
AMPL: a quick-start guide

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

1 Introduction

AMPL is an algebraic modeling language for linear and nonlinear optimiza-
tion problems, in discrete or continuous variables. It allows the development
of models and algorithms. It is linked to the most widely used solvers for
LP/MILP/MINLP programming, which can be called for the AMPL environ-
ment to solve a given instance of the problem coded in AMPL.

AMPL with a lincense for the course can be found here: http://www.lix.
polytechnique.fr/~dambrosio/teaching/. The instructions on how to install
AMPL are presented in Section 8. The AMPL book, a very detailed manual,
can be found here https://ampl.com/learn/ampl-book/

1.1 AMPL files

The AMPL user writes the formulation of the problem (s)he wishes to solve
in a file that as an extension .mod. Each instance of the formulation is stored
in a data file, which extension is .dat. The script or commands to declare
in which mod file AMPL should look for the formulation and in which dat
file AMPL should look for the instance data are either typed in the AMPL
environment/console, or written in a file, which extension is .run.

To summarize, each problem instance is coded in AMPL using three files:

• a model file (extension .mod): contains the mathematical formulation of
the problem.

• a data file (extension .dat): contains the numerical values of the problem
parameters.

• a run file (extension .run): specifies the solution algorithm (external and/or
coded by the user in the AMPL language itself).

1

http://www.lix.polytechnique.fr/~dambrosio/teaching/
http://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/

In the following, we present the different AMPL commands/instructions and
how they are used in the three different files.

Lastly, we specify that in AMPL a comment start with the character #. In
case a character # is encoutered, the rest of the line is a comment.

2 Model file

We start with the model file, where the formulation is defined. Similarly to when
we write a formulation on paper, the main elements that we need to define are:

• parameters, lines starting with the keyword param

• sets, lines starting with the keyword set

• decision variables, lines starting with the keyword var

• objective function(s), lines starting with the keyword minimize or maximize

• constraints, lines starting with the keyword subject to

2.1 Parameters

In the model file, the user defines the parameters used in the formulation in an
abstract way. The numerical values corresponding to each parameters will be
found in the dat file, for each formulation instance.

The keyword param starts the line concerning parameters, followed by the
name of the parameters itself together with its dimension. For example, if we
wish to define a 1-dimensional parameters called n we can use the following
command:� �
param n;� �
We can add some conditions on the values of the parameters, to be sure some
assumptions are respected. For example, if the parameter n is strictly positive,
we can write instead:� �
param n > 0;� �
Finally, for defining an n-dimensional, strictly positive vector of parameter called
w, we can use the following command:� �
param w{1..n} > 0;� �
Note that the indices in AMPL starts from 1 and not from 0.

Clearly, we can define as well matrices, for example, we define n, m, and an
n×m matrix a in the following:� �
param n > 0;

param m > 0;

param a{1..n, 1..m};� �
2

Finally, note that it is possible to define a default value as well, namely:� �
param n > 0, default 10;� �
The default value has to satisfy the defined conditions, in the example above it
has to be a value > 0. If a value for n is present in the .dat file, then the default
value is overwritten.

2.2 Sets

For ease of notation, we can define sets in the AMPL model file. For example,
we can define the set N = {1, . . . , n} as follow:� �
set N := 1..n;� �
Once a set is defined, it can be used to define the dimension of a parameters
or decision variables vector, for example. The definition of w presented in the
previous section can be replaced with the following:� �
param w{N} > 0;� �
or, equivalently,� �
param w{j in N} > 0;� �
The last option is useful if the conditions depends on other parameters, for
example:� �
param w{1..n} > 0;

param p{j in N} <= 10*w[j];� �
if parameter pj have to be not greater than ten time wj for all j = 1, . . . , n.

2.3 Decision variables

The decision variables are defined in lines starting with the keyword var. Simi-
larly to the parameters, their dimension is defined thanks to parameters or sets
and come conditions can be defined on them. Unlikely in the case of parameters,
the conditions on their value are simple bounds on the variables themselves that
the solver has to respect, together with generic constraints. Moreover, the use
could define the variables binary or integer, i.e.:� �
var x{j in 1..n} >= 0, <= 1, binary;� �
Clearly, as in the parameters case, decision variables can show more than one
index.

Note that, when one defines a variable, it is possible to define a default value
as well, namely:� �
var x{j in 1..n} >= 0, <= 100, default 10;� �

3

The default value can take any value between the lower and the uppe bound,
in the example above, any value between 0 and 100. The default value could
correspond to a parameter value as well, if needed.

2.4 Objective function(s)

Usually, each formulation includes a unique objective function because standard
mathematical optimization solvers can deal with just one objective function at
time. However, AMPL provides the possibility to define more than one. The
objective function declarations start with the minimize or maximize keyword
as follows:� �
maximize total_profit:

sum{j in N} p[j]*x[j];� �
where total profit is the name of the objective function, sumj in N is the sum
over j whose indices are in the set N and p[j]*x[j] is the simple product of the
j-th element of parameter vector p and decision variables vector x.

