Least and greatest fixed points in linear logic

David Baelde & Dale Miller

Parsifal team, INRIA / École Polytechnique

LPAR 2007
We are interested in linear logic as the logic behind logic:

- it is simpler: more symmetry, cleaner separation of concepts;
- it encodes other logics, such as intuitionistic and classical; and
- meta-theorems of LL (e.g., cut-elimination, focusing) can often be used to infer similar meta-theorems for encoded logics.

Linear logic as the logic of resource accounting (such as in linear logic programming) is not our interest here.
Background / Focusing

It provides structure to the role of non-determinism in the search for cut-free proofs.

- **Asynchrony**: invertible rules can be introduced greedily in any order;
- **Synchrony**: non-invertible rules are hereditarily applied.

Focusing is the most transparent in linear logic (Andreoli, 1992).

The completeness of focusing in linear logic can be used to explain the completeness of other “focusing-like” proof systems, such as SLD-resolution, uniform proofs, systems mixing backward and forward chaining, etc.
(Co)Inductive definitions are omnipresent, but their proof-theory is challenging (e.g., no subformula property). They are also quite interesting from a proof-theoretical point-of-view, since they provide:

- an alternative to atoms: one can see a fixed point (e.g., nat x) as an atom with structure;
- an alternative point-of-view on infinity, more controlled than the opaque exponentials (!,?).

Both atoms and exponentials have a non-canonical and puzzling status in focusing.
The logic $\mu\text{MALL}^=$ is MALL . . .

$$
\frac{\Gamma, P \vdash \Delta, Q}{\Gamma, \Delta, P \otimes Q} \quad \frac{\Gamma, P, Q}{\Gamma, P \otimes Q} \\
\frac{\Gamma, P_i}{\Gamma, P_0 \oplus P_1} \quad \frac{\Gamma, P}{\Gamma, P \land Q}
$$

. . . plus first-order quantifiers and equality . . .

$$
\frac{\Gamma, P \ t}{\Gamma, \exists x . P \ x} \quad \frac{\Gamma, P \ y}{\Gamma, \forall x . P \ x} \quad \text{y fresh}
$$

$$
\frac{}{\Gamma, t = t} \quad \frac{\{ \vdash \Gamma \theta : \theta \in \text{csu}(s \overset{\text{def}}{=} t) \}}{\Gamma, s \neq t}
$$

$$(s = t)^\perp \overset{\text{def}}{=} s \neq t$$
\(\mu \text{MALL} = \)

... plus **fixed points** (but no atom).

\[
\begin{align*}
& \vdash \Gamma, B(\mu B)\vec{x} & \vdash \Gamma, S\vec{x} & \vdash BS\vec{x}, (S\vec{x})^\perp \\
\end{align*}
\]

\[
\begin{align*}
\quad & \vdash \Gamma, \mu B\vec{x} & \vdash \Gamma, \nu B\vec{x} \\
\quad & \vdash \mu \nu \vec{x} & \quad \vdash \mu \nu \vec{x}, \nu B\vec{x} \\
\quad & \vdash \mu B\vec{x}, \nu B\vec{x} \\
\end{align*}
\]

\[
(\mu B\vec{x})^\perp \overset{\text{def}}{=} \nu B\vec{x}
\]

\[
\overline{B} \overset{\text{def}}{=} \lambda p. \lambda \vec{x}. (B(\lambda \vec{x}. (p\vec{x})^\perp)\vec{x})^\perp
\]

All fixed points must be formed over **monotonic bodies** \(B \): negation is not even part of the syntax!
Examples

Natural numbers

\[nat \ x \overset{\text{def}}{=} \mu (\lambda \text{nat} \lambda x. x = 0 \oplus \exists y. x = s \ y \otimes \text{nat} \ y)x \]

One can derive:

\[nat \ 0 \]

\[\forall x. (nat \ x \rightarrow nat \ (s \ x)) \]

and for any \(P \):

\[P \ 0 \rightarrow (\forall x. P \ x \rightarrow P \ (s \ x)) \rightarrow \forall x. (nat \ x \rightarrow P \ x) \]

Theorems, assuming a standard definition of \textit{plus}:

\[\vdash \forall x. \text{nat} \ x \rightarrow plus \ x \ 0 \ x \]

\[\vdash \forall x. \text{nat} \ x \rightarrow \forall y \exists z. plus \ x \ y \ z \]

\[\vdash \forall x. \text{nat} \ x \rightarrow \forall y. \text{nat} \ y \rightarrow \forall z. plus \ x \ y \ z \rightarrow \text{nat} \ z \]
Preliminary observations

Proposition

The general initial rule, as well as the unfolding of greatest fixed points, are admissible:

\[\Gamma, P \vdash P, P^\bot \quad \text{init} \]

\[\Gamma, B(\nu B)\bar{x} \vdash \Gamma, \nu B\bar{x} \quad \nu R \]

Theorem (cut-elimination)

The cut rule is admissible:

\[\Gamma, P \vdash P^\bot, \Delta \]

\[\Gamma, \Delta \vdash \Gamma, \Delta \quad \text{cut} \]
Asynchrony / Synchrony

