raise an alarm whenever an attack occurred. We plan
to go further by investigating the on-line control of the
system in order to avoid the secret to be revealed (for
example by synthesizing a dynamical observation mask that
would minimise the unobservable events). This would, in
some points extend the work done by Schneider on security
automata [11], and subsequently extended to edit automata
[12]. Also, the attacker is interested in deducing a given
secret and the administrator is concerned with what does the
attacker knows. Epistemic logic seems to be a good candidate
to generalize this approach to more than two participants (see
e.g. [13]). Finally, following the first results in [8], [4], we
plan to investigate the detection of information flow in case
an attacker can infer information knowing only an abstraction
of the system. Moreover, when dealing with abstraction, the
initial knowledge plays an important role in our approach.
An interesting extension would be to consider an attacker
having an arbitrary initial knowledge of the system and using
learning techniques. This attacker will try to acquire a more
precise model of the system to likely infer some confidential
information.

REFERENCES

[1] B. Blanchet, A. M., and C. Fournet, “Automated Verification of Se-
lected Equivalences for Security Protocols,” in 20th IEEE Symposium
on Logic in Computer Science (LICS 2005), 2005, pp. 331–340.

[2] G. Lowe, “Towards a completeness result for model checking of
security protocols,” Journal of Computer Security, vol. 7, 1999.

[3] V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L.
Richier, “Test generation for network security rules,” in TestCom 2006,
ser. LNCS, vol. 3964, 2006.

[4] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” Int. Jour. of Information Security,
2008.

[5] R. Alur, P. Černý, and S. Zdancewic, “Preserving secrecy under re-
finement,” in Proc. of the 33rd International Colloquium on Automata,
Languages and Programming. Springer, 2006, pp. 107–118.

[6] T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier, “Supervision
patterns in discrete event systems diagnosis,” in Workshop on Discrete
Event Systems, WODES’06, Ann-Arbor (MI, USA), July 2006.

[7] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” in 8th Workshop on Discrete Event
Systems, WODES’06, S. Lafortune, F. Lin, and D. Tilbury, Eds., Ann
Arbor, Michigan, USA, July 2006.

[8] J. Dubreil, T. Jéron, and H. Marchand, “Monitoring information flow
by diagnosis techniques,” IRISA, Tech. Rep. 1901, August 2008.

[9] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and
D. Teneketzis., “Diagnosability of discrete event systems,” IEEE
Transactions on Automatic Control, 1995.

[10] T. Jéron, H. Marchand, S. Genc, and S. Lafortune, “Predictability of
sequence patterns in discrete event systems,” in IFAC World Congress,
Seoul, Korea, July 2008.

[11] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30–50, 2000.

[12] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforcement
mechanisms for run-time security policies,” International Journal of
Information Security, vol. 4, no. 1–2, pp. 2–16, Feb. 2005.

[13] J. Glasgow, G. Macewen, and Panangaden, “A logic for reasoning
about security,” ACM Transactions on Computer Systems,, vol. 10,
no. 3, 1992.

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB8.2

2589