2.5 Constraints

Constraints are defined thank to the keyword subject to followed by the name
of the constraints and their quantifier. For example:� �
subject to capacity_constraint:

sum{j in N} w[j]*x[j] <= c;� �
or� �
subject to random_constraint{j in 2..n}:

w[j]*x[j] - w[j-1]*x[j-1]<= 1;� �
2.6 Example: the 01-Knapsack Problem

We present first the matematical optimization formulation of the 01-knapsack
problem, followed by its AMPL model file.

max

n∑
j=1

pjxj

n∑
j=1

wjxj ≤ c

xj ∈ {0, 1} j = 1, . . . , n

4

� �
param n > 0; # number of items

set N := 1..n;

param p {j in N} > 0; # profits

param w {j in N} < 0; # weights

param c > 0; # knapsack capacity

var x {j in N} >= 0, <= 1, binary; # variables

maximize total_profit: # objective function

sum {j in N} p[j]*x[j];

subject to capacity_constraint: # constraint

sum{j in N} w[j]*x[j] <= c;� �
3 Data file

A data file contains the data concerning an instance of a formulation. All the
numerical valules of the parameters and the sets have to be defined there. For
a 1-dimensional parameter, it is possible to simply defining it as follows:� �
param n := 10;� �
As for the vector case, it is possible to define it as follows:� �
param: w :=

1 78.770199

2 77.468892

3 93.324757

4 96.180080

5 55.137398

6 40.101851

7 36.007819

8 5.317250

9 9.964929

10 60.265707

;� �
More details on how to define data files can be found in Chapter 9 of the AMPL
book https://ampl.com/learn/ampl-book/. We conclude the session with an
example of instance for the 01-knapsack problem.� �
param n := 10;

param c := 546.000000;

param: a :=

1 0.172274

2 0.134944

5

https://ampl.com/learn/ampl-book/

3 0.101030

4 0.163588

5 0.152350

6 0.196601

7 0.181208

8 0.126588

9 0.184087

10 0.187434

;

param: w :=

1 78.770199

2 77.468892

3 93.324757

4 96.180080

5 55.137398

6 40.101851

7 36.007819

8 5.317250

9 9.964929

10 60.265707

;

param: p :=

1 3.062328

2 43.280130

3 52.983122

4 62.101010

5 58.531125

6 47.574366

7 53.101406

8 6.902601

9 16.985577

10 62.576610

;� �
4 Run file

The run file in AMPL is basically the file containing the script that has to be run
to solve the problem. It mainly contains the commands model and data which
allow the user to define the model and the data file for a given formulation and
instance. Then, it contains the reference to the solver which the user wishes to
use to solve the instance of the formulation (option solver command) and the
solver command that is needed for AMPL to call the solver.

Thus, a typical form of file looks like:� �
model myModel.mod;

data myDat.dat;

6

option solver gurobi;

solve;� �
where myModel.mod and myDat.dat are the model and the data files, respec-
tively. Here, we assumed that both files are contained in the folder where ampl
will be called. If this is not the case, a path can be always be defined as well,
for example� �
model "../ AMPL_example/myModel.mod";� �

In the following, we report other useful commands.
The keywords reset and reset data are useful when one runs several mod-

els/instances/run files one after the other in the AMPL environment. They
usually appear at the beginning of the run file.� �
reset;

reset data;� �
Solver options: given a solver, specified thanks to the command option

solver, we can modify its default options thanks to the command option

gurobi options before calling it, supposing the selected solver is gurobi. For
example� �
option solver gurobi;

option gurobi_options "outlev 1";

solve;� �
For cplex, we will use option cplex options and so on. The list of the available
options can usually be found in the solver webpage (for example, you can google
“ampl options solver cplex” for finding the list of options for the solver cplex).

Another useful command is option relax integrality. The possible val-
ues are only 0 or 1: if it set to 1, then all the integrality requirements on the
model are relaxed until its value is set again to 0, its default value. Suppose
we are given an instance (coded in the file myInstance.dat) and a formulation
(coded in the file myMILPmodel.mod) want to solve the continuous (or LP)
relaxation of our instance and then the MILP problem we can do:� �
model myMILPmodel.mod;

data myInstance.dat;

option solver cplex;

option relax_integrality 1; # relaxing the integrality

requirements on all the decision variables

solve;

option relax_integrality 0; # restoring the integrality

requirements on all the decision variables

solve;� �
Finally, some commands concerning displaying/printing the values of the

entities like parameters, sets, objectives, constraints, variables.
We can use display with any of the entities listed above, for example:

7

� �
display n, c;

display N;

display w, p;� �
can result into something like:

n = 7

c = 19

set N := 1 2 3 4 5 6 7;

: w p :=

1 11 10

2 6 3

3 6 4

4 5 5

5 5 6

6 4 7

7 1 2

;

Thus, the values corresponding to the defined instance are shown. The use of
the display command on the decision variables makes sense only after a solver
is run and it shows the values of the variables corresponding to the best solution
find by the solver during the last solve command. The same for the objective
function, display shows its value for the best solution find by the solver during
the last solve command. For example:� �
display x;

display cost;� �
can result into something like:

x [*] :=

1 0.363636

2 0

3 0

4 1

5 1

6 1

7 1

;

cost = 23.6364

Similarly, when called wit a constraint name, it shows the value of the left-
hand-side for the best solution find by the solver during the last solve command.
For example:

8

� �
display capacity_constraint;� �
can result into something like:

capacity_constraint = 0.909091

In order to show explicitly the constraints for a given instance, we can use
the command expand, for example:� �
expand capacity_constraint;� �
can result into something like:

subject to capacity_constraint:

11*x[1] + 6*x[2] + 6*x[3] + 5*x[4] + 5*x[5] + 4*x[6] + x[7] <= 19;

An alternative to display is printf, thank to which we can define precisely
the printing format.� �
printf "param n := %d;\n", n;

printf "\n";

param c

printf "param c :";

for {j in N} {

printf "\t%d", j;

}

printf "\t:=\n";

for {i in N} {

printf "\t%d", i;

for {j in N} {

printf "\t%d", c[i,j];

}

printf "\n";

}

printf ";\n\n";� �
where %d allows us to print an integer number, while %f allows us to print a real
number. The reader is referred again to the AMPL book for more details and
options, also concerning strings manimulations.

We end the section by reporting an example of run file for the 01-knapsack
problem:� �
Author: Claudia D’Ambrosio

Date: 20190121

nlkp.run

reset;

reset data;

model file

model nlkp.mod;

9

data file

data "/ mypath/nlkp.dat";

option solver gurobi;

option gurobi_options "outlev 1";

call the solver and provide it with

the formulation and the instance data

solve > nlkp.out;� �
5 Other useful operators

There are plenty of other useful operators/keywords/commands in AMPL. We
list here the most widely-used ones and refer the reader to the AMPL book for
a more detailed list.

Conditional commands like if then else:� �
if x[1]== 0 then {

...

}

else {

...

}� �
The user might need to repeat instructions. The main looping commands

are for, repeat while, repeat until� �
for {j in 1..n} {

...

}� �
or� �
repeat {

. . .

}

until x[n] > 0;� �
6 How to run AMPL to solve an istance of a

mathematical optimization formulation

Now that we know how to create dat, mod, and run files, we discuss how we can
run AMPL and call a mathematical optimization solver to solve an instance of
a formulation represented by a pair dat/mod file.

We have two main options:

10

• use the AMPL environment/IDE

• use a command-line interface.

6.1 AMPL environment/IDE

If we have a run file where all the commands we wish to run are stored, then
we can simply use the include keyword as follows:

ampl: include "../ myfolder/myrunfile.run";

Note that to enter in the AMPL environment from the command-line interface
we need to type ampl. To exit the AMPL environment we need to type quit;

6.2 Command-line interface

How to call AMPL from the command line:

Claudias -MacBook -Pro -8: ampl myrunfile.run

or

Claudias -MacBook -Pro -8: ampl myrunfile.run > myoutputfile.out

In the second case, all the screen output will be stored in the file called myout-
putfile.out – which will be created if it does not exist.

7 Non linear knapsack problem

File nlkp.out obtained:

Log started (V12 .9.0.0) Tue Apr 13 13:42:28 2021

Problem ’S1A.lp’ read.

Read time = 0.01 sec. (0.22 ticks)

Tried aggregator 2 times.

MIP Presolve eliminated 363 rows and 20 columns.

MIP Presolve modified 289 coefficients.

Aggregator did 26 substitutions.

Reduced MIP has 1433 rows , 745 columns , and 8290 nonzeros.

Reduced MIP has 426 binaries , 0 generals , 0 SOSs , and 0 indicators.

Presolve time = 0.02 sec. (7.86 ticks)

Found incumbent of value -87047.062500 after 0.13 sec. (17.36 ticks)

Probing fixed 12 vars , tightened 14 bounds.

Probing time = 0.01 sec. (3.80 ticks)

Tried aggregator 1 time.

MIP Presolve eliminated 27 rows and 24 columns.

MIP Presolve modified 5 coefficients.

Reduced MIP has 1406 rows , 721 columns , and 8020 nonzeros.

Reduced MIP has 414 binaries , 0 generals , 0 SOSs , and 0 indicators.