We classify the following connectives as asynchronous:

\(\forall, \&, \forall \)

The others are synchronous:

\(\otimes, \oplus, \exists \)

Theorem

For any fully asynchronous formula \(Q \), *the following structural rules are admissible:*

\[
\frac{\vdash \Gamma, Q, Q}{\vdash \Gamma, Q} \quad \frac{\vdash \Gamma}{\vdash \Gamma, Q}
\]

With exponentials, the following would hold for any fully synchronous \(P \) and fully asynchronous \(Q \):

\(P \longrightarrow! P \) and \(Q \longrightarrow? Q \)
Asynchrony / Synchrony

We classify the following connectives as asynchronous:

\[\forall, \&, \forall, \neq \text{ and } \nu \]

The others are synchronous:

\[\otimes, \oplus, \exists, = \text{ and } \mu \]

Theorem

For any fully asynchronous formula Q, the following structural rules are admissible:

\[\vdash \Gamma, Q, Q \quad \vdash \Gamma \]

\[\vdash \Gamma, Q \quad \vdash \Gamma, Q \]

With exponentials, the following would hold for any fully synchronous P and fully asynchronous Q:

\[P \rightsquigarrow !P \quad \text{and} \quad Q \rightsquigarrow ?Q \]
Focusing for MALL

Asynchronous phase

⊢ \Gamma \uparrow P, Q, \Delta \quad \vdash \Gamma \uparrow P, \Delta \quad \vdash \Gamma \uparrow Q, \Delta

\vdash \Gamma \uparrow P \& Q, \Delta

\vdash \Gamma \uparrow P \ c, \Delta

\vdash \Gamma \uparrow \forall x . P \ x, \Delta

Synchronous phase

\vdash \Gamma \downarrow P_i

\vdash \Gamma \downarrow P \vdash \Gamma' \downarrow Q

\vdash \Gamma \downarrow P t

\vdash \Gamma \downarrow \exists x . P \ x

Switching (P synchronous, Q asynchronous)

\vdash \Gamma, P \uparrow \Delta

\vdash \Gamma \downarrow P

\vdash \Gamma \uparrow Q

\vdash \Gamma \uparrow P, \Delta

\vdash \Gamma, P \uparrow

\vdash \Gamma \downarrow Q

Theorem (Completeness of focusing for MALL)

\vdash \Gamma \iff \vdash \uparrow \Gamma
Focusing for MALL

Asynchronous phase (\(a\) is an asynchronous atom)

\[
\begin{align*}
\vdash & \Gamma \uparrow P, Q, \Delta \quad \vdash & \Gamma \uparrow P, \Delta \quad \vdash & \Gamma \uparrow Q, \Delta \quad \vdash & \Gamma \uparrow P \otimes c, \Delta \quad \vdash & \Gamma, a \uparrow \Delta \\
\vdash & \Gamma \uparrow P \otimes Q, \Delta \quad \vdash & \Gamma \uparrow P \otimes Q, \Delta \quad \vdash & \Gamma \uparrow \forall x \cdot P x, \Delta \quad \vdash & \Gamma \uparrow a, \Delta
\end{align*}
\]

Synchronous phase (\(a\) is a synchronous atom)

\[
\begin{align*}
\vdash & \Gamma \downarrow P_i \quad \vdash & \Gamma \downarrow P \quad \vdash & \Gamma' \downarrow Q \quad \vdash & \Gamma \downarrow P t \quad \vdash & a \perp \downarrow a \\
\vdash & \Gamma \downarrow P_0 \oplus P_1 \quad \vdash & \Gamma, \Gamma' \downarrow P \otimes Q \quad \vdash & \Gamma \downarrow \exists x \cdot P x
\end{align*}
\]

Switching (\(P\) synchronous, \(Q\) asynchronous)

\[
\begin{align*}
\vdash & \Gamma, P \uparrow \Delta \quad \vdash & \Gamma \downarrow P \quad \vdash & \Gamma \uparrow Q \\
\vdash & \Gamma \uparrow P, \Delta \quad \vdash & \Gamma, P \uparrow \\
\vdash & \Gamma \downarrow Q
\end{align*}
\]

Theorem (Completeness of focusing for MALL)

\[
\vdash \Gamma \iff \vdash \uparrow \uparrow \Gamma
\]
Focusing for μMALL$^=$

Asynchronous phase

\[\vdash \Gamma \uparrow A, B, \Delta \quad \vdash \Gamma \uparrow A, \Delta \quad \vdash \Gamma \uparrow B, \Delta \quad \vdash \Gamma \uparrow A \land B, \Delta \quad \vdash \Gamma \uparrow A \land B, \Delta \quad \vdash \Gamma \uparrow A \land B, \Delta \quad \vdash \Gamma \uparrow \forall x . A x, \Delta \]

\[\{ \vdash \Gamma \theta \uparrow \Delta \theta : \theta \in \text{csu}(s \equiv t) \} \]
\[\vdash \Gamma \uparrow s \neq t, \Delta \]

\[\vdash \Gamma \uparrow S\vec{x}, \Delta \quad \vdash \Gamma \uparrow BS\vec{x}, S\vec{x} \downarrow \quad \vdash \Gamma \nu B\vec{x}, \Delta \quad \vdash \Gamma \nu B\vec{x}, \Delta \]