Presolve time = 0.01 sec. (4.48 ticks)

Probing time = 0.01 sec. (2.40 ticks)

Clique table members: 2770.

MIP emphasis: balance optimality and feasibility.

MIP search method: dynamic search.

Parallel mode: deterministic , using up to 4 threads.

Root relaxation solution time = 0.04 sec. (26.27 ticks)

Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 -87047.0625 196841.1648 326.13%

0 0 146592.8674 128 -87047.0625 146592.8674 774 268.41%

* 0+ 0 -18856.5625 146592.8674 877.41%

11

0 0 143226.7335 115 -18856.5625 Cuts: 328 946 859.56%

0 0 141330.8970 95 -18856.5625 Cuts: 156 1076 849.51%

0 0 141078.6961 91 -18856.5625 Cuts: 82 1170 848.17%

0 0 140976.2661 67 -18856.5625 Cuts: 51 1275 847.62%

* 0+ 0 67624.4514 140976.2661 108.47%

* 0+ 0 91823.6758 140976.2661 53.53%

0 0 140962.7183 80 91823.6758 Cuts: 55 1341 53.51%

0 0 140955.1845 87 91823.6758 Cuts: 35 1391 53.51%

0 0 140954.4377 86 91823.6758 Cuts: 29 1428 53.51%

* 0+ 0 124609.1795 140954.4377 13.12%

0 2 140954.4377 86 124609.1795 140954.4377 1428 13.12%

Elapsed time = 1.06 sec. (329.84 ticks , tree = 0.02 MB, solutions = 5)

* 11+ 1 124870.6640 140952.4371 12.88%

* 104+ 66 135835.4756 140910.7472 3.74%

* 362+ 172 136560.6915 140890.5641 3.17%

* 426 189 integral 0 136613.3802 140890.5641 12085 3.13%

* 806+ 420 136746.9103 140350.7946 2.64%

* 872+ 460 136849.0125 140302.2631 2.52%

* 1129+ 564 136964.1629 140195.7784 2.36%

1138 598 137746.3561 43 136964.1629 140195.7784 25126 2.36%

* 1161+ 564 137008.0519 140195.7784 2.33%

* 1174+ 564 137027.8104 140195.7784 2.31%

* 1482+ 741 137198.4695 140039.3186 2.07%

Clique cuts applied: 21

Cover cuts applied: 2

Implied bound cuts applied: 64

Flow cuts applied: 26

Mixed integer rounding cuts applied: 69

Lift and project cuts applied: 6

Gomory fractional cuts applied: 32

Root node processing (before b&c):

Real time = 1.05 sec. (329.11 ticks)

Parallel b&c, 4 threads:

Real time = 2.79 sec. (643.23 ticks)

Sync time (average) = 0.62 sec.

Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 3.84 sec. (972.34 ticks)

Solution pool: 16 solutions saved.

MIP - Aborted , integer feasible: Objective = 1.3719846949e+05

Current MIP best bound = 1.3965664119e+05 (gap = 2458.17 , 1.79%)

Solution time = 3.84 sec. Iterations = 36640 Nodes = 1770 (891)

Deterministic time = 972.35 ticks (252.96 ticks/sec)

8 To install AMPL

• Download one of the following .zip files:

– http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_

linux-intel64.tgz

– http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_

macos64.tgz

– http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_

mswin64.zip

• Follow installation instructions that can be found here.

• Available solvers: baron, conopt, gurobi, ilogcp, knitro, lgo, loqo, minos,
snopt, xpress

9 References

• Modeling languages like ampl: ampl.com
or gams: www.gams.com or jump https://jump.dev/JuMP.jl/

12

http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_linux-intel64.tgz
http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_linux-intel64.tgz
http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_macos64.tgz
http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_macos64.tgz
http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_mswin64.zip
http://www.lix.polytechnique.fr/~dambrosio/teaching/ampl_mswin64.zip
https://ampl.com/ampl-course-install/
ampl.com
www.gams.com
https://jump.dev/JuMP.jl/

• AMPL Book: https://ampl.com/learn/ampl-book/

• AMPL examples: https://ampl.com/learn/ampl-book/example-files/

• Open source solvers like scip: scip.zib.de

• NEOS Server, State-of-the-Art Solvers for Numerical Optimization: www.
neos-server.org/neos/

13

https://ampl.com/learn/ampl-book/
https://ampl.com/learn/ampl-book/example-files/
scip.zib.de
www.neos-server.org/neos/
www.neos-server.org/neos/

	Introduction
	AMPL files

	Model file
	Parameters
	Sets
	Decision variables
	Objective function(s)
	Constraints
	Example: the 01-Knapsack Problem

	Data file
	Run file
	Other useful operators
	How to run AMPL to solve an istance of a mathematical optimization formulation
	AMPL environment/IDE
	Command-line interface

	Non linear knapsack problem
	To install AMPL
	References