Synchronous phase

\[\vdash \Gamma \downarrow A_i \quad \vdash \Gamma \downarrow A \quad \vdash \Gamma \prime \downarrow B \quad \vdash \Gamma \downarrow A t \quad \vdash \Gamma \downarrow \exists x . A x \]

\[\vdash \Gamma \downarrow B(\mu B)\vec{x} \]
\[\vdash \Gamma \downarrow \mu B\vec{x} \quad \vdash \nu B\vec{x} \downarrow \mu B\vec{x} \]

Switching (where P is synchronous, Q asynchronous)

\[\vdash \Gamma, P \uparrow \Delta \quad \vdash \Gamma, P \downarrow \quad \vdash \Gamma \uparrow Q \quad \vdash \Gamma \downarrow Q \]
Some flexibility in assigning polarities !?

We conjecture a completeness result with flipped polarities, i.e. with μ treated among the asynchronous, ν among the synchronous:

$$
\vdash \Gamma \uparrow B(\mu B)\vec{t}, \Delta \quad \vdash, \mu B\vec{t} \uparrow \Delta \\
\vdash \Gamma \uparrow \mu B\vec{t}, \Delta \\
\vdash \Gamma \downarrow S\vec{t} \quad \vdash \Gamma \uparrow BS\vec{x}, (S\vec{x})^\perp \\
\vdash \Gamma \downarrow \nu B\vec{t} \\
\vdash \mu B\vec{t} \downarrow \nu B\vec{t}
$$

We can probably allow some mixing of both choices, as for atoms in Andreoli’s result. What does it mean? What can it be used for?
Application to intuitionistic logic

The focusing result can be translated to intuitionistic logic:

\[
\vdash [F] \leftrightarrow \vdash F \\
\downarrow \quad \downarrow \\
\vdash \uparrow [F] \rightarrow \vdash \uparrow F
\]

Guide line for the encoding: fewer exponentials (!, ?) means stronger focusing behaviour.

We do not have exponentials (yet), but we can already handle a surprising fragment, and the focusing behaviour is very structured on it.
Design of the encoding

Goal: design a fragment such that all formulas appearing negatively can be encoded in a fully asynchronous way.

\[
\begin{align*}
\mathcal{H} & ::= \mathcal{H} \land \mathcal{H} \mid \mathcal{H} \lor \mathcal{H} \mid s = t \mid \mu \mathcal{H} \vec{t} \mid \exists x. \mathcal{H} x \\
\mathcal{G} & ::= \mathcal{G} \land \mathcal{G} \mid \mathcal{G} \lor \mathcal{G} \mid s = t \mid \mu \mathcal{G} \vec{t} \mid \exists x. \mathcal{G} x \mid \forall x. \mathcal{G} x \mid \mathcal{H} \supset \mathcal{G} \mid \nu \mathcal{G} \vec{t}
\end{align*}
\]

We can encode it **without exponentials** as follows:

\[
\begin{align*}
[A \land B] & \overset{\text{def}}{=} [A] \otimes [B] \\
[A \lor B] & \overset{\text{def}}{=} [A] \oplus [B] \\
[s = t] & \overset{\text{def}}{=} s = t \\
[\mu B \vec{t}] & \overset{\text{def}}{=} \mu[B] \vec{t} \\
[\exists x. Ax] & \overset{\text{def}}{=} \exists x. [Ax] \\
[\forall x. Ax] & \overset{\text{def}}{=} \forall x. [Ax] \\
[\nu B \vec{t}] & \overset{\text{def}}{=} \nu[B] \vec{t} \\
[A \supset B] & \overset{\text{def}}{=} [A] \rightarrow [B] \\
[\lambda p \lambda x. B p x] & \overset{\text{def}}{=} \lambda p \lambda x. [B p x]
\end{align*}
\]
Focusing for \mathcal{G}

Proposition

For any $P \in \mathcal{G}$, P is provable in μLJ if and only if $[P]$ is provable in μMALL (under the restrictions . . .).

This yields a nice focusing system for \mathcal{G}.

Expressivity of \mathcal{G}

\mathcal{G} can express that a set p described by Horn clauses satisfies some other Horn clause property:

$$\forall \vec{x}. \neg p \vec{x} \supset q \vec{x}$$

When the fixed points are noetherian, the focusing discipline yields the re-discovery of Bedwyr, our logic programming engine for this fragment. We have used it to specify logics and calculi, perform model-checking, check bisimulation for π-calculus, etc.
Conclusion

Contributions

▶ An expressive extension of MALL with a complete focused system;
▶ insights on the treatment of atoms and infinity;
▶ encodes (a fragment of) LINC, without as much technical restrictions.

Further work

▶ Extension with exponentials and atoms;
▶ expressivity of linear invariants in an intuitionistic proof;
▶ study (use?) systems with non-monotonic definitions;
▶ understand (use?) the flexibility in the design of the focused system;
▶ use our focusing system(s) to understand or design heuristics for (co)inductive theorem-proving.